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Abstract
We discuss fattening phenomenon for the evolution of sets according to their nonlocal
curvature. More precisely, we consider a class of generalized curvatures which corre-
spond to the first variation of suitable nonlocal perimeter functionals, defined in terms
of an interaction kernel K , which is symmetric, nonnegative, possibly singular at the
origin, and satisfies appropriate integrability conditions. We prove a general result
about uniqueness of the geometric evolutions starting from regular sets with positive
K -curvature in R

n and we discuss the fattening phenomenon in R
2 for the evolution

starting from the cross, showing that this phenomenon is very sensitive to the strength
of the interactions. As a matter of fact, we show that the fattening of the cross occurs
for kernels with sufficiently large mass near the origin, while for kernels that are suf-
ficiently weak near the origin such a fattening phenomenon does not occur. We also
provide some further results in the case of the fractional mean curvature flow, showing
that strictly starshaped sets in R

n have a unique geometric evolution. Moreover, we
exhibit two illustrative examples in R

2 of closed nonregular curves, the first with a
Lipschitz-type singularity and the second with a cusp-type singularity, given by two
tangent circles of equal radius, whose evolution develops fattening in the first case, and
is uniquely defined in the second, thus remarking the high sensitivity of the fattening
phenomenon in terms of the regularity of the initial datum. The latter example is in
striking contrast to the classical case of the (local) curvature flow, where two tangent
circles always develop fattening. As a byproduct of our analysis, we provide also a
simple proof of the fact that the cross in R

2 is not a K -minimal set for the nonlocal
perimeter functional associated to K .
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1 Introduction

In this paper we are interested in the analysis of the fattening phenomenon for evo-
lutions of sets according to nonlocal curvature flows. Fattening is a particular kind
of singularity which arises in the evolution of boundaries by their (local or nonlocal)
curvatures and more generally in geometric evolution of manifolds and is related to
nonuniqueness of geometric solutions to the flow. Fattening phenomenon has been
studied for mean curvature flow since long time and a complete characterization of
initial data which develop fattening is still missing. In the case of the plane, it is known
that smooth compact level curves never develop an interior, due to a result by Grayson
on the evolution of regular compact curves. This result is no more valid for fractional
mean curvature flow in the plane, as proved recently in [12]. We recall that examples
of fattening of nonregular or noncompact curves in the plane for the mean curvature
flow have been given in [3,13,15], where, in particular, the fattening of the evolution
starting from the cross is proved. Finally nonfattening for strictly starshaped initial
data is proved in [20], whereas nonfattening of convex and mean convex initial data
is proved in [1], see also [2,4].

In this paper we start the analysis of the fattening phenomenon (mostly in the plane)
for general nonlocal curvature flows. This problem has not yet been considered in the
literature apart from the result in [9] about nonfattening for convex initial data under
fractional mean curvature evolution in any space dimension.

Here we will show that some results which are true for the mean curvature flow
are still valid, such as nonfattening for regular initial data with positive curvature or
strictly starshaped initial data.

Nevertheless, in general, some different behaviors with respect to the mean cur-
vature flow arise, due to the fact that the fattening phenomenon is very sensitive to
the strength of the nonlocal interactions. We discuss in particular the evolution start-
ing from the cross in the plane, which develops fattening only if the interactions are
sufficiently strong. Moreover, we show an example of a closed curve with positive
curvature which fattens, and an example of a closed curve whose evolution by frac-
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Fattening and nonfattening phenomena for planar nonlocal. . . 689

tional mean curvature flow does not present fattening, differently from the case of the
evolution by mean curvature flow.

We now introduce the mathematical setting in which we work. Given an initial
set E0 ⊂ R

n , we define its evolution Et for t > 0 according to a nonlocal curvature
flow as follows: the velocity at a point x ∈ ∂Et is given by

∂t x · ν = −HK
Et

(x) (1.1)

where ν is the outer normal at ∂Et in x . The quantity HK
E (x) is the K -curvature

of E at x , which is defined in the forthcoming formula (1.4). More precisely, we
take a function K : R

n\{0} → [0,+∞) which is a rotationally invariant kernel,
namely

K (x) = K0(|x |), (1.2)

for some K0 : (0,+∞) → [0,+∞). We assume that

min{1, |x |} K (x) ∈ L1(Rn),

i.e.
∫ 1

0
ρn K0(ρ) dρ +

∫ +∞

1
ρn−1 K0(ρ) dρ < +∞. (1.3)

Given E ⊂ R
n and x ∈ ∂E we define the K -curvature of E at x , defined

by

HK
E (x) := lim

ε↘0

∫
Rn\Bε(x)

(
χRn\E (y) − χE (y)

)
K (x − y) dy, (1.4)

where, as usual,

χE (y) :=
{
1 if y ∈ E,

0 if y /∈ E .

We point out that (1.3) is a very mild integrability assumption, compatible with the
structure of nonlocal minimal surfaces (see e.g. condition (1.5) in [11]) and which
fits the requirements in [8,16] in order to have existence and uniqueness for the
level set flow associated to (1.1) (see Appendix A for the details about this mat-
ter).

Furthermore, when K (x) = 1
|x |n+s for some s ∈ (0, 1), we will denote the K -

curvature of a set E at a point x as Hs
E (x), and we indicate it as the fractional mean

curvature of the set E at x .
While the setting in (1.4) makes clear sense for sets with C1,1-boundaries, as cus-

tomary we also use the notion of K -curvatures for sets which are locally the graphs
of continuous functions: in this case, the K -curvature may be also infinite and the
definition is in the sense of viscosity (see [8,16] and Section 5 in [6]).
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690 A. Cesaroni et al.

We observe that the curvature defined in (1.4) is the the first variation of the fol-
lowing nonlocal perimeter functional, see [7,17],

PerK (E) :=
∫
E

∫
Rn\E

K (x − y) dx dy, (1.5)

and so the geometric evolution law in (1.1) can be interpreted as the L2 gradient flow
of this perimeter functional, as proved in [8].

The existence and uniqueness of solutions for the K -curvature flow in (1.1) in the
viscosity sense have been investigated in [16] by introducing the level set formulation
of the geometric evolution problem (1.1) and a proper notion of viscosity solution. We
refer to [8] for a general framework for the analysis via the level set formulation of a
wide class of local and nonlocal translation-invariant geometric flows.

The level set flow associated to (1.1) can be defined as follows. Given an initial
set E ⊂ R

n and C := ∂E , we choose a bounded Lipschitz continuous function
uE : R

n → R such that

C = {x ∈ R
n s.t. uE (x) = 0} = ∂{x ∈ R

n s.t. uE (x) � 0}
and E = {x ∈ R

n s.t. uE (x) � 0}.

Let also uE (x, t) be the viscosity solution of the following nonlocal parabolic problem

{
∂t u(x, t) + |Du(x, t)|HK

{y|u(y,t)�u(x,t)}(x) = 0,

u(x, 0) = uE (x).
(1.6)

Then the level set flow of C is given by

�E (t) := {x ∈ R
n s.t. uE (x, t) = 0}. (1.7)

We associate to this level set the outer and inner flows defined as follows:

E+(t) :={x ∈R
n s.t. uE (x, t) � 0} and E−(t) := {x ∈R

n s.t. uE (x, t) > 0}.
(1.8)

We observe that the equation in (1.6) is geometric, so if we replace the initial condition
with any function u0 with the same level sets {u0 � 0} and {u0 > 0}, the evolutions
E+(t) and E−(t) remain the same. For more details, we refer to Appendix A.

The K -curvature flow has been recently studied from different perspectives, in par-
ticular the case fractional mean curvature flow, taking into account geometric features
such as conservation of the positivity of the fractional mean curvature, conservation
of convexity and formation of neckpinch singularities, see [9,12,18].

In this paper,we analyze the possible lack of uniqueness for the geometric evolution,
i.e. the situation in which ∂E+(t) �= ∂E−(t), in terms of the fattening properties of the
zero level set of the viscosity solutions. To this end, we give the following definition:
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Definition 1.1 We say that fattening occurs at time t > 0 if the set �E (t), defined
in (1.7), has nonempty interior, i.e.

int(E+(t)\E−(t)) �= ∅.

We point out that in [9, Section 6], in the case of fractional (anisotropic) mean
curvature flow in any dimension, it has been proved that if the initial set E ⊆ R

n

is convex, then the evolution remains convex for all t > 0 and E+(t) = E−(t), so
fattening never occurs.

We start with a result about nonfattening of bounded regular sets with positive
K -curvature (for the classical case of the mean curvature flow, see [1,2,4]).

Theorem 1.2 Let (1.2) and (1.3) hold. Let E ⊂ R
n be a compact set of class C1,1 and

we assume that there exists δ > 0 such that

HK
E (x) � δ for every x ∈ ∂E . (1.9)

Then �E (t) has empty interior for every t .

We point out that, to get the result in Theorem 1.2, the assumption on the regularity
of the sets cannot be completely dropped: indeed in the forthcoming Theorem 1.10
we will provide an example of bounded set in the plane, with a “Lipschitz-type”
singularity and with positive K -curvature, which develops fattening.

1.1 Evolution of the cross

We consider now the cross in R
2, i.e.

C := {
x = (x1, x2) ∈ R

2 s.t. |x1| � |x2|
}
. (1.10)

It is well known, see [13], that the evolution of the cross according to the curvature
flow immediately develops fattening for t > 0. So, an interesting question is if the
same phenomenon appears also for general nonlocal curvature flows as (1.1), for
kernels which satisfy (1.2) and (1.3). We show that actually the fattening feature in
nonlocal curvature flows is very sensitive to the specific properties of the kernel since
it depends on the strength of the interactions: we identify in particular two classes of
kernels, giving fattening of the cross in the first class, i.e. for kernels which satisfy
(1.13), (1.14) below, and nonfattening of the cross in the second class, i.e. for kernels
which satisfy (1.19) below.

Remark 1.3 Recalling the notation in (1.7), we observe that

{
x = (x1, x2) ∈ R

2 s.t. |x1| = |x2|
} ⊆ �C(t) for all t > 0. (1.11)

Indeed, up to a rotation of coordinate system, we write C = {(y1, y2) ∈ R
2 s.t. y1y2 �

0}. Define a bounded Lipschitz function u0 such that u0(y1, y2) = u0(−y1,−y2) =
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692 A. Cesaroni et al.

−u0(−y1, y2) = −u0(y1,−y2), and such that C = {(y1, y2) ∈ R
2 s.t. u0(y1, y2) �

0}. Then the solution to (1.6) with initial condition u0 satisfies

u(y1, y2, t) = u(−y1,−y2, t) = −u(−y1, y2, t) = −u(y1,−y2, t),

see Appendix A. In particular this implies that
{
(y1, y2) ∈ R

2 s.t. y1y2 = 0
} ⊆{

(y1, y2) ∈ R
2 s.t. u(y1, y2, t) = 0

} = �C(t), that is (1.11) once we rotate back.

We introduce the function

	(r) :=
∫
Br/4(7r/4,0)

K (x) dx . (1.12)

In our framework, the function 	(r) plays a crucial role in quantitative K -curvature
estimates, also in view of a suitable barrier that will be discussed in Proposition 3.1
later on. Notice that when K (x) = 1

|x |2+s with s ∈ (0, 1), the function 	(r) reduces,

up to multiplicative constants, to 1
rs .

We suppose that the kernel K satisfies

∫ 1

0

dρ

	(ρ)
< +∞. (1.13)

We will need also the following technical assumption: there exists r0 > 0 such that
for all r ∈ (0, r0),

inf
p∈B3√2 r

∫
Br/4(3r/4,0)−p

K (x) dx > 0. (1.14)

This assumption is trivially satisfied if K > 0 in B(3
√
2+1)r0

.
Under these conditions, we have that, for short times, the set �C(t) contains a ball

centered at the origin (see1 Fig. 1), according to the following result:

Theorem 1.4 Assume that (1.2), (1.3), (1.13) and (1.14) hold true. For r ∈ (0, 1), we
define


(r) :=
∫ r

0

dρ

	(ρ)
. (1.15)

Then, there exists T > 0 such that

Br(t) ⊂ �C(t) (1.16)

for any t ∈ (0, T ), where r(t) is defined implicitly by


(r(t)) = t . (1.17)

1 The pictures of this paper have just a qualitative and exemplifying purpose, to favor the intuition and
make the reading simpler. They are sketchy, not quantitatively accurate and they are not the outcome of any
rigorous simulation.
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Fig. 1 The fattening
phenomenon described in
Theorem 1.4

We notice that the setting in (1.15) is well defined in view of the structural assump-
tion in (1.13) and 
(r), as defined in (1.15), is strictly increasing, which makes the
implicit definition in (1.17) well posed.

