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Abstract
The p-Laplacian problem with the exponent of nonlinearity p depending on the solu-
tion u itself is considered in this work. Both situations when p(u) is a local quantity
or when p(u) is nonlocal are studied here. For the associated boundary-value local
problem, we prove the existence of weak solutions by using a singular perturbation
technique. We also prove the existence of weak solutions to the nonlocal version of
the associated boundary-value problem. The issue of uniqueness for these problems
is addressed in this work as well, in particular by working out the uniqueness for a
one dimensional local problem and by showing that the uniqueness is easily lost in
the nonlocal problem.

Mathematics Subject Classification 35J60 · 35J05 · 35D30

1 Introduction

Let � be a bounded domain of Rd , d ≥ 2, with its boundary denoted by ∂�. We
consider the problem

{− div
(|∇u|p(u)−2∇u

) = f in �

u = 0 on ∂�,
(1.1)
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where f is a given data and
p : R −→ [1,+∞) (1.2)

is the exponent function of nonlinearity.
Problems of the type (1.1) appear in the applications of some numerical techniques

for the total variation image restorationmethod that have been used in some restoration
problems of mathematical image processing and computer vision [3,4,14]. Variational
models exhibit the solution of these problems as minimizers of appropriately chosen
functionals and the minimization technique of such models involves the solution of
nonlinear partial differential equations derived as necessary optimality conditions [13].
Several numerical examples suggesting that the consideration of exponents p = p(u)

preserves the edges and reduces the noise of the restored images u are presented in [14,
Section 8]. A related, although far more complicated, minimization problem with the
exponent of the regularization term depending on the gradient of the reconstructed
image u, was considered in the works [3,4]. In particular, the pioneer work [3, Sec-
tion 3.3] presents a numerical example suggesting a reduction of noise in the restored
images u when the exponent of the regularization term is p = p(|∇u|).

Along with problem (1.1), we consider also in this work its nonlocal version,

{− div
(|∇u|p(b(u))−2∇u

) = f in �

u = 0 on ∂�,
(1.3)

where f is again a given data and

p : R −→ [1,+∞), (1.4)

b : W 1,α
0 (�) −→ R (1.5)

are the functions involved in the exponent of nonlinearity, for some constant exponent
α such that 1 < α < ∞. In this case, suitable examples for the mapping b in (1.5) are
for instance

b(u) = ‖∇u‖α,

or else

b(u) = ‖u‖q , for q ≤ α∗, where
1

α∗ = 1

α
− 1

d
.

where ‖·‖r denotes the usual Lr (�)-norm. Problem (1.1) is the natural extension of the
p(x)-Laplacian problem introducedbyZhikov [15] and forwhich the revival of interest
in the almost last two decades came from modelling applications such as thermo or
electro-rheological fluids [2,11] and image restoration [10]. For the p(x)-Laplacian
problem several issues of existence, uniqueness and regularity were already addressed
in many works and by different authors (see again [2,10,11] and the references cited
therein). However for the p(u)-Laplacian problem (1.1), and to our best knowledge,
the only work is due to Andreianov et al. [1], where the considered prototype problem
is {

u − div
(|∇u|p(u)−2∇u

) = f in �,

u = 0 on ∂�.
(1.6)
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Aspointed out in [1], themain difficulty in the analysis of these p(u)-problems relies in
the fact that neither the weak formulation of (1.1) nor (1.6) can be written as equalities
in terms of duality in fixed Banach spaces. In particular, sequences of solutions un to
these problems correspond to different exponents pn and therefore belong to possible
distinct Sobolev spaces. In the proof of [1, Theorem 2.8], the authors could not have
used the abstract Minty argument on such a sequence of solutions, preferring instead
a tool that pulls everything down to the L1 space. Then they have used the description
of weakly L1 convergent sequences in terms of Young measures and their reduction
using the monotonicity of the nonlinearity ξ �→ |ξ |p−2ξ . We prove, in Theorem 5.1,
the existence of weak solutions to the problem (1.1) by using the Minty trick together
with the technique of Zhikov [16] for passing to the limit in our sequence of p(un)-
Laplacian problems. For the sake of completeness we give an elementary proof, in
Lemma 3.1, of a version of [16, Lemma 3.3] that is suitable to be applied in our
problem. The technique we use here to prove the existence result for the problem (1.1)
is rather simpler and more general than the one used in [1]. By assuming that ∂�

belongs to some Hölder class C0,α and the source term f belongs to L∞(�), it is
established in [1, Theorem 2.9] the uniqueness of weak solutions that are Lipschitz-
continuous. Establishing an uniqueness result without these assumptions seems to be
a rather difficult task since there is a priori no guarantee that distinct solutions u1
and u2 are in the same test function space. With no further assumptions, we prove, in
Theorem 6.1, a uniqueness result for a one dimensional version of our problem (1.1).

Regarding the nonlocal problem (1.3), it should be stressed that many diffusion,
or reaction-diffusion, equations with distinct nonlocal terms have been studied in
many works and by different authors since the pioneer works by Chipot et al. [8,9].
However, we could not find in the literature any p-Laplacian problem with a nonlocal
exponent of nonlinearity p as we consider here. Usually, the motivation to study
nonlocal problems relies in the physical fact that in reality the measurements of some
quantities are not made pointwise but through some local averages. In this work, we
prove, in Theorem 5.1, the existence of weak solutions to the nonlocal problem (1.3),
and we show in the final section how the uniqueness for this problem is easily lost.

This paper is organised as follows. In the next Sect. 2 we introduce the basic
properties of generalised Sobolev spaces that we will used later. The Sect. 3 is devoted
to two auxiliary lemmas. In the Sect. 4 we give a proof of existence of a solution to the
local problem (1.1) using a singular perturbation technique. The Sect. 5 is devoted to
the existence of a solution to some nonlocal version of the problems we are interested
in, i.e. to (1.3). Finally in the last Sect. 6 we evoke the issue of uniqueness for these
problems working out in particular a one dimensional example. The notation used
throughout the paper is nowadays rather standard in the analysis of Partial Differential
Equations and therefore we address the reader to the monographs [2,5,6,10,11] for
any question related to that matter.

