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Abstract
We formulate and prove a generalization of the Atiyah-Singer family index theorem
in the context of the theory of spaces of manifolds à la Madsen, Tillmann, Weiss,
Galatius and Randal-Williams. Our results are for Dirac-type operators linear over
arbitrary C∗-algebras.
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932 J. Ebert

1 Introduction

The historically first proof of the Atiyah-Singer index theorem [2,18] established an
intimate relation between cobordism theory and index theory of elliptic operators.
It relied on the cobordism invariance of the index and Thom’s computation of the
rational oriented cobordism ring; the better known K -theoretic proof [3,4] eliminated
the dependence on cobordism theory.

During the last 15 years, we have witnessed a revival of the geometric aspects of
cobordism theory, starting from [16], mademore explicit in [11] and further developed
in [10]. This geometric theory concerns the d-dimensional cobordism category of θ -
manifoldsCobθ (d), where θ : Y → BO(d) is a fibration. Galatius,Madsen, Tillmann
and Weiss proved in [11] that BCobθ (d) � �∞−1MTθ(d), where MTθ(d) is the
Thom spectrum of the additive inverse of the vector bundle classified by θ . For a
closed d-manifold M , there is a map α : BDiffθ (M) → �BCobθ (d) � �∞MTθ(d)

from the classifying space for M-bundles with θ -structure.
For some θ , there are natural elliptic operators living on θ -manifolds (for example,

theCauchy–Riemann operator onRiemann surfaces, the signature operator on oriented
manifolds and the spin Dirac operator on spinmanifolds). It was observed no later than
[15] that some of the homotopy theoretic constructions around the spectrumMTSO(2)
admit interpretations in terms of the index of the Cauchy–Riemann operator, as a
consequence of the Atiyah-Singer theorem. This observation was later systematized
by the author [9] and used many times, e.g. in [5]. In each of these situations, there
is a spectrum map MTθ → K to the K -theory spectrum or some (de)suspension
thereof, defined using the underlying linear algebra. The index theorem implies that
the composition of α with that map is homotopic to the classifying map for the family
index of the operators under consideration.

The main result of [11] provides a geometric representation of the space
�∞−1MTθ(d) in terms of spaces of θ -manifolds. This suggests the possibility of
finding a proof of the index theorem using the techniques introduced in [11], and the
purpose of this paper is to present such a proof. At the same time, we give a general-
ization of the index theorem to families of noncompact manifolds. Let us describe the
idea.

For sake of concreteness, suppose we wish to compute the family index of the spin
Dirac operator /D on a bundle of d-dimensional closed spin manifolds π : M → X .
The Dirac operator is linear over the Clifford algebra Cld,0, and so we expect it to
have an index1 index( /D) ∈ KO−d(X) = [X; K(Cld,0)0].

At the heart of the new geometric cobordism theory, there are two spectra (in the
sense of homotopy theory) MTSpin(d) and GRWSpin(d). The spectrum MTSpin(d)

is nowadays quite well-known, so let us focus on the other one, which was intro-
duced (with a different name) by Galatius and Randal-Williams [10]. The 0th space
GRWSpin(d)0 of GRWSpin(d) is the space of all closed d-dimensional spin man-
ifolds. There is a suitable topology on GRWSpin(d)0 [10], and with this topology,
GRWSpin(d)0 becomes a classifying space for fibre bundles of d-dimensional closed

1 We denote the K -theory spectrum of a Real graded C∗-algebra A by K(A) and the nth space in this
spectrum by K(A)n . Hence [X; K(Cld,0)n ] ∼= KOn−d (X).
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Index theory in spaces of manifolds 933

spin manifolds. Hence the bundle π corresponds to a map λπ : X → GRWSpin(d)0,
unique up to homotopy. The usual stability properties of the Fredholm index imply that
index( /D) ∈ KO−d(X) only depends on the homotopy class of λπ (and not on data
such as fibrewise Riemannian metrics which enter the definition of /D). One can go a
step further, and define a universal index map index0 : GRWSpin(d)0 → K(Cld,0) �
�∞+d K O in terms of analysis. The goal of the index theorem is to obtain a topological
formula for index0.

The main idea of the present paper is to extend index0 to a spectrum map
GRWSpin(d) → K(Cld,0) and to take advantage of the results of [10] to compute it
in terms of homotopy theory. A point in the nth space GRWSpin(d)n of the spectrum
GRWSpin(d) is a noncompactd-dimensional spinmanifoldM , equippedwith a proper
“control map” f : M → R

n , and a Riemannian metric. Pretending for a moment that
M is complete (which is not the case in general), the Dirac operator on such an M
is essentially self-adjoint, and we may form the bounded transform F := /D

(1+ /D2
)1/2

.

However, unless n = 0 (and hence M compact), F will not be a Fredholm operator,
and hence does not have an index in K (Cld,0). But there is an index, which lives in
another K -group. To see which one, we take guidance from Kasparov theory (even
though in the end our results are formulated and proven without referring to Kasparov
theory).

An important result in the analysis of elliptic operators on noncompact manifolds
(see e.g. [14, Sect. 10]) states that for each compactly supported function h on R

n , the
operator (h ◦ f )(F2 − 1) is compact. That is, /D defines a class in the Kasparov group
KK (C0(R

n);Cld,0) ∼= KOn−d(∗). Instead of this group, we shall use an isomorphic
group to store the information about the operators on M , namely KK (Cln,0,Cld,0).
The isomorphism KK (C0(R

n);Cld,0) ∼= KK (Cln,0,Cld,0) is given abstractly by
an intersection product, but we can give a very concrete and simple description of
the image of the class of /D, using a kind of “dual Dirac” element. We replace /D
by an operator /D

′ with an extra Clifford symmetry and compact resolvent, so that
/D′

(1+ /D′2
)1/2

is Fredholm. By Kasparov’s Bott periodicity theorem, we know that this

process does not loose index-theoretic information. The construction can be carried
out in the parametrized setting, and we obtain index maps

indexn : GRWSpin(d)n → K(Cld,0)n � �∞−n
K(Cld,0). (1.1)

The construction relies on the generalization of the classical regularity theory for
elliptic operators which the author developed in [8] (to use these analytical results, we
have to replace the source of (1.1) by a homotopy equivalent space, but let us ignore this
techical point for now). Nowboth, target and source are the nth space of spectra. On the
right hand side, the structure maps are given by the Bott maps (or appropriate versions
thereof). On the left-hand side, the structure map is a fairly tautological construction
(sometimes called “scanning map”), which might be described as follows. Let M be a
manifoldwith a proper controlmap f : M → R

n . For each t ∈ R, we get a new control
map ( f , t) : M → R

n ×R. As t runs from −∞ to +∞, we get a family of manifolds
(all equal to M) and control maps, namely ( f , t). The topology on GRWSpin(d)n+1
is designed in such a fashion that this family can be completed at ±∞ by adding the
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934 J. Ebert

empty manifold. The construction of this scanning map, the Bott map and the index
fit together so that the collection (indexn)n is a map of spectra

index : GRWSpin(d) → K(Cld,0). (1.2)

(not quite: it is only a weak map in the sense of 2.5 below; the reason is that certain
canonical isomorphisms are not identities).

The space MTSpin(d)n can be viewed as a subspace of GRWSpin(d)n , namely
the space of all linear submanifolds contained in R

n (a linear submanifold is a, pos-
sibly empty, affine subspace). The inclusion maps MTSpin(d)n → GRWSpin(d)n
together give a map of spectra. The key result about this map is that it is a stable
equivalence of spectra [10]. This reduces the computation of the spectrum map (1.2)
to the much smaller spectrum MTSpin(d). This is a fairly straightforward task, using
the Thom isomorphism theorem in K -theory and the computation of the spectrum of
the supersymmetric harmonic oscillator.

We will not only prove an index theorem for the spin Dirac operator, but for all
other operators of Dirac type, and they are allowed to be linear over arbitrary, possibly
graded and RealC∗-algebrasA (for example groupC∗-algebras). In that case, we have
to replace GRWSpin(d) by a spectrum GRWθA(d); a point in the nth space is a triple
(M, f , E), with M a manifold, f : M → R

n a proper map and E → M a bundle
of graded finitely generated projectiveA-modules, together with aCl(T M)-structure.
This spectrum fits into the general framework of [10], in particular, there is a Thom
spectrum MTθA(d) and a weak equivalence of spectra � : MTθA(d) → GRWθA(d).
The K -theory spectrum K(Cld,0) is replaced by K(A), the K -theory spectrum of the
graded C∗-algebra A.

Let us now formulate the main results of this paper in rough terms (compare [1,
p. 45] for our usage of the word “pretheorem”). The spectrum MTθA(d) is a Thom
spectrum, and there is a Thom class which is a (weak) map of spectra

topind : MTθA(d) → K(A),

the topological index.

Pretheorem A (Precise statement given in Proposition 3.7 and Theorem 4.1) For each
graded Real C∗-algebra A, there is a weak spectrum map

index : GRWθA(d) → KA.

On the 0th space, it classifies the ordinary family index of A-linear Dirac operators.
The composition of index with the natural equivalence � : MTθA(d) → GRWθA(d)

is homotopic (as weak maps of spectra) to topind.

There is a corollary of Theorem Awhich looks more closely related to the classical
index theorem. We define a map

PTn : GRWθA(d)n
τn→ �∞−nGRWθA(d)

pn→ �∞−nMTA(d)
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Index theory in spaces of manifolds 935

as the composition of the map τn given by the spectrum structure and a homo-
topy inverse pn to the homotopy equivalence �∞−n� : �∞−nMTθA(d) →
�∞−nGRWθA(d) (this map can also be constructed by a parametrized Pontrjagin-
Thom construction).

Pretheorem B (Precise statement given in Corollary 4.3) In the situation of Theorem
A, the two maps

(GRWθA)n → K(A)n � �∞−n
K(A)

given by indexn and (�∞−n topind) ◦ PTn are homotopic.