Remark 1.5 Wepoint out that the structural assumptions in (1.3) and (1.13) are satisfied
by kernels of the form K (x) = 1

|x |2+s for some s ∈ (0, 1), or more generally by kernels
such that

K ∈ L1(R2\B1) and
1

C |x |α � K (x) � C

|x |β ,

with α > 1, β < 3,C � 1, for any x ∈ B1. (1.18)

Indeed, the upper bound for K in (1.18) plainly implies (1.3). Moreover, the lower
bound for K in (1.18) implies that

	(r) =
∫
Br/4(7r/4,0)

K (x) dx �
∫
Br/4(7r/4,0)

1

|x |α dx � 1

(2r)α
|Br/4| = C0 r

2−α

where C0 > 0 is independent of r , and this yields (1.13). Finally as for (1.14), we
observe that it is trivially satisfied.

Note that r(t) defined in (1.17) satisfies r(t) � C0t
1

α−1 , in particular, in the case

K (x) = 1
|x |2+s , r(t) is proportional to t

1
1+s .

As a counterpart of Theorem 1.4, we show that the fattening phenomenon does not
occur in straight crosseswhen the interaction kernel has sufficiently strong integrability
properties. Namely, we have that:
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Theorem 1.6 Assume (1.2) and (1.3). Suppose also that

K0 � K1, with K1 nonincreasing and


(r) :=
∫

[−r ,r ]×R

K1(|x |) dx < +∞,
(1.19)

for any r > 0, and that

lim
δ↘0

∫ 1

δ

dτ


(τ)
= +∞. (1.20)

Then

the evolution of C under the K -curvature flow coincides with C itself. (1.21)

Remark 1.7 We notice that conditions (1.3), (1.19) and (1.20) are satisfied by kernels
K such that K0 is nonincreasing, and which satisfy

K ∈ L1(R2\B1) and K (x)� C

|x |α , with α∈(0, 1],C>0, for any x ∈ B1.

(1.22)

Indeed, we observe first that in this case (1.3) is automatically satisfied. Moreover,
from (1.22), we can take K1 := K0 in (1.19) and have that


(r) =
∫

[−r ,r ]×R

K0(|x |) dx

�
∫
Br

C

|x |α dx +
∫

[−r ,r ]2\Br
K0(|x |) dx +

∫
[−r ,r ]×((−∞,−r ]∪[r ,+∞))

K0(|x |) dx

� Cr2−α + 4r
∫ +∞

r
K0(x2) dx2

� Cr2−α + Cr

(∫ 1

r

dx2
xα
2

+ 1

)

� Cr | log r |,

up to renaming C > 0, and so (1.20) is satisfied.
We also observe that condition (1.22) is somewhat complementary to (1.18).

1.2 A remark on K-minimal cones

As a byproduct of the results that we discussed in Sect. 1.1, we observe that actually the
cross is not a K -minimal set for the K -perimeter in R

2, obtaining an alternative (and
more general) proof of a result discussed in Proposition 5.2.3 of [5] for the fractional
perimeter (see [19] for a full regularity theory of fractionalminimal cones in the plane).
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For this, we define

PerK (E, BR) :=
∫
E∩BR

∫
R2\E

K (x − y) dx dy +
∫
E\BR

∫
BR\E

K (x − y) dx dy.

(1.23)

Then, we say that E is a minimizer for PerK in the ball BR if

PerK (E, BR) � PerK (F, BR)

for every measurable set F such that E\BR = F\BR .
Also, a measurable set E ⊂ R

2 is said to be K -minimal for the K -perimeter if it is
a minimizer for PerK in every ball BR . Then, we have:

Proposition 1.8 Let (1.2) and (1.3) hold, and assume that K is not identically zero.
Then C ⊆ R

2, as defined in (1.10), is not K -minimal for the K -perimeter.

1.3 Fractional curvature evolution of starshaped sets

Now we restrict ourselves to the case of homogeneous kernels K , i.e. we consider the
case (up to multiplicative constants) in which

K0(r) = 1

rn+s
, with s ∈ (0, 1). (1.24)

We start by observing that strictly starshaped sets never fattens, similarly as for the
(local) curvature flow (see [20]). A similar result has also been observed in [9, Remark
6.4].

Proposition 1.9 Assume (1.24). Let S
n−1 = {ω ∈ R

n s.t. |ω| = 1}, f : S
n−1 →

(0,+∞) be a continuous positive function and E ⊂ R
n be such that

E = {0} ∪
{
x ∈ R

n s.t. x �= 0, |x | � f

(
x

|x |
)}

. (1.25)

Then, the set �E (t) has empty interior for all t > 0.

Now we restrict ourselves to the case of the plane, so n = 2. We show that in gen-
eral, for starshaped sets E which do not satisfy (1.25), we can expect either fattening
or nonfattening. We provide two different examples of such sets in R

2, which are par-
ticularly interesting in our opinion, since they model two different type of singularities
that can arise in the geometric evolution of closed curves in R

2, that is the “Lipschitz-
type” singularity, and the“cusp singularity”. The first example is the “double droplet”
in Fig. 2, namely

G := G+ ∪ G− ⊆ R
2, (1.26)
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Fig. 2 The double droplet G

Fig. 3 The fattening
phenomenon described in
Theorem 1.10

where G+ is the convex hull of B1(−1, 1) with the origin, and G− the convex hull
of B1(1,−1) with the origin. The second example is given by two tangent balls

O := B1(−1, 0) ∪ B1(1, 0) ⊆ R
2. (1.27)

We prove that fattening phenomenon occurs in the first case, whereas it does not occur
in the second. It is also interesting to observe that the evolution ofO by curvature flow
immediately develops fattening, see [3].

We start by considering the evolution of the set G defined in (1.26). Note that this
provides an example of bounded set with positive K -curvature (being contained in a
cross with zero K -curvature), whose evolution develops fattening near the origin, as
sketched in Fig. 3 and detailed in the following statement.
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Fig. 4 The evolution of two
tangent balls described in
Theorem 1.12

Theorem 1.10 Assume (1.24) with n = 2. Then there exist ĉ, T > 0 such that

Br(t) ⊂ �G(t) (1.28)

for any t ∈ (0, T ), where

r(t) := ĉt1/(1+s). (1.29)

Remark 1.11 The same result as in Theorem 1.10 holds more generally for kernels K0
which satisfy (1.2), (1.3), (1.13) and

a

r2+s
� K0(r) � a

r2+s
for all r > 0 (1.30)

for some suitable a � a > 0.

We now consider the case of two tangent balls as in (1.27), and we show that O(t)
presents no fattening phenomenon, according to the statement below.

Theorem 1.12 Assume (1.24) with n = 2. Then the set �O(t) has empty interior for
all t > 0.

The evolution of the double ball is sketched in Fig. 4: roughly speaking, the set
shrinks at its surroundings, emanating some mass from the origin, but it does not
possess “gray regions” at its boundary.

The rest of the paper is organized as follows. Section 2 deals with the fact that the
evolution starting from regular sets with positive K -curvature does not fatten and it
contains the proof of Theorem 1.2. In Sect. 3 we prove the fattening of the evolution
starting from the cross in R

2, under assumption (1.13), as stated in Theorem 1.4.
InSect. 4,we show that under assumption (1.19) the evolution starting from the cross

in R
2 does not fatten, but coincides with the cross itself, that is we prove Theorem 1.6.

Section 5 contains the proof of the fact that the cross in R
2 is never a K -minimal

set for PerK , thus establishing Proposition 1.8.
The last three sections present the evolution under the fractional curvature flow,

i.e., we assume that K (x) = 1
|x |n+s . In particular, Sect. 6 is devoted to the proof of the

fact that the fractional curvature evolution of strictly starshaped sets does not present
fattening, which gives Proposition 1.9.
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698 A. Cesaroni et al.

In Sect. 7, we show an example in R
2 of a compact set with positive K -curvature,

that is the double droplet, whose fractional curvature evolution presents fattening, thus
proving Theorem 1.10.

Then, in Sect. 8 we show that the fractional curvature evolution starting from two
tangent balls in R

2 does not fatten, which establishes Theorem 1.12.
In Appendix A we review some basic facts about level set flow, moreover we

provide some auxiliary results about comparison with geometric barriers and other
basic properties of the evolution which are exploited in the proofs of the main results.

Notation

We denote by Br ⊂ R
n the ball centered at (0, 0) of radius r and by Br (x1, x2, . . . , xn)

the ball of radius r and center x = (x1, x2, . . . , xn) ∈ R
n .

Moreover e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0) etc, and S
n−1 = {ω ∈

R
n s.t. |ω| = 1}.
For a given closed set E , and for any x ∈ R

n\E we denote by dist(x, E) the distance
from x to E , that is

dist(x, E) := inf
y∈E |x − y|.

Moreover, we will denote with dE (x) the signed distance function to C = ∂E , with
the sign convention of being positive inside E and negative outside, that is

dE (x) =
{
dist(x, R

n\E) if x ∈ E,

−dist(x, E) if x ∈ R
n\E .

(1.31)

Finally, given two sets E, F ⊂ R
n , we denote by d(E, F) the distance between the

boundary of E and the boundary of F , that is

d(E, F) := min
x∈∂E
y∈∂F

|x − y|. (1.32)

2 Regular sets of positive K -curvature and proof of Theorem 1.2

Proof of Theorem 1.2 We recall the continuity inC1,1 of the K -curvature proved in [8].
Namely, if Eε is a family of compact sets with boundaries inC1,1 such that Eε → E in
C1,1 (in the sense that the boundaries converges in C1 and are of class C1,1 uniformly
in ε) and xε ∈ ∂Eε → x ∈ ∂E , then HK

Eε (xε) → HK
E (x), as ε ↘ 0.

Now, let E be as in the statement of Theorem 1.2, and define, for r > 0,

Er := {x ∈ R
n s.t. dE (x) � −r}.
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Then, using also (1.9), we find that there exists ε0 > 0 such that, for all ε ∈ (0, ε0),
there exists 0 < δ(ε) � δ such that

min
x∈∂Eε

HK
Eε (x) � δ(ε) > 0.

Fix ε < ε0 and let δ̄ := infη∈[0,ε] δ(η) > 0. Fix 0 < h < δ̄. For all t ∈
[
0, ε

δ̄

]
we

define

C(t) := Eε−(δ̄−h)t .

We observe that C(t) is a supersolution to (1.1), in the sense that it satisfies (A.6).
Indeed,

∂t x · ν = −δ̄ + h � −HK
C(t)(x) + h.

Since E ⊆ Eε = C(0), by Proposition A.10, we get that

E+(s) ⊆ C(s) = Eε−(δ̄−h)s for all s ∈
(
0,

ε

δ̄

]
with d

(
E+(s), Eε−(δ̄−h)s

)
� ε.

This implies that E+(s) ⊆ E for all s ∈
[
0, ε

δ̄

]
and for all h < δ̄ and moreover that

d
(
E+(s), E

)
� d(E+(s), Eε−(δ̄−h)s) − d(Eε−(δ̄−h)s, E) � (δ̄ − h)s.

Then, by the Comparison Principle in Corollary A.8, we get that

E+(t + s) ⊆ E−(t), with d
(
E+(t + s), E−(t)

)
� (δ̄ − h)s

for all t > 0, s ∈
(
0,

ε

δ̄

]
, h < δ̄. (2.1)

Therefore, recalling Proposition A.12, we get

|int (E+(t))\E−(t)| � lim sup
s↘0

|int (E+(t))| − |E+(t + s)|

= |int(E+(t))| − lim inf
s↘0

|E+(t + s)| � 0.