2 Generalised Sobolev spaces

From the statement of the local problem (1.1), we can see that the exponent function
p depends on the solution u and therefore it depends ultimately on the space variable
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x . As a consequence, the power p can be written as a variable exponent q(x) in the
following sense,

q(x) = p(u(x)).

This motivates us to look for the weak solutions to the problem (1.1) in a Sobolev
space with variable exponents. The mathematical theory of these function spaces has
been so developed during the last 20 years that we can now analyze the problem (1.1)
in the light of this theory. In this section, we recall the properties of Lebesgue and
Sobolev spaces with variable exponents which shall be used in the sequel. For this
review, we have followed the monograph [2] (see also [10,11,17]).

To start with, we denote by Q(�) the set of all Lebesgue-measurable functions
q : � → [1,∞) and define

q− := ess inf
x∈�

q(x), q+ := ess sup
x∈�

q(x). (2.1)

Given q ∈ Q(�), we denote by Lq(·)(�) the space of all Lebesgue-measurable func-
tions u : � −→ R such that the modular is finite, i.e.

ρq(·)(u) :=
∫

�

|u(x)|q(x) dx < ∞. (2.2)

Equipped with the Luxembourg norm

‖u‖q(·) := inf
{
λ > 0 : ρq(·)

(u
λ

)
≤ 1

}
, (2.3)

Lq(·)(�) becomes a Banach space. Note that the infimum in (2.3) is attained if (2.2)
is positive. The space Lq(·)(�) is a sort of Musielak-Orlicz space that we shall denote
here by generalised Lebesgue space, because many of its properties are inherited from
the classical Lebesgue spaces. If

1 ≤ q− ≤ q+ < ∞, (2.4)

Lq(·)(�) is separable and, in particular, C∞
0 (�) is dense in Lq(·)(�). Moreover, under

assumption (2.4), L∞(�) ∩ Lq(·)(�) is also dense in Lq(·)(�). If we restrict (2.4) to

1 < q− ≤ q+ < ∞, (2.5)

then Lq(·)(�) is reflexive. In this case, the dual space of Lq(·)(�) is identified with
Lq ′(·)(�), where q ′(x) is the generalised Hölder conjugate of q(x),

1

q(x)
+ 1

q ′(x)
= 1.

Note that from (2.1) and (2.5), we have

1 < (q+)′ ≤ ess inf
x∈�

q ′(x) ≤ ess sup
x∈�

q ′(x) ≤ (q−)′ < ∞.
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One problem in generalised Lebesgue spaces, is the relation between themodular (2.2)
and the norm (2.3) that is not so direct as in the classical Lebesgue spaces. However,
if (2.5) holds, it can be proved, from its definitions in (2.2) and (2.3), that

min
{
‖u‖q−

q(·), ‖u‖q+
q(·)

}
≤ ρq(·)(u) ≤ max

{
‖u‖q−

q(·), ‖u‖q+
q(·)

}
,

min

{
ρq(·)(u)

1
q− , ρq(·)(u)

1
q+

}
≤ ‖u‖q(·) ≤ max

{
ρq(·)(u)

1
q− , ρq(·)(u)

1
q+

}
. (2.6)

When proving some estimates the following consequence of (2.6) is very useful,

‖u‖q−
q(·) − 1 ≤ ρq(·)(u) ≤ ‖u‖q+

q(·) + 1. (2.7)

In generalised Lebesgue spaces, there holds a version of Young’s inequality,

|u v| ≤ δ
|u|q(x)

q(x)
+ C(δ)

|v|q ′(x)

q ′(x)
,

valid for some positive constant C(δ) and any δ > 0, and a version of Hölder’s
inequality,

∫
�

uv dx ≤
(

1

q−
+ 1

q ′−

)
‖u‖q(·) ‖v‖q ′(·) ≤ 2 ‖u‖q(·) ‖v‖q ′(·) , (2.8)

valid for u ∈ Lq(·)(�) and v ∈ Lq ′(·)(�). As a consequence of (2.8), we have, for a
bounded domain � and q satisfying to (2.4), the following continuous imbedding,

Lq(·)(�) ↪→ Lr(·)(�) whenever q(x) ≥ r(x) for a.e. x ∈ �. (2.9)

Assuming the weak derivatives
∂ u

∂ xi
exist for any i ∈ {1, . . . , d}, we define

W 1,q(·)(�) :=
{
u ∈ Lq(·)(�) : ∇u ∈ Lq(·)(�)

}
,

which is a Banach space for the norm

‖u‖1,q(·) := ‖u‖q(·) + ‖∇u‖q(·). (2.10)

This space belongs to a special class of Sobolev-Orlicz spaces so called generalised
Sobolev spaces. ThegeneralisedSobolev spacesW 1,q(·)(�) inheritmanyof the proper-
ties of the generalised Lebesgue spaces Lq(·)(�). In particular,W 1,q(·)(�) is separable
if (2.4) holds, and is reflexive when (2.5) is fulfilled. We have as in (2.9)

W 1,q(·)(�) ↪→ W 1,r(·)(�) whenever q(x) ≥ r(x) for a.e. x ∈ �. (2.11)
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We now introduce the following function space

W 1,q(·)
0 (�) :=

{
u ∈ W1,1

0 (�) : ∇u ∈ Lq(·)(�)
}

,

which we endow with the norm

‖u‖
W 1,q(·)

0 (�)
:= ‖u‖1 + ‖∇u‖q(·). (2.12)

If q ∈ C(�), then an equivalent norm in W 1,q(·)
0 (�) is ‖∇u‖q(·).

Unlike classical Sobolev spaces, smooth functions are not necessarily dense in
W 1,q(·)

0 (�). So, defining

H1,q(·)
0 (�) := the closure of C∞

0 (�) in the norm (2.10),

whereC∞
0 (�) denotes the space ofC∞-functions with compact support in�we have

generally
H1,q(·)
0 (�) � W 1,q(·)

0 (�).

