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Abstract
Under mild conditions on measures used in the perturbation, we establish the L p-
independence of spectral radius for generalized Feynman–Kac semigroups without
assuming the irreducibility and the boundedness of the function appeared in the con-
tinuous additive functionals locally of zero energy in the framework of symmetric
Markov processes. These results are obtained by using the gaugeability approach
developed by the first named author as well as the recent progress on the irreducible
decomposition for Markov processes proved by the third author and on the analytic
characterizations of gaugeability for generalized Feynman–Kac functionals developed
by the second and third authors.
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1 Introduction andmain results

It is well known that Schrödinger operator L := − 1
2� + V , where V is a Kato

class function on Rd , is self-adjoint in L2(Rd; dx) and so it can be represented by its
spectral family. The Schrödinger operator generates a strongly continuous semigroup
{PV

t = e−tL; t ≥ 0} in L2(Rd ; dx). This Schrödinger semigroup admits a probabilis-
tic representation (cf. [17,41]): for f ∈ C2

c (R
d), the space of C2-smooth functions on

R
d with compact support,

PV
t f (x) = Ex

[
exp

(
−
∫ t

0
V (Xs)ds

)
f (Xt )

]
, t ≥ 0, x ∈ R

d ,

where X = {Xt ; t ≥ 0,Px , x ∈ R
d} is a d-dimensional Brownian motion. Hence

(PV
t )t≥0 is also called a Feynman–Kac semigroup of Brownian motion. This semi-

group can be extended to a strongly continuous symmetric semigroup in L p(Rd ; dx)
for any p ∈ [1,∞[, and a bounded semigroup on L∞(Rd; dx) (cf. [40]). We denote
the L p-Schrödinger semigroup by (PV

t )t≥0. There is a spectral family associated with
the infinitesimal generator L(p) of (PV

t )t≥0 in L p(Rd ; dx) when 1 ≤ p < ∞. When
p = ∞, L(∞) on L∞(Rd; dx) is defined to be the dual of L(1) on L∞(Rd; dx),
whose domain D(L(∞)) may not be dense in L∞(Rd; dx). Let L̃∞ be the closure of
D(L(∞)) in L∞(Rd; dx). Then the spectrum of−L(∞) can be defined for the densely
defined closed operator L(∞) : L̃∞ → L̃∞. Note that the semigroup (P̃V

t )t≥0 on L̃∞
defined by the restriction P̃V

t := PV
t |L̃∞ is strongly continuous on L̃∞. Moreover,

we can deduce ‖P̃V
t ‖∞,∞ ≤ ‖PV

t ‖∞,∞ ≤ M‖P̃V
t ‖∞,∞. Here M is the positive

constant appeared in ‖PV
t ‖∞,∞ ≤ MeCt , (C > 0) under the Kato class condition

for V . So the bottom of the spectrum of −L(∞) coincides with the spectral radius
λ∞ := − limt→∞ 1

t log ‖PV
t ‖∞,∞. An interesting but challenging question is when

the L p-spectral family of L(p) is independent of p ∈ [1,∞] (see Remarks 2 after
Theorem 1.3 of [40]). When V is in certain function space, Simon [40, Theorem 1.3]
showed that the bottom of the spectrum (also called spectral radius) ofL(p) is indepen-
dent of p ∈ [1,∞]; in other words, λp := − limt→∞ 1

t log ‖PV
t ‖p,p is independent

of p ∈ [1,∞]. This result has been extended in Hempel and Voigt [23,24] to a larger
class of V with V− being in an extended Kato class of Brownian motion and V+
locally integrable. Moreover, it is shown in [23,24] that the L p-spectral family for
the Schrödinger operator − 1

2� + V is independent of p ∈ [1,∞] for a subclass of
V . Inspired by [23,24,40,41], Sturm [44] later obtained L p-independence of the spec-
trum of uniformly elliptic operators on Riemannianmanifolds under a sub-exponential
volume growth condition.

Note that
∫ t
0 V (Xs)ds in the Feynman–Kac representation of the Schrödinger semi-

group (PV
t )t≥0 above is a continuous additive functional of the Brownian motion X

having finite variation and signed Revuz measure μ(dx) = V (x)dx . On the other
hand, Brownian motion X has many continuous continuous additive functionals of
finite variation but whose signed Revuz measure can be singular with respect to the
Lebesguemeasure. Local time of Brownianmotion on the unit sphere is such an exam-
ple. In this case, the corresponding Revuz measure μ is the surface measure on the
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Lp-independence of spectral radius . . . 603

unit sphere. Moreover, for any u ∈ W 1,2(Rd), the space of L2-integrable functions on
R
d whose distributional gradients are also L2-integrable, it admits a quasi-continuous

version ũ and there is a Fukushima’s decomposition (cf. [8,22])

ũ(Xt )− ũ(X0) = Mu
t + Nu

t , t ≥ 0,

where Mu
t is a continuous martingale additive functional ofX having finite energy and

Nu is a continuous additive functional of X having zero energy. Hence it is natural to
consider generalized Feynman–Kac semigroup defined by

Pu,μ
t f (x) := Ex

[
exp(Nu

t + Aμ
t ) f (Xt )

]

where Aμ is a continuous continuous additive functionals of finite variation with
signedRevuzmeasureμ and u ∈ W 1,2(Rd). Intuitively, its corresponding Schrödinger
operator is

−1

2
�−

(
μ+ 1

2
�u

)

where �u should be understood in a distributional sense (cf. [16]). Furthermore, if
X is a discontinuous symmetric strong Markov process on R

d such as an isotropic
α-stable Lévy process,X has discontinuous additive functionals as well. For example,
for a bounded function F(x, y) onRd×R

d that vanishes along the diagonal in certain
rate, t �→ AF

t :=
∑

0<s≤t F(Xs−, Xs) is a purely discontinuous additive functional
of an isotropic α-stable Lévy process X. This gives arise a non-local generalized
Feynman–Kac semigroup

Pu,μ,F
t f (x) := Ex

[
exp
(
Nu
t + Aμ

t + AF
t

)
f (Xt )

]
.

The infinitesimal generator of (Pu,μ,F
t )t≥0 is

(−�)α/2 −
(
μ+ (−�)α/2u

)
+ a non-local perturbation involving F,

where again (−�)α/2u should be interpreted in a distributional sense.
Using the large deviation principle for occupation time distribution, Takeda [45,46]

proved the L p-independence of the spectral radius of symmetric Markov semigroups
whose symmetrizing measure satisfies the tightness condition. After that, Takeda [49]
extended the results on L p-independence of the spectrum radius in [45,46] to the
case of Feynman–Kac semigroup under the tightness condition for the symmetrizing
measures of the Markov processes. Meanwhile, Takeda [47] proved a characterization
of L p-independence of spectral radius of Feynman–Kac semigroup without assuming
the tightness condition for the symmetrizing measures. The results in [47,49] was
extended to the case of generalized Feynman–Kac semigroups in [19,31,50,51]. The
method of the proofs in [19,31,45–47,49–51] are all based on the large deviation
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604 Z.-Q. Chen et al.

principle for occupation time distribution. The results on the L p-independence of
spectral radius in [45–47,49–51] are summarized in the survey paper [48].

In [4,5] (see also [2, Theorem 2.12]), the first named author developed a new
approach to study L p-independence of spectral radius for generalized Feynman–Kac
semigroups generated not only by continuous additive functionals but also by discon-
tinuous additive functionals in the context of symmetric Markov processes. The new
approach is based on the following two ingredients: (i) the analytic characterization
of gaugeability for continuous and discontinuous Feynman–Kac functionals obtained
in [2,3], respectively; (ii) Chen and Zhang’s approach [16] to generalized Feynman–
Kac transform eN

u
, where Nu is the continuous additive functional of zero energy

for bounded u in the associated Dirichlet space, by realizing it as a combination of
Doob’s h-transform, a Girsanov transform and a Feynman–Kac transform by contin-
uous additive functional of finite variation. This new approach, which does not use
large deviation, has the advantage that it not only extends earlier results in [47–51] to
a larger class of symmetric Markov processes but also gives several new criteria; see,
e.g., [2, Remarks 4.10 and 5.6]. In [5], for generalized Feynman–Kac transform, u
is assumed to be bounded. However, when the symmetric Markov process is a Feller
process having strong Feller property, using a large deviation approach, the function
u can be allowed to be any continuous function in Floc as in Theorem 1.2 of [19,31].
Given the importance of Schrödinger semigroups and Feynman–Kac transforms in
analysis and in probability theory, it is desirable to establish these results for general
u and general strong Markov processes.

The main purpose of this paper is to study L p-independence of spectral radius
for generalized (possibly non-local) Feynman–Kac semigroups for a large class of
symmetric strong Markov processes and for general u locally in the domain of the
correspondingDirichlet spaces. This paper adopts the gaugeability approach of the first
named author in [4,5] but with refinements. We do not require the underlying symmet-
ricMarkov process to be irreducible, nor dowe assume the symmetricMarkov process
to have doubly Feller property or strong Feller property. Using the recent refinements
from [27,28] by the second and third named authors on the analytic characterization
for the gaugeability of generalized Feynman–Kac functionals, we are able to extend
results in both [4,5] and [19,31] (see Theorems 1.1, 1.2, 1.3 below).

Gärtner–Ellis theorem provides a useful way to establish large deviation principle.
One of the conditions of the Gärtner–Ellis theorem is the existence of logarithmic
moment generating function ([18, Sect. 2.3]). We point out that the L p-independence
of spectral radius of the generalized Feynman–Kac semigroups implies the existence
of logarithmic moment generating function of the generalized Feynman–Kac semi-
group.

We now state the setting of this paper. Let E be a Lusin metric space (i.e., a
space that is homeomorphic to a Borel subset of a compact metric space) and m a
σ -finite Borel measure on E with full topological support. Let E∂ be a one point
compactification of E with a point ∂ /∈ E if E is a locally compact separable metric
space. Otherwise we add ∂ as an isolated point to E . LetX = (�,F∞,Ft , Xt ,Px , x ∈
E∂ ) be an m-symmetric right process on E with lifetime ζ := inf{t > 0 : Xt = ∂}.
The transition function Pt (x, dy) is defined to be Pt (x, dy) := Px (Xt ∈ dy) and
set

123



Lp-independence of spectral radius . . . 605

Pt f (x) := Ex [ f (Xt ) : t < ζ ] = Ex [ f (Xt )] =
∫

�

f (Xt (ω))Px (dω)

for bounded or non-negativeBorel function f on E . Let (E,F) be theDirichlet formon
L2(E;m) associated with X. Then (E,F) is automatically quasi-regular (cf. [8,39]).
We further assume that X satisfies the absolute continuity condition (AC) (see Sect. 2
for its definition).

Suppose μ is a signed smooth measure, that is, μ is σ -finite and its total variation
measure |μ| is a smooth measure (see [22, Sect. 2.2] for the definition of smooth
measures). Let μ+ and μ− denote the positive and negative variation measure of μ in
its the Jordan decomposition, which are smooth measures Let Aμ+ (resp. Aμ− ) be the
positive continuous additive functional associated to μ+ (resp. μ−) (see (2.1) below
or [22, Theorem 5.1.4]). We define Aμ := Aμ+ − Aμ− . Let Ḟloc be the family of all
functions locally in F in the broad sense, i.e., u ∈ Ḟloc if and only if there exist an
increasing sequence {On} of finely open nearly Borel sets satisfying

⋃∞
n=1 On = E

and {un} ⊂ F such that u = un m-a.e. on On . Since (E,F) is quasi-regular, every
u ∈ Ḟloc admits an E-quasi-continuousm-version ũ, and we omit tilde from ũ, i.e., we
always assumeu ∈ Ḟloc is represented by itsE-quasi-continuous version. Every f ∈ F
admits the Beurling–Deny decomposition and LeJan formulae (see [22, Theorem 3.2.1
and Lemmas 3.2.3, 3.2.4 and 3.2.5]):

E( f , g) = 1

2
μc
〈 f 〉(E)+

∫
E×E\diag

( f (x)− f (y))2 J (dxdy)+
∫
E
f (x)2κ(dx),

where μc
〈 f 〉 is called the energy measure of continuous part, J is called the jumping

measure, and κ is called the killing measure. Hereafter, we fix a u ∈ Ḟloc. We may
and do assume u(∂) = 0 because we can always take u as u(x) − u(∂) whenever
we need. The energy measure μc〈u〉 of the continuous part is well-defined by setting

μc〈u〉 := μc〈un〉 on On . The energy measure μ
j
〈u〉 of the jumping part is defined by

μ
j
〈u〉(dx) = 2

∫
E (u(x) − u(y))2 J (dxdy) and the energy measure μκ〈u〉 of the killing

part is defined by μκ〈u〉(dx) =
∫
E u(x)2κ(dx). We define the energy measure μ〈u〉 of

u ∈ Ḟloc byμ〈u〉 := μc〈u〉+μ
j
〈u〉+μκ〈u〉. This definition is consistent with the definition

of energy measure μ〈u〉 for u ∈ F with u(∂) = 0.
Let Nu be the continuous additive functional of zero quadratic variation appeared

in a Fukushima decomposition of u(Xt )− u(X0) up to the lifetime (see (2.3) below).
Note that Nu is not necessarily of bounded variation in general. Let F be a bounded
symmetric function on E × E which is extended to a function defined on E∂ × E∂

so that F(x, ∂) = F(∂, x) = F(x, x) = 0 for x ∈ E∂ (actually there is no need to
define the value F(∂, y) for y ∈ E). Then AF

t :=
∑

0<s≤t F(Xs−, Xs) (whenever
it is summable) is an additive functional of X. It is natural to consider the following
generalized non-local Feynman–Kac transforms by the additive functionals A :=
Nu + Aμ + AF of the form

eA(t) := exp(At ), t ∈ [0, ζ [, (1.1)
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because the process X admits many continuous additive functionals which do not
have bounded variations, and many discontinuous additive functionals. We define
Qt f (x) := Ex [eA(t) f (Xt )] for any Borel function f whenever Qt f makes sense. In
this case, Qt f is also Borel measurable under (AC). Owing to (AC), Qt f (x) = 0 for
all x ∈ E if f = 0 m-a.e. So Qt can act on any non-negative m-measurable function.
Let (N , H) be a Lévy system of X (see (2.2) below for the definition). Let Q be the
quadratic form defined by

Q( f , g) := E( f , g)+ E(u, f g)−H( f , g), (1.2)

where

E(u, f g) := 1

2

∫
E
f dμ〈u,g〉 + 1

2

∫
E
g dμ〈u, f 〉,

H( f , g) :=
∫
E
f (x)g(x)μ(dx)+

∫
E

∫
E
f (x)g(y)(eF(x,y) − 1)N (x, dy)μH (dx).