This gives the desired statement in Theorem 1.2. �


3 K -curvature of the perturbed cross and proof of Theorem 1.4

In this section, our state space is R
2 and we exploit the notation in (1.12) and consider

the cross C ⊆ R
2 introduced in (1.10). Furthermore, we define, for any r > 0, the

“perturbed cross”
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Fig. 5 The set Dr

Cr := [−r , r ]2 ∪ C ⊆ R
2. (3.1)

Then, the following result holds true:

Proposition 3.1 Assume that (1.2) and (1.3) hold true in R
2. Then, we have that

HK
Cr

(p) � 0 (3.2)

for any p ∈ ∂Cr . Also, for any t ∈ [−r , r ],

H K
Cr

(t, r) � −2	(r). (3.3)

Proposition 3.1 provides the cornerstone to detect the fattening phenomenon of the
K -curvature flow emanating from the cross and lead to the proof of Theorem 1.4. To
prove Proposition 3.1, we give the following auxiliary result:

Lemma 3.2 Assume that (1.2) and (1.3) hold true in R
2. Then, for any t ∈ [−r , r ],

H K
Cr

(t, r) � −2	(r).

Proof Let

Tr :=
(
(−r , r)2\C

)
∩ {x2 < 0}

and

Dr := Cr\Tr ,
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see Fig. 5. Notice that Cr is the disjoint union of Dr and Tr , hence

χCr = χDr + χTr ,

while R
2\Dr is the disjoint union of R

2\Cr and Tr , which gives that

χR2\Dr
= χR2\Cr

+ χTr .

Hence, we find that

χR2\Cr
− χCr = χR2\Dr

− χDr − 2χTr . (3.4)

Now, we claim that, for any t ∈ [−r , r ],

HK
Dr

(t, r) � 0. (3.5)

To this end, we partition R
2 into different regions, as depicted in Fig. 6, and we use

the notation, for each set Y ⊆ R
2,

H(Y ) := lim
ε↘0

∫
Y\Bε(t,r)

K
(
x − (t, r)

)
dx . (3.6)

In this way, we can write (1.4) as

HK
Dr

(t, r) = H(C) + H(D) + H(U ′) + H(V ′) + H(W ′) − H(A) − H(B)

−H(U ) − H(V ) − H(W ). (3.7)

On the other hand, we can use symmetric reflections across the horizontal straight
line passing through the pole (t, r) to conclude that H(U ) = H(U ′). Similarly, we
see thatH(V ) = H(V ′) andH(W ) = H(W ′). As a consequence, the identity in (3.7)
becomes

HK
Dr

(t, r) = H(C) + H(D) − H(A) − H(B). (3.8)

Now we consider the straight line � := {x2 = x1 − t + r}. Notice that � passes
through the point (t, r) and it is parallel to two edges of the cross Cr . Considering
the framework in Fig. 6, reflecting the set D across � we obtain a set D′ ⊆ B, and
we write B = D′ ∪ E , for a suitable slab E . Similarly, we reflect the set A across �

to obtain a set A′ which is contained in C , and we write C = A′ ∪ F , for a suitable
slab F , see Fig. 7.

In further details, if T : R
2 → R

2 is the reflection across �, we have that T (t, r) =
(t, r) and |T (x − (t, r))| = |T (x) − (t, r)| = |x − (t, r)| for every x ∈ R

2, and thus,
by (1.2),

K
(
x − (t, r)

) = K0(|x − (t, r)|) = K0
(∣∣T (x − (t, r))

∣∣) = K
(
T (x − (t, r))

)
.
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Fig. 6 Splitting the set Dr and
its complement into isometric
regions

(t,r)

(0,0)

U’

U

V

V’

W

W’

AB

C

D

Fig. 7 Reflecting D and A
across �, being E := B\D′
and F := C\A′

(0,0)

A

D

D’

F
A’

E
(t,r)

Accordingly, since D = T (D′),

H(B) − H(D) =
∫
B
K

(
x − (t, r)

)
dx −

∫
T (D′)

K
(
x − (t, r)

)
dx

=
∫
B
K

(
x − (t, r)

)
dx −

∫
D′

K
(
x − (t, r)

)
dx

=
∫
E
K

(
x − (t, r)

)
dx,

(3.9)
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and similarly

H(C) − H(A) =
∫
F
K

(
x − (t, r)

)
dx . (3.10)

Now we consider the straight line �′ := {x2 = −x1 + t + r}. Notice that � passes
through the point (t, r) and it is perpendicular to �. We let E ′ be the reflection across �′
of the set E and we notice that E ′ ⊇ F . Therefore

∫
E
K

(
x − (t, r)

)
dx =

∫
E ′

K
(
x − (t, r)

)
dx �

∫
F
K

(
x − (t, r)

)
dx .

From this, (3.9) and (3.10), we obtain

H(C) + H(D) − H(A) − H(B) =
∫
F
K

(
x − (t, r)

)
dx −

∫
E
K

(
x − (t, r)

)
dx

� 0.

This and (3.8) imply the desired result in (3.5).
Then, by (3.4) and (3.5),

HK
Cr

(t, r) = HK
Dr

(t, r) − 2
∫
Tr

K
(
y − (t, r)

)
dy � 0 − 2	(r),

and this gives the desired result. �

With this, we are now in the position of completing the proof of Proposition 3.1

via the following argument:

Proof of Proposition 3.1 The claim in (3.3) follows from Lemma 3.2. In addition, we
have that C ⊂ Cr , due to (3.1). We also observe that if p ∈ (∂Cr )\[−r , r ]2, then p ∈
∂C. Consequently, by (1.4), for any p ∈ (∂Cr )\[−r , r ]2, we have that

HK
C (p) � HK

Cr
(p). (3.11)

Also, by symmetry, we see that HK
C (p) = 0 at any point p ∈ ∂C, hence (3.11)

gives that HK
Cr

(p) � 0 for any p ∈ (∂Cr )\[−r , r ]2. Since this inequality is also valid
when p ∈ (∂Cr ) ∩ [−r , r ]2, due to (3.3), the proof of (3.2) is complete. �


With Proposition 3.1, we can now construct inner and outer barriers as in Corol-
lary A.11 to complete the proof of Theorem 1.4. This auxiliary construction goes as
follows.

Lemma 3.3 Let Cr be as in (3.1). Let R := 3
√
2 r and define, for λ ∈ [

0, r
2

)
,

Cλ
r :=

{
x ∈ R

2 s.t. dCr (x) � −λ
}

. (3.12)

Then, for any p ∈ (∂Cλ
r )\BR, we have that HK

Cλ
r
(p) � 0.
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Fig. 8 The set Cλ
r , touched from

inside at a boundary point by a
translation of C

Proof Weobserve that if p ∈ (∂Cλ
r )\BR , then ∂Cλ

r in the vicinity of p is a segment, and
there exists a vertical translation of C by a vector v0 := ±√

λ e2 such that p ∈ C+ v0
and C + v0 ⊂ Cλ

r , see Fig. 8. From this, we find that

HK
Cλ
r
(p) � HK

C+v0
(p) = HK

C (p − v0) = 0,

as desired. �

With this, we are ready to complete the proof of Theorem 1.4, by arguing as follows.

Proof of Theorem 1.4 The proof is based on the construction of suitable families of
geometric sub and supersolutions starting from the perturbed cross Cr , as defined in
(3.1), to which apply Corollary A.11.

We observe that

C =
⋂
r>0

Cr .

Moreover, we see that

dC(x) � dCr (x) � dC(x) + r .

These observations, together with the Comparison Principle in Theorem A.5 and
Remark A.6, imply that

C+(t) =
⋂
r>0

C+
r (t), for all t > 0. (3.13)
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Analogously, one can define

Cr := (R2\C) ∪ [−r , r ]2. (3.14)

Let 	 as defined in (1.12). Fixed r ∈ (0, r0), where r0 is as in (1.14), we define r∗(t)
to be the solution to the ODE

ṙ∗(t) = 	(r∗(t)) (3.15)

with initial datum r∗(0) = r . We fix T > 0 such that r∗(t) < r0 for all t ∈ [0, T ].
Recalling the definition of 
 in (1.15), it is easy to check that


(r∗(t)) = t + 
(r), for all t ∈ (0, T ]. (3.16)

Now, by (1.17) and (3.16), we see that


(r∗(t)) = 
(r(t)) + 
(r) � 
(r(t)). (3.17)

Now, recalling the setting in (3.12), we take into account the sets Cr∗(t) and Cλ
r∗(t),

with λ ∈ [
0, r

2

)
and t ∈ [0, T ], and we claim that these sets satisfy the assumptions in

Corollary A.11, item (ii). To this end, we observe that, in the vicinity of the angular
points of Cr , the complement of Cr is a convex set, and therefore condition (A.9) is
satisfied by Cr∗(t). Also, we take

δ1 := inf
t∈[0,T ] 	(r∗(t)),

δ2 := inf
t∈[0,T ] inf

p∈B3√2r∗(t)

∫
Br∗(t)/4(3r∗(t)/4,0)−p

K (y) dy and δ := min{δ1, δ2}.

Notice that δ > 0 thanks to (1.13) and (1.14). Then, by Proposition 3.1 and (3.15), we
get that at any point x = (x1, x2) of ∂Cr∗(t) with x2 = ±r∗(t), we have that

− HK
Cr∗(t)

(x) � 2	(r∗(t)) = ṙ∗(t) + 	(r∗(t)) � ṙ∗(t) + δ1 � ∂t x · ν(x) + δ.

(3.18)

In addition, if x = (x1, x2) ∈ (∂Cr∗(t)) ∩ B4R and |x2| > r∗(t), we have that

−HK
Cr∗(t)

(x) � −HK
C (x) +

∫
Br∗(t)/4(3r∗(t)/4,0)

K (y − x) dy

=
∫
Br∗(t)/4(3r∗(t)/4,0)−x

K (y) dy � δ2 � δ = ∂t x · ν(x) + δ.

This and (3.18) give that condition (A.8) is fulfilled by Cr∗(t).
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Furthermore, in light of Lemma 3.3, we know that, for any x ∈ (∂Cλ
r∗(t))\BR ,

HK
Cλ
r∗(t)

(p) � 0 = ∂t x · ν(x),

which says that condition (A.15) is fulfilled by Cλ
r∗(t).

Therefore, we are in the position of using Corollary A.11, item (ii). In this way, we
find that

Cr∗(t) ⊆ C+
r (t), for all t ∈ [0, T ].

Hence, recalling (3.17),

Cr(t) ⊆ C+
r (t), for all t ∈ [0, T ].

Taking intersections, in view of (3.13), we obtain that

Cr(t) ⊆ C+(t), for all t ∈ [0, T ]. (3.19)

Analogously, one can use the setting in (3.14), combined with Corollary A.11, item
(i), and deduce that

Cr(t) ⊆ (R2\C)+(t) for all t ∈ [0, T ]. (3.20)

By (3.19) and (3.20) we get

[−r(t), r(t)]2 = Cr(t) ∩ Cr(t) ⊆ C+(t) ∩ (R2\C)+(t) = �C(t),

which implies (1.16), as desired. �


4 Moving boxes, weak interaction kernels and proof of Theorem 1.6

To simplify some computation, in this section we operate a rotation of coordinates so
that

C = {x ∈ R
2 s.t. x1x2 � 0}. (4.1)

To prove Theorem 1.6, it is convenient to consider “expanding boxes” built by the
following sets. For any r ∈ (0, 1), we define

Nr :=
(
[r ,+∞) × [r ,+∞)

)
∪

(
(−∞,−r ] × (−∞,−r ]

)
, (4.2)

see Fig. 9.
Then, recalling the notation in (1.19), we have:
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Fig. 9 The set Nr

r

r

Fig. 10 Simplifications in the
computations of Lemma 4.1

A

B B’

A’
p

Lemma 4.1 Assume that K satisfies (1.2), (1.3) and (1.19) in R
2. Then, for any p ∈

∂Nr ,

H K
Nr

(p) � 2
(2r).