Remark 1.3 The classical formulation of the index theorem for real operators involves
Atiyah’s K R-theory. In this paper, there is no K R-theory. This is possible since we
only consider operators of Dirac type, and for those, the appearance of K R-theory
can be eliminated, at the expense of introducing a mildly twisted version of K -theory.
Let us explain this in the simplest situation. Let Md ⊂ R

n be a closed manifold and
E → M a real Cl(T M)-bundle. The symbol class σ(D) of the Dirac operator D on
E is an element in K Rc(T M−), and E itself defines an element [E] ∈ KTM (M),
(see Definition 2.17 below for the definition of this twisted K-group) which maps to
σ(D) under the Thom isomorphism KTM (M) → K Rc(T M−). The classical index
theorems can be stated by saying that [E] maps to index(D) under the composition

KTM (M) ∼= KTM−⊕NM⊕NM−
(M) ∼= KOn

c (NM) → KOn
n (Rn) ∼= Z

of a Morita equivalence isomorphism, the Thom isomorphism, the pushforward along
open embeddings and the Bott periodicity isomorphism. In this formulation, no K R-
group shows up explicitly. If one would like to prove an index theorem for more
general operators than Dirac operators (e.g. pseudo-differential operators), this trick
would not be available. There are also analytical difficulties with treatingmore general
operators, and we refrain from considering them.

Remark 1.4 If one allows arbitrary coefficient C∗-algebras A, our index theorem pro-
vides generalizations of the classical results by Mishchenko and Fomenko [17]. In
particular, the present paper proves a family version of the index theorem of [17],
even for graded C∗-algebras. Even though this is certainly an expected result, it does
not seem to be documented in the literature. It could be proven using Kasparov’s
KK -theory, following the line of argument by Connes and Skandalis [6].

Remark 1.5 Let us explain the meaning of indexn in a simple situation (taking as an
example the spinDirac operator). A point inGRWSpin(d)n is a pair (M, f ), consisting
of a d-dimensional noncompact spin manifold M , and a proper smooth map f :
M → R

n . Then indexn(M, f ) ∈ K(Cld,0)n , and let indn(M, f ) ∈ π0(K(Cld,0)n) ∼=
KOn−d(∗) be the path component of indexn(M, f ). To compute this element, choose a
regular value a ∈ R

n of f and let N := f −1(a), which is a closed (d−n)-dimensional
spin manifold. Let pr2 : N × R

n → R
n be the projection map. The topology of

GRWSpin(d)n is designed in such a way that (M, f ) and (N × R
n, pr2) lie in the
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936 J. Ebert

same component of GRWSpin(d)n . Therefore indn(M, f ) = indn(N ×R
n, pr2). One

can show that indn(N × R
n, pr2) is the index of the spin Dirac operator on the closed

manifold N . For n = 1, this can be interpreted as an instance of the “partitioned
manifold index theorem” of Roe [19, Theorem 3.3], see also [12, Theorem 1.5]. We
are not aware of a simple description of indexn in the parametrized situation.

Outline of the paper. The purpose of Sect. 2 is to gather the topological results
we need. When dealing with spaces of manifolds, it is convenient to use the abstract
sheaf-theoretic language used byMadsen andWeiss [16], so we recall this in Sect. 2.1.
We then proceed to survey results of Galatius and Randal-Williams from [10] and put
them into the form we need (stated as Theorems 2.28 and 2.31 below). In Sect. 3, we
construct the spectrum map index : GRWθA → KA. The analytical work in [8] was
carried out with that goal in mind, so that the construction is pretty straightforward.
Section 4 contains the proof of Theorem A.

2 Backgroundmaterial

2.1 The language of sheaves

The results of this paper involve spaces whose points are manifolds (equipped with
extra data, such as Dirac operators). In [10], a topology on such spaces is constructed.
For our purposes, it is more convenient to avoid delicate questions in point-set topol-
ogy by following the functor-of-points-philosophy. More precisely, we shall use the
formalism of sheaves as in [16, Sect. 2.1, 2.4], which we now briefly recall.

Let Mfds be the category of smooth manifolds and smooth maps, referred to as
test manifolds. A sheaf is a contravariant functor F : Mfds → Set which satisfies
the usual gluing condition. That is, if (Ui )i∈I is an open cover of a test manifold
X and if zi ∈ F(Ui ) are elements such that for each pair (i, j) ∈ I 2 we have2

zi |Ui∩Uj = z j |Ui∩Uj , then there is a unique z ∈ F(X) with z|Ui = zi .
One might think of F as a space whose points are the elements of F(∗), and

elements z ∈ F(X) induce continuous maps X → F(∗), x 
→ z|{x}. To get a grasp of
the definitions/statements/arguments that follow, we advise the reader to secretly put
X = ∗ on the first reading.

Sheaves onMfds formacategorySheaves, and there is a functorSheaves → sSet to
the category of simplicial sets, defined as follows. Let 
p

e := {x ∈ R
p+1| ∑p

i=0 xi =
1} be the “extended p-simplex”. Then p 
→ F(


p
e ) is a simplicial set, denoted F•.

The representing space of F is by definition the geometric realization |F | := |F•| of
this simplicial set.

A topological space Y ∈ Ob(Top) defines a sheaf sh(Y ), namely sh(Y )(X) :=
{ f : X → Y | f continuous }. The simplicial set sh(Y )• is the extended singular
simplicial set Singe•Y of Y , defined using extended simplices. There is an obvious
map Singe•Y → Sing•Y which is a weak equivalence of simplicial sets.

A concordance between two elements z0, z1 ∈ F(X) is an element z ∈ F(X × R)

such that z|X×{i} = zi for i = 0, 1. Concordance is an equivalence relation, and the

2 We denote the pullback along inclusions by the restriction symbol.
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Index theory in spaces of manifolds 937

set of concordance classes is denoted F[X ]. It is proven in [16, Proposition 2.17] that
there is a natural bijection

F[X ] ∼= [X; |F |], (2.1)

for each X ∈ Mfds. We say that a map F → G of sheaves is n-connected (or a
weak equivalence) if the induced map |F | → |G| is n-connected (or a homotopy
equivalence).

Let FR be the sheaf FR(X) := F(X × R). It comes with evaluation maps evt :
FR → F , z 
→ z|X×{t}. A homotopy or natural concordance between two maps
F0, F1 : F → G of sheaves is a map F : F → GR such that evi ◦ F = Fi .

A basepoint of a sheaf F is a morphism z0 : ∗ → F from the initial sheaf (this is
the same information as a consistent choice of basepoints of the setsF(X)). If (F , z0)
is a pointed sheaf, we define the loop sheaf �z0F as follows: �z0F(X) is the set of
all z ∈ F(X × R) with z|X×{i} = z0 for i = 0, 1. If the basepoint z0 is understood, it
is dropped from the notation. There is a map of simplicial sets

φ• : 
1• × (�F)• → F•

defined by (α, z) 
→ α̃∗z. To understand the notation, let α ∈ 
1
p be a p-simplex.

It induces an affine map 

p
e → 
1

e , and so α̃ : 

p
e → 
1

e × 

p
e = R × 


p
e . The

geometric realization of φ• is a map 
1 × |�F | → |F | which descends to a pointed
map S1 ∧ |�F | → |F |, whose adjoint is a map

� : |�F | → �|F |. (2.2)

Using [16, Proposition 2.17], one shows that � is a homotopy equivalence.

Remark 2.3 It is useful for us to change coordinates in theR-direction:R = [−∞,∞]
is a manifold with boundary, and after adding an external collar to R, one obtains the
manifold R̂. We identify F(X × R) and F(X × R̂) by means of an orientation-
preserving diffeomorphism h : R → R̂ with h([0, 1]) = R and h((0, 1)) = R. Using
this identification, we think of elements in (�F)(X) as elements of F(X × R̂) which
restrict to z0 on X × {±∞}.

A spectrum of sheaves is a sequence of pointed sheaves Fn , n ≥ 0, and connecting
maps εn : Fn → �Fn+1. It is called an �-spectrum if all εn are weak equivalences.
Taking representing spaces and using the maps (2.2), a spectrum of sheaves induces
a spectrum of topological spaces. The nth infinite loop space of the spectrum A is the
homotopy colimit (aka mapping telescope)

�∞−n A := hocolimr�
r−n Ar ,

and a spectrum map T : A → B induces maps �∞−nT of infinite loop spaces. There
is a tautological map τn : An → �∞−n A which is a weak equivalence if A is an
�-spectrum. Note that �∞−nT ◦ τn = τn ◦ Tn .

Our main result involves certain “maps of spectra” which are not quite compatible
with the connecting maps, but only up to homotopy. To deal with that situation, we
introduce the following strictifcation procedure.
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938 J. Ebert

Definition 2.4 Let (An, αn) and (Bn, βn) be spectra of topological spaces. A weak
spectrummap is a sequence Tn : An → Bn of pointedmaps, such that there are pointed
homotopies βn ◦ Tn ∼ (�Tn+1) ◦ αn . A strictification of a weak spectrum map T is a
spectrum map T̃ : A → B such that there is a pointed homotopy T̃n ∼ Tn : An → Bn

for each n.

Lemma 2.5 Let (An, αn) and (Bn, βn) be spectra of topological spaces and assume
that the adjoint αad

n : �An → An+1 is a cofibration, for each n ≥ 0. Let T : A → B
be a weak spectrum map. Then T has a strictification T̃ .

Proof We construct T̃n inductively and set T̃0 = T0. Assume that T̃k is already con-
structed for k ≤ n. Then there is a pointed homotopy (�Tn+1)◦αn ∼ βn◦Tn ∼ βn◦ T̃n
of maps An → �Bn+1. Taking adjoints yields a pointed homotopy

Tn+1 ◦ αad
n = (�Tn+1 ◦ αn)

ad ∼ (βn ◦ T̃n)
ad = βad

n ◦ �T̃n .

Sinceαad
n is a cofibration, there is T̃n+1 ∼ Tn+1 : An+1 → Bn+1 such that T̃n+1◦αad

n =
βad
n ◦ T̃n . ��

Lemma 2.6 Let S, T : A → B be two maps of spectra such that Sm ∼ Tm for
each m. Then the maps �∞−n S and �∞−nT are weakly homotopic, i.e. they become
homotopic when composed with any map K → �∞−n A from a finite CW complex. In
particular, if S and T are strictifications of the same weak spectrummap, then�∞−n S
and �∞−nT are weakly homotopic.

Proof Use that anymap fromafiniteCWcomplex K to themapping telescope�∞−n A
factors a finite stage �m−n Am .