However, if� is a bounded domain with ∂� Lipschitz-continuous and q is log-Hölder
continuous, thenC∞

0 (�) is dense inW 1,q(·)
0 (�). Recall that a function q is log-Hölder

continuous, if

∃ C > 0 : |q(x) − q(y)| ≤ C

ln
(

1
|x−y|

) ∀ x, y ∈ �, |x − y| <
1

2
. (2.13)

This means that
|q(x) − q(y)| ≤ ω(|x − y|) ∀ x, y ∈ �,

for the modulus of continuity ω : R+ −→ R+ defined by

ω(t) := C

ln
( 1
t

) ,

which is an increasing and continuous function for t < 1
2 , and such that

limt→0+ ω(t) = 0. If (2.13) holds, then we have

H1,q(·)
0 (�) = W 1,q(·)

0 (�).

Note that in particular,

q ∈ C0,λ(�) for some λ ∈ (0, 1) ⇒ q is log-Hölder continuous. (2.14)

The Log-Hölder continuity property (2.13) is also very important to establish Sobolev
inequalities in the framework of Sobolev spaces with variable exponents. Let us define
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Some results on the p(u)-Laplacian problem 289

the pointwise Sobolev conjugate of q(x) by

q∗(x) :=
{

dq(x)
d−q(x) if q(x) < d

∞ if q(x) ≥ d.

If q is a measurable function in � satisfying to 1 ≤ q− ≤ q+ < d and (2.13), then

‖u‖q∗(·) ≤ C‖∇u‖q(·) ∀ u ∈ W 1,q(·)
0 (�),

for some positive constant C depending on q+, d and on the constant of (2.13). On
the other hand, if q satisfies (2.13) and q− > d, then

‖u‖∞ ≤ C‖∇u‖q(·) ∀ u ∈ W 1,q(·)
0 (�),

and where C is another positive constant depending on q−, d and on the constant of
(2.13).

3 Auxiliary results

To prove later that |∇u|p(u) ∈ L1(�), we shall make use of the following result which
is a particular case of a more general one established by Zhikov [16]. We give here an
elementary proof of this result which does not require all the assumptions considered
in [16, Lemma 3.3].

Lemma 3.1 Assume that

1 < α ≤ qn(x) ≤ β < ∞ ∀ n ∈ N,

for a.e. x ∈ �, for some constants α and β, (3.1)

qn → q a.e. in �, as n → ∞, (3.2)

∇un⇀∇u in L1(�)d , as n → ∞, (3.3)

‖ |∇un|qn(x)‖1 ≤ C, for some positive constant C not depending on n. (3.4)

Then ∇u ∈ Lq(·)(�)d and

lim inf
n→∞

∫
�

|∇un|qn(x)dx ≥
∫

�

|∇u|q(x)dx . (3.5)
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Proof By Young’s inequality one has for a, b ∈ Rd and 1 < q < ∞,

a · b ≤ |a| |b| ≤ |a|q + |b|q ′

q ′q
q′
q

,
1

q
+ 1

q ′ = 1. (3.6)

If now b is a function in L∞(�)d and we make q = qn in (3.6) and use assumption
(3.1), one derives

∫
�

⎛
⎝∇vn · b − |b|q ′

n(x)

q ′
n(x)qn(x)

q′
n (x)

qn (x)

⎞
⎠ dx ≤

∫
�

|∇vn|qn(x) dx . (3.7)

Using assumptions (3.2) and (3.3), we can pass to the limit in (3.7) as n → ∞, so that

∫
�

⎛
⎝∇v · b − |b|q ′(x)

q ′(x)q(x)
q′(x)
q(x)

⎞
⎠ dx ≤ lim inf

n→∞

∫
�

|∇vn|qn(x) dx := L. (3.8)

Then we consider the following function b,

b := ∇v

|∇v|q(x)|∇v|
1

q′(x)−1
k , with |∇v|k := |∇v| ∧ k, k > 0,

and where u ∧ v := min{u, v}. Inserting this function b into (3.8), one obtains

∫
�

(
|∇v|kq(x)|∇v|

1
q′(x)−1
k − |∇v|

q′(x)
q′(x)−1
k

q(x)

q ′(x)

)
dx ≤ L,

which implies ∫
�

|∇v|
1

q′(x)−1
+1

k dx ≤ L.

Observing that 1
q ′(x)−1 + 1 = q(x), we arrive at

∫
�

|∇v|q(x)
k dx ≤ L. (3.9)

Finally (3.5) followsby letting k → ∞ in (3.9), and∇u ∈ Lq(·)(�)d due to assumption
(3.4). ��

We recall also the following inequalities which are classical in the theory of p-
Laplace equations.
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Lemma 3.2 For all ξ , η ∈ Rd , the following assertions hold true:

2 ≤ p < ∞ ⇒ 1

2p−1 |ξ − η|p ≤
(
|ξ |p−2ξ − |η|p−2η

)
· (ξ − η); (3.10)

1 < p < 2 ⇒(p − 1)|ξ − η|2 ≤
(
|ξ |p−2ξ − |η|p−2η

)
· (ξ − η)

(|ξ |p + |η|p) 2−p
p .

(3.11)

Proof See, for instance, [6,12]. ��

4 Existence for the local problem

We define the set where we are going to look for the solutions to the problem (1.1) as

W 1,p(u)
0 (�) :=

{
u ∈ W 1,1

0 (�) :
∫

�

|∇u|p(u)dx < ∞
}

.

If 1 < p(u) < ∞ for all u ∈ R, this set is a Banach space for the norm ‖u‖
W 1,p(·)

0 (�)

defined at (2.12) which is equivalent to ‖∇u‖p(u) in the case of p(u) ∈ C(�). If

for some constant α, p ≥ α > 1, p continuous, then, in view of (2.11), W 1,p(u)
0 (�)

is a closed subspace of W 1,α
0 (�) and therefore it is separable and reflexive. In what

follows,W−1,γ ′
(�), with 1 < γ < ∞, denotes, as usual, the dual space ofW 1,γ

0 (�).

Definition 1 Let the function p given in (1.2) be continuous and assume that

1 < α ≤ p(u) ≤ β < ∞ ∀u ∈ R, (4.1)

for some constants α and β. Assume also that

f ∈ W−1,α′
(�). (4.2)

We say a function u is a weak solution to the problem (1.1) if

⎧⎨
⎩
u ∈ W 1,p(u)

0 (�),∫
�

|∇u|p(u)−2∇u · ∇v dx = 〈 f , v〉 ∀ v ∈ W 1,p(u)
0 (�),

where 〈·, ·〉 denotes the duality pairing between (W 1,p(u)
0 (�))′ and W 1,p(u)

0 (�).