In view of Stollmann-Voigt’s inequality, Q( f , g) is well-defined for f , g ∈ F pro-
vided |μ| + N (|F |)μH + μ〈u〉 ∈ S1D(X). Here S1D(X) denotes the class of smooth
measures in the strict sense of Dynkin class (see Sect. 2 below for the definition of
S1D(X)). For p ∈ [1,∞], we define ‖Qt‖p,p by

‖Qt‖p,p := sup
f ∈L p(E;m)\{0}

‖Qt f ‖p
‖ f ‖p (≤ ∞), (1.3)

where ‖ · ‖p is the L p-norm of the measure space (E,B(E),m). Note here that the
supremum can run over f ∈ L p

+(E;m) ∩ B(E)\{0} since |Qt f | ≤ Qt | f |. One can
define the L p-spectral radius λp(X, u, μ, F) ∈ [−∞,∞] by

λp(X, u, μ, F)

:= sup{α ∈ R : ∃γ ∈ [0,∞[ such that ‖Qt‖p,p ≤ γ e−αt for any t ≥ 0},

with the convention sup ∅ = −∞. By (1.3), the semigroup property of (Qt )t>0 yields
the subadditivity of t �→ log ‖Qt‖p,p. So one has

λp(X, u, μ, F) = − ↓ lim
t→∞

1

t
log ‖Qt‖p,p = − inf

t>0

1

t
log ‖Qt‖p,p. (1.4)

If (Q,F) is bounded below on L2(E;m) under |μ|+N (|F |)μH+μ〈u〉 ∈ S1D(X), then
(Qt )t≥0 forms a symmetric C0-semigroup on L2(E;m) associated to (Q,F) (see [6,
Theorem 3.1], [7, Theorem 1.4]), in particular, (Qt )t≥0 is an analytic C0-semigroup
on L2(E;m). Consequently, by [20, Chapter IV Corollary 3.12] with [20, Chapter II
Definition 4.13], the spectral bound equal growth bound condition (see [20, Chapter IV
Definition2.1] for the definitions of spectral bound andgrowthbound) is satisfiedunder
the lower boundedness of (Q,F) on L2(E;m) and |μ|+N (|F |)μH +μ〈u〉 ∈ S1D(X),
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Lp-independence of spectral radius . . . 607

that is, λ2(X, u, μ, F) is the largest lower bound of the quadratic form (Q,F) on
L2(E;m), i.e.,

λ2(X, u, μ, F) = inf

{
Q( f , f ) : f ∈ F with

∫
E
f 2dm = 1

}
. (1.5)

Using the symmetry of (Qt )t≥0 and interpolation, it is easy to deduce (cf. [4, (4.2)])
that

‖Qt‖2,2 ≤ ‖Qt‖p,p ≤ ‖Qt‖∞,∞ for all p ∈ [1,∞]

and therefore

λ2(X, u, μ, F) ≥ λp(X, u, μ, F) ≥ λ∞(X, u, μ, F) for all p ∈ [1,∞]. (1.6)

Thus to establish the L p-independence of spectral radius, it suffices to show
λ2(X, u, μ, F) ≤ λ∞(X, u, μ, F). For α > 0, denote by X(α) the α-subprocess
of X. Let S1EK (X) (resp. S1K (X), S1LK (X)) denote the class of smooth measures in the
strict sense of extended Kato class (resp. Kato class, local Kato class) with respect
to X. Let S1NK∞(X) (resp. S1NK1

(X)) be the family of natural Green-tight measures
of Kato class (resp. natural semi-Green-tight measures of extended Kato class) with
respect to X and S1D0

(X) the family of Green-bounded smooth measures with respect
to X (see Sect. 4 for the definitions of these families). It follows directly from the
definition that for β > α ≥ 0, S1NK1

(X(α)) ⊂ S1NK1
(X(β)). Such monotone property

holds for other Kato classes as well.
Throughout this paper, we assume the following condition:

μ+ + N (eF
+ − 1)μH ∈ S1EK (X), μ〈u〉 ∈ S1K (X) and μ− + N (F−)μH ∈ S1D(X).

(A)

Under (A), (Q,F) on L2(E;m) is well-defined and lower bounded and (Qt )t≥0 is
a C0-semigroup associated to (Q,F), and so (1.5) always holds. Moreover, (Qt )t≥0
forms a strongly continuous semigroup on L2(E;m) and there exists C2 > 0 such
that ‖Qt‖2,2 ≤ C2eC2t for all t > 0, hence λ2(X, u, μ, F) ≥ −C2 > −∞ always
holds (see [29, Lemma 2.1 and Remark 2.1]).

Our main results are the following:

Theorem 1.1 Suppose that

there is a t0 > 0 so that Pt0 is a bounded operator from L1(E;m) to L∞(E;m).

(1.7)

Then λp(X, u, μ, F) is independent of p ∈ [1,∞].
Theorem 1.1 extends [4, Theorem 5.3], in which m(E) < ∞, u = 0, μ+ +

N (|F |)μH ∈ S1CK∞(X(1)) and μ− ∈ S1D(X) are assumed. Theorem 1.1 extends also
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608 Z.-Q. Chen et al.

[5, Theorem4.1], inwhichm(E) <∞, the boundedness of u ∈ Fe, |μ|+N (|F |)μH ∈
S1CK∞(X(1)) and μ〈u〉 ∈ S1CK∞(X(1)) are assumed.

Theorem 1.2 Suppose that μ+ + N (eF
+ − 1)μH ∈ ∩α>0S1NK1

(X(α)) and μ〈u〉 ∈
S1NK∞(X(1)). Then the following holds.

1. λ∞(X, u, μ, F) ≥ min{λ2(X, u, μ, F), 0}. Consequently, λp(X, u, μ, F) is inde-
pendent of p ∈ [1,∞] provided λ2(X, u, μ, F) ≤ 0.

2. Assume that X is conservative. Suppose one of the following holds:

(i) X is transient and μ− + N (F−)μH ∈ S1D0
(X). Assume one of the following:

(a) u− := max{−u, 0} ∈ L p(E;m) for some p ∈ [1,∞].
(b) μ〈u〉 ∈ S1D0

(X) and m(E) <∞.
(c) μ〈u〉(E) <∞.

(ii) u ∈ Ḟloc is a bounded function and μ− + N (F−)μH ∈ S1NK∞(X(1)).

Then λ∞(X, u, μ, F) = 0 if λ2(X, u, μ, F) > 0. Hence λp(X, u, μ, F) is inde-
pendent of p ∈ [1,∞] if and only if λ2(X, u, μ, F) ≤ 0.

Note that the conditions of Theorem1.2 are satisfied ifX is transient,μ++N (eF
+−

1)μH ∈ S1NK1
(X), μ〈u〉 ∈ S1NK∞(X), and μ− + N (F−)μH ∈ S1D0

(X). The first

condition in Theorem 1.2 is satisfied if μ+ + N (eF
+ − 1)μH ∈ S1NK∞(X(1)). Theo-

rem 1.2(1) extends [4, Theorem 5.4], in which u = 0,μ++N (|F |)μH ∈ S1CK∞(X(1))

and μ− ∈ S1D(X) are assumed. Moreover [4, Theorem 5.4] requires the irreducibility
condition (I) for the use of the gauge theorems developed in [2,3] (see Sect. 2 for
the definition of (I)). Theorem 1.2(1) extends also [5, Theorem 4.2], in which the
boundedness of u ∈ Fe, |μ| + N (|F |)μH ∈ S1CK∞(X(1)) and μ〈u〉 ∈ S1CK∞(X(1))

are assumed. Theorem 1.2 extends also [47, Theorem 3.1], in which the transience
and the conservativeness of X, u = 0, F = 0, |μ| ∈ S1CK∞(X) are assumed (see also
[50,51]). Here [47, Theorem 3.1] requires the irreducibility condition (I) for the use
of large deviation principle. Our Theorem 1.2 does not require condition (I).

Theorem 1.3 Assume m ∈ S1NK∞(X(1)). Then λp(X, u, μ, F) is independent of p ∈
[1,∞].

The condition (A) is satisfied if |μ|+N (|F |)μH+μ〈u〉 ∈ S1NK∞(X(1)). Theorem1.3

extends [4, Theorem 5.5], in which u = 0, m ∈ S1CK∞(X(1)) and |μ| + N (|F |)μH ∈
S1CK∞(X(1)) are assumed. Theorem 1.3 extends also [5, Theorem 4.3], in which the

boundedness of u ∈ Fe,m ∈ S1CK∞(X(1)), |μ|+N (|F |)μH ∈ S1CK∞(X(1)) andμ〈u〉 ∈
S1CK∞(X(1)) are assumed. Moreover, Theorem 1.3 extends [31, Theorem 1.2(1)], in

which the doubly Feller property of X, u ∈ Floc ∩ C(E∂ ), m ∈ S1K∞(X(1)), μ+ +
N (eF

+ − 1)μH ∈ S1LK (X) ∩ S1EK (X) and μ− + N (F−)μH ∈ S1LK (X) ∩ S1D(X)

are assumed. As noted above, [5, Theorem 4.3] and [31, Theorem 1.2(1)] require the
irreducibility condition (I). Our Theorem 1.3 does not require (I).

We emphasize again that Theorems 1.1, 1.2 and 1.3 are new even if we consider
the case of Feynman–Kac semigroup Pμ

t f (x) := Ex [eAμ
t f (Xt )] without assuming
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Lp-independence of spectral radius . . . 609

the irreducibility condition (I). For readers’ understanding, we summarize the sim-
plified versions below. Let λp(X, μ) := λp(X, 0, μ, 0) be the L p-spectral radius of
Feynman–Kac semigroup (Pμ

t )t≥0. Assume μ+ ∈ S1EK (X) and μ− ∈ S1D(X). Then
we have the following:

Theorem 1.4 (Simplified version of Theorem 1.1) Suppose that (1.7) holds. Then
λp(X, μ) is independent of p ∈ [1,∞].
Theorem 1.5 (SimplifiedversionofTheorem1.2)Suppose thatμ+∈∩α>0S1NK1

(X(α)).
Then we have the following.

(1) λ∞(X, μ) ≥ min{λ2(X, μ), 0}. Consequently, λp(X, μ) is independent of p ∈
[1,∞] provided λ2(X, μ) ≤ 0.

(2) Assume that X is conservative. Suppose one of the following holds:

(i) X is transient and μ− ∈ S1D0
(X).

(ii) μ− ∈ S1NK∞(X(1)).

Then λ∞(X, μ) = 0 if λ2(X, μ) > 0. Hence λp(X, μ) is independent of p ∈
[1,∞] if and only if λ2(X, μ) ≤ 0.

Theorem 1.6 (Simplified version of Theorem 1.3) Assume m ∈ S1NK∞(X(1)). Then
λp(X, μ) is independent of p ∈ [1,∞].

Of course, all assumptions forμ in Theorems 1.4, 1.5 and 1.6 are satisfied when |μ|
belongs to S1CK∞(X(1)) (denoted by K∞(X (1)) in [2]), a class of 1-order Green-tight
smooth measures of Kato class in the strict sense. Moreover, Theorems 1.1, 1.2 and
1.3 are new without assuming the irreducibility condition (I) even if we treat the case
of L p-spectral radius for Markov semigroup (Pt )t≥0, which are the special cases of
Theorems 1.4, 1.5 and 1.6.