Remark 2.7 The homotopies in Definition 2.4 are not part of the data. This has the
effect that the spectrum map T̃ is not uniquely determined up to homotopy. The
individual maps T̃n are uniquely determined up to homotopy, and the maps �∞−n T̃
on infinite loop spaces are determined up to weak homotopy, by Lemma 2.6. For the
rest of the paper, we use the following convention: if T is a weak spectrum map, then
the statement that T̃ has a certain property is to be interpreted that any strictification
T̃ has this property.

There are three types of spectra which we like to consider: Thom spectra, K -theory
spectra, and a spectrum built out of spaces of manifolds. We review the definitions in
the next subsections.

2.2 Vector bundles and Thom spectra

Definition 2.8 The sheaf Vd of d-dimensional vector bundles assigns to X ∈ Mfds
the set Vd(X) of all smooth real vector bundles V ⊂ X ×R

∞ of rank d. The subsheaf
Vd,n ⊂ Vd assigns to X the set of all V ∈ Vd(X) with V ⊂ X × R

n . A vector bundle
of rank d on an arbitrary sheaf F is a map of sheaves θ : F → Vd .
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Index theory in spaces of manifolds 939

For example, on the sheaf Vd,n we have the tautological vector bundles id : Vd,n →
Vd,n and its orthogonal complement ⊥ : Vd,n → Vn−d,n which sends V ∈ Vd,n(X)

to the orthogonal complement bundle V⊥ → X . Of course, the sheaf Vd,n is nothing
else than the sheaf of smooth maps into the Grassmann manifold Grd,n .

Definition 2.9 LetF be a sheaf and let θ : F → Vd be a vector bundle. TheThom sheaf
T (θ) of θ assigns to X ∈ Mfds the set of all triples (U , z, s) where U ⊂ X is open,
z ∈ F(U ) and s is a smooth section of the vector bundle θ(z) → U which satisfies
the following growth condition. If xn ∈ U is a sequence that converges to x ∈ U \U ,
then ‖s(xn)‖ → ∞. This is a pointed sheaf with basepoint (∅, ∗,∅) ∈ T (θ)(X).

To understand the rationale for this definition, consider the example F = Vd,n and
θ = id (the d-dimensional tautological bundle). The reader should check that in this
case T (θ) is the sheaf of continuous maps X → Th(Vd,n) of maps to the Thom space
of the tautological bundle Vd,n → Grd,n which are smooth outside the preimage of
the point at infinity.

Let θ : F → Vd be a d-dimensional vector bundle on a sheaf. Let Fn :=
θ−1(Vd,n) ⊂ F , let θn : Fn → Vd,n be the restriction of θ and let θ⊥

n : Fn → Vn−d,n

be the orthogonal complement of θn , i.e. vector bundle Fn
θn→ Vd,n

⊥→ Vn−d,n . We
define

MTθn := T (θ⊥
n ).

In plainwords,MTθn(X) is the set of all (U , z, s) such thatU ⊂ X is open, z ∈ Fn(U )

and s is a smooth section of the vector bundle θ(z)⊥ ⊂ U × R
n which satisfies the

growth condition. The structure map ηn : MTθn → �MTθn+1 sends an element
(U , z, s) to (U × R, pr∗U z, s′), where s′ is the section of the bundle pr∗U θ⊥

n (z) ⊕ R =
θ⊥
n+1(pr

∗
U z) → U × R given by s′(t, x) := (s(x), t). Here we use the identification

from Remark 2.3 and view U × R as an open subset of X × R̂.

Definition 2.10 The spectrum MTθ just constructed in the Madsen-Tillmann-Weiss
spectrum of the vector bundle θ : F → Vd . One might write MTθ(d) to emphasize
the rank of θ .

Example 2.11 Let us discuss most important (for the purpose of this paper) example
of a sheaf with a vector bundle, using the notations introduced in [8, Sect. 1.1]. Let A
be a graded Real3 C∗-algebra. For a finitely generated projective graded Real Hilbert
A-module P with grading η, we let U (P) be the group of unitary A-linear even Real
automorphisms of P , equipped with the norm topology. This is a Banach Lie group,
and hence the notion of a smooth Real graded P-bundle on a smooth manifold is
well-defined. We define CA to be the sheaf which assigns to X ∈ Mfds the set of all
tuples (V , Q, η, c), where

(1) V → X is a real rank d smooth vector subbundle of X × R
∞, equipped with an

inner product,

3 Everything in this paper can easily be “complexified”, by ignoring the Real structure at every place.
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(2) Q → X is a smooth bundle of finitely generated projective Real Hilbert-A-
modules,

(3) η is a grading on Q and
(4) c is a Cl(V )-structure on Q, in other words, a bundle map c : V → EndA(Q)

such that

c(v)2 = −‖v‖2; c(v)∗ = −c(v); c(v)η = −ηc(v); c(v) = c(v). (2.12)

The map θA : (V , Q, η, c) 
→ V is a sheaf map θA : CA → Vd , and the above
construction gives rise to a spectrum MTθA(d). We can view CA(X) as the set of
smooth maps into an infinite-dimensional manifold, as follows. Let (P, η) be a graded
finitely generated projective Hilbert-A-module and let Sd(P) be the set of all Real
graded Cld,0-structures on P , in other words, the set of all linear maps c : R

d →
LinA(P) satisfying (2.12) for each v ∈ R

d . This is a subset of the normed vector space
Lin(Rd ,LinA(P)), from which Sd(P) inherits its topology. The group O(d)×U (P)

acts on Sd(P) via

((g, h) · c)v := hc(gv)h∗.

Next, we take the disjoint union
∐

P Sd(P), taking one module P from each iso-
morphism class. The Borel construction EU (P) ×U (P)

∐
P Sd(P) can be viewed

as the space of all projective finitely generated Hilbert A-modules equipped with a
Cld,0-structure. It is an O(d)-space, and

θA : EO(d) ×O(d) (EU (P) ×U (P)

∐

P

Sd(P)) → BO(d)

is a space model for the map θA.

Example 2.13 The construction of the spinor bundle of a spin vector bundle is encoded
in a natural map MTSpin(d) → MTθCld,0(d) defined as follows. We let BSpin(d) be
the sheaf which assigns to X ∈ Mfds the set of all (V , P, λ), where V ∈ Vd(X),
P → X is a smooth Spin(d)-principal bundle and λ : P ×Spin(d) R

d ∼= V is an iso-
metric isomorphism. This has the homotopy type of BSpin(d). Let MTSpin(d) be the
Madsen-Tillmann-Weiss spectrum associated with the forgetful map θ : BSpin(d) →
Vd defined by (V , P, λ) 
→ V .

Recall that Spin(d) is a subgroup of the multiplicative subgroup of the even part
Cld,0

ev of Cld,0. If (V , P, λ) ∈ BSpin(d), then /SV := P ×Spin(d) Cld,0 is a bundle
of projective finitely generated Hilbert-Cld,0-modules, with a natural grading η and
there is a natural map c : V → End( /SV ) given by Clifford multiplication and λ. So
(V , P, λ) 
→ (V , /SV , η, c) defines a map BSpin(d) → CCld,0 . This induces the map
MTSpin(d) → MTθCld,0(d).

More generally, letG be a discrete group. LetBSpin(d)×G be the sheaf which assigns
to X the set of all (V , P, λ, N ), where (V , P, λ) ∈ BSpin(d)(X) and N → X is
a G-Galois cover. The homotopy type of BSpin(d)×G is BSpin(d) × BG. A map
BSpin(d)×G → CCld,0⊗C∗(G) is given as follows (here C

∗(G) can be either the reduced
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or the maximal group C∗-algebra). It assigns to (V , P, λ, N ) the element (V , /SV ⊗
LN , η ⊗ 1, c ⊗ 1) ∈ CCld,0⊗C∗(G), where LN → X is the Mishchenko–Fomenko
line bundle of N . See [8, Sect. 1.1] for more details. This yields a spectrum map
MTSpin(d) ∧ BG+ → MTθCld,0⊗C∗(G)(d).

2.3 K-theory spectra

In [8], we have defined the model for K -theory we are going to use. Let us recall the
definition.

Definition 2.14 [8, Definition 3.4] Let A be a graded (possibly Real) C∗-algebra and
n ≥ 0. A Kn,0(A)-cycle on the manifold X is a tuple (E, η, c, D), consisting of a
continuous field of Hilbert-A-modules E on X , a grading η and a Cln,0-structure c on
E , and a Cln,0-antilinear, self-adjoint and odd unbounded Fredholm family D on E
(see [8, Definition 2.32]). The cycle (E, η, c, D) is degenerate if D is invertible.

Lemma 2.15 The functor K(A)n : Mfds → Set, which assigns to a test manifold X
the set4 of all K n,0(A)-cycles on X, is a sheaf.

Proof Let (Ui )i∈I be an open covering of X and let zi := (Ei , ηi , ci , Di ) be a com-
patible family of Kn,0(A)-cycles on the manifolds Ui . We construct a Kn,0(A)-cycle
z = (H , η, c, D) on X as follows. Firstly, there is a unique continuous field of Banach
spaces H on X such that H |Ui = Hi , by [7, Proposition 9]. The fibre Hx of H over
x ∈ X is equal to (Hi )x , where i ∈ I is so that x ∈ Ui (it does not matter which
i is chosen, since zi |Ui∩Uj = z j |Ui∩Uj ). The Hilbert-A-module structure on H , the
grading η and the Cln,0-structure c is defined in the unique sensible way.

Let (Wi ,
i ) be the domain of Di (using the terminology introduced in [8,
Sect. 2.2]). For each x ∈ X , we let Dx := (Di )x for suitable i . This is an unbounded
operator on Hx , with a domain Wx := (Wi )x . Now we let W := (Wx )x∈I and let 


be the space of all sections s of H so that s|Ui ∈ 
i for all i ∈ I . Then D is a closed
symmetric operator family with domain (W ,
): symmetry is a pointwise condition,
and closedness is a local condition.