Note that q = p(u) ∈ Q(�) and the essential infimum q− and the essential
supremum q+ satisfy to (2.4) for all u ∈ W 1,p(u)

0 (�) (see (2.1)).

Theorem 4.1 Let� ⊂ Rd , d ≥ 2, be aboundeddomainwith ∂�Lipschitz-continuous.
Assume that

p : R −→ R is a Lipschitz-continuous function (4.3)
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and that condition (4.2) holds. If

d < α ≤ p(u) ≤ β < ∞ ∀u ∈ R, (4.4)

then there exists, at least, one weak solution to the problem (1.1) in the sense of
Definition 1.

Proof The proof of Theorem 4.1 will be split into two main steps.
1. Approximation: For each ε > 0, we consider the auxiliary problem

{− div
(|∇u|p(u)−2∇u

) − ε div
(|∇u|β−2∇u

) = f in �,

u = 0 on ∂�,
(4.5)

where β is the upper bound constant from assumption (4.4).
For an exponent function p satisfying (4.3) and (4.4), we say that a function u is a

weak solution to the regularized problem (4.5), if

⎧⎨
⎩
u ∈ W 1,β

0 (�),∫
�

|∇u|p(u)−2∇u · ∇v dx+ε

∫
�

|∇u|β−2∇u · ∇v dx=〈 f , v〉 ∀ v ∈ W 1,β
0 (�),

where here 〈·, ·〉 denotes the duality pairing between W−1,α′
(�) and W 1,α

0 (�).

Claim 1 For each ε > 0 there exists a weak solution uε to the problem (4.5).

Proof of Claim 1 Let w ∈ L2(�) be given. From (4.4), we have

d < α ≤ p(w) ≤ β < ∞ for a.e. x ∈ �. (4.6)

Observing that, in view of the assumption (4.2) and of (4.6), we have

f ∈ W−1,α′
(�) ⊂ W−1,β ′

(�),

and, by the usual theory of monotone operators, there exists a unique u = uw solution
to the problem

⎧⎨
⎩
u ∈ W 1,β

0 (�),∫
�

|∇u|p(w)−2∇u · ∇v dx+ε

∫
�

|∇u|β−2∇u · ∇v dx=〈 f , v〉 ∀ v ∈ W 1,β
0 (�).

(4.7)
Taking v = u in the second line of (4.7) we derive using the Hölder inequality

∫
�

|∇u|p(w)dx + ε

∫
�

|∇u|βdx ≤ ‖ f ‖−1,α′ ‖∇u‖α ≤ C‖∇u‖β,
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for some positive constant C = C(α, β,�, f ), and where ‖ · ‖−1,α′ is the operator
norm associated to the norm ‖∇ · ‖α . Thus

ε‖∇u‖β
β ≤ C‖∇u‖β,

and
‖∇u‖β ≤ C, (4.8)

for some positive constant C = C(α, β,�, ε, f ) independent of w. Since β > d ≥ 2
one has W 1,β

0 (�) ↪→ L2(�), compactly and

‖u‖2 = ‖uw‖2 ≤ C,

for some positive constant C = C(α, β,�, ε, f , d) independent of w. Let us now
consider the mapping

B � w �→ uw ∈ B, (4.9)

where B := {v ∈ L2(�) : ‖v‖2 ≤ C}. From Schauder’s fixed point theorem, it is
clear that this mapping will have a fixed point provided it is continuous. To prove this,
let us assume that wn is a sequence in L2(�) such that

wn → w in L2(�), as n → ∞. (4.10)

For every n ∈ N, let un be the solution to the problem (4.7) associated to w = wn .
By (4.8), one has

‖∇un‖β ≤ C,

for somepositive constantC whichdoes not dependonn.Hence, for some subsequence
still labelled by n and some u we have

un⇀u in W 1,β
0 (�), as n → ∞, (4.11)

un → u in L2(�), as n → ∞. (4.12)

By (4.7) written with un and wn in the places of u and w, one has

∫
�

(
|∇un|p(wn)−2∇un + ε|∇un|β−2∇un

)
· ∇v dx = 〈 f , v〉 ∀ v ∈ W 1,β

0 (�).

(4.13)
Then, by monotonicity, one has also

∫
�

(
|∇un|p(wn)−2∇un + ε|∇un|β−2∇un

)
· ∇(un − v) dx

−
∫

�

(
|∇v|p(wn)−2∇v + ε|∇v|β−2∇v

)
· ∇(un − v) dx ≥ 0 ∀ v ∈ W 1,β

0 (�).

(4.14)
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Taking v = un − v in (4.13) and using the resulting equation in (4.14), we derive

〈 f , un−v〉−
∫

�

(
|∇v|p(wn)−2∇v+ε|∇v|β−2∇v

)
·∇(un − v) dx≥0 ∀ v∈W 1,β

0 (�).

(4.15)
In view of (4.10) one can assume that for some subsequence

wn → w a.e. in �, as n → ∞.

By virtue of this and by assumption (4.3), we can apply Lebesgue’s theorem so that

|∇v|p(wn)−2∇v → |∇v|p(w)−2∇v strongly in Lβ ′
(�)d , as n → ∞, (4.16)

for all v ∈ W 1,β
0 (�). Using (4.11) and (4.16) we can pass to the limit in (4.15) to get

〈 f , u−v〉−
∫

�

(
|∇v|p(w)−2∇v + ε|∇v|β−2∇v

)
·∇(u−v) dx ≥ 0 ∀ v ∈ W 1,β

0 (�).

(4.17)
Taking v = u ∓ δz, with z ∈ W 1,β

0 (�) and δ > 0, we obtain from (4.17)

± [〈 f , z〉 − ∫
�

(|∇(u ∓ δz)|p(w)−2∇(u ∓ δz) + ε|∇(u ∓ δz)|β−2∇(u ∓ δz)
)

·∇z dx] ≥ 0. (4.18)

Letting δ → 0 in (4.18), it comes

∫
�

(
|∇u|p(w)−2∇u + ε|∇u|β−2∇u

)
· ∇z dx = 〈 f , z〉 ∀ z ∈ W 1,β

0 (�).