Finally,we expose a newexample in the framework ofBrownianmotion onRieman-
nian manifold. For the details, see Example 7.4 below. Let (M, g) be a d-dimensional
complete smooth Riemannian manifold with lower Ricci bound. Let m := volg be
the volume measure of (M, g) and �g the Laplace-Bertrami operator of (M, g).
In this case, the Brownian motion X associated to 1

2�g is conservative. Assume
infx∈M m(B1(x)) > 0 and p ∈ [1,∞[. Take V ∈ L p(M;m) and set μ = Vm. Sup-
pose p > d/2 (resp. p ≥ 1) for d ≥ 3 (resp. d = 1, 2), or p = 1 with |μ| ∈ S1K (X).
Then |μ| ∈ S1CK∞(X(1)) (see Propositions 7.6 and 7.7 below). Let λp(X, μ) be the
L p-spectral radius of Feynman–Kac semigroup (Pμ

t )t≥0 associated to the Schrödinger
operator− 1

2�g−μ. Then λp(X, μ) is L p-independent provided one of the following
conditions holds:

• Pt0 maps L1(M;m) to L∞(M;m) as a bounded operator for some t0 > 0.
• λ2(X, μ) ≤ 0.
• m ∈ S1CK∞(X(1)).

The rest of the paper is organized as follows. In Sect. 2, we summarize some basics
of Dirichlet forms that will be used in this paper. In Sect. 3, we present some results
on Girsanov transform in connection with the generalized Feynman–Kac transform
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by eN
u
t for bounded u ∈ Ḟloc. The results of this section are slight extension of some

earlier results and will be used to reduce to the case of u = 0 by applying the approach
of Chen and Zhang [16] to realize the transformation eN

u
t as a combination of a

Girsanov transform and a Feynman–Kac transform by continuous additive functional
of finite variation followed by a Doob’s h-transform. In Sect. 4, we recall the definition
of natural (semi-)Green tight measures of (extended) Kato class from [28], which are
the extensions of the various Kato class measures introduced in [2]. and summarize
the results on the characterization for the gaugeability of non-local Feynman–Kac
functionals. In Sect. 5, we prove main theorems for the case that u ∈ Ḟloc is a finely
continuous nearly Borel bounded function. In Sect. 6, we prove the main results of
this paper in the general case. In Sect. 7, we give several examples on measures that
are in various Kato classes used in the main results of this paper.

In this paper, we use := as a way of definition. For a, b ∈ R, a ∨ b := max{a, b},
a ∧ b := min{a, b}.

2 Preliminary

Let E be aLusinmetric space andm aσ -finiteBorelmeasure on E with full topological
support. Let ∂ be a point added to E as an isolated point of E∂ := E ∪ {∂} (it is
added to E as the one-point compactification of E provided E is a locally compact
separable metric space). The point ∂ also serves as the cemetery point for E . Let
X = (�,F∞,Ft , Xt ,Px , x ∈ E∂ ) be an m-symmetric special standard process on
E with lifetime ζ := inf{t > 0 : Xt = ∂} and (E,F) the associated symmetric
Dirichlet form which is quasi-regular on L2(E;m). An increasing sequence {Fk} of
closed set is said to be an E-nest if ⋃∞k=1 FFk is dense in F with respect to E1/2

1 -
norm. A subset N of E is said to be E-polar or E-exceptional if there exists an E-nest
{Fk} such that N ⊂ ⋂∞

k=1(E\Fk). It is known that a subset N of E is E-polar if
and only if it is X-exceptional, i.e., there exists a Borel set Ñ containing N such that
Pm(σÑ < ζ) = 0 (see [39, Chapter IV Theorem 5.29(i)], cf. [22, pp. 152]). For a
statement P(x) depending on x ∈ E , we say that P(x) holds q.e. x ∈ E if the set
{x ∈ E : P(x) does not holds} is E-polar. A function f on E is said to be E-quasi-
continuous on E if there exists an E-nest {Fk} such that f |Fk is continuous on each Fk .
A set B(⊂ E∂ ) is called nearly Borel if there exist Borel subsets B1, B2 of E∂ such that
B1 ⊂ B ⊂ B2 and Pν(Xt ∈ B2\B1, ∃t ∈ [0,∞[) = 0 for all ν ∈ P(E∂ ). HereP(E∂ )

denotes the family of all probabilitymeasures on E∂ andPν(dω) := ∫E∂
Px (dω)ν(dx).

Denote by Bn(E∂ ) (resp. B
n(E)) the family of nearly Borel subsets of E∂ (resp. E).

A set A is called finely open if for each x ∈ A, there exists a B ∈ Bn(E) such that
E\A ⊂ B and Px (σB > 0) = 1. The family of finely open sets defines a topology on
E which is called the fine topology of X. An increasing sequence {Gn} of finely open
nearly Borel sets is said to be a nest if Px (limn→∞ τGn = ζ ) = 1 for q.e. x ∈ E .
Denote by� the family of nests {Gn} of finely open nearly Borel sets. Note that for an
E-nest {Fn} of closed sets, {Gk} ∈ � by setting Gk := F f -int

k , k ∈ N, where F f -int
k

means the fine interior of Fk . A set B ⊂ E is said to be X-invariant if B ∈ Bn(E)

and

123



Lp-independence of spectral radius . . . 611

Px (Xt ∈ B for all t ∈ [0, ζ [, Xt− ∈ B for all t ∈]0, ζ [) = 1, x ∈ B.

By definition, any X-invariant set is finely open. A set N ⊂ E is called properly
exceptional if N is a nearly Borel m-negligible set and E\N is X-invariant. We say
that (E,F) (or X) is irreducible ((I) in abbreviation) if any (Tt )t>0-invariant set B
satisfiesm(B) = 0 orm(Bc) = 0.We do not assume the irreducibility condition (I) in
this paper, but we use it in the proof by reducing the case in which (I) is satisfied. Here
(Tt )t>0 is the strongly continuous semigroup on L2(E;m) associatedwith (E,F). The
transition kernel of X is denoted by Pt (x, dy), t > 0. The correspondence between X
and (E,F) is given by Tt f (x) = Pt f (x) m-a.e. x ∈ E , where

Pt f (x) := Ex [ f (Xt ) : t < ζ ] :=
∫
E
f (y)Pt (x, dy) x ∈ E, t > 0.

(Here and in the sequel, unless mentioned otherwise, we use the convention that a
function defined on E takes the value 0 at ∂). The process X is said to satisfy the
absolute continuity condition with respect to m ((AC) in abbreviation) if for any
x ∈ E and t > 0, m(A) = 0 implies Pt (x, A) = 0 for all A ∈ B(E). Throughout
this paper, we assume (AC). For α > 0, there exists an α-order resolvent kernel
Rα(x, y) which is defined for all x, y ∈ E (see Lemma 4.2.4 in [22]). Since α �→
Rα(x, y) is decreasing for each x, y ∈ E , we can define 0-order resolvent kernel
R(x, y) := R0(x, y) := limα→0 Rα(x, y) provided X is transient. R(x, y) is called
the Green function of X. For a non-negative Borel measure ν, we write Rαν(x) :=∫
E Rα(x, y)ν(dy) and Rν(x) := R0ν(x). Note that Rα f (x) = Rα( fm)(x) for any
f ∈ B+(E) or f ∈ Bb(E). The space of bounded continuous functions on E will
be denoted as Cb(E). The process X is said to have resolvent strong Feller property
((RSF) in abbreviation) if Rα(Bb(E)) ⊂ Cb(E) for any/some α > 0. A measure ν

on (E,B(E)) is said to be smooth if ν charges no E-exceptional set and there exists
an E-nest {Fn} of compact sets such that ν(Fn) <∞ for each n ∈ N. Let S(X) be the
family of positive smooth measures on E . We say that a positive continuous additive
functional (PCAF in abbreviation) Aν of X and a positive measure ν ∈ S(X) are in
the Revuz correspondence if they satisfy for any t > 0, f ∈ B+(E),

∫
E
f (x)ν(dx) =↑ lim

t↓0
1

t
Em

[∫ t

0
f (Xs)dA

ν
s

]
. (2.1)

ν ∈ S(X) is said to be of finite energy integral provided F ⊂ L1(E; ν) in the sense
that for any f ∈ F , its E-quasi-continuous m-version f̃ belongs to L1(E; ν). For
simplicity, we always assume that any f ∈ F (or more generally f ∈ Ḟloc) is taken
to be E-quasi-continuous. Denote by S0(X) the family of measures of finite energy
integrals. For ν ∈ S0(X) and α > 0, there exists a unique Uαν ∈ F such that
Eα(Uαν, v) = ∫E ṽdν for any v ∈ F . Uαν for ν ∈ S0(X) is called the α-potential
of ν. ν ∈ S0(X) if and only if there exists an E-nest {Fn} such that 1Fnν ∈ S0(X)

for each n ∈ N. It can be proved that for ν ∈ S0(X), Rαν is an E-quasi-continuous
m-version ofUαν, hence 〈ν, Rαν〉 = Eα(Uαν,Uαν) <∞. We define S00(X) := {ν ∈
S0(X) : ν(E) < ∞ and Uαν ∈ L∞(E;m)}. In the same way of the proof of [22,
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Theorem 5.1.6], for ν ∈ S00(X), there exists a PCAF Aν
t in the strict sense such that

Rαν(x) = Ex
[∫∞

0 e−αtdAν
t

]
for x ∈ E . We say that ν ∈ S(X) is a smooth measure in

the strict sense if there exists an E-nest {Fn} of compact sets such that 1Fnν ∈ S00(X)

for each n ∈ N. Denote by S1(X) the family of positive smooth measures in the
strict sense. For any ν ∈ S1(X), ν is associated to a PCAF (Aν

t )t≥0 of X in the strict
sense under Revuz correspondence, in particular, Rαν(x) = Ex

[∫∞
0 e−αtdAν

t

]
for

x ∈ E . S1(X) is the subclass of S(X) associated to the PCAFs in the strict sense under
Revuz correspondence (see [22] for the case of locally compact separable state space).
These statement are shown in the framework of regular Dirichlet forms ([22]), whose
proof remains valid in our general setting. A measure ν ∈ S1(X) is said to be in the
Dynkin class (resp. Green-bounded) of X if supx∈E Rαν(x) < ∞ for some α > 0
(resp. supx∈E Rν(x) <∞ andX is transient). Ameasure ν ∈ S1(X) is said to be in the
Kato class (resp. extended Kato class) with respect toX if limα→∞ supx∈E Rαν(x) =
0 (resp. limα→∞ supx∈E Rαν(x) < 1). A measure ν ∈ S1(X) is said to be in the local
Kato class if for any compact subset K of E , 1K ν is of Kato class. Denote by S1D(X)

(resp. S1D0
(X)) the family of measures of Dynkin class (resp. Green-bounded), and by

S1K (X) (resp. S1EK (X), S1LK (X)) the family of measures of Kato class (resp. extended
Kato class, local Kato class). Clearly, S1K (X) ⊂ S1EK (X) ⊂ S1D(X), S1K (X) ⊂ S1LK (X)

and S1D0
(X) ⊂ S1D(X). In view of Theorem 3.1 in [42], any ν ∈ S1D(X), in particular

any ν ∈ S1D0
(X), is a Radon measure on E , because of the regularity of the Dirichlet

form.
It is known that the family of equivalence classes of the set of PCAFs in the strict

sense and the family of positive measures belonging to S1(X) are in one to one corre-
spondence under the Revuz correspondence ([22, Theorem 5.1.4]).

Let (N (x, dy), Ht ) be a Lévy system for X, that is, N (x, dy) is a kernel on
(E∂ ,B(E∂ )) and Ht is a PCAFwith bounded 1-potential such that for any nonnegative
Borel function φ on E∂ × E∂ vanishing on the diagonal and any x ∈ E∂ , non-negative
Borel function g on [0,∞[ and (Ft )-stopping time T ,

Ex

⎡
⎣∑
s≤T

g(s)φ(Xs−, Xs)

⎤
⎦ = Ex

[∫ T

0

∫
E∂

g(s)φ(Xs, y)N (Xs, dy)dHs

]
(2.2)

(see [8, A.3.33]). To simplify notation, we will write

Nφ(x) :=
∫
E∂

φ(x, y)N (x, dy).

Let μH be the Revuz measure of the PCAF H . Then the jumping measure J and
the killing measure κ of X are given by

J (dxdy) = 1

2
N (x, dy)μH (dx) and κ(dx) = N (x, {∂})μH (dx).

These measures appear in the Beurling–Deny decomposition of E (cf. [8,22]): for
f , g ∈ Fe,
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E( f , g) = Ec( f , g)+
∫
E×E\diag

( f (x)− f (y))(g(x)− g(y))J (dxdy)

+
∫
E
f (x)g(x)κ(dx),

where Ec is the strongly local part of E .
As noted before, u ∈ Ḟloc is represented by its E-quasi-continuous version. So u is

finely continuous q.e. (cf. [22, Theorem 4.2.2]), i.e., there exists a properly exceptional
set N such that u is nearly Borel measurable and finely continuous on E\N , more
strongly, for any x ∈ E\N ,

Px

(
u(Xt ) is right continuous at t ∈ [0, ζ [ and lim

s↑t u(Xs) = u(Xt−) at t ∈]0, ζ [
)
= 1.