Proof We denote by A and B the two connected components of Nr and consider the
straight line � passing through p and tangent to Nr at p: see Fig. 10. By reflection
across �, we can consider the regions A′ and B ′ which are symmetric to A and B,
respectively. In particular, if p = (p1, p2) and M(x1, x2) := (2p1 − x1, x2), we have
that M(A ∪ B) = A′ ∪ B ′ and M(Bε(p)) = Bε(p), and therefore
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∫
(A′∪B′)\Bε(p)

K (p − y) dy =
∫
M((A∪B)\Bε(p))

K (p − y) dy

=
∫
M((A∪B)\Bε(p))

K (p − Mx) dx

=
∫
M((A∪B)\Bε(p))

K (−p1 + x1, p2 − x2) dx

=
∫

(A′∪B′)\Bε(p)
K (p − x) dx,

thanks to (1.2). Then, denoting by

T := (
R
2\Nr

)\(A′ ∪ B ′),
which is the “white region” in Fig. 10, we see that

HK
Nr

(p) = lim
ε↘0

∫
(A′∪B′)\Bε(p)

K (p − x) dx −
∫

(A∪B)\Bε(p)
K (p − x) dx

+
∫
T
K (p − x) dx

=
∫
T
K (p − x) dx . (4.3)

Up to rotations, we may assume that

T = (
R × [−r , r ]) ∪ ([−r , 3r ] × (−∞,−r ]). (4.4)

Recalling (1.19), and that p1 = r , we get

∫
[−r ,3r ]×(−∞,−r ]

K (x − p) dx �
∫

[−r ,3r ]×(−∞,−r ]
K1(|x − p|) dx

�
∫

[−r ,3r ]×R

K1(|x − p|) dx = 
(2r) (4.5)

where 
 is defined in (1.19). Moreover, since p1 = r and p2 � r , and K1 is nonin-
creasing, we get that K1(|x − p|) � K1(|x − (r , r)|), for every x ∈ R × [−r , r ]. As
consequence,

∫
R×[−r ,r ]

K (x − p) dx �
∫
R×[−r ,r ]

K1(|x − p|) dx

�
∫
R×[−r ,r ]

K1(|x − (r , r)|) dx

�
∫
R×[−r ,3r ]

K1(|x − (r , r)|) dx = 
(2r).
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Fig. 11 The set Nλ
r , touched

from inside at a boundary point
by a translation of Nr

From this and (4.5), and recalling (4.4), we obtain that

∫
T
K (p − x) dx � 2
(2r).

This and (4.3) give the desired result. �

For λ ∈ (0, r) we define the sets

Nλ
r := {x ∈ R

2 s.t. dNr (x) � −λ}. (4.6)

We observe that for any x ∈ ∂Nλ
r there exists a unique point x ′ ∈ ∂Nr such that

|x − x ′| = d(Nλ
r ,Nr ) = λ. Letting vx := x − x ′, it follows that Nr + vx ⊂ Nλ

r , see
Fig. 11. This and Lemma 4.1 give that

HK
Nλ

r
(x) � HK

Nr
(x + vx ) � 2
(2r) for any x ∈ ∂Nλ

r . (4.7)

With this preliminary work, we can prove Theorem 1.6.

Proof of Theorem 1.6 We note thatMr := N
r/2
r ⊆ C, being C defined in (4.1) andNr/2

r
defined in (4.6), with λ = r/2. Moreover, we have that d(C,Mr ) = r/2 > 0. Hence,
by Corollary A.8 we get that M+

r (t) ⊆ C−(t) for all t > 0. In particular, since

⋃
r>0

Mr = int(C),

we see that

⋃
r>0

M+
r (t) = C−(t). (4.8)

Our aim is to construct starting fromMr a continuous family of geometric subsolutions
and then apply Proposition A.10. Fixed � ∈ (0, 1), we define

F�(r) :=
∫ r

�

dϑ

6
(2ϑ)
.
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Notice that F� is strictly increasing, so we can consider its inverse G� in such a way
that F�(G�(t)) = t . Then, for t ∈ [0, T ], we set r�(t) := G�(t) and we consider the
evolving sets Mr�(t). We remark that

F�(�) = 0 = F�(G�(0)) = F�(r�(0)),

and so r�(0) = �. In addition, the outer normal velocity of Mr�(t) is

− ṙ�(t) + 1

2
ṙ�(t) = −1

2
G ′

�(t) = − 1

2F ′
�(G�(t))

= −3
(2G�(t))

= −3
(2r�(t)). (4.9)

So, if

δ := 
(2�) = min
r∈[�,r�(T )] 
(2r),

we have that

∂t x · ν(x) = −1

2
ṙ�(t) = −2
(2r�(t)) − 
(2r�(t)) � −HK

Mr�(t)
(x) − δ (4.10)

for all x ∈ ∂Mr�(t), thanks to (4.7).
We observe that (4.10) says that (A.8) is satisfied by Mr�(t). So, to exploit Corol-

lary A.11, we now want to check that condition (A.15) is satisfied by the set

Mλ
r�(t) := {x ∈ R

2 s.t. dMr�(t) (x) � −λ} for λ ∈ (0, ρ).

We exploit again the estimate (4.7) which gives that

HK
Mλ

r�(t)
(x) � 2
(2r�(t)) for any x ∈ ∂Mλ

r�(t).

Thus, in view of (4.9),

∂t x · ν(x) = −1

2
ṙ�(t) = −3
(2r�(t)) � −HK

Mλ
r�(t)

(x).

This gives that Mλ
r�(t) satisfies condition (A.15) and therefore we can apply Corol-

lary A.11, item (ii).
Then, it follows that, for all � ∈ (0, 1),

Mr�(t) ⊆ M+
� (t). (4.11)

Also, for any t > 0, we claim that

lim
�↘0

r�(t) = 0. (4.12)
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To prove this, we argue by contradiction and suppose that r�k (t) � a0, for some a0 > 0
and some infinitesimal sequence �k . Then,

t = F�k (G�k (t)) = F�k (r�k (t)) � F�k (a0) =
∫ a0

�k

dϑ

6
(2ϑ)
= 1

12

∫ 2a0

2�k

dτ


(τ)
.

This is in contradiction with (1.20) and so it proves (4.12).
In view of (4.12), we find that

⋃
�>0

Mr�(t) = int C.

So, recalling (4.8) and (4.11), we conclude that

int C =
⋃
�>0

Mr�(t) ⊆
⋃
�>0

M+
� (t) = C−(t) for all t ∈ [0, T ]. (4.13)

Analogously, one can define

Nr :=
(
(−∞,−r ] × [r ,+∞)

)
∪

(
[r + ∞) × (−∞,−r ]

)
,

Mr = (Nr )r/2 := {x ∈ R
2 s.t. dNr (x) � −λ}.

and see that

int (R2\C) ⊆ R
2\C−(t) for all t ∈ [0, T ]. (4.14)

Putting together (4.13) and (4.14), we conclude that

int C ⊆ C−(t) ⊆ C+(t) ⊆ C,

and so �C(t) = ∂C, thus establishing (1.21). �


5 K -minimal cones and proof of Proposition 1.8

In this section we show that C ⊆ R
2, as defined in (1.10), is never a K -minimal set,

under the assumptions (1.2) and (1.3), namely we prove Proposition 1.8. This will be
proved using the family of perturbed crosses Cr introduced in (3.1) and the fact that
HK
E is the first variation of the nonlocal perimeter PerK defined in (1.5), as shown in

[8].

Proof of Proposition 1.8 With the notation in (1.10) and (3.1), we claim that that there
exists r > 0 such that, for all R >

√
2 r ,

PerK (Cr , BR) < PerK (C, BR). (5.1)
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Let r > 0 and R >
√
2r , so that Cr\BR = C\BR . Let

Wr := Cr\C ⊆ BR .

Let δ ∈ (0, r) and Kδ(y) := K (y)(1 − χBδ (y)). We define Perδ(E) as in (1.5),
Perδ(E, BR) as in (1.23), and H δ

E as in (1.4), with Kδ in place of K . In this setting,
we get that

Perδ(Wr )=Perδ(Wr , BR)=Perδ(Cr , BR)−Perδ(C, BR)

+2
∫
Wr

∫
C
Kδ(x − y) dx dy. (5.2)

We also observe that

Perδ(Wr ) =
∫
Wr

∫
R2\Wr

Kδ(x − y) dx dy

=
∫
Wr

∫
R2\Cr

Kδ(x − y) dx dy +
∫
Wr

∫
C
Kδ(x − y) dx dy.

Substituting this identity into (5.2), we find that

Perδ(Cr , BR) − Perδ(C, BR) = Perδ(Wr ) − 2
∫
Wr

∫
C
Kδ(x − y) dx dy

=
∫
Wr

∫
R2\Cr

Kδ(x − y) dx dy

−
∫
Wr

∫
C
Kδ(x − y) dx dy.

(5.3)

Now, given x = (x1, x2) ∈ Wr , we have that x ∈ ∂Cr(x), with r(x) := |x2| ∈ (0, r ],
where the notation of (3.1) has been used. Then, by Lemma 3.2, we have that

H δ
Cr(x)

(x) � −2	δ(r(x)), (5.4)

where 	δ is as in (1.12) with Kδ in place of K , that is

	δ(s) :=
∫
Bs/4(7s/4,0)

Kδ(x) dx � 0.

We write (5.4) as

−2	δ(r(x)) �
∫
R2\Cr(x)

Kδ(x − y) dy −
∫
Cr(x)

Kδ(x − y) dy

=
∫
R2\Cr(x)

Kδ(x − y) dy −
∫
C
Kδ(x − y) dy −

∫
Wr(x)

Kδ(x − y) dy
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=
∫
R2\Cr

Kδ(x − y) dy +
∫
Wr \Wr(x)

Kδ(x − y) dy

−
∫
C
Kδ(x − y) dy −

∫
Wr(x)

Kδ(x − y) dy.

Therefore, integrating over x ∈ Wr ,

∫
Wr

∫
R2\Cr

Kδ(x − y) dx dy −
∫
Wr

∫
C
Kδ(x − y) dx dy

�
∫
Wr

∫
Wr(x)

Kδ(x − y) dx dy −
∫
Wr

∫
Wr \Wr(x)

Kδ(x − y) dx dy

− 2
∫
Wr

	δ(r(x)) dx

= 2
∫
Wr

∫
Wr(x)

Kδ(x − y) dx dy −
∫
Wr

∫
Wr

Kδ(x − y) dx dy

− 2
∫
Wr

	δ(r(x)) dx .

(5.5)

We now observe that

Wr = {x ∈ R
2 s.t. |x2| > |x1| and |x2| < r},

and thus

2
∫
Wr

∫
Wr(x)

Kδ(x − y) dx dy

=
∫
x∈Wr

(∫
y∈Wr(x)

Kδ(x − y) dy

)
dx +

∫
y∈Wr

(∫
x∈Wr(y)

Kδ(x − y) dx

)
dy

=
∫

{|x1|<|x2|<r}

(∫
{|y1|<|y2|<r(x)}

Kδ(x − y) dy

)
dx

+
∫

{|y1|<|y2|<r}

(∫
{|x1|<|x2|<r(y)}

Kδ(x − y) dx

)
dy

=
∫

{|x1|<|x2|<r}

(∫
{|y1|<|y2|<|x2|}

Kδ(x − y) dy

)
dx

+
∫

{|y1|<|y2|<r}

(∫
{|x1|<|x2|<|y2|}

Kδ(x − y) dx

)
dy

=
∫

{|x1|<|x2|<r}

(∫
{|y1|<|y2|<|x2|}

Kδ(x − y) dy

)
dx
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+
∫

{|x1|<|x2|<r}

(∫
{max{|y1|,|x2|}<|y2|<r}

Kδ(x − y) dy

)
dx

=
∫

{|x1|<|x2|<r}

(∫
|y1|<|y2|<r}

Kδ(x − y) dx

)
dy.