Thus u = uw. Since the limit is uniquely determined we have, in view of (4.12)

uwn → uw strongly in L2(�), as n → ∞,

which proves the continuity of the mapping (4.9) and thus concludes the proof of the
claim. ��

So far, we have proven that for each ε > 0 there exists uε ∈ W 1,β
0 (�) such that

∫
�

|∇uε|p(uε)−2∇uε ·∇v dx+ε

∫
�

|∇uε|β−2∇uε ·∇v dx = 〈 f , v〉 ∀ v ∈ W 1,β
0 (�).

(4.19)
Moreover recall that

d < α ≤ p(uε) ≤ β < ∞ ∀ ε > 0, for a.e. x ∈ �.

2. Passage to the limit as ε → 0: Taking v = uε in (4.19), we get

∫
�

|∇uε|p(uε)dx + ε‖∇uε‖β
β = 〈 f , uε〉. (4.20)
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Note that the first inequality in (2.7) can be written as

‖u‖q(·) ≤ (ρq(·)(u) + 1)
1
q− =

(∫
�

|∇u|q(x)dx + 1

) 1
q−

.

Thus by the Hölder inequality (2.8) one has

∫
�

|∇uε|αdx ≤ C
∥∥|∇uε|α

∥∥ p(uε)
α

≤ C

(∫
�

|∇uε|p(uε)dx + 1

) 1(
p(uε)

α

)
−

≤ C

(∫
�

|∇uε|p(uε)dx + 1

)
, (4.21)

for some positive constant C = C(α, β,�). Thus we have

〈 f , uε〉 ≤ ‖ f ‖−1,α′ ‖∇uε‖α ≤ C‖ f ‖−1,α′
(∫

�

|∇uε|p(uε)dx + 1

) 1
α

. (4.22)

One deduces from (4.20), (4.22) and by using Young’s inequality that

∫
�

|∇uε|p(uε)dx + ε‖∇uε‖β
β ≤ C, (4.23)

for some positive constant C which does not depend on ε. From (4.21) and (4.22) one
then also has

‖∇uε‖α ≤ C, (4.24)

for some positive constant C independent of ε. Thus by the compact imbedding
W 1,α

0 (�) ↪→ L2(�) we have for some subsequence still labelled with n and some u

uεn⇀u in W 1,α
0 (�), as n → ∞, (4.25)

∇uεn⇀∇u in Lα(�)d , as n → ∞, (4.26)

uεn → u in L2(�), as n → ∞,

uεn → u a.e. in �, as n → ∞. (4.27)

It should be noticed that, due to (4.4), u is Hölder-continuous and, in view of this and
(4.3), so does p(u). Due to (4.27), one has also

p(uεn ) −→ p(u) a.e. in �, as n → ∞. (4.28)

Moreover, recall that

d < α ≤ p(uεn ) ≤ β < ∞ ∀ n ∈ N, for a.e. x ∈ �. (4.29)
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We can then use (4.23), with uεn in the place of uε, together with (4.23), (4.26), (4.28)
and (4.29) so that, by the application of Lemma 3.1, we have

u ∈ W 1,p(u)
0 (�). (4.30)

Using the monotonicity, one has

∫
�

(
|∇uεn |p(uεn )−2∇uεn + εn|∇uεn |β−2∇uεn

)
· ∇(uεn − v) dx

−
∫

�

(
|∇v|p(uεn )−2∇v + εn|∇v|β−2∇v

)
· ∇(uεn − v) dx ≥ 0 ∀ v ∈ W 1,β

0 (�).

(4.31)

Using the identity (4.19), with uεn in the place of uε and uεn − v in the place of v, we
can write the inequality (4.31) as

〈 f , uεn − v〉 − ∫
�

|∇v|p(uεn )−2∇v · ∇(uεn − v) dx − εn

× ∫
�

|∇v|β−2∇v · ∇(uεn − v) dx ≥ 0, (4.32)

say for all v ∈ C∞
0 (�). Note that, as in (4.16) but now using (4.28), by the Lebesgue

theorem, we have for such a v

|∇v|p(uεn )−2∇v → |∇v|p(u)−2∇v in Lα′
(�)d , as n → ∞. (4.33)

Using (4.24), (4.25) and (4.33), we can pass to the limit in (4.32) as n → ∞ so that

〈 f , u − v〉 −
∫

�

|∇v|p(u)−2∇v · ∇(u − v) dx ≥ 0 ∀ v ∈ C∞
0 (�). (4.34)

As observed above, due to assumptions (4.3) and (4.4), p(u) is Hölder-continuous and
therefore C∞

0 (�) is dense inW 1,p(u)
0 (�) due to (2.13)–(2.14). Thus, (4.34) holds true

also for all v ∈ W 1,p(u)
0 (�). Hence we can take v = u ∓ δz, with z ∈ W 1,p(u)

0 (�) and
δ > 0, in (4.34) so that

±
(

〈 f , z〉 −
∫

�

|∇u|p(u)−2∇u · ∇z dx

)
≥ 0.

As a consequence,

∫
�

|∇u|p(u)−2∇u · ∇z dx = 〈 f , z〉 ∀ z ∈ W 1,p(u)
0 (�),

which, together with (4.30), completes the proof of Theorem 4.1. ��
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5 Nonlocal problems

In this section we consider a real function p such that

p is continuous, 1 < α < p ≤ β, (5.1)

for some constants α, β. We denote by b a mapping from W 1,α
0 (�) into R such that

b is continuous, b is bounded, (5.2)

i.e. b sends bounded sets of W 1,α
0 (�) into bounded sets of R.

Definition 2 A function u is a weak solution to the problem (1.3) if

⎧⎨
⎩
u ∈ W 1,p(b(u))

0 (�),∫
�

|∇u|p(b(u))−2∇u · ∇v dx = 〈 f , v〉 ∀ v ∈ W 1,p(b(u))
0 (�),

(5.3)

where 〈·, ·〉 denotes the duality pairing between (W 1,p(b(u))
0 (�))′ and W 1,p(b(u))

0 (�).

One should notice that p(b(u)) is here a real number and not a function so that
the Sobolev spaces involved are the classical ones. We refer to [5,7–9] for more on
nonlocal problems.