If we replace the state space E with E\N , there is no essential change of L p-spectral
radius of (Qt )t≥0. So we may and do assume that u ∈ Ḟloc is always finely continuous
and nearly Borel on E . For u ∈ Ḟloc withμ〈u〉 ∈ S(X), the additive functional u(Xt )−
u(X0) admits the following decomposition ([33, Theorem 4.2], [34, Theorem 1.2]):

u(Xt )− u(X0) = Mu
t + Nu

t (2.3)

holds for all t ∈ [0, ζ [ Px -a.s. for q.e. x ∈ E , where Mu is a locally square integrable
martingale additive functional, and Nu is a continuous additive functional (CAF in
abbreviation) which is locally of zero energy. Moreover, if μ〈u〉 ∈ S1D(X), then we
can construct Mu

t as a square integrable martingale additive functional according to
the proof of [31, Theorem 6.2(2)], precisely, Mu can be constructed as the sum

Mu
t = Mu,c

t + Mu, j
t + Mu,κ

t (2.4)

underμ〈u〉 ∈ S1D(X), where Mu, j
t , Mu,κ

t and Mu,c
t are the jumping, killing and contin-

uous part of Mu respectively. Those are defined for all t ∈ [0,∞[ under the law Px for
all x ∈ E (see the proof of [31, Theorem 6.2(2)]). Note that we do not assert that (2.3)
holds beyond the lifetime ζ . If u is strictly E-quasi-continuous, i.e., there exists an
increasing sequence {Fn} of closed sets such that Px (limn→∞ σE\Fn = ∞) = 1
for all x ∈ E and u|Fn∪{∂} is continuous on Fn ∪ {∂} for each n ∈ N, then
Nt := u(Xt ) − u(X0) − Mu

t is continuous at all t ∈ [0,∞[ under Px for all x ∈ E ,
consequently (2.3) holds for all t ∈ [0,∞[ under Px .

Let μ〈u〉, μc〈u〉, μ
j
〈u〉 and μκ〈u〉 be the smooth Revuz measures in the strict sense

associated with the quadratic variational processes (or the sharp bracket PCAFs in the
strict sense) 〈Mu〉, 〈Mu,c〉, 〈Mu, j 〉 and 〈Mu,κ 〉 respectively. Then

μ〈u〉(dx) = μc〈u〉(dx)+ μ
j
〈u〉(dx)+ μκ〈u〉(dx).

Note that E( f , f ) = 1
2ν〈 f 〉(E) with ν〈 f 〉 := μc

〈 f 〉 + μ
j
〈 f 〉 + 2μκ〈 f 〉 provided f ∈ Fe.
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3 Girsanov transforms

Throughout this section, we fix u ∈ Ḟloc which is s bounded finely continuous function
μ〈u〉 ∈ S1K (X) and the conventionu(∂) = 0. In particular,we always have N (U 2)μH ∈
S1K (X) and N (eU−U−1)μH ∈ S1K (X), whereU (x, y) := u(x)−u(y) for x, y ∈ E∂ .
From this, we have the generalized Fukushima’s decomposition in the strict sense:

u(Xt )− u(X0) = Mu,c
t + Mu, j

t + Mu,κ
t + Nu

t , t ∈ [0, ζ [

Px -a.s. for all x ∈ E . Note that Mu,c, Mu, j , Mu,κ are defined as square integrable
martingale additive functionals for all time under μ〈u〉 ∈ S1K (X) (see the proof of [31,
Theorem 6.2(2)]). We set MU by

MU
t = M−u, j

t + M−u,κ
t . (3.1)

There also exists a purely discontinuous square integrable martingale additive func-

tional MeU−1 such that �MeU−1
t = eU (Xt−,Xt ) − 1, t ∈ [0,∞[ Px -a.s. for all x ∈ E .

MeU−1
t is given by

MeU−1
t = MU

t +
∑
0<s≤t

(eU −U − 1)(Xs−, Xs)−
∫ t

0
N (eU −U − 1)(Xs)dHs , t ∈ [0,∞[

(3.2)

Put Mt := MeU−1
t + M−u,c

t and let

Ut := Exp(M)t , t ∈ [0,∞[ (3.3)

be the solution of the SDE

Ut = 1+
∫ t

0
Us−dMs, t ∈ [0,∞[, Px -a.s. (3.4)

Note that Ut is positive and a local martingale. Therefore it is a supermartingale.
Moreover, {Ut }t∈[0,∞[ is a martingale with respect to X for any starting point under
the boundedness of u and μ〈u〉 ∈ S1K (X). This was proved in [16, Lemma 4.1] when
u is a bounded function in Fe with μ〈u〉 ∈ S1K (X) but its proof remains valid under
the present generality.

Let U = (�, F̃∞, F̃t , X̃t ,P
U
x , ζ ) be the Girsanov transformed process of X by Ut .

The transition semigroup {PU
t }t≥0 of U is defined by

PU
t f (x) := E

U
x [ f (Xt )] = Ex [Ut f (Xt )].

The following proposition is an extension of [5, Theorem3.1] and [28, Theorems3.1
and 3.2].
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Proposition 3.1 We have the following:

1. Ut can be represented as follows:

Ut = exp

(
MU

t + M−u,c
t −

∫ t

0
N (eU −U − 1)(Xs)dHs − 1

2
〈Mu,c〉t

)
,

t ∈ [0,∞[. (3.5)

2. U is an e−2um-symmetric Markov process on E.
3. Let At be a PCAF of X with Revuz measure ν, then the Revuz measure for A as

a PCAF of U is e−2uν.
4. The Dirichlet form (EU ,FU ) on L2(E; e−2um) associated to U satisfies that

FU = F and for any f ∈ FU

EU ( f , f ) = 1

2

∫
E
e−2u(x)μc

〈 f 〉(dx)

+
∫

(E×E)\diag
( f (x)− f (y))2e−u(x)−u(y) J (dxdy)

+
∫
E
f (x)2e−u(x)κ(dx).

(5) A Lévy system (NU , HU ) of U is given by NU (x, dy) := e−u(y)N (x, dy) and
HU
t := ∫ t0 eu(Xs )dHs. That is, μHU = e−uμH .

(6) {Ut }t∈[0,∞[ is a uniformly integrable martingale with respect to X(α) for any
α > 0 and any starting point. Moreover, if X is transient and μ〈u〉 ∈ S1D0

(X),
then {Ut }t∈[0,∞[ is a uniformly integrable martingale with respect to X for any
starting point.

Proof The proof of (1) is easy. The proofs of (2) and (4)were done in [28, Theorems 3.1
and 3.2], whose proofs are mimics of the proofs of [16, Lemma 3.1, Theorem 3.4]. (3)
also holds in the same way by the proof of [16, Theorem 3.3], which was not directly
stated in [28] but needed for the proofs of (4) and (5). Note that in [28, Theorems 3.1
and 3.2], strict E-quasi-continuity of u was assumed, but this condition was not used
in the proof. The assertion (5) is noted in [5] after its Theorem 3.1. It remains to
prove (6). By [4, Theorem 3.2], it suffices to check supx∈E E

(α)
x [[M]∞] < ∞ and

�Mt ≥ δ − 1 for some δ ∈]0, 1[. Here E(α)
x is the expectation with respect to X(α).

Indeed, �Mt = eU (Xt−,Xt ) − 1 ≥ e−2‖u‖∞−1 − 1 and

sup
x∈E

E
(α)
x [[M]∞] = sup

x∈E
E

(α)
x [〈M〉∞]

= sup
x∈E

E
(α)
x

[
〈M−u,c〉∞ +

∑
0<t<∞

(�Mt )
2

]

= sup
x∈E

E
(α)
x

[
〈M−u,c〉∞ +

∑
0<t<∞

(eU (Xt−,Xt ) − 1)2
]
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≤ sup
x∈E

E
(α)
x

[
〈M−u,c〉∞ + e2‖u‖∞

∑
0<t<∞

U (Xt−, Xt )
2

]

= sup
x∈E

E
(α)
x

[
〈M−u,c〉∞ + e2‖u‖∞

∫ ∞

0
N (U 2)(Xt )dHt

]

= sup
x∈E

Ex

[∫ ∞

0
e−αtd〈M−u,c〉t + e2‖u‖∞

∫ ∞

0
e−αt N (U 2)(Xt )dHt

]

<∞.

The proof for the transient case is similar. ��
Remark 3.2 The boundedness of u ∈ Ḟloc in Proposition 3.1 is needed to establish
(3.5).

4 (Semi-)Green-tight measures of (extended) Kato classes and
gaugeability

Let μ be a signed smooth measure in the strict sense whose associated CAF of X is
Aμ := Aμ+ − Aμ− . Here Aμ+ and Aμ− are the PCAFs of X with Revuz measures
μ+ ∈ S1(X) and μ− ∈ S1(X), respectively. Now we start with the notion of Green-
tight measures of (extended) Kato class in the strict sense given in [2, Definition 2.2].

Definition 4.1 (Green-tight Kato class measures) Let ν ∈ S1(X) and take an α ≥ 0.
When α = 0, we always assume the transience of X.

1. ν is said to be an α-order Green-tight measure of Kato class with respect to X if
ν ∈ S1K (X) and for any ε > 0 there exists a compact subset K = K (ε) of E such
that

sup
x∈E

Rα(1Kcν)(x) = sup
x∈E

∫
Kc

Rα(x, y)ν(dy) < ε.

2. ν is said to be a α-order semi-Green-tight measure of extended Kato class with
respect to X if ν ∈ S1EK (X) and there exists a compact subset K of E such that

sup
x∈E

Rα(1Kcν)(x) = sup
x∈E

∫
Kc

Rα(x, y)ν(dy) < 1.

3. ν is said to be an α-order Green-tight measure of Kato class with respect to X in
the sense of [2] if for any ε > 0 there exists a Borel subset K = K (ε) of E with
ν(K ) < ∞ and a constant δ > 0 such that for all ν-measurable set B ⊂ K with
ν(B) < δ,

sup
x∈E

Rα(1B∪Kcν)(x) = sup
x∈E

∫
B∪Kc

Rα(x, y)ν(dy) < ε. (4.1)
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4. ν is said to be a α-order semi-Green-tight measure of extended Kato class with
respect toX in the sense of [2] if there exists a Borel subset K of E with ν(K ) <∞
and a constant δ > 0 such that for all ν-measurable set B ⊂ K with ν(B) < δ,

sup
x∈E

Rα(1B∪Kcν)(x) = sup
x∈E

∫
B∪Kc

Rα(x, y)ν(dy) < 1. (4.2)

In view of the resolvent equation, for positive α, the α-order Green-tightness of Kato
class is independent of the choice of α > 0. Let denote by S1

K+∞
(X) (resp. S1

CK+∞
(X))

the family of positive order Green-tight measures of Kato class (resp. the family of
positive order Green-tight measures of Kato class in the sense of [2]) with respect toX.
The class S1K∞(X) (resp. S1K1

(X)) is then denoted as the family of 0-order Green-tight
measures of Kato class (resp. 0-order semi-Green-tight measures of extended Kato
class), and the class S1CK∞(X), (resp. S1CK1

(X)) is then denoted as the family of the
family of 0-order Green-tight measures of Kato class in the sense of [2], (resp. the
family of 0-order semi-Green-tight measures of extended Kato class in the sense of
[2]) with respect to X. Clearly, S1

CK+∞
(X) = S1CK∞(X(1)). Note that since a Green

kernel is invariant under time change by PCAF associated to a non-negative smooth
measure with full quasi support, the definitions of S1CK∞(X) and S1CK1

(X) are invariant

under such time change in contrast to the Kato class S1K (X). It is known in [2] that
S1CK∞(X) ⊂ S1CK1

(X) ⊂ S1D0
(X) ∩ S1EK (X), S1

CK+∞
(X) ⊂ S1K (X) and S1CK∞(X) ⊂

S1K (X). Since anymeasure ν inDefinition 4.1 belongs to SD0(X), it is aRadonmeasure,
the Borel set K in Definition 4.1(3), (4) can be taken to be a closed set or an open set
(see [2, remark after Definition 2.2]). Moreover, such closed set K can be taken to be a
compact set, in particular,we always have S1

CK+∞
(X) ⊂ S1

K+∞
(X), S1CK∞(X) ⊂ S1K∞(X)

and S1CK1
(X) ⊂ S1K1

(X). Indeed, take ν ∈ S1
CK+∞

(X), ε > 0, and a closed set K such

that (4.1) holds. Then there exists a compact subset C ⊂ K with ν(K\C) < δ for a
given δ > 0, because ν ∈ S1D0