The operator family D is Fredholm because Di is Fredholm, because D|Ui = Di

and by [8, Lemma 2.18]. ��
The basepoint in K(A)n is the zero cycle. By D(A)n ⊂ K(A)n , we denote the

subsheaf of degenerate cycles. The sheaf D(A)n is contractible by [8, Lemma 3.9].
The definition of the group Kn(X;A) given in [8] can be rewritten as Kn(X;A) :=
K(A)n[X ]. We remark that for compact X , this is essentially the unbounded model
for the Kasparov group KK (Cln,0,C(X ,A)).

The Bott map, in the form discussed in [8, Sect. 3.3], is a map bott : K(A)n →
�K(A)n+1 of sheaves. Its definition involves the canonical Clifford module which
also appears at other places in this paper.

4 As explained in [8, Remark 3.5], we take a Grothendieck universe and consider all cycles which are
contained in this universe.
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Definition 2.16 Let V be a euclidean vector space. For v ∈ V , we let insv : �∗V ∗ →
�∗V ∗ be the insertion operator on the exterior algebra. Let e(v) and ε(v) be the
endomorphisms of �∗V ∗ defined by

eV (v) = e(v) := ins∗v − insv; εV (v) = ε(v) := ins∗v + insv .

Let ι = ιV be the even/odd grading on�∗V ∗. Then V⊕V− → Lin(�∗V ∗), (v,w) 
→
e(v) + ε(w) endows �∗(V ∗) with the structure of a graded Cl(V ⊕ V−)-module,
denoted SV . For V = R

n , we just write Sn := SV . In that case, we let ei , εi be the
Clifford action by the standard basis vectors ofRn . The construction clearly generalizes
to vector bundles. Note that there is a canonical isomorphism

SV ⊗ SW ∼= SV⊕W

of Clifford modules (the tensor product of a Cl(V )-module (E, ι, c) and a Cl(W )-
module (F, η, d) is theCl(V⊕W )-module (E⊗F, ι⊗η, c⊗1+ι⊗d)). The following
construction also appears frequently: let π : V → X be a Riemannian vector bundle,
Y a space and f : Y → V a map. By ε( f ), we denote the endomorphism of the vector
bundle (π ◦ f )∗SV → Y which in the fibre ((π ◦ f )∗SV )y = SVπ( f (y)) is given by
ε( f (y)).

Nowwe can give the definition of the Bott map. Let x := (E, η, c, D) ∈ K(A)n(X)

and consider the Kn+1,0(A)-cycle y on R × X given by

y := (pr∗X E ⊗ S1, η ⊗ ι, c ⊗ 1 + η ⊗ e, D ⊗ 1 + η ⊗ ε(prR)).

Explicitly, pr∗X E ⊗ S1 is the continuous field of Hilbert-A-modules whose fibre over
(t, x) is Ex ⊗ S1, with grading ηx ⊗ ι. The Clifford action by v ∈ R

n is c(v) ⊗ 1, and
that by ten+1 is η ⊗ e1. The operator over the point (t, x) is Dx ⊗ 1 + ηx ⊗ tε1. The
restriction of y to (R \ [−1, 1]) × X is degenerate in the sense of [8, Definition 3.4]
and hence y can be extended by 0 along the open embedding j : R × X → R̂ × X ,
as in [8, Sect. 3.1]. We put

bott(x) := j!y

and obtain a map bott : K(A)n → �K(A)n+1 of sheaves. It follows from the Bott
periodicity theorem in the version [8, Theorem 3.14] that bott is a weak equivalence
of sheaves. Thus the collection (K(A)n)n∈N, together with the Bott maps K(A)n →
�K(A)n+1 is an �-spectrum. The Bott map restricts to a map bott : D(A)n →
�D(A)n+1. Note that π0(K(A)n) ∼= K−n(A) is the nth lower K -group of the graded
C∗-algebra A.

2.4 The Thom homomorphism and the topological index

In [8, Definition 3.4], we defined more generally the notion of KV (A)-cycles on X ,
where V → X is a Riemannian vector bundle. Concordance classes of KV (A)-cycles
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on X form an abelian group KV (X;A), which is a twisted version of K dim(V )(X;A).

Definition 2.17 Let X be a manifold and (V → X) ∈ Vd(X). A KV (A)-cycle on X is
a tuple (E, η, c, D), where E and η are as in (2.14), but c is now a Cl(V )-structure on
E and D satisfies identities analogous to those spelled out in (2.14). We letKV (A)(X)

be the set of KV (A)-cycles on X .
Let F be a sheaf and let θ : F → Vd be a vector bundle. A θ -twisted K (A)-cycle

on F is an assignment of a K θ(z)(A)-cycle x(z) on X for each z ∈ F(X). We require
naturality of x(z), i.e. f ∗x(z) = x( f ∗z) for each smooth map f .

Example 2.18 LetF be the sheaf CA of Example 2.11, with the forgetfulmap θ : CA →
Vd . Let z := (V , Q, η, c) ∈ CA(X) (recall that θ(z) = V ). We define a KV (A)-cycle

x(z) := (Q, η, c, 0).

Note that 0 is a Fredholm family because Q is a bundle of finitely generated projective
modules.

Next, we introduce the Thom isomorphism (we do not need to know that it is an
isomorphism). To that end, let θ : F → Vd,n be a vector bundle with complement
θ⊥ : F → Vn−d,d and let x be a θ -twisted K (A)-cycle on F . We wish to construct a
sheaf map

thom(x) : T (θ⊥) → K(A)n (2.19)

out of these data. Let (U , z, s) ∈ T (θ⊥)(X). Recall thatU ⊂ X is open, with inclusion
map j , z ∈ F(U ), that θ(z) ⊂ U × R

n is a vector bundle with complement θ(z)⊥.
Finally, s is a section of π⊥ : θ(z)⊥ → U with the growth condition of Definition
2.9. The θ(z)-twisted K (A)-cycle x(z) can be written as (E, η, c, D). We define

thom(x)(U , z, s) := j!(E ⊗Sθ⊥(z), η ⊗ ιθ⊥(z), c⊗ eθ⊥(z), D⊗ 1+η ⊗ ε(s)) (2.20)

using the extension-by-zero map j!. The tensor product is the tensor product of a
continuous field with a finite-dimensional vector bundle (and hence unproblematic).
Since D is odd,

(D ⊗ 1 + η ⊗ ε(s))2 = D2 ⊗ 1 + 1 ⊗ ε(s)2 ≥ ‖s‖2

and by the growth condition on s, extension by 0 is indeed well-defined. Note that the
Bott map can be viewed as a special case of the Thom homomorphism.

Now consider slightly more generally a sheaf with a vector bundle θ : F → Vd

and a θ -twisted K (A)-cycle x on F . It restricts to a θn-twisted K (A)-cycle xn on Fn .
The above construction yields maps

thom(xn) : MTθn = T (θ⊥
n ) → K(A)n

of sheaves.
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Lemma 2.21 The sheaf maps thom(x)n assemble to a weak spectrum map thom(x) :
MTθ → K(A), in the sense that the diagram

MTθn
ηn

thom(x)n

�MTθn+1

� thom(x)n+1

K(A)n
bott

�K(A)n+1

commutes up to a natural concordance. If the cycles x and y are naturally concordant,
then thom(xn) and thom(yn) are homotopic.

Proof This is by a straightforward unwinding of the definitions involved. One uses the
natural isomorphism SV ⊗ SW ∼= SV⊕W and that an isomorphism of Kn,0(A)-cycles
yields a concordance, in a natural way, by [8, Lemma 3.6]. ��
Definition 2.22 Let A be a graded Real C∗-algebra and let CA → Vd be the sheaf
with vector bundle defined in Example 2.11. Let x be the θ -twisted K (A)-cycle on CA
constructed in Example 2.18. The weak spectrum map

topind := thom(x) : MTθA(d) → K(A)

is the topological index.

2.5 Spaces of manifolds

We now discuss the spectrum GRWθ of spaces of manifolds, which was introduced
by Galatius and Randal-Williams in [10] (under a different name).

Definition 2.23 Let π : M → X be a submersion of manifolds with d-dimensional
fibres. The vertical tangent bundle Tvπ = TvM → M is the rank d vector bundle
ker(dπ). A map f : M → R

n is fibrewise proper if (π, f ) : M → X × R
n is proper

(note that the restriction of f to Mx := π−1(x) is then a proper map to R
n).

Definition 2.24 Let θ : F → Vd be a vector bundle on a sheaf F . Let π : M → X be
a submersion with d-dimensional fibres. A θ -structure on M is an element � ∈ F(M)

such that θ(�) = TvM .

In order to have a well-behaved notion, we need to assume that the map θ of
sheaves has the concordance lifting property, which we shall assume henceforth. For
the definition of this term, see [16, Definition 4.5]; this is a version of the homotopy
lifting property in the context of sheaves. Our main example, the map θA : CA → Vd

from Example 2.11, has the concordance lifting property.

Definition 2.25 Let k ≥ n. For a test manifold X , let Dk
θ,n(X) be the set of all pairs

(M, �), where

(1) M ⊂ X × R
k is a submanifold which is closed as a subspace,
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(2) the projection π = prX : M → X to the first factor is a submersion with d-
dimensional fibres,

(3) � is a θ -structure on M ,
(4) the projection map f = prRn : M → R

n onto the first n coordinates is fibrewise
proper.

This defines a sheaf Dk
θ,n .

There are obvious inclusion maps j : Dk
θ,n ⊂ Dk+1

θ,n , and we define

GRWθn = GRWθ(d)n := colimk Dk
n,θ .

We remark that the colimit is to be understood in the category Sheaves; the colimit of a
sequence F0 → F1 → . . . is the sheafification of the presheaf X 
→ colimn(Fn(X)).
Let (M, �) ∈ GRWθn(X). For each x ∈ X , the fibre π−1(x) is a d-dimensional
submanifold of R

∞, equipped with a θ -structure, and the map f : π−1(x) → R
n

is proper. If n ≥ 1, the diffeomorphism type of π−1(x) can change drastically with
x , but if n = 0, the set GRWθ0(X) consists of all bundles of closed manifolds on X
(embedded into R

∞), equipped with a θ -structure, by Ehresmann’s fibration lemma.
We think of GRWθn as the moduli space of θ -manifolds which are “noncompact in n
directions” or “controlled over R

n”.