Then one has:

Theorem 5.1 Let � ⊂ Rd , d ≥ 2, be a bounded domain and assume that (5.1) and
(5.2) hold together with

f ∈ W−1,α′
(�).

Then there exists at least one weak solution to the problem (1.3) in the sense of
Definition 2.

The proof of Theorem 5.1 is based on the following result.

Lemma 5.1 For n ∈ N, let un be the solution to the problem

⎧⎨
⎩
un ∈ W 1,pn

0 (�),∫
�

|∇un|pn−2∇un · ∇v dx = 〈 f , v〉 ∀ v ∈ W 1,pn
0 (�),

(5.4)

where 〈·, ·〉 denotes here the duality pairing between (W 1,pn
0 (�))′ and W 1,pn

0 (�).
Suppose that

pn → p, as n → ∞, where p ∈ (1,∞), (5.5)

f ∈ W−1,q ′
(�) for some q < p. (5.6)

Then
un → u in W 1,q

0 (�), as n → ∞, (5.7)
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where u is the solution to the problem

⎧⎨
⎩
u ∈ W 1,p

0 (�),∫
�

|∇u|p−2∇u · ∇v dx = 〈 f , v〉 ∀ v ∈ W 1,p
0 (�).

(5.8)

Proof of Lemma 5.1 We shall split this proof into two steps.
1. Weak convergence: We first observe that, in view of pn → p, as n → ∞, and
q < p, we may assume that

p + 1 > pn > q ∀ n ∈ N. (5.9)

Taking v = un in the equation of (5.4) we get

∫
�

|∇un|pn dx ≤ ‖ f ‖−1,q ′ ‖∇un‖q . (5.10)

Recall that ‖ f ‖−1,q ′ denotes the strong dual norm of f associated to the norm ‖∇ · ‖q .
On the other hand, by using Hölder’s inequality and (5.9), we have

‖∇un‖q ≤ C‖∇un‖pn , (5.11)

for some positive constant C = C(p, q,�). Plugging (5.11) into (5.10) it comes

‖∇un‖pn ≤ C, (5.12)

for some other positive constant C = C(p, q,�, f ). Combining (5.11) with (5.12),
it follows that

‖∇un‖q ≤ C, (5.13)

for some positive constant C independent of n. From (5.13) we deduce then that for
some subsequence still labelled by n and for some u ∈ W 1,q

0 (�)

∇un⇀∇u in Lq(�), as n → ∞. (5.14)

Due to (5.5), (5.9), (5.12) and (5.14), we can also apply Lemma 3.1 so that

lim inf
n→∞

∫
�

|∇un|pn dx ≥
∫

�

|∇u|pdx .

As a consequence we have
u ∈ W 1,p

0 (�). (5.15)

Clearly the equation in (5.4) is equivalent to

∫
�

|∇un|pn−2∇un · ∇(v − un) dx ≥ 〈 f , v − un〉 ∀ v ∈ W 1,pn
0 (�).
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and by the Minty lemma to

∫
�

|∇v|pn−2∇v · ∇(v − un) dx ≥ 〈 f , v − un〉 ∀ v ∈ W 1,pn
0 (�). (5.16)

Taking v ∈ C∞
0 (�), one can use (5.5) and (5.14) to pass to the limit in (5.16), as

n → ∞, so that

∫
�

|∇v|p−2∇v · ∇(v − u) dx ≥ 〈 f , v − u〉 ∀ v ∈ C∞
0 (�). (5.17)

Using the density of C∞
0 (�) in W 1,p

0 (�), we see that (5.17) also holds for all v ∈
W 1,p

0 (�). In this case, taking v = u ± δz, with z ∈ W 1,p
0 (�) and δ > 0, and letting

δ → 0 after simplifying the resulting inequality, one obtains

∫
�

|∇u|p−2∇u · ∇z dx = 〈 f , z〉 ∀ z ∈ W 1,p
0 (�).

Thus u is the solution to the problem (5.8).
2. Strong convergence:Wewant to show that the convergence (5.14) is in fact strong.
To prove this, we first note that, taking v = un in the equation of (5.4) and using (5.14)
to pass to the limit, we obtain

∫
�

|∇un|pn dx = 〈 f , un〉 → 〈 f , u〉 =
∫

�

|∇u|pdx, as n → ∞. (5.18)

Consider the case of the pn’s such that

pn ≥ p ∀ n ∈ N.

One has by Hölder’s inequality

∫
�

|∇un|pdx ≤
(∫

�

|∇un|pn dx
) p

pn |�|1− p
pn ,

where |�| denotes the d-Lebesgue measure of �. Thus by (5.18) for such a sequence

lim sup
n→∞

∫
�

|∇un|pdx ≤
∫

�

|∇u|pdx ≤ lim inf
n→∞

∫
�

|∇un|pdx,

which shows (since ‖∇un‖p → ‖∇u‖p, as n → ∞)

un → u strongly in W 1,p
0 (�), as n → ∞. (5.19)

Since W 1,p
0 (�) ⊂ W 1,q

0 (�), (5.19) implies (5.7).
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Next, consider the pn’s such that

q < pn < p ∀ n ∈ N (5.20)

and set

An :=
∫

�

(
|∇un|pn−2∇un − |∇u|pn−2∇u

)
· (∇un − ∇u) dx . (5.21)

Due to the monotonicity, An ≥ 0 and, because of (5.4), one has

An = 〈 f , un − u〉 −
∫

�

|∇u|pn−2∇u · ∇(un − u) dx .

From (5.6) and (5.14), we have

〈 f , un − u〉 → 0, as n → ∞. (5.22)

Moreover, from (5.15) one easily gets

∣∣∣|∇u|pn−2∇u
∣∣∣ ≤ max{1, |∇u|}p−1 ∈ L p′

(�). (5.23)

Hence, (5.20), (5.22) and (5.23) ensure that

An → 0, as n → ∞. (5.24)

Assume first that
pn ≥ 2.