(X) is a Radon measure on E . Since ν ∈ S1
CK+∞

(X), we

have supx∈E Rα1Ccν(x) = supx∈E Rα1Kc∪(K\C)ν(x) < ε.
Let ν ∈ S1(X) and denote by Aν

t PCAF in the strict sense associated to ν in Revuz
correspondence. Denote by Sν

o the support of A
ν defined by Sν

o := {x ∈ E : Px (R =
0) = 1}, where R(ω) := inf{t > 0 : Aν

t (ω) > 0}. Sν
o is nothing but the fine support of

ν, i.e., the topological support of ν with respect to the fine topology of X. Let (X̌, ν)

be the time changed process of X by Aν
t and (Ě, F̌) the associated Dirichlet form

on L2(Sν; ν), where Sν is the support of ν. It is known that (Ě, F̌) is a quasi-regular
Dirichlet form and Sν\Sν

o is Ě-polar, i.e., 1-capacity 0 set with respect to (Ě, F̌). The
lifetime of (X̌, ν) is given by Aν

ζ . Let C
ν : 2E → [0,∞] be the weighted 1-capacity

with respect to (Ě, F̌), i.e., for an open subset G of E , we define

Cν(G) := inf{Ě1( f , f ) : f ∈ F̌, f ≥ Ř1ϕ ν-a.e. on G}

and for arbitrary subset A of E

Cν(A) := inf{Cν(G) : A ⊂ G, G is an open subset of E},
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618 Z.-Q. Chen et al.

where Ř1ϕ(x) := Ex [
∫∞
0 e−Aν

t ϕ(Xt )dAν
t ] is the 1-order resolvent of a ν-a.e. strictly

positive bounded function ϕ ∈ L1(E; ν) under (X̌, ν) and Ě1( f , f ) := Ě( f , f ) +∫
E f 2dν. We emphasize thatCν is defined to be an outer capacity on E . By definition,

Cν(E\Sν) = 0. Note that Cν(E) ≤ Ě1(Ř1ϕ, Ř1ϕ) = ∫
E ϕ(x)Ř1ϕ(x)ν(dx) < ∞

always holds. Note also that Cν is tight in the sense that there exists an increasing
sequence {Kn} of compact subsets of Sν such that limn→∞ Cν(Sν\Kn) = 0 equiv-
alently limn→∞ Cν(E\Kn) = 0. Hence any quasi closed set with respect to Cν is
quasi compact in the sense of Fuglede [21, Lemma 2.2]. By [21, Theorem 2.10], any
decreasing sequence {An} of quasi closed subsets of E with respect to Cν satisfies

Cν

( ∞⋂
n=1

An

)
= inf

n∈NC
ν(An). (4.3)

Now we introduce the following new classes of (semi-)Green-tight measures of
(extended) Kato class by replacing the ν-measure smallness condition “ν(B) < δ”
in Definition 4.1 with the capacity smallness condition “Cν(B) < δ” for the time
changed process induced by the measure ν.

Definition 4.2 (Natural (semi-)Green-tight measures of (extended) Kato class) Let
α ≥ 0 and ν ∈ S1(X).

1. ν is said to be an α-order natural Green-tight measure of Kato class with respect
to X if ν ∈ S1D(X) (ν ∈ S1D0

(X) for α = 0) and for any ε > 0 there exists a closed
subset K = K (ε) of E and a constant δ > 0 such that for all ν-measurable subset
B ⊂ K with Cν(B) < δ,

sup
x∈E

Ex

[∫ τB∪Kc

0
e−αtdAν

t

]
< ε.

2. ν is said to be a 0-order natural semi-Green-tight measure of extended Kato class
with respect to X if ν ∈ S1D0

(X) and there exists a closed subset K of E and a
constant δ > 0 such that for all ν-measurable subset B ⊂ K with Cν(B) < δ,

sup
x∈E

Ex

[
Aν

τB∪Kc

]
< 1.

In view of the resolvent equation, for positive α, the α-order natural Green-tightness
is independent of the choice of α > 0. We use S1

NK+∞
(X) to denote the family of

positive order natural Green-tight measures of Kato class with respect to X. The class
S1NK∞(X) (resp. S1NK1

(X)) is then denoted as the family of 0-order natural Green-
tight measures of Kato class (resp. the family of 0-order natural semi-Green-tight
measures of extended Kato class) with respect to X. Similarly, as we remarked after
Definition 4.1, the closed set K appeared in Definition 4.2 can be taken to be compact,
because the weighted 1-capacityCν is tight. Clearly, S1

NK+∞
(X) = S1NK∞(X(1)). Since∫

B g dν ≤ Cν(B)holds for the ν-a.e. strictly positive bounded function g := (Ř1ϕ)2 ∈
L1(E; ν), by [28, Lemma 4.2], we have S1CK∞(X) ⊂ S1NK∞(X) and S1CK1

(X) ⊂

123



Lp-independence of spectral radius . . . 619

S1NK1
(X), hence S1

CK+∞
(X) ⊂ S1

NK+∞
(X). It is shown in [27, Proposition 4.1] that

S1K∞(X(1)) = S1CK∞(X(1)) = S1NK∞(X(1)) (S1K∞(X) = S1CK∞(X) = S1NK∞(X) under
the transience of X) provided X is a (resolvent) doubly Feller process.

Let G be a non-empty finely open nearly Borel subset of E . The cemetery point ∂
is also an isolated point of G ∪ {∂}. Let XG := (�, Xt ,P

G
x ) = (�, XG

t ,Px ) the part
process of X on G defined by

XG
t :=

{
Xt t < τG,

∂ t ≥ τG
under Px

We consider the lifetime ζG of XG defined by ζG := inf{t > 0 : XG
t = ∂} under PG

x .
Of course, the distribution of ζG under PG

x coincides with the distribution of τG under
Px .

Lemma 4.3 Let G be a finely open nearly Borel subset of E. Suppose that (1.7) holds
for X. Then (1.7) holds for XG.

Proof It is easy to see ‖Pt‖1,∞ = sup{‖Pt f ‖∞ : f ∈ L1+(E;m), ‖ f ‖1 = 1}. Then
the assertion is clear from

‖Pt‖1,∞ ≥ sup{‖Pt f ‖∞ : f ∈ L1+(E;m), f = 0 m-a.e. on E\G, ‖ f ‖1 = 1}
≥ sup{‖PG

t f ‖∞ : f ∈ L1+(G;m), ‖ f ‖1 = 1} = ‖PG
t ‖1,∞.

��
It is known that the Dirichlet form (EG ,FG) on L2(G;m) associated to XG is

quasi-regular. So we can consider several notions on (EG ,FG). For example, the
family S0(XG) of measures of finite energy with respect to XG and so on. For a Borel
measure on E , denote by ν|G the restriction of ν on G defined by ν|G(A) := ν(A) for
A ∈ B(G). For the proof of main theorems, we need the following lemma.

Lemma 4.4 Let G be a finely open nearly Borel set. Then we have

1. ν ∈ S0(X) (resp. ν ∈ S00(X)) implies ν|G ∈ S0(XG) (resp. ν|G ∈ S00(XG)).
2. ν ∈ S(X) (resp. ν ∈ S1(X)) implies ν|G ∈ S(XG) (resp. ν|G ∈ S1(XG)).
3. ν ∈ S1D(X) implies ν|G ∈ S1D(XG).
4. ν ∈ S1K (X) implies ν|G ∈ S1K (XG).
5. ν ∈ S1EK (X) implies ν|G ∈ S1EK (XG).

Suppose further that X is transient. Then

6. ν ∈ S1D0
(X) implies ν|G ∈ S1D0

(XG).

7. ν ∈ S1CK∞(X) implies ν|G ∈ S1CK∞(XG).

8. ν ∈ S1CK1
(X) implies ν|G ∈ S1CK1

(XG).

9. ν ∈ S1NK∞(X) implies ν|G ∈ S1NK∞(XG).

10. ν ∈ S1NK1
(X) implies ν|G ∈ S1NK1

(XG).
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Proof The proof of the first assertion in (1) is easy, because F ⊂ L1(E; ν) implies
FG ⊂ L1(G; ν). (2) easily follows from (1). The assertions of the second part of (1)
and (3)–(5) follow from the estimate:

RG
α ν|G(x) := E

G
x

[∫ ∞

0
e−αtdAν

t

]
= Ex

[∫ τG

0
e−αtdAν

t

]
≤ Ex

[∫ ∞

0
e−αtdAν

t

]

= Rαν(x).

Here P
G
x is the law for the part process XG . The assertion (6) follows the estimate

RGν|G(x) ≤ Rν(x). The proof of (7) follows the following: For any ε > 0, take a
Borel set K = K (ε) with ν(K ) < ∞ and a subset B of K , we see for BG := B ∩ G
and KG := K ∩ G that

sup
x∈G

RG1BG∪(G\KG )ν|G(x) ≤ sup
x∈E

R1B∪(E\K )ν(x) < ε.

The proof of (8) is similar. We now prove (9) and (10). By [28, Lemma 4.4],
for any decreasing sequence {Dn} of Borel subsets of G, it suffices to prove
limn→∞ Cν

G(Dn) = 0 implies limn→∞ Cν(Dn) = 0. Here Cν (resp. Cν
G) denotes

the 1-weighted capacity with respect to (X̌, ν) (resp. (X̌G , ν|G)). Recall that these
1-weighted capacities has the continuity for decreasing sequence of quasi-closed sets

by (4.3). Denote by Dn
ĚG the ĚG -quasi-closure of Dn . Then we have

Cν
G

( ∞⋂
n=1

Dn
ĚG
)
= lim

n→∞Cν
G(Dn

ĚG
) = 0,

that is,
⋂∞

n=1 Dn
ĚG is an ĚG -polar set. Applying [32, Lemma 3.5(ii)] to the Dirichlet

form (Ě, F̌) on L2(Sν; ν) associated to the time changed process (X̌, ν), we have the

Ě-polarity of⋂∞
n=1 Dn

ĚG , i.e.,Cν

(⋂∞
n=1 Dn

ĚG
)
= 0. Applying [32, Lemma 3.5(iv)]

to (Ě, F̌) again, we see the Ě-quasi-closedness of Dn
ĚG . Hence

lim
n→∞Cν(Dn) ≤ lim

n→∞Cν(Dn
ĚG

) = Cν

( ∞⋂
n=1

Dn
ĚG
)
= 0.

We see that for any C ∈ B(E),

E
G
x [Aν

τC
] = Ex [Aν

τC∧τG
] ≤ Ex [Aν

τC
].

Now the assertions follow from this estimate. ��
Let (N , H) be a Lévy system of X. Consider a finely open nearly Borel set G.

Define NG(x, dy) := 1G(y)N (x, dy)+N (x, E∂\G)δ∂(dy) and let HG
t be the PCAF
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of XG under PG
x associated to the Revuz measure μH |G . Then HG

t under PG
x has

the same distribution as Ht∧τG under Px for x ∈ G. The following lemma follows
immediately from the definition of Lévy system (2.2).

Lemma 4.5 (NG , HG) is the Lévy system of XG.

Let φ be a bounded non-negative symmetric function defined on E × E satisfying
φ(x, x) = 0 for x ∈ E . We further assume that φ is extended to be a function
on E∂ × E∂ with φ(x, ∂) = φ(∂, x) = 0 for x ∈ E∂ . Then we see NG(φ)(x) =∫
G φ(x, y)N (x, dy).

Lemma 4.6 Let φ be the function as above and G a finely open nearly Borel set. If
N (φ)μH ∈ S1NK1

(X) (resp. N (φ)μH ∈ S1EK (X), N (φ)μH ∈ S1D(X), N (φ)μH ∈
S1D0

(X)), then NG(φ)μH ∈ S1NK1
(XG) (resp. NG(φ)μH ∈ S1EK (XG), N (φ)μH ∈

S1D(XG), NG(φ)μH ∈ S1D0
(XG)).

Proof First we prove that N (φ)μH ∈ S1EK (X) (resp. N (φ)μH ∈ S1D(X), N (φ)μH ∈
S1D0

(X)) implies NG(φ)μH ∈ S1EK (XG) (resp. N (φ)μH ∈ S1D(XG), NG(φ)μH ∈
S1D0

(XG)). For α ≥ 0, we see that

RG
α NG(φ)μH (x) = E

G
x

[∫ ∞

0
e−αs NG(φ)(Xs)dHs

]

= Ex

[∫ τG

0
e−αs

∫
G

φ(Xs, y)N (Xs, dy)dHs

]

≤ Ex

[∫ ∞

0
e−αs

∫
E

φ(Xs, y)N (Xs, dy)dHs

]

= Ex

[∫ ∞

0
e−αs N (φ)(Xs)dHs

]
= RαN (φ)μH (x)

implies the assertions by Lemma 4.4(5), (6). Next we prove that N (φ)μH ∈ S1NK1
(X)

implies NG(φ)μH ∈ S1NK1
(XG). This follows from that for C ∈ B(G)

E
G
x

[∫ τC

0
NG(φ)(Xs)dHs

]
= Ex

[∫ τC∧τG

0
NG(φ)(Xs)dHs

]

≤ Ex

[∫ τC

0
N (φ)(Xs)dHs

]

with Lemma 4.4(8). ��
For a finely open nearlyBorel setG, (QG

t )t≥0 denotes the Feynman–Kac semigroup
obtained from the part processXG , which is defined by QG

t f (x) := Ex [eA(t) f (Xt ) :
t < τG]. Under (A), we see that (QG

t )t≥0 is a C0-semigroup on L2(G;m) associated
to the quadratic form (Q,FG) on L2(G;m).
For an AF A, we say that (X, A) is gaugeable if

sup
x∈E

Ex
[
exp(Aζ )

]
<∞.
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Fromhere to the end of Theorem4.10, we assume the transience ofX and irreducibility
condition (I) for the characterization of gaugeability of Feynman–Kac functionals.
The following lemmas and theorem are proved in [27] under the assumption that
E is a locally compact separable metric space and m is a positive Radon measure
with full support, which are modifications of Lemmas 2.7, 2.14, Theorems 2.8, 2.15,
Corollaries 2.9, 2.16 and Theorems 2.10, 2.11 in [2]. Those proofs remain valid in the
framework of this paper and they are quite similar as those in [2].