Definition 2.26 For n < k, the scanning map

σ : Dk
θ,n → �Dk

θ,n+1 (2.27)

is defined as follows. Let (M, �) ∈ Dk
θ,n(X). Let σ(M) := {(t, x, z) ∈ R × X ×

R
k |(x, z−ten+1) ∈ M}. This is a submanifold ofR×X×R

k and closed in R̂×X×R
k .

The projection onto R̂ × X is a submersion with d-dimensional fibres (which are
either diffeomorphic to M or empty). The map h : R × M → σ(M), (t, x, z) 
→
(t, x, z + ten+1), is a diffeomorphism over R × X . This identifies the vertical tangent
bundle of σ(M) with the pullback of TvM along the projection R × M → M , and
σ(�) is the pulled back θ -structure.

It is clear from the definitions that the diagram

Dk
n

j

σ

Dk+1
n

σ

�Dk
n+1

j
�Dk+1

n+1

commutes. Therefore, the scanning maps σ induce a map

scan : GRWθn → �GRWθn+1

which turns GRWθ into a spectrum.
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Theorem 2.28 (Galatius, Randal-Williams [10]) The spectrum GRWθ is a weak �-
spectrum in the sense that for all n ≥ 1, the maps GRWθn → �GRWθn+1 are weak
equivalences.

In Sect. 2.6 below, we show how to derive Theorem 2.28 from the results actually
stated in [10].

Definition 2.29 A map

λn : MTθn → Dn
θ,n

of sheaves is defined by the following procedure. Let (U , z, s) ∈ MTθn(X), i.e.U ⊂ X
is open, z ∈ F(U ), θ(z) ⊂ U ×R

n is a rank d vector bundle with bundle projection π

and s is a smooth section of the complement θ(z)⊥, subject to the growth condition.
Define

f : θ(z) → R
n; f (x, v) := v + s(x).

The map (π, f ) is a proper embedding θ(z) → X × R
n : it is clearly injective, and

easily seen to be an immersion. To verify that it is proper, let (xn, vn) ∈ θ(z) be a
sequence such that (xn, wn + s(xn)) converges to (x, z) ∈ X × R

n . Since vn⊥s(xn),
we have ‖vn + s(xn)‖2 = ‖vn‖2 + ‖s(xn)‖2. Hence ‖s(xn)‖ is bounded, and this
implies that x ∈ U and s(xn) → s(x), by the growth condition. Then vn → z − s(x),
and (x, z − s(x)) ∈ θ(z). So M := (π, f )(θ(z)) is an element ofDn

n(X). The vertical
tangent bundle TvM := ker dπ is canonically identifiedwithπ∗θ(z), and in particular,
it is equipped with a canonical θ -structure.

It follows quickly from the definitions that the diagram

MTθn

ηn

λn Dn
n

j Dn+1
n

σ

�MTθn+1
�λn+1

�Dn+1
n+1

(2.30)

commutes. Hence the maps

�n : MTθn
λn→ Dn

n → GRWθn

define a spectrum map

� : MTθ → GRWθ.

Theorem 2.31 (Galatius, Randal-Williams [10]) The map �n is (2n − 2d − 1)-
connected for each n ≥ 1. In particular, � is a stable weak equivalence of spectra.
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Again, this is not stated as such in [10]. The derivation of Theorem 2.31 from [10]
uses ideas that are unimportant for the rest of this paper, and is therefore deferred to
Sect. 2.6.

Remark 2.32 It is useful to change the perspective on elements of GRWθn(X) slightly.
Instead of remembering that M ⊂ X × R

∞ and that the projection map to x is
a submersion and that to R

n is fibrewise proper, one can explicitly record them as
π and f in the data. Hence we may think about elements of GRWθn(X) as tuples
(M, π, f , �), π : M → X a submersion, � a θ -structure, and f : M → R

n a
fibrewise proper map.

In this picture, the scanning map has an easier description: it maps (M, π, f , �) to
(R×M, π ′, f ′, �′), whereπ ′ = id×π : R×M → R̂×X , �′ is the θ -structure induced
by θ via the canonical isomorphism Tvπ

′ ∼= pr∗M Tvπ . Finally, f ′(t, x) := ( f (x), t).
This viewpoint simplifies the description of �n as well. It maps (U , z, s) ∈ MTθn

to (θ(z), π, f , �), where π : θ(z) → U is the bundle projection, f : θ(z) → R
n is

the map from Definition 2.29 and � is the canonical θ -structure.

Remark 2.33 The reader of [11] might have expected maps GRWθn → �∞−nMTθ

coming from a parametrized Pontrjagin-Thom construction to play an important role.
These can be abstractly constructed, as follows (at least after taking representing
spaces of the sheaves involved). The spectra GRWθ and MTθ of sheaves induce
spectra |GRWθ | and |MTθ | of spaces, as explained in Sect. 2.1. The map �∞−n|�| :
�∞−n|MTθ | → �∞−n|GRWθ | is a weak homotopy equivalence by Theorem 2.31.
We let pn : �∞−n|GRWθ | → �∞−n|MTθ | be a homotopy inverse and write PTn :=
pn◦τn : |GRWθn| → �∞−n|MTθ |. For n ≥ 1, this is aweak equivalence, byTheorem
2.28. One may construct the map PTn geometrically by means of a Pontrjagin-Thom
construction, similar to [11, Sect. 3.1], but that is not important for us.

2.6 Proof of Theorems 2.28 and 2.31

Proof of Theorem 2.28 from [10] In [10, Sect. 2], a topology on the set Dk
θ,n(∗) is

defined, and the resulting space is denoted �θ(n, k) in loc.cit. An element (M, �) ∈
Dk

θ,n(X) defines a continuous map X → �θ(n, k), x 
→ (π−1(x), �|π−1(x)) (it is even
a smooth map in the sense of Definition 2.15 loc.cit.). Therefore, we obtain a map
Dk

θ,n → sh(�θ (n, k)). Using [10, Lemma 2.17], one can show that this is a weak
equivalence.

There is an unnamed map ((3–10) in [10]) �θ(n, k) → ��θ(k + 1, k), which
corresponds to the map σ ; and Theorem 3.13 of [10] says that this map is a weak
equivalence if n ≥ 1. Hence so is σ . Passage to the colimit k → ∞ finishes the proof
of Theorem 2.28. ��

To derive Theorem 2.31 from [10], we need an input from classical homotopy
theory.

Lemma 2.34 Let f : X → Y be an r-connected map between spaces, let W → Y ,
V → X be vector bundles, of rank s + 1 and s, respectively, and let V ⊕ R ∼= f ∗W
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be an isomorphism. We get maps of Thom spaces

Th(V ) → �Th(V ⊕ R) → �Th(W ).

The composition of those maps is min{2s − 1, r + s}-connected.

Proof Since Th(V ) is (s−1)-connected, the Freudenthal suspension theorem implies
that the first of those maps is (2s − 1)-connected. By the Thom isomorphism
with twisted coefficients and the Hurewicz theorem, the second map is (r + s)-
connected. ��

Lemma 2.35 The map MTθn → �MTθn+1 is (2n − 2d − 1)-connected.

Proof Let θ : F → Vd be the underlying map of sheaves with the concordance lifting
property. The diagram

Fn

θ

Fn+1

θ

Vd,n Vd,n+1

induces a homotopy cartesian diagram after taking representing spaces, since θ has
the concordance lifting property and by [16, Proposition A.6]. The bottom map is
homotopy equivalent to the inclusionmapGrd,n → Grd,n+1 of Grassmannmanifolds,
which is (n − d)-connected. Therefore |Fn| → |Fn+1| is (n − d)-connected as well.
Themap |MTθn| → |�MTθn+1| is homotopy equivalent to amap ofThomspaces over
|Fn| → |Fn+1|. Hence by Lemma 2.34, it is min{2(n−d)−1, (n−d+1)+(n−d)} =
(2n − 2d − 1)-connected. ��

Proof of Theorem 2.31 For a map f : X → Y , we write conn( f ) for the largest r such
that f is r -connected. Assume that n ≥ 1. Themap�n was defined as the composition

�n : MTθn
λn→ Dn

θ,n → Dn+1
θ,n → Dn+2

θ,n → . . . → GRWθn .

The map λn is a weak equivalence by [10, Theorem 3.22] (or rather a sheaf version of
that result). Therefore

conn(�n) ≥ min{conn( j : Dk
θ,n → Dk+1

θ,n )|k ≥ n}.
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For k ≥ n, the diagram

Dk
θ,n

σ

j Dk+1
θ,n

σ

�k−nDk
θ,k

�k−n j
�k−nDk+1

θ,k

�k−nσ

�k+1−nDk+1
θ,k+1

commutes, with the iterated scanning maps as vertical maps. By [10, Theorem 3.13],

all vertical maps are weak equivalences. But the composition Dk
θ,k

j→ Dθ,k+1
k

σ→
�Dk+1

θ,k+1 is homotopy equivalent to the structure map MTθk → �MTθk+1, by (2.30)

and Theorem [10, Theorem 3.13]. By Lemma 2.35, it follows that Dk
θ,n → Dk+1

θ,n is
(2k − 2d − 1) − (k − n) = (k − 2d − 1 + n)-connected. Therefore

conn(�n) ≥ min{k − 2d − 1 + n|k ≥ n} = 2(n − d) − 1.

��

3 The spectrum of manifolds equipped with Dirac operators and the
indexmap

3.1 Spaces of manifolds equipped with Dirac operators

Throughout this section, we fix a dimension d (the dimension of the manifolds we are
interested in) and a graded and possibly Real C∗-algebra A. The map θA : CA → Vd

defined in Example 2.11 has the concordance lifting property and yields spectra
MTθA(d) and GRWθA(d). To ease notation, we shall write MTA and GRWA for
those spectra. An element of GRWAn(X) is a tuple (M, π, f , E, η, c), where M is
a manifold equipped with a submersion π : M → X with d-dimensional fibres,
f : M → R

n is a fibrewise proper map, (E, η) is a bundle of graded, finitely gen-
erated projective Hilbert-A-modules on M with a Cl(TvM)-structure c (note that a
θA-structure contains a smooth metric on the fibres of π ). Also, M is a subset of
X × R

∞, and π and f are the respective projection maps.
Recall that aDirac operator on such a bundle E equippedwith η and c is a fibrewise,

A-linear, formally self-adjoint odd differential operator of order 1 so that for each
function h : M → C, smbD(dh) := i[D, h] = ic(dh) (smbD(_) is the symbol of
D). We want to define a version GRWAop of the spectrum GRWA which has Dirac
operators on E as an additional piece of datum.