Hence, plugging this information into (5.5), we conclude that

∫
Wr

∫
R2\Cr

Kδ(x − y) dx dy −
∫
Wr

∫
C
Kδ(x − y) dx dy � −2

∫
Wr

	δ(r(x)) dx .

This and (5.3) give that

Perδ(Cr , BR) − Perδ(C, BR) � −2
∫
Wr

	δ(r(x)) dx . (5.6)

Now, as δ ↘ 0, we have that Perδ(Cr , BR) → PerK (Cr , BR) and Perδ(C, BR) →
PerK (C, BR), by Dominated Convergence Theorem, see [8]. Moreover, 	δ(s) →
	(s) = ∫

Bs/4(7s/4,0)
K (x) dx a.e. and in L1(0, 1) by Dominated Convergence Theo-

rem (observe that 	 ∈ L1(0, 1) by assumption (1.3)).
So, letting δ ↘ 0 in (5.6), we end up with

PerK (Cr , BR) − PerK (C, BR) � −2
∫
Wr

	(|x2|) dx . (5.7)

Recalling that K is not identically zero, we take a Lebesgue point τ0 ∈ (0,+∞) such
that K0(τ0) > 0. Then,

lim
ε↘0

1

2ε

∫ τ0+ε

τ0−ε

K0(τ ) dτ = K0(τ0) > 0.

Consequently, we take ε0 > 0 such that for all ε ∈ (0, ε0] we have that
∫ τ0+ε

τ0−ε

K0(τ ) dτ � εK0(τ0). (5.8)

Then, if ε̄ := min
{
ε0,

τ0
100

}
and r ∈

[
4τ0
7 − ε̄

14 ,
4τ0
7 + ε̄

14

]
, we have that

7r

4
+ r

8
= 15r

8
� 15τ0

14
− 15ε̄

112
� τ0 + ε̄

and
7r

4
− r

8
= 13r

8
� 13τ0

14
+ 13ε̄

112
� τ0 − ε̄.

(5.9)
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Now we cover the ring Ar := B(7r/4)+(r/8)\B(7r/4)−(r/8) by N0 balls of radius r/4
centered at ∂B7r/4, with N0 independent of r . Then

13πr

4

∫ (7r/4)+(r/8)

(7r/4)−(r/8)
K0(τ ) dτ � 2π

∫ (7r/4)+(r/8)

(7r/4)−(r/8)
τ K0(τ ) dτ

=
∫
Ar

K0(|x |) dx

� N0

∫
Br/4(7r/4,0)

K0(|x |) dx = N0 	(r),

thanks to (1.12).

Using this, (5.8) and (5.9), we obtain that, for any r ∈
[
4τ0
7 − ε̄

14 ,
4τ0
7 + ε̄

14

]
,

	(r) � 13πr

4N0

∫ (7r/4)+(r/8)

(7r/4)−(r/8)
K0(τ ) dτ

� τ0

4N0

∫ τ0+ε̄

τ0−ε̄

K0(τ ) dτ

� ε̄τ0 K0(τ0)

4N0

=: c̄.

(5.10)

Then, if r0 := 4τ0
7 + ε̄

14 , we have that

Wr0 ⊃
(
0,

4τ0
7

− ε̄

14

)
×

(
4τ0
7

− ε̄

14
,
4τ0
7

+ ε̄

14

)

and therefore

∫
Wr0

	(|x2|) dx �
(
4τ0
7

− ε̄

14

) ∫ 4τ0
7 + ε̄

14

4τ0
7 − ε̄

14

	(x2) dx2 � c̄ ε̄

7

(
4τ0
7

− ε̄

14

)
,

where (5.10) has been used in the last inequality. In particular,

∫
Wr0

	(|x2|) dx > 0,

which combined with (5.7) implies that claim in (5.1) with r := r0.
Then, in light of (5.1), we get that C is not a K -minimal set, thus completing the

proof of Proposition 1.8. �
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6 Strictly starshaped domains and proof of Proposition 1.9

Proof of Proposition 1.9 We observe that, due to assumption in (1.25), for every λ > 0,
we have that there exists δλ > 0 such that the distance between ∂E and ∂(λE) is at
least δλ. Therefore, for any λ > 1, from Corollary A.8 and Lemma A.13, we deduce
that

E+(λ1+s t) ⊆ E−
λ (λ1+s t) = λE− (t) .

Then for λ > 1,

|int(E+(t))\E−(t)| � |int(E+(t))\λ−1E+(λ1+s t)|
= |int(E+(t))| − λ−1|E+(λ1+s t)|.

Also, by Proposition A.12,

lim inf
λ↘1

|E+(λ1+s t)| � |int(E+(t))|.

Therefore we get

|int(E+(t))\E−(t)| � lim sup
λ↘1

|int(E+(t))| − λ−1|E+(λ1+s t)|

= |int(E+(t))| − lim inf
λ↘1

λ−1|E+(λ1+s t)| � 0.

This gives the desired statement. �


7 Perturbed double droplet and proof of Theorem 1.10

In this section, the state space is R
2. Recalling the notation in (1.26), given r ∈ (

0, 1
2

)
we set

Gr := [−r , r ]2 ∪ G0 ⊆ R
2, (7.1)

where G0 is the union in R
2 ofB+, which is the convex envelope between B1(

√
2, 0)

and the origin, and B−, which is the convex envelope between B1(−
√
2, 0) and the

origin, see Fig. 12.
Now, fixed δ ∈ (0, r), we denote byB+

δ the convex envelope between B1−δ(
√
2, 0)

and the origin, and B−
δ the convex envelope between B1−δ(−

√
2, 0) and the origin.

We let

Gδ,r := ([−2r , 2r ] × [−r , r ]) ∪ B+
δ ∪ B−

δ .

Then we can estimate the K -curvature of Gδ,r as follows:
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Fig. 12 The set Gr

Lemma 7.1 Assume that (1.2), (1.3) and (1.24) hold true inR
2. Then, there exists c� ∈

(0, 1) such that the following statement holds true. If r ∈ (0, c�) and δ ∈ (0, c4�r),
then

Hs
Gδ,r

(p) � 1

c�

(7.2)

for any p ∈ ∂Gδ,r . In addition, for any p ∈ (∂Gδ,r ) ∩ ([−2r , 2r ] × [−r , r ]),

Hs
Gδ,r

(p) � − c�

rs
. (7.3)

Proof Let α(δ) the angle at x = 0 in B+
δ . Observe that when δ = 0, this angle is

π/2 and moreover there exist δ0 and C0 > 0 such that |α(δ) − π
2 | � C0δ, for all

0 < δ < δ0. In particular we may assume that α(δ) � π/3. We fix then δ � r < δ0.

First of all note that for all p = (p1, p2) ∈ ∂Gδ,r , with p1 �
√
2 − (1−δ)2√

2
(resp.

p1 � −√
2+ (1−δ)2√

2
), then p ∈ ∂B1−δ(

√
2, 0) (resp. p ∈ ∂B1−δ(−

√
2, 0)), and then

Hs
Gδ,r

(p) � Hs
B1−δ(

√
2,0)

(p) = c(1)(1 − δ)−s

(
resp. Hs

Gδ,r
(p) � Hs

B1−δ(−
√
2,0)

(p) = c(1)(1 − δ)−s
)

where c(1) = Hs
B1
.

We take c� ∈ (0, 1) to be taken conveniently small in what follows. We notice
that S := (∂Gδ,r ) ∩ {|x2| = r} consists of four points. We take p = (p1, p2) ∈ ∂Gδ,r

such that there exists q ∈ S such that |p − q| < c�r (see e.g. Fig. 13 for a possible
configuration).

Then,

lim
ε↘0

∫
B√

c� r
(p)\Bε(p)

(
χR2\Gδ,r

(y) − χGδ,r (y)
) 1

|p − y|2+s
dy

� −
∫∫

(0,π/6)×(c� r ,
√
c� r)

1

�1+s
dϑ dρ = − π

6s

1

cs/2� rs

(
1

cs/2�

− 1

)
,

(7.4)

123



718 A. Cesaroni et al.

Fig. 13 A possible configuration
for the points p and q

p

q

while

∫
R2\B√

c� r(p)

(
χR2\Gδ,r

(y) − χGδ,r (y)
) 1

|p − y|2+s
� 2π

∫ +∞
√
c�r

1

ρ1+s
dρ

= 2π

s

1

cs/2� rs
.

As a consequence,

HK
Gδ,r

(p) � − π

6s

1

cs/2� rs

(
1

cs/2�

− 1

)
+ 2π

s

1

cs/2� rs
� −c�

1

rs

as long as c� is sufficiently small, which implies (7.3) (and also (7.2)) in this case.
Now consider p ∈ ∂Gδ,r such that p2 �= r and d(p, S) � c�r . If p ∈

∂B1−δ(±
√
2, 0) we are ok, and in the other case, note that we can define a set G′ with

C1,1-boundary (uniformly in δ and r ) such that Gδ,r ⊂ G′ and G′\B1/8 = Gδ,r\B1/8.
Then, we obtain that

C ′ � HK
G′(p) � HK

Gδ,r
(p) − C ′′,

for some C ′, C ′′ > 0, depending only on the local C1,1-norms of the boundary of G′,
and this gives (7.2) in this case.

Finally note that Gδ,r ⊆ Cr , where Cr is the perturbed cross is defined in (3.1). So,
if p ∈ ∂Gδ,r ∩ ([−r , r ] × [−r , r ]), then p ∈ ∂Cr . Moreover by Lemma 3.2 and the
definition of 	 in (1.12)
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Hs
Cr

(p) � −2	(r) = −C
1

rs

where C > 0 is a universal constant. In this case, we notice that Gδ,r and Cr coincide
in Br , and, outside such a neighborhood of the origin, they differ by four portions of
cones (passing in the vicinity of S) with opening bounded by C0δ. That is, if we set

Dδ,r := (
Gδ,r\Cr

) ∪ (
Cr\Gδ,r

)
,

we have that
∫
Dδ,r

dy

|p − y|2+s

� C2

[∫∫
(0,C1δ)×(c�r/2,10r ]

ρ dϑ dρ

(c� r/2)2+s
+

∫∫
(0,C1δ)×(10r ,+∞)

ρ dϑ dρ

ρ2+s

]

� C3 δ

c2+s
� rs

� c�

rs
,

thanks to our assumption on δ. Consequently

∣∣HK
Gδ,r

(p) − HK
Cr

(p)
∣∣ � c�

rs

and so, making use of (3.3) and (1.30),

HK
Gδ,r

(p) � HK
Cr

(p) + c�

rs
� −c∗

rs
+ c�

rs
� − c∗

2 rs
,

for a suitable c∗ > 0, as long as c� > 0 is sufficiently small. This establishes (7.3)
(and also (7.2)) in this case. �


With these auxiliary computations,we can nowcomplete the proof ofTheorem1.10,
by arguing as follows.

Proof of Theorem 1.10 Let c� > 0 be as in Lemma 7.1, 0 < ε < c�/2 and c� :=
((c�−ε) (1+s))1/(1+s).We define r(t) such that ṙ(t) = (c�−ε)r(t)−s , with r(0) = 0.
So, we have that r(t) = c�t1/(1+s). Let also

δ(t) := 1

c�ε

∫ t

0

dτ

r(τ )
= 1 + s

(c� − ε) c� s
ts/(1+s).

We now estimate the outer normal velocity of Gδ(t),r(t) via Lemma 7.1. First of all,
from (7.3) at p ∈ (∂Gδ(t),r(t)) ∩ {|x2| = r(t), |x1| <

√
2} we get

ṙ(t) = c� − ε

(r(t))s
� −Hs

Gδ(t),r(t)
(p) − ε

cs�t
s/(1+s)

.
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Moreover, the shrinking velocity at x ∈ (∂Gδ(t),r(t))\{|x2| = r(t)} is at
least r(t)δ̇(t) = 1/(c� − ε). This implies that at every x ∈ (∂Gδ(t),r(t))\{|x2| = r(t)}
we get

∂t x · ν(x) � − 1

c� − ε
� −Hs

Gδ(t),r(t)
(x) − ε

c�(c� − ε)
.

by (7.2). Therefore, by Proposition A.10, we get that

Bc� t1/(1+s) ⊆ Gδ(t),r(t) ⊆ G+(t). (7.5)

Conversely, since G is contained in the cross C, it follows from Corollary A.8 and
Theorem 1.4 that

Bcot1/(1+s) ⊆ (R2\C)+(t) ⊆ (R2\G)+(t).