Lemma 4.7 (cf. [27, Lemma 4.2]) Set A := Aμ+ AF and eA(t) := exp(At ). Suppose
that μ+ + N (eF

+ − 1)μH ∈ S1NK1
(X) and μ− + N (F−)μH ∈ S1D0

(X) hold. Then
we have the following:

1. If (X, A) is gaugeable, then for any δ > 0 there is a constant c(δ) > 0 such that

‖gA‖−1∞ gA(x) ≤
∞∑
n=0

Ex
[
eA(τ

p
nδ) : τ p

nδ < ζ
] ≤ c(δ) <∞ for all x ∈ E .

Here τ
p
t := inf{s > 0 : Aηp

s > t} is the right continuous inverse of A
ηp
t with

ηp = μ+ + 1
p N (epF

+ − 1)μH and gA(x) := Ex [eA(ζ )] is the gauge function for
A = Aμ + AF .

2. The following are equivalent:

(a) (X, A) is gaugeable.

(b) Ex

[∫ ζ

0 eA(t)d(Aμ+
t + AF+

t )
]

<∞ for some x ∈ E.

(c) supx∈E Ex

[∫ ζ

0 eA(t)d(Aμ+
t + AF+

t )
]

<∞.

(d) Ex
[
supt∈[0,ζ ] eA(t)

]
<∞ for some x ∈ E.

(e) supx∈E Ex
[
supt∈[0,ζ ] eA(t)

]
<∞.

(f) (X∗, Aμ+ + AF+) is gaugeable. Here X∗ is the killed process of X by

e−Aμ−
t −AF−

t .

Remark 4.8 (cf. [27, Remark 4.1]) If m ∈ S1D0
(X), under the same condition as in

Lemma 4.7, without using time change, we have the following: Suppose that (X, A)

is gaugeable with A = Aμ + AF and eA(t) := exp(At ). Then, for any δ > 0, there is
a constant c(δ) > 0 such that

‖gA‖−1∞ gA(x) ≤
∞∑
n=0

Ex [eA(nδ) : nδ < ζ ] ≤ c(δ) <∞ for all x ∈ E .

By Remark 4.8, we can prove the following:

Lemma 4.9 (cf. [27, Lemma 4.3]) Suppose m ∈ S1D0
(X), μ+ + N (eF

+ − 1)μH ∈
S1NK1

(X) and μ− + N (F−)μH ∈ S1D0
(X). Set A := Aμ+ AF and eA(t) := exp(At ).

Then the following are equivalent:

1. (X, A) is gaugeable.
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2. For some δ > 0 and some x ∈ E,

∞∑
n=1

Ex [eA(nδ) : nδ < ζ ] <∞. (4.4)

3. For all δ > 0 and all x ∈ E, (4.4) is true.

4. For some x ∈ E, Ex

[∫ ζ

0 eA(t)dt
]

<∞.

5. supx∈E Ex

[∫ ζ

0 eA(t)dt
]

<∞.

6. There exists some t > 0 such that supx∈E Ex [eA(t) : t < ζ ] <∞.
7. There are constants C > 0 and b > 0 such that supx∈E Ex [eA(t) : t < ζ ] ≤

Ce−bt for all t > 0.

Recall that the quadratic form (Q,F) defined in (1.2). We consider the case u = 0.
Using Lemma 4.9, we can prove the following theorem, whose proof is similar to that
of [2, Theorem 2.12].

Theorem 4.10 (cf. [27, Theorem 4.2]) Suppose thatm ∈ S1D0
(X)withm(E) <∞ and

u = 0. Assume μ+ + N (eF
+ − 1)μH ∈ S1NK1

(X) and μ− + N (F−)μH ∈ S1D0
(X).

Set A := Aμ + AF and eA(t) := exp(At ). Then (X, A) is gaugeable if and only if

λQ(m) := inf

{
Q( f , f ) : f ∈ C with

∫
E
f 2dm = 1

}
> 0.

Consider the non-local Feynman–Kac transforms by the additive functionals A :=
Nu+Aμ+AF of the form (1.1) under (A) for finely continuous nearly Borel u ∈ Ḟloc.
If such u is a bounded function andμ〈u〉 ∈ S1K (X), then {Ut }t∈[0,∞[ forms a uniformly
integrable martingale on [0,∞[ under X(1) by Proposition 3.1(6). We have that for all
t ∈ [0, ζ [,

eA(t) = Ute
u(Xt )−u(X0) exp

(
Aν̄
t + AF

t

)
, (4.5)

where ν̄ = ν̄1− ν̄2 and ν̄1 := μ++ N (eU −U −1)μH + 1
2μ

c〈u〉 and ν̄2 := μ−. Hence
for x ∈ E and f ∈ B+(E),

Ex [eA(t) f (Xt )] = e−u(x)
E
U
x [exp

(
Aν̄
t + AF

t

)
(eu f )(X̃t )]. (4.6)

Recall that Sν
o is the fine support of A

ν
t for a smooth measure ν ∈ S1(X). We have

the following:

Lemma 4.11 (cf. [28, Lemma 4.5], [27, Lemma 4.1]) Suppose that u ∈ Ḟloc is a
boundedfinely continuous nearlyBorel function andμ〈u〉 ∈ S1K (X). Then the following
hold:

1. For ν ∈ S1D(X), e−2uν ∈ S1D(U).
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2. For ν ∈ S1K (X), e−2uν ∈ S1K (U).
3. For ν ∈ S1EK (X), e−2uν ∈ S1EK (U).
4. For ν ∈ S1K∞(X(1)), e−2uν ∈ S1K∞(U(1)).

5. For ν ∈ S1CK∞(X(1)), e−2uν ∈ S1CK∞(U(1)).

6. (a) Assume μ〈u〉 ∈ S1NK∞(X(1)). For ν ∈ S1NK∞(X(1)), e−2uν ∈ S1NK∞(U(1)).

(b) Assume that X is transient and μ〈u〉 ∈ S1NK∞(X). For ν ∈ S1NK∞(X), e−2uν ∈
S1NK∞(U).

(7) (a) Assume μ〈u〉 ∈ S1NK∞(X(1)). For ν ∈ S1NK1
(X(1)), we have e−2uν ∈

S1NK1
(U(1)).

(b) Assume that X is transient and μ〈u〉 ∈ S1NK∞(X). For ν ∈ S1NK1
(X), we have

e−2uν ∈ S1NK1
(U).

Proof The proofs of (1)–(5), (6)(a) and (7)(a) are essentially done in [27, Lemma 4.1].
The continuity of u is assumed in [28, Lemma 4.5], [27, Lemma 4.1], but its proof does
not depend on it. Moreover, the strict E-quasi-continuity of u is also assumed in [28,
Lemma 4.5], [27, Lemma 4.1] instead of the uniform integrability of {Ut }t∈[0,∞[ under
X(α). The assertion of [27, Lemma 4.1] is a special case of [28, Lemma 4.5]. Both of
them require the irreducibility condition (I). But the proof of [28, Lemma 4.5] does
not use (I). So we can apply [27, Lemma 4.1] without (I). Though the transience of
X is also assumed in [27], the proofs of (1)–(5), (6)(a) and (7)(a) remain valid without
assuming it. The statements of (6) and (7) are improvements of [27, Lemma 4.1(6),
(7)]. It suffices to prove (6)(b), because the proof of (7)(b) is similar. Suppose thatX is
transient and μ〈u〉 ∈ S1NK∞(X). Then {Ut }t∈[0,∞[ is a uniformly integrable martingale
with respect to X. By Hölder’s inequality,

E
U
x

[
Aν

τDn

]
= Ex

[
UτDn

Aν
τDn

]
≤ Ex [U p

τDn
] 1p q 1

q sup
x∈E

Ex

[
Aν

τDn

]
,

it suffices to prove that for p > 1

lim
n→∞ sup

x∈E
Ex [U p

τDn
] <∞. (4.7)

Take ν ∈ S1NK∞(X) and assume Sν
0 ⊃ S

μc〈u〉+N (eU−U−1)μH

0 q.e. In this case, for p ∈
]1,∞[ and q = p

p−1 , the measure μp defined by

μp := q

p
N (ep

2U − p2U − 1)μH + pq

2
(p2 − 1)μc〈u〉

satisfies μp ∈ S1NK∞(X), hence for any decreasing sequence {Dn} of Borel sub-
sets satisfying Px (limn→∞ σDn ≥ ζ ) = 1 q.e. x ∈ Sν

0 ⊃ S
μp
0 q.e., we have

limn→∞ supx∈E Ex [Aμp
τDn
] = 0. Thus we can obtain
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lim
n→∞ sup

x∈E
Ex [U p

τDn
] ≤ lim

n→∞ sup
x∈E

Ex

[
exp
(
A

μp
τDn

)] 1
q ≤

⎛
⎜⎜⎝ 1

1− lim
n→∞ sup

x∈E
Ex

[
A

μp
τDn

]
⎞
⎟⎟⎠

1
q

= 1.

Therefore we have e−2uν ∈ S1NK∞(X) under Sν
o ⊃ S

μ〈u〉+N (eU−U−1)μH
o q.e. It is easy

to see S
ν+μ〈u〉
o ⊃ S

μc〈u〉+N (eU−U−1)μH
o q.e. so that e−2u(ν + μ〈u〉) ∈ S1NK∞(U), hence

e−2uν ∈ S1NK∞(U). ��
Lemma 4.12 Suppose that E is a locally compact separable metric space with one
point compactification E∂ , m is a positive Radon measure with full support, and
(E,F) is a regular Dirichlet form on L2(E;m). Let v be a function defined on E∂ .
Suppose that v ∈ F , v(∂) = 0 and v is finely continuous q.e. on E. Then v is strictly
E-quasi-continuous on E∂ .

Proof By [22, Theorem 2.1.3], v admits a strictly E-quasi-continuous m-version ṽ

with ṽ(∂) = 0. Then ṽ itself is finely continuous q.e. by [22, Theorem 4.2.2]. Since
v = ṽ m-a.e., we can conclude from [22, Lemma 4.1.5] that there exists a capacity
zero set N such that v = ṽ on E\N . Taking a common strict E-nest {Fn} of closed
sets such that N ⊂⋂∞n=1(E\Fn) and ṽ is continuous on each Fn ∪ {∂}, we see that v
coincides with ṽ on each Fn ∪ {∂}. This implies the strict E-quasi-continuity of v on
E∂ . ��
Remark 4.13 Lemma 4.12 is a refinement of [22, Lemma 4.2.2(i)].

Lemma 4.14 For ν ∈ S1NK∞(X(1)), we have inf x∈E Ex
[∫∞

0 e−αtdAν
t

] = 0 for every
α > 0, that is, Rαν is an α-potential.

Proof We may assume that E is a locally compact separable metric space, m is a
positive Radon measure on E with full support, and (E,F) is a regular Dirichlet form
on L2(E;m). Indeed, (see [39, Chapter IV Theorems 1.2, 1.6 and Corollary 1.4]), by
replacing E with

⋃∞
k=1 Ek for some E-nest {Ek} of compact sets, there exists a locally

compact separable metric space E� such that

(i) E is a dense subset of E� and B(E) = {A ∈ B(E�) : A ⊂ E}.
(ii) The relative topologies on Ek induced by E , E� coincide for every k ∈ N.
(iii) The image (E�,F�) of (E,F) under inclusion map i : E → E� is a Dirichlet

form on L2(E�;m�), wherem� := m◦ i−1 is a positive Radon measure with full
support.

(iv) {Fk} is an E�-nest, then {Fk ∩ Ek} is an E-nest. Conversely, if {Fk ∩ Ek} is an
E-nest, then {Fk} is an E�-nest.

(v) N � is E�-polar if and only if N � ∩ E is E-polar. In particular, E�\E is E�-polar.
(vi) A function u� : E� → R is E�-quasi-continuous if and only if u�|E is E-quasi-

continuous.
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(vii) Let X = (�, Xt ,Px )x∈E∂
be a Borel right process properly associated to the

quasi-regular Dirichlet form (E,F). Then there exists an E-polar set N such that
E\N is X-invariant and if X� is the trivial extension to E� (cf. [39, Chapter IV
3.23(i)]) of X restricted to E\N , then X� is a Hunt process properly associated
to (E�,F�) on L2(E�;m�), where E�

∂ is taken as the one point copactification
of E�.