For example, one could try to use the sheaf that takes X to the set of all
(M, π, f , E, η, c, D) with (M, π, f , E, η, c) ∈ GRWAn(X) and D is a Dirac oper-
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ator on E . We would like to define a spectrum map GRWAop → KA that takes the
index of the operator D in an appropriate sense.

However, as it stands, the operators D are not suited for analytical arguments.
The problem is that the pair (M, D) is not necessarily complete in the sense of [8,
Definition 1.13], so that D is not necessarily self-adjoint. In the absence of self-
adjointness, there is not much operator theory available for the operators D. One could
try to allow only those operators D such that (M, D) is complete in the definition of
GRWAop, but it is more convenient to include more data into the definition instead.

Definition 3.1 For a test manifold X , GRWAop
n (X) is the set of all tuples (M, π, f , E,

η, c, D, g) where

(1) (M, π, f , E, η, c) ∈ GRWAn(X),
(2) D is a Dirac operator on E and
(3) g : M → (0,∞) is a moderating function, i.e. a smooth function with the

following property: writing f j : M → R for the j th component of f , we require
that the commutator

[gDg, f j ]

is locally (in X ) bounded, for each j = 1, . . . , n.

Lemma 3.2 The forgetful map ξ : GRWAop
n → GRWAn is a weak homotopy equiv-

alence.

Proof There is a familiar lifting criterion for a map of spaces to be a weak equivalence.
In the context of sheaves, this is stated as [16, Proposition 2.18]. What we have to
prove is the following statement. Let X be a test manifold and let Y ⊂ X a closed
subset. Let (M, π, f , E, η, c) ∈ GRWAn(X). Assume that there is a neighborhood
U of Y and a lift (M |U , π |U , f |U , E |U , η|U , c|U , DU , gU ) ∈ GRWAop(U ) defined
over U . Then we can find a possibly smaller neighborhood U0 ⊂ U of A and a lift
(M, π, f , E, η, c, D, g) over X which coincides with the given one on U0. The data
(M, π, f , E, η, c) are untouched and will be suppressed in the notation.

That we can define D is a consequence of the well-known fact that differential
operators with prescribed symbols can always be constructed (and there is no problem
making them odd, Real self-adjoint if that is required). More precisely, we can find
some Dirac operator D′ on E , defined over all of X . Choose a smooth function μ :
X → [0, 1] which is 1 near Y and has support in U and form D := √

μDU
√

μ +√
1 − μD′√1 − μ. To show that gU can be extended, let first h : M → (0,∞) be

any smooth function. Then

[h1/2Dh1/2, f j ] = h1/2[D, f j ]h1/2 = h[D, f j ],

the last equation holds because [D, x j ] is of order 0. This proves that the space of all
h : M → (0,∞) such that the commutators [h1/2Dh1/2, f j ] are all locally bounded
is convex and nonempty. Pick one such function h. The desired extension is then

g :=
√

μg2U + (1 − μ)h. ��
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The notation for elements in GRWAop
n is cumbersome. We therefore often shorten

notation by only writing those parts of the datum which are relevant for the argument
in question.

Lemma 3.3 There is a scanning map scan = scanop : GRWAop
n → �GRWAop

n+1
such that the diagram

GRWAop
n

scanop

ξ

�GRWAop
n+1

ξ

GRWAn
scan

�GRWAn+1

commutes. In particular, scanop is a weak equivalence if n ≥ 1.

Proof Let (M, π, f , E, D, g) ∈ GRWAop(X). Using the description of the scanning
map given in Remark 2.32, the composition scan ◦ ξ sends this element to (R ×
M, id×π, f ′, pr∗M E), where f ′

j = f j ◦ prM for j ≤ n and f ′
n+1 = prR. We let D′ be

the pulled back operator on pr∗M E and define g′ := g ◦ prM . Then g′ is a moderating
function. To see this, we have to show that [g′D′g′, f ′

j ] is bounded (locally in R̂× X ).
For j ≤ n, this follows from the assumption that g is a moderating function, and for
j = n + 1, one observes that [g′D′g′, f ′

n+1] = 0. Now we define the scanning map
scanop by

(M, π, f , E, D, g) 
→ (R × M, id×π, f ′, pr∗M E, D′, g′).

The last sentence follows from Theorem 2.28 and Lemma 3.2. ��
Lemma 3.4 There is amapof spectra�op : MTA → GRWAop such that ξ◦�op = �.
In particular, �op is a stable weak equivalence of spectra.

Proof Let (U ,W , E, η, c, s) ∈ MTAn(X), which under �n maps to (W , π, f , π∗E,

η, c), where f is the map defined in (2.29). We define the Dirac operator DE :
�cv(W ;π∗E) → �cv(W ;π∗E) as follows. First we fix x ∈ U and define DE,x

on C∞
c (Wx ; Ex ) using an orthonormal basis (w1, . . . , wd) of Wx by the formula

DE,x :=
d∑

j=1

c(wi )∂wi .

These operators fit together to a family DE of elliptic operators on π : W → U . The
fibrewise differential of the function f j : W → R, (x, w) 
→ 〈w, e j 〉 + 〈s(x), e j 〉 is
the same as the fibrewise differential of the coordinate function l j : w 
→ 〈w, e j 〉. It
follows that [DE , f j ] = −ismbDE (l j ) = c(l j ), which is clearly bounded. Therefore,
g = 1 is a moderating function. Define

�
op
n (U ,W , E, η, c, s) := (W , π, f , π∗E, η, c, DE , 1) ∈ GRWAop

n (X).
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It is straightforward to check that the collection (�
op
n )n is a map of spectra, and it is

clear that ξ ◦ �op = �. The last sentence follows from Theorem 2.31 and Lemma
3.2. ��

3.2 Construction of the analytic indexmap

We are now ready to define the analytic index map

indexn : GRWAop
n → K(A)n .

For the rest of this subsection, fix a test manifold X and (M, π, f , E, η, c, D, g) ∈
GRWAop

n (X). To assign to these data an element in K(A)n(X), we use the analytical
results from [8].

Write Mx := π−1(x), Ex := E |Mx and Dx for the restriction of D to Mx . In [8,
Example 2.12], we constructed a continuous field L2

X (M; E) of Hilbert-A-modules.
Its fibre over x ∈ X is the Hilbert-A-module L2(Mx ; Ex ), the completion of the space
�c(Mx ; Vx ) of compactly supported smooth sections with the A-valued inner product
induced by the scalar product on E and the volume measure on Mx (recall that by
definition,Mx has aRiemannianmetric). The space�cv(M; E)of vertically compactly
supported sections of E is a total subspace of L2

X (M; E). The weighted Dirac operator
gDg is a differential operator family of order 1, and it is a densely defined symmetric
unbounded operator family with initial domain �cv(M; E) ⊂ L2

X (M; E). We first
prove that the closure of gDg is a self-adjoint family in the sense of [8,Definition 2.25].

Lemma 3.5 The closure of the weighted Dirac operator gDg is a self-adjoint operator
family on L2

X (M; E).

Proof The differential operator gDg is formally self-adjoint, because g is real-valued.
We want to apply [8, Theorem 1.14], and for that to work, we need a coercive function
h : M → R (see [8, Definition 1.12]) such that [D, h] is locally bounded (in X ).
Define

h : M → R; h(y) := (1 + ‖ f (y)‖2)1/2.

It is clear that h is coercive, i.e. fibrewise proper and bounded from below. We claim
that [gDg, h] is (locally in X ) bounded. But D has order 1, whence

[gDg, h] = −ismbgDg(dh) = −ismbgDg

⎛

⎝
n∑

j=1

f j
(1 + ‖ f ‖2)1/2 d f j

⎞

⎠

= −i
n∑

j=1

f j
(1 + ‖ f ‖2)1/2 smbgDg(d f j ) =

n∑

j=1

f j
(1 + ‖ f ‖2)1/2 [gDg, f j ].

Since [gDg, f j ] is locally bounded (in X ), it follows that [gDg, h] is locally bounded
(in X ). Hence by [8, Theorem 1.14], the restriction of gDg to each fibre π−1(x) is
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essentially self-adjoint. By [8, Definition 2.25], the proof is complete. See also [8,
Example 2.28] for more details on this last step. ��

Usually, gDg is not Fredholm unless n = 0. To make up a Fredholm operator,
we take a suitable tensor product with the canonical Cln,n-module Sn from Definition
2.16. The (graded) tensor product bundle E ⊗ Sn → M has the grading η ⊗ ι and
the Cl(TvM ⊕ R

n,n)-structure (v,w, u) 
→ c(v) ⊗ 1 + η ⊗ (e(w) + ε(u)). The map
f : M → R

n gives the order 0 operator ε( f ) : C∞(M; Sn) → C∞(M; Sn) which is
given by the formula

ε( f )z(y) =
n∑

j=1

f j (y)ε j z.

This is a family of symmetric, densely defined operators parametrized by X (it is also
essentially self-adjoint, which we do not need to know). We consider the operator

B := gDg ⊗ 1 + η ⊗ ε( f )

on the A-vector bundle E ⊗ Sn . To understand this formula, note that Sn is (by defi-
nition) a trivial vector bundle. For s ∈ �cv(M; E) and z ∈ Sn , the operator B is given
by the formula

B(s ⊗ z) = gDgs ⊗ z + ηs ⊗
n∑

j=1

f jε j z = gDgs ⊗ z +
n∑

j=1

f jηs ⊗ ε j z.

Precisely as in the proof of Lemma 3.5, it follows from [8, Theorem 1.14] that B is
essentially self-adjoint (the point is that η ⊗ ε( f ) is of order 0 and hence commutes
with the multiplication by any function).

Lemma 3.6 The operator family B is a Fredholm family, and even does have compact
resolvent.