From this and (7.5) it follows that

Bĉ t1/(1+s) ⊆ G+(t) ∩ (R2\G)+(t) = �G(t)

with ĉ := min{c�, co}, which proves (1.28). �


8 Perturbation of tangent balls and proof of Theorem 1.12

Also in this Section, the state space is R
2. The idea to prove Theorem 1.12 is to

construct inner barriers using “almost tangent” balls and take advantage of the scale
invariance given by the homogeneous kernels in (1.24). For this, given δ ∈ [

0, 1
8

]
, we

consider the set

Zδ,r := Br
(
(1 + δ)r , 0

) ∪ Br
(
(−1 − δ)r , 0

) ⊆ R
2.

Then, we have that the nonlocal curvature of Zδ,r is always controlled from above by
that of the ball, and it becomes negative in the vicinity of the origin. More precisely:

Lemma 8.1 Assume (1.24) with n = 2. Then, for any p ∈ ∂Zδ,r we have that

HK
Zδ,r

(p) � C

rs
, (8.1)

for some C > 0. In addition, there exists c ∈ (0, 1) such that if δ ∈ (0, c2) and p ∈
(∂Zδ,r ) ∩ Bcr then

HK
Zδ,r

(p) � −c. (8.2)
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Proof Notice that ∂Zδ,r ⊆ (
∂Br

(
(1 + δ)r , 0

)) ∪ (
∂Br

(
(−1 − δ)r , 0

))
. Moreover,

Zδ,r ⊇ Br
(
(1 + δ)r , 0

)
, as well as Zδ,r ⊇ Br

(
(−1 − δ)r , 0

)
, hence, in view of (1.4),

the nonlocal curvature of Zδ,r is less than or equal to that of Br , which proves (8.1).
Now we prove (8.2). For this, up to scaling, we assume that r := 1 and we take p ∈

(∂Zδ,1) ∩ Bc. Without loss of generality, we also suppose that p1, p2 > 0 and we
observe that

Bc(−2c, 0) ⊆ B1
(
(−1 − δ), 0

)
, (8.3)

as long as c is small enough. Indeed if x ∈ Bc(2c, 0) thenwe canwrite x = −2ce1+ce,
for some e ∈ S

1, and so

|x − (−1 − δ)e1| = |(1 + δ − 2c)e1 + ce| � |1 + δ − 2c| + c

= (1 + δ − 2c) + c = 1 + δ − c � 1 + c2 − c < 1.

This proves (8.3).
Hence, from (1.4) and (8.3), the nonlocal curvature of Zδ,1 at p is less than or equal

to the nonlocal curvature of Br
(
(1+ δ), 0

)
, which is bounded by some C > 0, minus

the contribution coming from Bc(−2c, 0). That is,

− HK
Zδ,r

(p) � −C +
∫
Bc(−2c,0)

dx

|x − p|2+s
= −C +

∫
Bc(2c+p1,p2)

dx

|y|2+s
. (8.4)

Also, if y ∈ Bc(2ce1 + p1, p2), we have that |y| � |y − 2ce1 − p| + |2ce1 + p| �
c + 2c + |p| � 4c, and so

∫
Bc(2c+p1,p2)

dx

|y|2+s
� c0 c2

c2+s
= c0

cs
,

for some c0 > 0. So we insert this information into (8.4) and we obtain

−HK
Zδ,r

(p) � −C + c0
cs

� c0
2cs

as long as c is sufficiently small. This completes the proof of (8.2), as desired. �

From Lemma 8.1, we can control the geometric flow of the double tangent balls

from inside with barriers that shrink the sides of the picture and make the origin
emanate some mass:

Lemma 8.2 There exist δ0 ∈ (0, 1), and C̄ > 0 such that if δ ∈ (0, δ0), then

O−(δ) ⊃
⋃

σ∈(−δ2,δ2)

(
B1−C̄δ

(
1 − C̄δ, 0

) ∪ B1−C̄δ

( − 1 + C̄δ, 0
) + σe2

)
.
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Proof Fix ε ∈ (0, 1), to be taken arbitrarily small in what follows. Let μ ∈ [0,√ε]
and let, for any t ∈ [0, (1 − ε)/C0),

εμ(t) := ε − μt and r(t) := 1 − ε − C0 t,

with C0 > 0 to be chosen conveniently large. We consider an inner barrier consisting
in two balls of radius r(t)which, for any t ∈ [0, (1−ε)/C0), remain at distance 2ε(t).
Namely, we set

Fε,μ(t) := Br(t)
(
r(t) + εμ(t), 0

) ∪ Br(t)
( − r(t) − εμ(t), 0

)
. (8.5)

Notice that

O ⊇ Fε,μ(0) + σe2 for any σ ∈ (−ε, ε) d(O,Fε,μ(0) + σe2) > 0. (8.6)

We also observe that the vectorial velocity of this set is the superposition of a normal
velocity−ṙν, being ν the interior normal, and a translation velocity±(ṙ + ε̇μ)e1, with
the plus sign for the ball on the right and the minus sign for the ball on the left. The
normal velocity of this set is therefore equal to

(
− ṙν ± (ṙ + ε̇μ)e1

)
· ν = −ṙ ± (ṙ + ε̇μ)ν1 = C0 (1 ∓ ν1) ∓ μ. (8.7)

Now, taken a point p on ∂Fε,μ(t), we distinguish two cases. Either p ∈ Bc, where c
is the one given in Lemma 8.1, or p ∈ R

2\Bc. In the first case, we have that

C0 (1 ∓ ν1) ∓ μ � C0 (1 − |ν1|) − μ � 0 − μ � −√
ε > −c,

This and (8.7) give that the normal velocity of Fε,μ(t) at p is larger than −c, and
therefore greater than HK

Zδ,r
(p), thanks to (8.2).

If instead p ∈ R
2\Bc, we have that |ν1(p)| � 1 − c0, for a suitable c0 ∈ (0, 1),

depending on c, and therefore

C0 (1 ∓ ν1) ∓ μ � C0 (1 − |ν1|) − μ � C0 c0 − μ � C0 c0 − 1 � C0 c0
2

� C0 c0
2s+1 (r(t))s

,

as long as C0 is sufficiently large. This and (8.7) give that the inner normal velocity
of Fε,μ(t) at p is strictly larger than C0 c0

2s+1 (r(t))s
, which, if C0 is chosen conveniently

big, is in turn strictly larger than HK
Zδ,r

(p), thanks to (8.1).
In any case, we have shown that the inner normal velocity of Fε,μ(t) at p is strictly

larger than HK
Zδ,r

(p). This implies that Fε,μ(t) is a strict subsolution according to
Proposition A.10.
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Then, by (8.6) and Proposition A.10

O−(t) ⊇
⋃

σ∈(−ε,ε)

(
Fε,μ(t) + σe2

)
, (8.8)

for any t ∈ [0, (1 − ε)/C0).
Now, taking μ := √

ε in (8.5), we see that

Fε,
√

ε(t) = B1−ε−C0t
(
1 − √

εt − C0t, 0
) ∪ B1−ε−C0t

( − (1 − √
εt − C0t), 0

)

for all t ∈ [0, (1 − ε)/C0]. In particular, taking t := √
ε,

Fε,
√

ε(
√

ε) = B1−ε−C0
√

ε

(
1 − ε − C0

√
ε, 0

) ∪ B1−ε−C0
√

ε

( − (1 − ε − C0
√

ε), 0
)
,

and the latter are two tangent balls at the origin. From this and (8.8), we deduce that

O−(
√

ε) ⊇
⋃

σ∈(−ε,ε)

(
B1−ε−C0

√
ε

(
1 − ε − C0

√
ε, 0

)

∪ B1−ε−C0
√

ε

( − (1 − ε − C0
√

ε), 0
) + σe2

)
,

and this implies the desired result by choosing δ := √
ε and C̄ := 2(C0 + 1). �


We can now complete the proof of Theorem 1.12 in the following way:

Proof of Theorem 1.12 We observe that, in the setting of Lemma A.13, the result in
Lemma 8.2 can be written as

O−(δ) ⊇ (1 − C̄δ)O+(0) with d(O−(δ), (1 − C̄δ)O+(0)) � δ2

for all δ ∈ (0, δ0).
Fix now C � C̄ and let U := (1 − Cδ)O+(0). Then, by Corollary A.8, we have

O−(t + δ) ⊇ U(t) (8.9)

for all t � 0.
Now, in view of Lemma A.13,

U(t) = (1 − Cδ) O+
(

t

(1 − Cδ)1+s

)

and so, combining with (8.9),

O−(t + δ) ⊇ (1 − Cδ) O+
(

t

(1 − Cδ)1+s

)
.
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Consequently, for any t � δ, we can estimate the measure of the fattening set as

∣∣int (O+(t)
) \O−(t)

∣∣ �
∣∣∣∣int

(
O+(t)

) \(1 − Cδ) O+
(

t − δ

(1 − Cδ)1+s

)∣∣∣∣
= ∣∣int (O+(t)

)∣∣ −
∣∣∣∣(1 − Cδ) O+

(
t − δ

(1 − Cδ)1+s

)∣∣∣∣
= ∣∣int (O+(t)

)∣∣ − (1 − Cδ)2
∣∣∣∣O+

(
t − δ

(1 − Cδ)1+s

)∣∣∣∣ .

(8.10)

We now fix t0 � δ and choose C = C(t0) � C̄ such that

t � t − δ

(1 − Cδ)1+s
for all t � t0 .

So, by Proposition A.12, we get that

lim inf
δ↘0

∣∣∣∣O+
(

t − δ

(1 − Cδ)1+s

)∣∣∣∣ �
∣∣int (O+(t)

) ∣∣.

This and (8.10) yield that, for t � t0,

∣∣int (O+(t)
) − O−(t)

∣∣
� lim sup

δ↘0

∣∣int (O+(t)
)∣∣ − (1 − Cδ)2

∣∣∣∣O+
(

t − δ

(1 − Cδ)1+s

)∣∣∣∣
= ∣∣int (O+(t)

)∣∣ − lim inf
δ↘0

(1 − Cδ)2
∣∣∣∣O+

(
t − δ

(1 − Cδ)1+s

)∣∣∣∣ � 0.

Since t0 was chosen arbitrarily, this completes the proof of Theorem 1.12. �
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DP170104880 “NEW – Nonlocal Equations at Work”, and by the University of Pisa Project PRA 2017
“Problemi di ottimizzazione e di evoluzione in ambito variazionale”. The authors are members of the
INdAM-GNAMPA.

Appendix A: Viscosity solutions and geometric barriers

In this appendix, we recall the existence and uniqueness results about the level set
flow associated to the nonlocal evolution (1.1), and we provide some auxiliary results
which will be useful in the proof of the main theorems. All the results hold in R

n for
n � 2.

Before introducing the level set equation and the notion of viscosity solutions, we
briefly discuss the evolution of balls according to the setting in (1.1)–(1.4).
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Lemma A.1 Assume that (1.2) and (1.3) hold true. Then for every R > 0 there exists
c(R) > 0 such that

HK
BR

(x) = c(R) for all x ∈ ∂BR .

Moreover the function

R ∈ (0,+∞) → c(R) ∈ (0,+∞)

is continuous, nonincreasing and such that

lim
R→+∞ c(R) = 0.

Furthermore, if K is a fractional kernel, that is K (x) = 1
|x |n+s , then c(R) = c(1)R−s .