As noted in the proof of [39, Chapter IV Theorem 2.4], we can see that every PCAF
(At )t≥0 of X in the strict sense can be extended (e.g. by 0) to a PCAF (A�

t )t≥0 of X�

in the strict sense. In particular, for every ν ∈ S1(X), its trivial extension ν� defined
by ν�(A) = ν(A ∩ E) for A ∈ B(E�) belongs to S1(X�). The following are easily
confirmed:

1. For the PCAF (At )t≥0 of X in the strict sense associated to ν ∈ S1(X), we

have Ex
[∫ τB

0 e−αtdAt
] = E

�

i(x)

[∫ τ
�
i(B)

0 e−αtdA�
t

]
. Here τ

�

i(B) is the first exit

time from i(B) with respect to X�. In particular, infx∈E Ex
[∫∞

0 e−αtdAt
] =

inf x�∈E� E
�

x�

[∫∞
0 e−αtdA�

t

]
, because Px� (A� = 0) = 1 for x� ∈ E�\E .

2. ν ∈ S1D(X) (resp. ν ∈ S1K (X), ν ∈ S1EK (X)) implies ν� ∈ S1D(X�) (resp. ν� ∈
S1K (X�), ν� ∈ S1EK (X�)).

3. ν ∈ S1NK∞(X(1)) (resp. ν ∈ S1NK1
(X(1))) implies ν� ∈ S1NK∞(X�,(1)) (resp. ν� ∈

S1NK1
(X�,(1))).

So we can and do assume the local compactness of E and so on in the present proof.
By definition of ν ∈ S1NK∞(X(1)), for any ε > 0, there exists a Borel subset K and a
constant δ > 0 so that for every Borel subset B ⊂ K with Cν(B) < δ,

sup
x∈E

Ex

[∫ τB∪Kc

0
e−αtdAν

t

]
< ε.

We may assume such Borel set K can be taken to be compact. On the other hand, by
[22, Theorem 2.3.15] there exists an increasing sequence of E-nest {Fk} of closed sets
such that ν(Fk) < ∞ and 1Fkν ∈ S0(X) for each k ∈ N. Let j ≥ 1 be large enough
so that Cν(K\Fj ) < δ. Let u1(x) := Rα1Fj∩K ν(x) and u2(x) := Ex [e−ασK∩Fj ].
Then u1 ∈ F . Moreover, u2 ∈ F due to the regularity of (E,F). It is easy to see
u1(∂) = u2(∂) = 0. Then we have the strict E-quasi-continuity of u1 + u2 on E∂

by Lemma 4.12. Let {Kn} be a strict E-nest of closed sets such that (u1 + u2)|Kn∪{∂}
is continuous on each Kn ∪ {∂}. Hence infx∈E (u1 + u2)(x) ≤ (u1 + u2)(x) →
(u1 + u2)(∂) = 0 as Kn � x → ∂ . It follows that

inf
x∈E Rαν(x) = inf

x∈E
(
Rα1K∩Fj ν(x)+ Rα1Kc∪(K\Fj )ν(x)

)

≤ inf
x∈E

(
Rα1K∩Fj ν(x)+ Ex

[∫ τKc∪(K\Fj )

0
e−αtdAν

t

]
+ Ex

[
e−ασK∩Fj Rαν(XσK∩Fj )

])

≤ inf
x∈E

(
Rα1K∩Fj ν(x)+ Ex

[∫ τKc∪(K\Fj )

0
e−αtdAν

t

]
+ ‖Rαν‖∞Ex

[
e−ασK∩Fj

])
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≤ inf
x∈E(u1(x)+ ε + ‖Rαν‖∞u2(x))

≤ ε +max{‖Rαν‖∞, 1} inf
x∈E(u1(x)+ u2(x)) = ε.

Since ε > 0 is arbitrary, we have inf x∈E Rαν(x) = 0. ��

Remark 4.15 In [4, Lemma 4.6], the first author proved infx∈E Ex
[∫∞

0 e−αtdAν
t

] = 0
(α > 0) for ν ∈ S1CK∞(X(1)) under the condition that X is transient and has no

killing inside. Since S1CK∞(X(1)) ⊂ S1NK∞(X(1)) (see [28, before Proposition 4.2]),
Lemma 4.14 extends [4, Lemma 4.6].

5 Lp-independence of spectral radius for generalized Feynman–Kac
semigroups with bounded u

Throughout this section, we assume condition (A) holds and that u ∈ Ḟloc is a bounded
finely continuous and nearly Borel function andμ〈u〉 ∈ S1K (X). We do not assume (I).
Note that under (A), (Qt )t≥0 associated with the generalized Feynman–Kac transform
(1.1) is a bounded semigroup in L∞(E;m). Indeed there exists p0 > 1 sufficiently
close to 1 such that pμ+ + N (epF

+ − 1)μH ∈ S1EK (X) for any p ∈ [1, p0[. Indeed,

sup
x∈E

Ex [Apμ+
t + AN (epF

+−1)μH
t ]

≤ sup
x∈E

Ex

[
Aμ+
t + AN (eF

+−1)μH
t

]
+ sup

x∈E
Ex

[
(p − 1)Aμ+

t + AN (epF
+−eF+ )μH

t

]

≤ sup
x∈E

Ex

[
Aμ+
t + AN (eF

+−1)μH
t

]

+ (p − 1) sup
x∈E

Ex [Aμ+
t ] + (p − 1)e2‖F+‖∞ sup

x∈E
Ex

[∫ t

0
N (F+)(Xs)dHs

]

yields the assertion, because of μ+ + N (F+)μH ∈ S1D(X). Here we use the estimate

epF
+ − eF

+ ≤ e‖F+‖∞(e(p−1)F+ − 1) ≤ (p − 1)e2‖F+‖∞F+.

Let q := p/(p − 1) be the conjugate exponent of p ∈]1, p0[. We then see that for
small t > 0

Ex [exp(pAμ+
t + pAF+

t )] = Ex [Exp(Apμ+ + AepF
+−1)t ]

≤ 1

1−supx∈E Ex [Apμ+
t +AepF

+−1
t ]

<∞ (5.1)
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628 Z.-Q. Chen et al.

and

Ex [exp(qNu
t )]

= e−qu(x)
E
Uq
x

[
exp

(∫ t

0
N (eqU − qU − 1)(Xs)dHs + q2

2
〈M−u,c〉t

)
equ(Xt )

]

≤ e2q‖u‖∞

1− supx∈E E
Uq
x

[∫ t
0 N (eqU − qU − 1)(Xs)dHs + q2

2 〈M−u,c〉t
] <∞.

Here Uq := (�, Xt ,P
Uq
x ) is the Girsanov transformed process by Uq

t :=
Exp(MeqU−1+M−qu,c)t and qU (x, y) := qu(x)−qu(y).Uq is an e−2qum-symmetric

Markov process. Note here that e−2qu(N (eqU − qU − 1)μH + q2

2 μc〈u〉) ∈ S1K (Uq)

holds by Lemma 4.11(2), because of the boundedness of u and μ〈u〉 ∈ S1K (X). Thus,
for sufficiently small t > 0 we have

‖Qt‖∞,∞ = ‖Qt1‖∞ ≤ sup
x∈E

Ex [exp(Nu
t + Aμ

t + AF
t )]

≤ sup
x∈E

Ex [exp(qNu
t )] 1q sup

x∈E
Ex [exp(pAμ+

t + pAF+
t )] 1p <∞.

By use of the Markov property, there is C∞ ∈]0,∞[ depending on ‖u‖∞ such that
‖Qt‖∞,∞ ≤ C∞eC∞t for all t > 0, hence λ∞(X, u, μ, F) ≥ −C∞ > −∞. Thus we
have

−C∞ ≤ λ∞(X, u, μ, F) ≤ λp(X, u, μ, F) ≤ λ2(X, u, μ, F) for p ∈ [1,∞].
(5.2)

In this section and the next, we will adopt the approaches from [4,5] to establish the
L p-independence of spectral radius λp(X, u, μ, F) .

Lemma 5.1 We have the following:

1. μ+ + N (eF
+ − 1)μH ∈ S1EK (X) is equivalent to μ+ + N (eU (eF

+ − 1))μH ∈
S1EK (X) provided μ〈u〉 ∈ S1K (X).

2. Fix α ≥ 0 and assume the transience of X if α = 0. μ+ + N (eF
+ − 1)μH ∈

S1CK1
(X(α)) is equivalent to μ+ + N (eU (eF

+ − 1))μH ∈ S1CK1
(X(α)) provided

μ〈u〉 ∈ S1CK∞(X(α)).

3. Fix α ≥ 0 and assume the transience of X if α = 0. μ+ + N (eF
+ − 1)μH ∈

S1NK1
(X(α)) is equivalent to μ+ + N (eU (eF

+ − 1))μH ∈ S1NK1
(X(α)) provided

μ〈u〉 ∈ S1NK∞(X(α)).

Proof Since eU (eF
+ − 1) = (eU − 1)(eF

+ − 1) + (eF
+ − 1) and |eU − 1|(eF+ −

1) ≤ e‖U‖∞|U |(eF+ − 1), it suffices to show that N (|U |(eF+ − 1))μH ∈ S1K (X)

(resp. ∈ S1CK∞(X(α)), ∈ S1NK∞(X(α))) under μ〈u〉 ∈ S1K (X) (resp. ∈ S1CK∞(X(α)),

∈ S1NK∞(X(α))). This can be easily confirmed because of N (U 2)μH ∈ S1K (X)
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Lp-independence of spectral radius . . . 629

(resp. ∈ S1CK∞(X(α)), ∈ S1NK∞(X(α))) under μ〈u〉 ∈ S1K (X) (resp. ∈ S1CK∞(X(α)),

∈ S1NK∞(X(α))) and N ((eF
+ − 1)2)μH ≤ (e‖F+‖∞ − 1)e‖F+‖∞N (F+)μH ∈ S1D(X).

��
Theorem 5.2 Suppose that (1.7) as well as condition (A) holds. Then λp(X, u, μ, F)

is independent of p ∈ [1,∞].
Proof Step 1: First we prove the assertion under u = 0 and m(E) < ∞. We write
λp(X, μ, F) := λp(X, 0, μ, F) for p ∈ [1,∞]. Note that λ2(X, μ, F) < ∞ holds
under (A) by (1.5). Suppose first λ2(X, μ, F) > 0. Then for any ε ∈]0, λ2(X, μ, F)[,
there is δ(ε) > 0 such that

‖Qt‖2,2 ≤ e−t(λ2(X,μ,F)−ε) for t ≥ δ(ε). (5.3)

Assume that (1.7) and (A) hold. On the other hand, since μ+ + N (eF
+ − 1)μH ∈

S1EK (X), there exists p > 1 sufficiently close to 1 such that pμ++N (epF
+ −1)μH ∈

S1EK (X). By Markov property of X and (5.1), there exists C = C(p) > 0 such that

sup
x∈E

Ex

[
exp
(
pAμ+

t + pAF+
t

)]
≤ CeCt for all t > 0.