This allows us to use property (3.10) of Lemma 3.2 in (5.21) so that

An ≥ 1

2pn−1

∫
�

|∇(un − u)|pn dx . (5.25)

Since, by (5.20), pn > q, we have by Hölder’s inequality, (5.20), (5.24) and (5.25)

∫
�

|∇(un − u)|q dx ≤
( ∫

�

|∇(un − u)|pn dx
) q

pn |�|1− q
pn → 0,

when n → ∞. This proves (5.7) in this case.
Consider now the case when

pn < 2.
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Here, we use Hölder’s inequality as follows

∫
�

|∇(un − u)|pn dx

=
∫

�

|∇(un − u)|pn (|∇un| + |∇u|) (pn−2)pn
2 (|∇un| + |∇u|) (2−pn )pn

2 dx

≤
[∫

�

|∇(un − u)|2 (|∇un|+|∇u|)pn−2 dx

] pn
2

[∫
�

(|∇un|+|∇u|)pn dx

]1− pn
2

.

(5.26)

Using property (3.11) of Lemma 3.2 we have

An ≥ C
∫

�

|∇(un − u)|2 (|∇un| + |∇u|)pn−2 dx, (5.27)

for some positive constant C = C(pn). Now, by using (5.26), (5.27) together with
(5.12) we deduce that

∫
�

|∇(un − u)|pn dx → 0, as n → ∞.

Thus, as above, (5.7) holds true also in this case. ��
Let us now show how Lemma 5.1 can be applied to prove the existence of weak

solutions to the nonlocal problem (1.3).

Proof of Theorem 5.1 Note that f ∈ (W 1,α
0 (�))′ ⊂ (W 1,δ

0 (�))′ for any δ > α. Thus
for each λ ∈ R, there exists a unique solution u = uλ to the p(λ)-Laplacian problem

⎧⎨
⎩
u ∈ W 1,p(λ)

0 (�),∫
�

|∇u|p(λ)−2∇u · ∇v dx = 〈 f , v〉 ∀ v ∈ W 1,p(λ)
0 (�).

(5.28)

Taking v = u = uλ in (5.28) one derives

∫
�

|∇uλ|p(λ) dx ≤ ‖ f ‖−1,α′ ‖∇uλ‖α. (5.29)

By Hölder’s inequality one has

‖∇uλ‖α ≤ ‖∇uλ‖p(λ)|�| 1α − 1
p(λ) . (5.30)

Thus by (5.29) it comes

‖∇uλ‖p(λ)−1
p(λ) ≤ ‖ f ‖−1,α′ |�| 1α − 1

p(λ) . (5.31)
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Gathering (5.30) and (5.31), and using (5.1) we obtain

‖∇uλ‖α ≤ ‖ f ‖
1

p(λ)−1

−1,α′ |�|
(
1
α
− 1

p(λ)

)
p(λ)

p(λ)−1 ≤ max
p∈[α,β] ‖ f ‖

1
p−1

−1,α′ |�|
(
1
α
− 1

p

)
p

p−1 = C,

(5.32)
for some positive constantC = C(α, β,�, f ). Due to the boundedness of b, see (5.2),
and to (5.32), there exists L ∈ R such that

b(uλ) ∈ [−L, L] ∀ λ ∈ R.

Let us now consider the map
λ �→ b(uλ), (5.33)

from [−L, L] into itself. This map is continuous. Indeed, if λn → λ as n → ∞, due to
(5.1), we have p(λn) → p(λ). Applying now Lemma 5.1 with pn = p(λn), it follows
that

uλn → uλ in W 1,α
0 (�), as n → ∞.

Now, b being continuous (see (5.2)), it follows that b(uλn ) −→ b(uλ), as n → ∞,
and thus the map (5.33) is also continuous. It has then a fixed point λ0 and uλ0 is then
solution to (5.3). ��

6 Uniqueness

The proof of uniqueness of the solution to (1.1) in all generality does not seem to be
straightforward. In fact, if we have two weak solutions u1 and u2 to the problem (1.1),
in the sense of the Definition 1, there is a priori no guarantee that both functions u1
and u2 are in the same test function space, W 1,p(u1)

0 (�) or W 1,p(u2)
0 (�). Hence, we

cannot use u1 − u2 as test function as usual. However, if we restrict ourselves to the
1-dimensional problem (1.1), it is possible to prove some uniqueness result. This is
what we would like to do now.

Let us set, for instance,

� = (−1, 1),

and consider the problem

{− (|u′|p(u)−2u′)′ = f in �,

u(−1) = u(1) = 0,
(6.1)

where u′ denotes the derivative of u.

Theorem 6.1 Assume (4.1) and (4.3) and suppose that f > 0 is a continuous function
on [−1, 1]. Then there exists a unique solution to (6.1) in the distributional sense.
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Remark 6.1 One could weaken the assumptions on f . Note that from (6.1) it results
that |u′|p(u)−2u′ and also u′ are bounded. u being a Lipschitz continuous function the
boundary conditions are well defined.

Proof of Theorem 6.1 In view of (6.1), one has

(
|u′|p(u)−2u′)′ = − f < 0 in �,

and therefore the function |u′|p(u)−2u′ is decreasing in �. This function cannot have
a constant sign, otherwise u′ would have a constant sign too, i.e. u′ would be always
positive or negative, which in turn would render u(−1) = u(1) impossible. Thus,
|u′|p(u)−2u′ and consequently u′ vanish at some point ξ ∈ (−1, 1). Since |u′|p(u)−2u′
is decreasing in �, one has

u′ > 0 in (−1, ξ) and u′ < 0 in (ξ, 1). (6.2)

Let us set

F(x) :=
∫ x

0
f (s) ds. (6.3)

Note that, due to the positivity of f , F is an increasing function. On the other hand,
in view of (6.2), one derives from (6.1) that

|u′|p(u)−2u′ = F(ξ) − F(x)

for either −1 < x < ξ or ξ < x < 1. Thus, (6.1) can be decoupled into two problems
namely, {

u′ = (F(ξ) − F(x))
1

p(u)−1 in (−1, ξ),

u(−1) = 0,
(6.4)

and {
u′ = −(F(x) − F(ξ))

1
p(u)−1 in (ξ, 1),

u(1) = 0.
(6.5)

Claim 1 For a fixed ξ , the functions

G(x, u) = (F(ξ) − F(x))
1

p(u)−1 and H(x, u) = −(F(x) − F(ξ))
1

p(u)−1

are uniformlyLipschitz-continuouswith respect to u in the intervals (−1, ξ) and (ξ, 1),
respectively.