Proof Weobserve that, in virtue of (1.2) and (1.4), and the fact that K (x) �≡ 0, we have
that HK

BR
(x) > 0 for x ∈ ∂BR , it does not depend on x , and finally HK

BR
(x) � HK

B′
R
(x)

if R′ > R. Condition (1.3) assures that HK
BR

(x) is finite for every R > 0 and also that

lim
R→+∞ c(R) = 0,

see [8,16]. For the computation in the case of fractional kernels, see [18]. �

Remark A.2 Using Lemma A.1, we study the evolution of a ball BR according to the
flow in (1.1). Such evolution is given by a ball BR(t), where

Ṙ(t) = −c(R(t)) (A.1)

with initial datum R(0) = R. We define

C(R) :=
∫ R

1

1

c(s)
ds.

Then C(R) is a monotone increasing function, and the solution R(t) to (A.1) is given
implicitly by the formula

C(R(t)) = C(R) − t for all t > 0, s.t. R(t) > 0. (A.2)

Let also

TR := sup{t > 0 | R(t) > 0}.

By (A.1) and the monotonicity of c(·), it is easy to check that

TR � R

c(R)
.
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Moreover, from (A.1) we have that

TR = lim
ε↘0

∫ R

ε

1

c(s)
ds = C(R) − lim

ε↘0
C(ε).

If K is a fractional kernel, that is K (x) = 1
|x |n+s , then C(R) = 1

c(1)(s+1) (R
s+1 − 1)

and TR = Rs+1

c(1)(s+1) .

We introduce now the notion of viscosity solutions for the level set equation

{
∂t u(x, t) + |Du(x, t)|HK

{y|u(y,t)�u(x,t)}(x) = 0 for all x ∈ R
n, t > 0,

u(x, 0) = u0(x) for all x ∈ R
n .

(A.3)

For more details, we refer to [8,16]. The viscosity theory for the classical mean cur-
vature flow is contained in [10] and [13], see also [14] for a comprehensive level set
approach for classical geometric flows.

Definition A.3 (Viscosity solutions)

(i) Anupper semicontinuous functionu : R
n×(0, T ) → R is a viscosity subsolution

of (A.3) if, for every smooth test function φ such that u − φ admits a global
maximum at (x, t), we have that either ∂tφ(x, t) � 0 if Dφ(x, t) = 0, or

∂tφ(x, t) + |Dφ(x, t)|HK
{y|φ(y,t)�φ(x,t)}(x) � 0

if Dφ(x, t) �= 0.
(ii) A lower semicontinuous function u : R

n × (0, T ) → R is a viscosity supersolu-
tion of (A.3) if, for every smooth test function φ such that u − φ admits a global
minimum at (x, t), we have that either ∂tφ(x, t) � 0 if Dφ(x, t) = 0, or

∂tφ(x, t) + |Dφ(x, t)|HK
{y|φ(y,t)>φ(x,t)}(x) � 0

if Dφ(x, t) �= 0.
(iii) A continuous function u : R

n × (0, T ) → R is a solution to (A.3) if it is both a
subsolution and a supersolution.

Remark A.4 It is easy to verify that any smooth subsolution (respectively supersolu-
tion) is in particular a viscosity subsolution (respectively supersolution).

Now, we recall the Comparison Principle and the existence and uniqueness results
for viscosity solutions to (A.3).

Theorem A.5 Suppose that u0 is a bounded and uniformly continuous function. Let
u (respectively v) be a bounded viscosity subsolution (respectively supersolution) of
(A.3). If u(x, 0) � u0(x) � v(x, 0) for any x ∈ R

n, then u � v on R
n × [0,+∞).

In particular, there exists a unique continuous viscosity solution u to (A.3) such
that u(x, 0) = u0(x) for any x ∈ R

n.

123



Fattening and nonfattening phenomena for planar nonlocal. . . 727

Moreover if u0 is Lipschitz continuous then u(·, t) is Lipschitz continuous, uniformly
with respect to t , and

|u(x, t) − u(y, t)| � ‖Du0‖∞|x − y|,

for all x, y ∈ R
n and t > 0.

Proof For the proof of the existence and uniqueness result, and for the Comparison
Principle, we refer to [16, Theorems 2 and 3], see also [8].

Finally the Lipschitz continuity is a consequence of the Comparison Principle.
Indeed, for any h ∈ R

n , we define

v±(x, t) := u(x + h, t) ± ‖Du0‖∞|h|.

Then, if u is a viscosity solution to (A.3), we have that also v+ and v− are viscosity
solutions to the same equation. Moreover,

v−(x, 0) = u0(x + h) − ‖Du0‖∞|h| � u0(x)

= u(x, 0) � u0(x + h) + ‖Du0‖∞|h| = v+(x, 0),

which implies the desired Lipschitz bound. �

Remark A.6 Let E ⊂ R

n be a closed set in R
n and let uE (x) be a bounded Lipschitz

continuous function such that

∂E = {x ∈ R
n s.t. uE (x) = 0} = ∂{x ∈ R

n s.t. uE (x) > 0}
and E = {x ∈ R

n s.t. uE (x) � 0}. (A.4)

Let uE be the unique viscosity solution to (A.3) with initial datum uE and define

E+(t) := {x ∈ R
n s.t. uE (x, t) � 0} and E−(t) := {x ∈ R

n s.t. uE (x, t) > 0}.

The level set flow is defined as

�E (t) = {x ∈ R
n s.t. | uE (x, t) = 0}.

Due to the fact that the operator in (A.3) is geometric, which means that if u is
a subsolution (resp. a supersolution) then also f (u) is a subsolution (resp. a super-
solution) for all monotone increasing functions f , the following result holds: if v0
is a Lipschitz continuous function which satisfies (A.4) and v is the viscosity solu-
tion to (A.3) with initial datum v0, then E+(t) = {x ∈ R

n s.t. v(x, t) � 0} and
E−(t) = {x ∈ R

n s.t. v(x, t) > 0}.
In particular, the inner flow, the outer flow and the level set flow do not depend on

the choice of the initial datum uE but only on the set E .
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Remark A.7 In the setting of Remark A.2, one can show that u(x, t) = R(t) − |x |,
for t ∈ [0, TR), is a viscosity solution to (A.3). Therefore, in this case we have that
E = BR and E+(t) = E−(t) = BR(t).

An important consequence of the Comparison Principle stated in Theorem A.5,
is the following result (in which we also use the notation for the distance function
introduced in (1.32) and (1.31)).

Corollary A.8

(i) Let F ⊂ E two closed sets in R
n such that d(F, E) = δ > 0. Then F+(t) ⊂

E−(t) for all t > 0, and the map t → d(F+(t), E−(t)) is nondecreasing.
(ii) Let v : R

n × [0, T ) → R be a bounded uniformly continuous viscosity superso-
lution to (A.3), and assume that

F ⊆ {x ∈ R
n s.t. v(x, 0) � 0}.

Then

F+(t) ⊆ {x ∈ R
n s.t. v(x, t) � 0},

for all t ∈ (0, T ).
Moreover, if

d(F, {x ∈ R
n s.t. v(x, 0) > 0}) = δ > 0,

then

F+(t) ⊆ {x ∈ R
n s.t. v(x, t) > 0},

for all t ∈ (0, T ), and

d
(
F+(t), {x ∈ R

n s.t. v(x, t) > 0}
)

� δ.

(iii) Let w : R
n × [0, T ) → R be a bounded uniformly continuous viscosity subsolu-

tion to (A.3), and assume that

E ⊇ {x ∈ R
n s.t. w(x, 0) � 0}).

Then

E+(t) ⊇ {x ∈ R
n s.t. w(x, t) � 0},

for all t ∈ (0, T ).
Moreover, if

d(E, {x ∈ R
n s.t. w(x, 0) � 0}) = δ > 0,
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then

E−(t) ⊇ {x ∈ R
n s.t. w(x, t) � 0},

for all t ∈ (0, T ), and

d
(
E−(t), {x ∈ R

n s.t. w(x, t) � 0}
)

� δ.

Proof First, we prove (i). Since F ⊆ E and d(E, F) = δ, then it is easy to check that
dE (x) � dF (x) + δ.

Let now C > 2δ and define

uF (x) := max
{ − C − δ, min{dF (x),C − δ}}

and uE (x) := max
{ − C, min{dE (x),C}}.

So, again we obtain that uF (x)+ δ � uE (x). Therefore, by the Comparison Principle
in Theorem A.5, we get that uE (x, t) � uF (x, t) + δ for every t > 0.

This in turn implies that F+(t) ⊂ E−(t) and moreover that d(F+(t), E−(t)) � δ,
due to the fact that uE (x, t) and uF (x, t) are 1-Lipschitz in x , by Theorem A.5.

If we repeat the same argument with initial data E−(t) and F+(t), we obtain the
desired statement in (i).

We prove now (ii). For this, we distinguish two cases: if

d(F, {x ∈ R
n s.t. v(x, 0) > 0}) = δ > 0, (A.5)

we let

E := {x ∈ Rn s.t. v(x, 0) > 0}.

Then, by item (i), we get that F+(t) ⊆ E−(t) and d(F+(t), E−(t)) � δ. Let uE be the
unique viscosity solution to (A.3) with uE (x, 0) = v(x, 0). Then, by the Comparison
Principle in Theorem A.5, we get that uE (x, t) � v(x, t) for all t ∈ (0, T ). In turn,
this implies that E−(t) ⊆ {x ∈ R

n s.t. v(x, t) > 0}, and this permits to conclude that
(ii) holds true, under the assumption in (A.5).

If, on the other hand, we have that (A.5) does not hold, we write

d(F, {x ∈ R
n s.t. v(x, 0) > 0}) � 0.

Then, by the uniform continuity of v(·, 0), we have that for every ε > 0 there exists
δε > 0 such that

d(F, {x ∈ R
n s.t. v(x, 0) > −ε}) � δε > 0.

Sowe repeat the argument above (based on (A.5)) substituting v(x, t)with the function
v(x, t) + ε and E with {x ∈ Rn s.t. v(x, 0) > −ε}. This gives that F+(t) ⊆ E−(t),
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and E−(t) ⊆ {x ∈ R
n s.t. v(x, t) > −ε} for all ε > 0. Therefore F+(t) ⊆ {x ∈

R
n s.t. v(x, t) � 0}.
This completes the proof of (ii). The proof of (iii) is completely analogous, and we

omit it. �

Remark A.9 Observe that if E is a compact set and in particular E ⊆ BR for some
R > 0, then by Remark A.7 and Corollary A.8 we have that E+(t) ⊆ BR(t) where
R(t) < R has been defined in Remark A.2. In particular, there exists TE � TR such
that TE = sup{t > 0 s.t. int E+(t) �= ∅}.

Now, we define the lower and upper semicontinuous envelopes of a family of sets
C(t) ⊆ R

n as follows:

C�(t) :=
⋃
ε>0

⋂
0�t−ε<s<t+ε

C(s) and C�(t) :=
⋂
ε>0

⋃
0�t−ε<s<t+ε

C(s).

We have that C�(t) ⊆ C(t) ⊆ C�(t). Moreover for any sequence (xn, tn) → (x, t), if
xn ∈ C�(tn) then x ∈ C�(t), whereas, if xn /∈ int (C�(tn)), then x /∈ int (C�(t)).

If C�(t) = C(t) = C�(t) for every t , we say that the family is continuous.
We also need a result to compare geometric sub and supersolutions to (1.1) with

the level set flow, see [8].

Proposition A.10 Let C(t) ⊆ R
n for t ∈ [0, T ], be a continuous family of sets with

compact Lipschitz boundaries, which are piecewise of class C1,1 outside a finite num-
ber of angular2 points.

Fix E ⊂ R
2 and uE a bounded Lipschitz continuous function such that

E = {x ∈ R
n s.t. uE (x) � 0} and ∂E = {x ∈ R

n s.t. uE (x) = 0}.

Consider the inner and outer flows associated to E, according to (1.8).

(i) Assume that there exists δ > 0 such that at every x ∈ ∂C(t) where ∂C(t) is C1,1

there holds

∂t x · ν(x) � −HK
C(t)(x) + δ. (A.6)

Moreover, assume that

at every angular point x ∈ ∂C(t) there exists r0 > 0 such that

the set B(x, r) ∩ C(t) is convex for all r < r0.
(A.7)

Then, if E ⊆ C(0), with d(E,C(0)) = k � 0, it holds that E+(t) ⊂ C(t) for all
t ∈ [0, T ), with d(E+(t),C(t)) � k � 0.