Proof We use [8, Theorem 2.40], and for that, we have to compute B2. Let s ∈
�cv(M; V ) and z ∈ Sn . Then

B2(s ⊗ z) = B(gDgs ⊗ z +
n∑

j=1

f jηs ⊗ ε j z)

= gDg2Dgs ⊗ z+
n∑

j=1

gDg f jηs ⊗ ε j z+
n∑

i=1

fiηgDgs ⊗ ε j z+
n∑

i, j=1

fi f j s ⊗ εiε j z.

The first summand is a nonnegative operator, namely (gDg ⊗ 1)2. The last summand
is

n∑

j,i=1

fi f j s ⊗ εiε j z =
∑

j

f 2j s ⊗ z +
∑

j<i

fi f j s ⊗ (εiε j + ε jεi )z = ‖ f ‖2s ⊗ z.
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Because ηD + Dη = 0, the middle two summands add up to

n∑

j=1

(gDg f jη + f jηgDg)s ⊗ ε j z =
n∑

j=1

[gDg, f j ]ηs ⊗ ε j z,

so altogether, we obtain

B2 = (gDg ⊗ 1)2 + ‖ f ‖2 +
n∑

j=1

[gDg, f j ]η ⊗ ε j .

By assumption,
∑n

j=1[gDg, f j ]η ⊗ ε j is bounded (locally in X ). We can restrict
our attention to a subset of X over which ‖∑n

j=1[gDg, f j ]η ⊗ ε j‖ ≤ C , by [8,
Lemma 2.18]. Altogether, these computations prove that

B2 ≥ −C + ‖ f ‖2,

and since ‖ f ‖2 : M → R is fibrewise proper and bounded from below (i.e. coercive),
[8, Theorem 2.40] shows that B is a Fredholm family with compact resolvent. ��

We have “consumed” the Cl0,n-action in the definition of B, but the Cln,0-action e
is still there. We observe that B is Cln,0-antilinear, because

B(η ⊗ e(v)) + (η ⊗ e(v))B

= 1 ⊗ (e(v)ε( f ) + ε( f )e(v)) + (ηgDg + gDgη) ⊗ e(v) = 0.

Therefore, (L2
X (M; V ), η⊗ ι, e, B) ∈ K(A)n(X), by the definition ofK(A)n(X). The

construction given is completely natural (since the auxiliary function g was built into
the definition of the sheaf GRWAop

n ), and so this defines a map of sheaves

indexn : GRWAop
n → K(A)n,

the analytical index.

Proposition 3.7 The collection (indexn)n is a weakmap of spectraGRWAop → K(A)

in the sense of Lemma 2.5. In other words, the diagram

GRWAop
n

scan

indexn

�GRWAop
n+1

� indexn+1

K(A)n
bott

�K(A)n+1

commutes up to homotopy.
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Proof Before we begin the proof, we emphasize that all definitions were designed so
that this is essentially a tautology. Let v := (M, π, f , E, η, c, D, g) ∈ GRWAop

n (X).
We will provide a natural (with respect to maps of test spaces) isomorphism between
the cycles indexn+1(scan(v)) and bott(indexn(v)) ∈ �K(A)n+1(X). This natural
isomorphism then provides a natural concordance, by [8, Lemma 3.6]. Let us first
compute indexn+1(scan(v)). By Lemma 3.3,

scan(v) = (R × M, id×π, f ′, pr∗M E, D′, g′) ∈ GRWAop
n+1(R̂ × X , {±∞} × X).

The fibre (id×π)−1(t, x) is empty if t = ±∞ and equal to π−1(x) otherwise, and
the restriction of π∗

ME to (id×π)−1(t, x) coincides with E |π−1(x) with all structures
(Clifford structure, grading, Dirac operator and moderating function), and f ′(t, y) =
f (y) + ten+1.
According to the construction of the analytical index, indexn+1(scan(v)) is repre-

sented by the following Kn+1,0(A)-cycle on R × X (extended by zero to R̂ × X ):

(pr∗X L2
X (M; E ⊗ Sn+1), η ⊗ ιn+1, c ⊗ e, g′D′g′ ⊗ 1 + η ⊗ ε( f ′)).

On the other hand

indexn(v) = (L2
X (M; E ⊗ Sn), η ⊗ ιn, c ⊗ e, gDg + ε( f )),

and by the definition of the Bott map,

bott(indexn(v))

= j! pr∗X (L2
X (M; E ⊗ Sn) ⊗ S1, η ⊗ ιn ⊗ ι1, c ⊗ e ⊗ e, gDg + ε( f ) + tεn+1)

where j : R×X → R̂×X is the inclusion. Nowwe use that the operator family g′D′g′
is the same as the pullback of the original operator family gDg along the projection
map R × X → X , and we can write ε( f ′) at (t, y) ∈ R × M as ε( f (y)) + tεn+1.
Moreover, under the natural isomorphism Sn+1 ∼= Sn ⊗ S1, we can write the grading
ι = ιn+1 = ιn ⊗ ι1 and

g′D′g′ ⊗ 1 + η ⊗ ε( f ′) = gDg ⊗ 1 ⊗ 1 + η ⊗ ε( f ) ⊗ 1 + η ⊗ ιn ⊗ tεn+1.

We obtain a natural isomorphism

bott(indexn(v)) ∼= j! pr∗X (L2
X (M; E ⊗ Sn+1), η ⊗ ιn+1, c ⊗ e, gDg + ε( f ) + tεn+1)

which finishes the proof. ��
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4 The index theorem

4.1 Statement of the index theorem

The results of the previous section can be summarized in a diagram

MTA �op

GRWAop

ξ

index
K(A)

GRWA

of spectra and (weak) spectrum maps (in the category Sheaves). The map ξ is a
levelwise equivalence of spectra, by 3.2, and �op is a stable equivalence of spectra,
since the composition� = ξ ◦�op is, by Theorem 2.31. In Definition 2.22, we defined
the topological index, a weak spectrum map topind : MTA → K(A).

Theorem 4.1 (The index theorem) For each n ≥ 0, there is a homotopy indexn ◦�
op
n ∼

topindn : MTAn → K(A)n.

Let us now give a reformulation of the index theorem from which it becomes
apparent that it generalizes the classical Atiyah-Singer theorem. Let X ∈ Mfds be of
finite type (i.e., homotopy equivalent to a finite CWcomplex) and let v ∈ GRWAop

n (X)

be an element. Via the bijection (2.1), v gives rise tomap fv : X → |GRWAop
n |, unique

up to homotopy. We want to compute the composition | indexn ◦ fv = findexn(v) :
X → |K(A)n|. Because τn : |K(A)n| → �∞−n|K(A)| is a weak equivalence, we can
equally ask for a computation of τn ◦ | indexn | ◦ fv.

Using the strictification procedure from Lemma 2.5, we obtain a spectrum map

˜| index | : |GRWAop| → |K(A)|.

Furthermore, | topind | : |MTA| → |K(A)| is a weak spectrum map, and it also has

a strictification ˜| topind |. The map |�op| : |MTA| → |GRWA| is already a spectrum
map. Consider the diagram

�∞−n|MTA| �∞−n |�op |
�∞−n|GRWAop| �∞−n ˜| index |

�∞−n|K(A)|

|MTAn|
τn

|�op
n | |GRWAop

n | | indexn |
τn

|K(A)n|.
τn �

(4.2)

The left square commutes for formal reason, and the right square commutes up to

homotopy because ˜| index | is a strictification of (| indexn |)n . As in remark 2.33, we
let pn : �∞−n|GRWAop| → �∞−n|MTA| be a homotopy inverse to �∞−n|�op|
and let PTn := pn ◦ τn . It follows that
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τn ◦ | indexn | ◦ fv ∼ (�∞−n ˜| index |) ◦ τn ◦ fv

∼ (�∞−n ˜| index |) ◦ (�∞−n |�op|) ◦ pn ◦ τn ◦ fv = (�∞−n( ˜| index | ◦ |�op|)) ◦ PTn ◦ fv.

For each n, there are homotopies

˜| index |n ◦ |�op
n | ∼ | indexn | ◦ |�op

n | (4.1)∼ | topindn | ∼ ˜| topind |n,

by Theorem 4.1. Hence we can apply Lemma 2.6 to the spectrummaps ˜| index |◦|�op|
and ˜| topind |. It follows that

(�∞−n( ˜| index | ◦ |�op|)) ◦ PTn ◦ fv ∼ (�∞−n ˜| topind |) ◦ PTn ◦ fv.

Since any finite CW complex is homotopy equivalent to a manifold of finite type, we
conclude

Corollary 4.3 The two maps

τn ◦ | indexn |, (�∞−n ˜| topind |) ◦ PTn : |GRWAop
n | → �∞−n|K(A)|

are weakly homotopic.

For A = C and n = 0, this is the version of the index theorem stated in [9] and is
equivalent to the classical Atiyah-Singer family index theorem.

4.2 The linear index theorem

The proof of Theorem 4.1 has two parts. One is to compute the composition
indexn ◦�

op
n and rewrite the result in the form thom(yn), where y is a concretely

given θA-twisted K (A)-cycle on CA. The other part is to prove that y is naturally con-
cordant to the cycle x defined in Example 2.18. This step contains some substantial
analytical arguments, and is carried out in this section.

Let us begin with a classical and fairly elementary index computation. On the space
L2(Rd; Sd) of L2-functions with values in the canonical Clifford module, we have the
two (unbounded) operators D and F given by

D =
∑

j

e j∂ j ; F =
∑

j

x jε j

(here x j : R
d → R denotes the j th coordinate function). Using our previous conven-

tions, F = ε(idRd ). The Bott-Dirac operator or supersymmetric harmonic oscillator
is the operator B = D + F . We take C∞

c (Rd; Sd) as initial domain; D and F are
symmetric on this domain. The following result is more or less a standard result, see
e.g. [13, Proposition 1.16].
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Proposition 4.4 (1) The operators D, F and B are formally self-adjoint, O(d)-
equivariant and odd with respect to the grading ι on Sd .

(2) The operator B is essentially self-adjoint, and Fredholm.
(3) The kernel of B is 1-dimensional, spanned by the even O(n)-invariant function

e−|x |21 (here 1 ∈ �0
R
d ⊂ Sd). Hence index(B) = 1 ∈ KO0

O(d)(∗).
(4) Moreover spec(B) ∩ (−1, 1) = {0}.