Proof of Claim 1 We shall only prove the claim for the function G(x, u), the proof for
the function H(x, u) being analogous. Let us first write

G(x, u) − G(x, v) = e
1

p(u)−1 ln(F(ξ)−F(x)) − e
1

p(v)−1 ln(F(ξ)−F(x))
.
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By the mean value theorem, one gets for some θ ∈ (0, 1)

G(x, u) − G(x, v) = e

(
θ

p(u)−1+ 1−θ
p(v)−1

)
ln(F(ξ)−F(x))

ln(F(ξ)

−F(x))

(
1

p(u) − 1
− 1

p(v) − 1

)
. (6.6)

On the other hand, by the monotony of the ln function and due to assumption (4.1),
one has

ln(F(ξ) − F(x)) ∈ (−∞, ln(F(ξ) − F(−1))) ,

θ

p(u) − 1
+ 1 − θ

p(v) − 1
∈

[
1

β − 1
,

1

α − 1

]

and thus the product of the first two terms in (6.6) is uniformly bounded by a constant
C , that does not depend on x . Observing this and using the assumption (4.3), one has

|G(x, u) − G(x, v)| ≤ C

∣∣∣∣ 1

p(u) − 1
− 1

p(v) − 1

∣∣∣∣
= C

|p(v) − p(u)|
(p(v) − 1)(p(u) − 1)

≤ C ′|u − v|,

for another positive constant C ′, which proves the claim. ��
As a consequence of Claim 1, the solutions to the problems (6.4) and (6.5) are

unique.

Claim 2 The mapping ξ �→ u(ξ) is an increasing function of ξ when ξ runs in the
interval (−1, 1).

Proof of Claim 2 Let us denote by u(ξ, x) the unique solution to the problem (6.4). We
would like to show that, whenever ξ, ξ ′ ∈ (−1, 1), we have

ξ ′ > ξ ⇒ u(ξ ′, ξ ′) > u(ξ, ξ). (6.7)

Note again that, in view of the positivity of f the function F defined at (6.3) is
increasing and therefore F(ξ ′) > F(ξ). From (6.4) we derive then

u′(ξ,−1) = (F(ξ) − F(−1))
1

p(u)−1 < (F(ξ ′) − F(−1))
1

p(u)−1 = u′(ξ ′,−1), (6.8)

which shows that u(ξ, x) < u(ξ ′, x) near x = −1. If there is a first point x0 ∈ (−1, ξ)

where u(ξ ′, x0) = u(ξ, x0), we argue as we did for (6.8) so that one will have

u′(ξ, x0) = (F(ξ) − F(x0))
1

p(u)−1 < (F(ξ ′) − F(x0))
1

p(u)−1 = u′(ξ ′, x0),

which is impossible. Thus, u(ξ, x) < u(ξ ′, x) on (−1, ξ) and one has (6.7), since
u(ξ, ·) continues to grow after ξ .
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With the same arguments, if v(x, ξ) denotes the unique solution to the problem
(6.5), one would show that, whenever ξ, ξ ′ ∈ (−1, 1),

ξ ′ > ξ ⇒ v(ξ ′, ξ ′) < v(ξ, ξ),

which completes the proof of the claim. ��
Let us now show that the conclusion of Theorem 6.1 follows from Claim 2. In fact,

since we know the solution to the problem (6.1) exists, there exists a ξ ∈ (−1, 1) such
that

u(ξ, ξ) = v(ξ, ξ),

i.e. the solutions to the problems (6.4) and (6.5) merge at ξ . Then, for ξ ′ > ξ , Claim 2
ensures that

u(ξ ′, ξ ′) > u(ξ, ξ) = v(ξ, ξ) > v(ξ ′, ξ ′),

and thus the two solutions could merge only at a point. The same argument applies
for ξ ′ < ξ and therefore the uniqueness for the problem (6.1) holds, which completes
the proof of Theorem 6.1. ��

The nonlocal case is completely different and one can see that uniqueness to the
problem (1.3) is easily lost. To see this, let p1, p2 ∈ (1,∞), with p1 �= p2, and
consider u1 and u2 respectively the solutions to the problems

{− div
(|∇u|pi−2∇u

) = f in �,

u = 0 on ∂�,

for i = 1 and i = 2. Choose a function b such that

b(u1) �= b(u2).

Let us now consider a function p as in (1.4) and such that

p(b(u1)) = p1 and p(b(u2)) = p2.

Then u1 and u2 are both solutions to the problem (1.3). One can this way construct
problems with infinitely many solutions.

Remark 6.2 It would be interesting in some cases (nonlocal case for instance) to relax
our assumptions on f allowing it for example to be an integrable function. This
involves some more work of approximation. One can also think of extending our
results to the parabolic case revisiting our estimates and to address the issue of the
asymptotic behaviour of the solution at least in the simple case of a single steady state
(Theorem 6.1).
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11. Diening, L., Harjulehto, P., Hästo, P., Ru̇žička, M.: Lebesgue and Sobolev Spaces with Variable Expo-

nents. Springer, Heidelberg (2011)
12. Glowinski, R., Marrocco, R.: Sur l’approximation, par éléments finis d’ordre un, et la résolution,

par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO Ana. Numer.
9(R–2), 41–76 (1975)

13. Chan, T., Esedoglu, S., Park, F., Yip, A.: Total Variation Image Restoration: Overview and Recent
Developments. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in
Computer Vision, 17–32. Springer, New York (2006)

14. Türola, J.: Image denoising using directional adaptive variable exponents model. J. Math. Imaging.
Vis. 57, 56–74 (2017)

15. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory (Russian).
Izv. Akad. Nauk SSSR Ser. Mat. 504(4), 675–710 (1986). English translation in Mah. USSR Izvestiya
29 (1987) 33–66

16. Zhikov, V.V.: On the technique for passing to the limit in nonlinear elliptic equations. Funct. Anal.
Appl. 43(2), 96–112 (2009)

17. Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth con-
ditions. J. Math. Sci. (N.Y.) 173(5), 463–570 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Some results on the p(u)-Laplacian problem
	Abstract
	1 Introduction
	2 Generalised Sobolev spaces
	3 Auxiliary results
	4 Existence for the local problem
	5 Nonlocal problems
	6 Uniqueness
	Acknowledgements
	References