2 As customary, a point of a piecewiseC1,1 curve is called “angular” if the tangent directions from different
sides are different.
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(ii) Assume that there exists δ > 0 such that at every x ∈ ∂C(t) where ∂C(t) is C1,1

it holds

∂t x · ν(x) � −HK
C(t)(x) − δ. (A.8)

Moreover, assume that

at every angular point x ∈ ∂C(t) there exists r0 > 0 such that

the set B(x, r) ∩ (Rn\C(t)) is convex for all r < r0.
(A.9)

Then, if E ⊇ C(0), it holds that E+(t) ⊇ C(t) for all t ∈ [0, T ).

Moreover, if d(C(0), {x ∈ R
n s.t. uE (x) > 0}) = k > 0, it holds that E−(t) ⊃

C(t) for all t ∈ [0, T ), with d(E−(t),C(t)) � k.

Proof We give just a sketch of the proof of (i), since it relies on classical arguments
in viscosity solution theory and level set methods (the proof of (ii) is analogous), see
[8].

For ε > 0 sufficiently small, we define the function

uε(x, t) := max
{
0, min{ε, dC(t)(x)}

}
.

We claim that for ε > 0 sufficiently small (depending on δ in (A.6)) the function uε

is a viscosity supersolution to (A.3). If the claim is true, then the statement in (i) is a
direct consequence of the Comparison Principle in Corollary A.8.

To prove the claim, for every λ ∈ [0, ε], we define

Cλ(t) := {x ∈ C(t) s.t. dC(t)(x) � λ}.

Note that uε = 0 on Rn\C(t), uε = λ on ∂Cλ(t) and uε = ε on Cε(t).
Due to the regularity assumption on C(t), we have that for every λ ∈ [0, ε], the

sets Cλ(t) are Lipschitz continuous, piecewise C1,1 outside a finite number of angular
points and satisfy the following property: at every angular point x ∈ ∂Cλ(t) there
exists r0 > 0 such that the set B(x, r) ∩ Cλ(t) is convex for all r < r0. Therefore
assumption (A.7) is satisfied for every Cλ, with λ ∈ [0, ε].

Now we observe that, due to the regularity assumptions and to (A.7), we have that
for every xε ∈ ∂Cε(t) there exists x0 ∈ ∂C(t) such that |x0 − xε| = ε (x0 is unique if
∂Cε(t) isC1,1 at xε, and it is eventually non unique if xε is an angular point). Moreover
∂C(t) is C1,1 around x0.

Assume first that xε is an angular point of ∂Cε(t). We fix ζ(ε, xε, t) = ζε > 0 such
that ∂Cε(t) is C1,1 at every x ∈ B(xε, ζε) ∩ ∂Cε(t), x �= xε, ∂C(t) is C1,1 at every
x ∈ B(x0, ζε) ∩ ∂C(t) (so that the K -curvature is well defined) and moreover there
holds

HK
∂Cε(t)(x) > sup

y∈B(x0,ζε)∩∂C(t)
HK

∂C(t)(y) for all x ∈ B(xε, ζε) ∩ ∂Cε(t), x �= xε,

and for all t ∈ [0, T ].
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Since the angular points xε of ∂Cε(t) are finite for every t ∈ [0, T ], and the interval
[0, T ] is compact, we can choose ζε independent of xε and t . Now consider the case
in which ∂Cε(t) ∩ B(xε, ζε) is C1,1. Then we use the continuity of the K -curvature
as ε → 0 (see [8]) to see that there exists ηε = η(ε, xε, ζε, t) > 0 such that

|HK
C(t)(x0) − HK

Cε(t)(xε)| � ηε.

Finally, due to the compactness of

∂Cε(t)\
⋃
i∈I

B(xi , ζε),

where xi are the angular points of ∂Cε(t), and due to compactness of the time interval
[0, T ], we observe that we may choose ηε = η(ε, ζε) independent of xε and t . In
conclusion we get that there exists ηε > 0 depending on ε such that for all xε ∈ ∂Cε(t)
which are not angular points there holds

HK
Cε(t)(xε) � HK

C(t)(x0) − ηε where |x0 − xε| = ε. (A.10)

The same argument can be repeated for all λ ∈ (0, ε), and so for every λ there
exists ηλ > 0 such that (A.10) holds. We define

η = η(ε) = sup
λ∈(0,ε]

ηλ. (A.11)

Nowwe distinguish different cases according to the position of the point x , in order
to prove that uε is a viscosity supersolution to (A.3).

If x ∈ int (Rn\C(t)), or x ∈ int(Cε(t)), then actually the equation in (A.3) is trivially
satisfied since |Duε(x, t)| = 0 and ∂t uε(x, t) = 0 by the continuity properties of the
families C(t) and Cε(t).

Now we suppose that x ∈ ∂Cε(t). Then it is easy to show that the set of test
functions is empty, so again the equation in (A.3) is trivially satisfied.

We finally assume that x ∈ ∂Cλ(t) for some λ ∈ [0, ε). Observe that at every
angular point x ∈ ∂Cλ(t), by the assumption (A.7) (which holds also for Cλ(t) as
proved above), the set of test functions is empty so the equation in (A.3) is trivially
satisfied. So assume that Cλ(t) is locally of class C1,1 around x . We fix x0 ∈ ∂C(t)
such that |x − x0| = λ. So, if ν(x) is the outer normal to ∂Cλ(t) at x , then ν(x) =
x0−x
|x−x0| and ν(x) = ν(x0), so it coincides with the outer normal to ∂C(t) at x0 and
∂t x0 ·ν(x0) = ∂t x ·ν(x). Moreover, due to (A.10), and the definition of η in (A.11),we
get

HK
Cλ(t)(x) � HK

C(t)(x0) − η. (A.12)

Let φ be a test function for uε at (x, t), then Dφ(x, t) = −ρν(x) for some ρ ∈ [0, 1]
for λ = 0 and Dφ(x, t) = −ν(x) for λ > 0, whereas φt (x, t) = ρ∂t x · ν(x) (with
ρ = 1 as λ > 0). Moreover
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HK
Cλ(t)(x) = HK

{y|uε(y,t)�λ}(x) � HK
{y|φ(y,t)>λ}(x). (A.13)

Therefore, computing the equation at (x, t), we get, using (A.12), (A.13) and (A.6),

∂tφ(x, t) + |Dφ(x, t)|HK
{y|φ(y,t)>φ(x,t)}(x) � ρ∂t x · ν(x) + ρHK

Cλ(t)(x)

� ρ∂t x0 · ν(x0) + ρHK
C(t)(x0) − ρη � ρ(δ − η).

So, if we choose ε > 0 sufficiently small, according to δ, so that η = η(ε) � δ, then
the previous inequality gives that uε is a supersolution to (A.3), as we claimed. �


Now we present the following extension to the noncompact case of Proposi-
tion A.10.

Corollary A.11 Let C(t) ⊆ R
n for t ∈ [0, T ), be a continuous family of sets with

Lipschitz boundaries, which are piecewise of class C1,1 outside a finite number of
angular points, and such that there exists R > 0 such that C(t) ∩ (Rn\BR) is of class
C1,1 for all t .

Fix E ⊂ R
n and uE a bounded Lipschitz continuous function such that

E = {x ∈ R
n s.t. uE (x) � 0} and ∂E = {x ∈ R

n s.t. uE (x) = 0},

and consider the inner and outer flows associated to E, according to (1.8).

(i) Assume that there exists δ > 0 such that (A.6) holds for every x ∈ ∂C(t) ∩ B4R.
Suppose also that (A.7) holds true.
Moreover, assume that there exists λ0 such that, for all λ ∈ [0, λ0], it holds that

∂t x · ν(x) � −HK
Cλ(t)(x) (A.14)

for all x ∈ ∂Cλ(t) ∩ (Rn\B2R), where

Cλ(t) := {x ∈ C(t) s.t. dC(t)(x) � λ}.

Then, if E ⊂ C(0), with d(E,C(0)) = k � 0, it holds that E+(t) ⊂ C(t) for all
t > 0, with d(E+(t),C(t)) � k � 0.

(ii) Assume that there exists δ > 0 such that (A.8) holds for every x ∈ ∂C(t) ∩ B4R.
Suppose also that (A.9) holds true.
Moreover, assume that there exists λ0 such that for all λ ∈ [0, λ0], it holds that

∂t x · ν(x) � −HK
Cλ(t)(x) (A.15)

for all x ∈ ∂Cλ(t) ∩ (Rn\B2R) where

Cλ(t) := {x ∈ R
n s.t. dC(t) � −λ}.

Then, if E ⊇ C(0), it holds that E+(t) ⊇ C(t) for all t > 0.
In addition, if d(C(0), {x ∈ R

n s.t. uE (x) > 0}) = k > 0, it holds that E−(t) ⊃
C(t) for all t > 0, with d(E−(t),C(t)) � k.
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The proof of Corollary A.11 is similar to that of Proposition A.10, and we omit the
details.

We also have the following semicontinuity type result for the outer evolutions.

Proposition A.12 There holds

lim inf
η↘0

∣∣E+(t + η)
∣∣ � |int E+(t)|. (A.16)

Proof We claim that for any fixed t > 0 and a.e. in R
n ,

lim inf
η↘0

χ{uE (·,t+η)�0} � χ{int({uE (·,t)�0})}. (A.17)

To show (A.17), it is enough to consider a point x ∈ int({uE (·, t) � 0}), so that
{uE (·, t) � 0} ⊃ Br (x) for some r > 0. Then, recalling formula (A.2) in RemarkA.2,
we have that C(r(η)) = C(r) − η, for η ∈ (0, Tr ), where Tr > 0 is the extinction
time of the ball Br under the flow (1.1).

Hence, by Remark A.7 and Corollary A.8 we get

{uE (·, t + η) � 0} ⊃ Br(η)(x), for all η ∈ (0, Tr ) .

In particular, it follows that

lim inf
η↘0

uE (x, t + η) � 0, for all x ∈ int{uE (·, t) � 0},

which implies (A.17).
Then, by (A.17) and the Fatou Lemma, for all t > 0 we obtain

lim inf
η↘0

∣∣E+(t + η)
∣∣ = lim inf

η↘0

∫
Rn

χ{uE (·,t+η)�0}(x) dx

�
∫
Rn

lim inf
η↘0

χ{uE (·,t+η)�0}(x) dx �
∣∣int ({uE (·, t) � 0}) ∣∣

= ∣∣int E+(t)
∣∣,

establishing (A.16). �

In the case of homogeneous kernels, i.e. under the assumption in (1.24), the geo-

metric flow possesses a useful time scaling property as follows.

Lemma A.13 Assume that K (x) = 1
|x |n+s for some s ∈ (0, 1). Let λ > 0, M > 0,

E ⊆ R
n and uE,λ(x, t) be the viscosity solution to (A.3) with initial condition given

by

uE,λ(x) := max
{ − λM, min{dλE (x), λM}}.
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Let also E+
λ (t) := {x ∈ R

n s.t. uE,λ(x, t) � 0} and E−
λ (t) := {x ∈

R
n s.t. uE,λ(x, t) > 0}. Then

E±
λ (t) = λE±

1

(
t

λ1+s

)
.

Proof For every x ∈ R
n such that −M � dE (x) � M , we have that

λuE,1(x) = λdE (x) = dλE (λx) = uE,λ(λx).

Moreover if dE (x) � M , then λuE,1(x) = λM = uE,λ(λx), and analogously
for dE (x) � M . Therefore we get that λuE,1

( x
λ

) = uE,λ(x). Moreover, by the
scaling properties of K , we have that Hs

E (x) = λ−s Hs
λE (λx). Therefore the func-

tion λuE,1

(
x
λ
, t

λ1+s

)
is a viscosity solution to (A.3), with initial datum uE,λ(x).

By the uniqueness of viscosity solutions, given in Theorem A.5, we get that

λuE,1

(
x
λ
, t

λ1+s

)
= uE,λ(x, t). From this we deduce the desired statement. �
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