In the context of this paper, the easiest way to the that B is self-adjoint is to observe
that for each linear form � on R

d , [B, �] is bounded and to use Lemma 3.5. The
easiest way to see that B is Fredholm is to observe that B2 = D2 + |x |2 + ν, where
ν := ∑d

i=1 eiεi obviously has norm ≤ d, and to invoke [8, Theorem 2.40].
Due to the O(d)-equivariance, the construction can be carried over to the

parametrized case, when π : V → X is a Riemannian vector bundle (say X is a
manifold and π is smooth). Consider SV → X , which is a fibrewise irreducible
Cl(V ⊕ V−)-module bundle. Denote the Clifford multiplication of V by e and that
of V− by ε. Then on the bundle π∗

SV → V , we have families D, and B of Dirac
operators, parametrized by X . In a single fibre Vx , and with respect to an orthonormal
basis (v1, . . . , vd) of Vx , they are defined by

D =
d∑

j=1

e(v j )∂ j ; F =
d∑

j=1

x jε(v j ).

Because of the O(d)-equivariance, this does not depend on the choice of the orthonor-
mal basis.

Now let (E, η, c) be (smooth) bundle of finitely generated projective Hilbert-A-
modules with graded Cl(V )-structure. The bundle π∗(E ⊗ SV ) → V is a bundle of
finitely generated projective Hilbert-A-modules. It has a grading η ⊗ ι and a Cl(V ⊕
V ⊕ V−)-structure. The Clifford action by the first V -summand is by c ⊗ 1, that by
the second V -summand by η ⊗ e, and that by the V−-summand by η ⊗ ε. Let DE be
the Dirac operator of the Cl(V )-A-bundle π∗E → V . On a single fibre over x ∈ X
and with respect to an orthonormal basis (v1, . . . , vd) of Vx , it is given by

DE =
d∑

j=1

c(v j )∂ j .

Now define a differential operator on π∗(E ⊗ SV ) by

B0 := DE ⊗ 1 + η ⊗ F .

This is an odd and symmetric unbounded operator family on the continuous field
L2
X (V ;π∗(E ⊗ SV )).

Lemma 4.5 The operator family B0 is an (unbounded) self-adjoint Fredholm family
and it defines a K V (A)-cycle on X:

y(E, η, c) := (L2
X (V ;π∗(E ⊗ SV )), η ⊗ ι, η ⊗ e, B0) ∈ K

VA(X).
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Before we give the proof, let us state the main result of this subsection. Recall the
element x(E, η, c) := (E, η, c, 0) defined in Example 2.18.

Proposition 4.6 (The linear index theorem) There is a canonical concordance
y(E, η, c) ∼ x(E, η, c) of θA-twisted K (A)-cycles.

Proof of Lemma 4.5 One can prove this Lemma by directly verifying the hypotheses
of [8, Theorem 2.40]. Instead of doing this, we give an argument that will be used
again in the proof of Proposition 4.6. We transform B0 by an isometric isomorphism
of L2

X (V ;π∗(E ⊗SV )) into an operator which looks more closely related to the Bott-
Dirac operator. Namely, we define the operator B1 := η ⊗ (D + F) on π∗(E ⊗ SV ),
using the Bott-Dirac operator (D + F) on SV . We claim that B0 and B1 are conjugate
by an isometry.

Let x ∈ X and pick an orthonormal basis (v1, . . . , vd) of Vx . To ease notation, we
denote by c j , e j , ε j be the Clifford action of these basis vectors with respect to c, e, ε
on the fibre (E ⊗ SV )x . Then

B0 =
∑

j

c j∂ j + x jε j and B1 =
∑

j

e j∂ j + x jε j . (4.7)

Let

ψ := exp

(
π

4

d∑

i=1

ci ei

)

= 1

2d/2

d∏

i=1

(1 − ei ci ) ∈ Cl(V ⊕ V )x ⊂ Cl(V ⊕ V ⊕ V−)x .

(4.8)
Then ψ is even, ψ∗ψ = 1, and the relations

ψe j = −c jψ; ψc j = e jψ; ψε j = ε jψ (4.9)

hold. Using (4.7), we get that

ψB0ψ
−1 =

∑

j

ψc jψ
−1∂ j + x jε j =

∑

j

e j∂ j + x jε j = B1. (4.10)

The element ψ does not depend on the choice of the orthonormal basis of Vx (the
quickest way to prove this is: observe that rotation in the v1 − v2-plane does not
change ψ and neither does permutation of basis vectors, and use that these rotations
and permutations generate the orthogonal group O(V )). Therefore ψ gives a global
isometry of π∗(E ⊗ SV ).

Therefore, it is enough to prove that B1 is a self-adjoint Fredholm family. Self-
adjointness is proven as in Lemma 3.5, using [8, Theorem 1.14]. For the Fredholm
property, compute

B2
1 = 1 ⊗ (D + F)2 = 1 ⊗ (D2 + |v|2 + ν) ≥ |v|2 − d.

Therefore B2
1 is bounded from below by the coercive function |v|2 − d : V → R. By

[8, Theorem 2.40], B1 is Fredholm. ��
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Proof of Proposition 4.6 In the first step, we use the isometry ψ from the proof of
Lemma 4.5:

y(E, η, c) = (L2
X (V ;π∗(E ⊗ SV )), η ⊗ ι, η ⊗ e, B0) ∼=

(L2
X (V ;π∗(E ⊗ SV )), η ⊗ ι,−c ⊗ 1, B1) =

(L2
X (V ;π∗(E ⊗ SV )), η ⊗ ι,−c ⊗ 1, η ⊗ (D + F))

(the minus sign in front of −c ⊗ 1 comes from the relations (4.9)).
Now let p0 ∈ KomX (L2

π (V ;π∗
SV )) be the projector onto ker(D + F) (which is

a rank 1 trivial vector bundle on X , by Proposition 4.4 and equivariance) and let

p = 1 ⊗ p0 ∈ KomX ,A(L2
π (V ;π∗(E ⊗ SV )))

(to see that p is compact, one uses that p0 is a rank 1 operator, globally, and applies the
definition of a compact operator family [8, Definition 2.15]). Then p is a projection
and commutes with the grading, Clifford structure and with η ⊗ (D + F). Hence we
get an equality

(L2
X (V ;π∗(E ⊗ SV )), η ⊗ ι,−c ⊗ 1, η ⊗ (D + F))

= (Im(p), η ⊗ ι,−c ⊗ 1, (η ⊗ (D + F))|Im(p))

⊕ (Im(1 − p), η ⊗ ι,−c ⊗ 1, (η ⊗ (D + F))|Im(1−p)).

The second summand is degenerate, since ((η⊗(D+F))|Im(1−p))
2 ≥ 1 byProposition

4.4 (4), and is hence (canonically) concordant to the zero cycle, by [8, Lemma 3.9].
The first summand is isomorphic to (E, η,−c, 0), which in turn is isomorphic to
(E, η, c, 0), via η. Hence the first summand is canonically concordant to the cycle
(E, η, c, 0).

The first summand is isomorphic to (E, η, c, 0), via η, and hence canonically con-
cordant to that cycle. ��

4.3 Proof of the index theorem

Recall that the topological index topindn : MTAn → K(A)n is defined as topindn =
thom(xn). By Proposition 4.6 and Lemma 2.21, we therefore have

topindn ∼ thom(yn).

Therefore, to complete the proof of Theorem 4.1, we need to prove the following
result.

Lemma 4.11 There is a natural concordance thom(y)n ∼ indexn ◦�
op
n of maps

MTAn → K(A)n of sheaves.

Proof As in the proof of Proposition 3.7, the canonical concordance will be given by
a natural isomorphism. Let X be a test manifold and v := (U , V , π, E, η, c, s) ∈
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MTAn(X). Recall that U ⊂ X is open, π : V ⊂ U × R
n → U is a rank d vector

bundle, (E, η, c) → U a bundle of finitely generated projective Hilbert-A-modules
with grading η and Cl(V )-action c. Finally, s : U → V⊥ is a smooth section with the
growth condition (i.e. if xn ∈ U converges to x ∈ U \U , then ‖s(xn)‖ → ∞).

Let us first compute indexn(�
op
n (v)). The map �

op
n : MTAn(X) → GRWAop

n (X)

constructed in Lemma 3.4 assigns to v the element

(V , π, f , π∗E, η, c, DE , 1) ∈ GRWAop
n (X),

with π : V → U ⊂ X and f (x, v) := v + s(x) ∈ R
n ; and DE is the Dirac operator.

Hence

indexn(�
op
n (v)) = (L2

X (V ;π∗E⊗Sn), η⊗ιRn , η⊗eRn , DE ⊗1+η⊗ε( f )). (4.12)

The submersion π : V → X is the composition of the bundle projection π : V → U
with the inclusion map i : U → X . We can rewrite the formula (4.12) as

indexn(�
op
n (v)) = i!(L2

U (V ;π∗E⊗Sn), η⊗ιRn , η⊗eRn , DE⊗1+η⊗ε( f )). (4.13)

Now use the canonical isomorphism Sn ∼= SV ⊗ SV⊥ (of bundles over U ), and that
ιRn = ιV ⊗ιV⊥ , eRn = eV ⊗1+ιV ⊗eV⊥ under this isomorphism. Because f (x, v) :=
v + s(x), we have ε( f ) = ε(idV ) ⊗ 1+ ιV ⊗ ε(s). Altogether, the right-hand side of
(4.13) becomes

i!(L2
U (V ;π∗E ⊗ SV ⊗ SV⊥), η ⊗ ιV ⊗ ιV⊥ ,

η ⊗ eV ⊗ eV⊥ , DE ⊗ 1 ⊗ 1 + η ⊗ ε(idV ) ⊗ 1 + η ⊗ ιV ⊗ ε(s)),

and this is canonically isomorphic to

i!(L2
U (V ;π∗E ⊗ SV ) ⊗ SV⊥ , (η ⊗ ιV ) ⊗ ιV⊥ ,

(η ⊗ eV ) ⊗ eV⊥ , (DE ⊗ 1 + η ⊗ ε(idV )) ⊗ 1 + (η ⊗ ιV ) ⊗ ε(s)).

By the formula for the Thom homomorphism(2.20), this is the same as thom(yn)(v),
as claimed. ��
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