Thus for every f ∈ Lq(E;m) with q = p
p−1 and x ∈ E , by Hölder’s inequality,

|Qt0 f (x)| = Ex

[
exp
(
Aμ
t0 + AF

t0

)
f (Xt0)

]

≤
(
Ex

[
exp
(
pAμ+

t0 + pAF+
t0

)])1/p (
Ex
[
f (Xt0)

q])1/q
≤
(
CeCt0

)1/p ‖Pt0‖1/q1,∞‖ f ‖q . (5.4)

Under λ2(X, μ, F) > 0, for any ε ∈]0, λ2(X, μ, F)[, there is δ(ε) > 0 so that (5.3)
holds. Then for t > δ(ε)+ t0, by (5.4) and (5.3),

‖Qt‖∞,∞ = ‖Qt1‖∞ = ‖Qt0(Qt−t01)‖∞ ≤
(
CeCt0

) 1
p ‖Pt0‖

1
q
1,∞‖Qt−t01‖q

≤
(
CeCt0

) 1
p ‖Pt0‖

1
q
1,∞‖Qt−t01‖

1− 2
q∞ ‖Qt−t01‖

2
q
2

≤
(
CeCt0

) 1
p ‖Pt0‖

1
q
1,∞‖Qt−t01‖

1− 2
q∞
(√

m(E)e−(t−t0)(λ2(X,μ,F)−ε)
) 2

q

This implies λ∞(X, μ, F) ≥ λ2(X, μ, F) − ε and so λ∞(X, μ, F) ≥ λ2(X, μ, F).
Hence λ∞(X, μ, F) = λ2(X, μ, F) = λp(X, μ, F) for p ∈ [1,∞] under
λ2(X, μ, F) > 0. The condition (A) implies μ+ + N (eF

+ − 1)μH ∈ S1EK (X(α)) and
(1.7) remains valid under X(α). Moreover, {Qt }t≥0 is still well-defined as a strongly
continuous semigroup in L2(E;m), because (A) forX(α) holds under (A) forX. Thus,
we can apply the above argument with respect to X(α). By taking α > 0 so large with
the relation
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λp(X(α), μ, F) = α + λp(X, μ, F), p ∈ [1,∞],

we see λ2(X(α), μ, F) > 0 for such α > 0, consequently λ∞(X(α), μ, F) =
λ2(X(α), μ, F), that is, λp(X, μ, F) = λ2(X, μ, F) for p ∈ [1,∞].
Step 2: Next we prove the assertion under u = 0 without assuming m(E) < ∞. Let
{Gn} be a nest of finely open Borel sets satisfyingm(Gn) <∞ for each n ∈ N. Such a
{Gn} always exists. Indeed, for f ∈ L1(E;m)∩ L∞(E;m) with f > 0 on E , the set
Gn := {x ∈ E : R1 f (x) > 1/n}does the job.Weconsider the part processXGn onGn .
Note that (1.7) holds for XGn by Lemma 4.3. Moreover, condition (A) holds for each
XGn by Lemma 4.6. For p ∈ [1,∞], let λ(n)

p := λp(XGn , 1Gnμ, 1Gn×Gn F) be the L p-

spectral radius for the Feynman–Kac semigroup (Q(n)
t )t≥0 defined by Q(n)

t f (x) :=
Ex [eAμ

t +AF
t f (Xt ) : t < τGn ] for each n ∈ N. Recall that (Q(n)

t )t≥0 is associated to
(Q,FGn ). Applying Step 1 for XGn , we have the L p-independence of λ

(n)
p :

λ(n)∞ = λ
(n)
2 . (5.5)

Since E = ⋃∞
n=1 Gn m-a.e. (i.e.

⋂∞
n=1(E\Gn) is m-negligible) and Q(n)

t 1(y)
increases to Qt1(y) on

⋃∞
n=1 Gn , we have

‖Qt‖∞,∞ = m-sup
y∈E

Qt1(y) = sup
n∈N

(
m-sup

y∈Gn

Q(n)
t 1(y)

)
= sup

n∈N
‖Q(n)

t ‖∞,∞.

Here m-sup denotes the m-essentially supremum. From this, we can deduce
λ∞(X, μ, F) = infn∈N λ

(n)∞ . Indeed, define fn(t) := 1
t log ‖Q(n)

t ‖∞,∞. For t > 0, by
Fatou’s lemma,

Ey[eA
μ
t +AF

t : t < τGn ] = Ey[lim
s→t

eA
μ
s +AF

s 1{s<τGn }]

≤ lim
s→t

Ey[eA
μ
s +AF

s 1{s<τGn }]
≤ lim

s→t
‖Q(n)

s ‖∞,∞.

Here in the equality we used the fact that for each fixed t > 0, Px (Xt = Xt−) = 1
holds for all x ∈ E . It follows that ‖Q(n)

t ‖∞,∞ ≤ lims→t ‖Q(n)
s ‖∞,∞, and so fn(t) is

lower semi continuous in t . Let X := [1,∞] which is compact, and define

fn(∞) := lim
t→∞

1

t
log ‖Q(n)

t ‖∞,∞ = inf
t>0

1

t
log ‖Q(n)

t ‖∞,∞.

Then t �→ fn(t) is a lower semi continuous function on the compact set X . By the
minimax theorem (see [52, Corollary in pp. 407]), we have
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sup
n∈N

(−λ(n)∞ ) = sup
n∈N

inf
t∈X fn(t)

= inf
t∈X sup

n∈N
1

t
log ‖Q(n)

t ‖∞,∞

= inf
t∈X

1

t
log ‖Qt‖∞,∞ = −λ∞(X, μ, F). (5.6)

On the other hand,

λ2(X, μ, F) = inf

{
Q( f , f ) : f ∈ F with

∫
E
f 2dm = 1

}

≤ inf

{
Q( f , f ) : f ∈ FGn with

∫
Gn

f 2dm = 1

}
= λ

(n)
2 .

Consequently, we have from (5.5) that

λ∞(X, u, μ, F) = inf
n∈N λ(n)∞ = inf

n∈N λ
(n)
2 ≥ λ2(X, u, μ, F)

and so λ∞(X, u, μ, F) = λ2(X, u, μ, F) in view of (1.6).

Step 3: Finally we prove the assertion without assuming u = 0. By Lemma 5.1(1),
the condition (A) implies μ+ + N (eU (eF

+ − 1))μH ∈ S1EK (X) under μ〈u〉 ∈ S1K (X)

because of the boundedness of u and F+. Note that λ2(X, u, μ, F) <∞ under (A) by
(1.5). By assumption, we have e−2um(E) <∞ and e−2u(ν̄1+N (eU (eF

+ −1))μH ) ∈
S1EK (U) and e−2u(ν̄2+ N (eU F−)μH ) ∈ S1D(U) by Lemma 4.11(1), (3), equivalently

we have e−2u ν̄1+NU (eF
+−1)μHU ∈ S1EK (U) and e−2u ν̄2+NU (F−)μHU ∈ S1D(U),

where (NU , HU ) is a Lévy system ofU. Here ν̄1 := μ++N (eU −U−1)μH + 1
2μ

c〈u〉
and ν̄2 := μ−. We set ν̄ := ν̄1− ν̄2. By (1.7), Pt0 is a bounded operator from L1(E;m)

to L∞(E;m). Then we see that for f ∈ L2(E; e−2um)

‖PU
t0 f ‖∞ = sup

x∈E
Ex
[
Ut0 f (Xt0)

]

≤ sup
x∈E

Ex [U 2
t0 ]1/2Pt0 f 2(x)1/2

≤ sup
x∈E

Ex [U 2
t0 ]1/2‖Pt0‖1/21,∞‖ f ‖L2(E;m)

≤ sup
x∈E

Ex [U 2
t0 ]1/2‖Pt0‖1/21,∞e2‖u‖∞‖ f ‖L2(E;e−2um). (5.7)

Since supx∈E Ex [U 2
t0 ] < ∞ under μ〈u〉 ∈ S1K (X), PU

t0 is a bounded operator
from L2(E; e−2um) to L∞(E; e−2um). From this, PU

2t0
is a bounded operator from

L1(E; e−2um) to L∞(E; e−2um), because of the e−2um-symmetry of (PU
t )t≥0. Thus

(1.7) holds for (PU
t )t≥0. Then one can apply Step 2 to U so that λp(U, e−2u ν̄, F)

is independent of p ∈ [1,∞], in particular, λ∞(U, e−2u ν̄, F) = λ2(U, e−2u ν̄, F).
Since λp(X, u, μ, F) = λp(U, e−2u ν̄, F) for p ∈ [1,∞], we have λ∞(X, u, μ, F) =
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λ2(X, u, μ, F). Thus we obtain that λp(X, u, μ, F) is independent of p ∈ [1,∞],
because λ∞(X, u, μ, F) ≤ λp(X, u, μ, F) ≤ λ2(X, u, μ, F) always holds for
p ∈]1,∞[. ��
Theorem 5.3 Consider the following conditions:

(i) X is transient. μ+ + N (eF
+ − 1)μH ∈ S1NK1

(X), μ〈u〉 ∈ S1NK∞(X) and μ− +
N (F−)μH ∈ S1D0

(X) hold.

(ii) Suppose that μ+ + N (eF
+ − 1)μH ∈ ⋂

α>0 S
1
NK1

(X(α)) holds and μ〈u〉 ∈
S1NK∞(X(1)) holds.

Then we have the following:

(i) Suppose that (i) or (ii) holds. Then λ∞(X, u, μ, F) ≥ min{λ2(X, u, μ, F), 0}.
Consequently,λp(X, u, μ, F) is independent of p ∈ [1,∞] providedλ2(X, μ, F)

≤ 0.
(ii) Suppose that (i), or (ii) with μ− + N (F−)μH ∈ S1NK∞(X(1)) holds and assume

that X is conservative. Then λ∞(X, u, μ, F) = 0 if λ2(X, u, μ, F) > 0. Hence
λp(X, u, μ, F) is independent of p ∈ [1,∞] if and only if λ2(X, u, μ, F) ≤ 0.

Proof Step 1: First we prove the assertion under u = 0 and the irreducibility condition
(I). We write λp(X, μ, F) = λp(X, u, μ, F) for p ∈ [1,∞].

(1): Under (A), we see λ2(X, μ, F) < ∞ by (1.5). Note that (i) implies (ii). So it
suffices to prove the assertion under (ii). Take any λ < min{λ2(X, μ, F), 0}. Clearly,
for every 0 < α < λ2(X, μ, F)− λ,

inf

{
Eα( f , f )−

∫
E
f (x)2(μ+ λm)(dx)

−
∫
E×E\diag

f (x) f (y)(eF(x,y) − 1)N (x, dy)μH (dx) :

f ∈ F with
∫
E
f (x)2m(dx) = 1

}
= λ2(X, μ, F)− (λ− α) > 0.

By assumption, we have μ+ + N (eF
+ − 1)μH ∈ S1NK1

(X(α)), μ− − λm +
N (F−)μH ∈ S1D(X) = S1D0

(X(α)). Applying [29, Corollary 1.2] to X(α), we have

that (X(α), Aμ+λm + AF ) is gaugeable, where we use (I). Then

sup
t≥0

e(λ−α)t‖Qt1‖∞ = sup
t≥0

(
e−αt sup

x∈E
Ex

[
eA

μ+λm
t +AF

t : t < ζ
])

= sup
t≥0

sup
x∈E

E
(α)
x

[
eA

μ+λm
t +AF

t : t < ζ
]

≤ sup
x∈E

E
(α)
x

[
sup
t<ζ

eA
μ+λm
t +AF

t

]
<∞, (5.8)

where the last inequality is due to [27, Lemma 4.2(2)] with respect to X(α). Since
α > 0 can be taken to be arbitrarily close to 0, the estimate (5.8) under (ii) implies
that
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λ∞(X, μ, F) = − lim
t→∞

1

t
log ‖Qt1‖∞ ≥ λ.

This inequality holds for any λ < min{λ2(X, μ, F), 0}. Thus we can conclude
λ∞(X, μ, F) ≥ min{λ2(X, μ, F), 0}. In particular, λ2(X, μ, F) ≤ 0 implies
λ∞(X, μ, F) ≥ λ2(X, μ, F). This together with (5.2) yields that λp(X, μ, F) is
independent of p ∈ [1,∞] when λ2(X, μ, F) ≤ 0.

(2): Since λ2(X, μ, F) > 0, we have from (1) that λ∞(X, μ, F) ≥ 0. Assume now
that X is conservative. Under (i), we have that

x �→ Ex [Aμ−∞ + AF−∞ ] = Ex

[
Aμ−∞ + AN (F−)μH∞

]

= R(μ− + N (F−)μH )(x)

is bounded. Then

‖Qt1‖∞ = sup
x∈E

Ex [exp(Aμ
t + AF

t )] ≥ sup
x∈E

Ex [exp(−Aμ−
t − AF−

t )]

≥ sup
x∈E

Ex [exp(−Aμ−∞ − AF−∞ )]

≥ exp

(
− sup

x∈E
Ex [Aμ−∞ + AF−∞ ]

)
≥ exp(−‖R(μ− + N (F−)μH )‖∞).

Under (ii) with μ− + N (F−)μH ∈ S1NK∞(X(1)), we have

x �→ E
(α)
x [Aμ−∞ + AF−∞ ] = Ex

[∫ ∞

0
e−αtd(Aμ−

t + AN (F−)μH
t )

]

= Rα(μ− + N (F−)μH )(x)

is bounded and is an α-potential, i.e., infx∈E E
(α)
x [Aμ−∞ + AF−∞ ] = 0 by Lemma 4.14.

Then

‖Qt1‖∞ = sup
x∈E

Ex [exp(Aμ
t + AF

t )] ≥ sup
x∈E

Ex [exp(−Aμ−
t − AF−

t )]

≥ sup
x∈E

[
exp

(
−eαt

Ex

[∫ ∞

0
e−αtd(Aμ−

t + AN (F−)μH
t )

])]

≥ exp

(
−eαt inf

x∈E E
(α)
x [Aμ−∞ + AF−∞ ]

)
= 1.

In either cases, we have

λ∞(X, μ, F) = − lim
t→∞

1

t
log ‖Qt1‖∞ ≤ 0.

Therefore λ∞(X, μ, F) = 0 < λ2(X, μ, F).
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Step 2: Next we prove the assertion under the irreducibility condition (I) only without
assuming u = 0. Note that U also satisfies (I).

(1): By Lemma 5.1(3), the condition μ+ + N (eF
+ − 1)μH ∈ S1NK1

(X(α)) implies

μ+ + N (eU (eF
+ − 1))μH ∈ S1NK1

(X(α)) under μ〈u〉 ∈ S1NK∞(X(1)) because of the

boundedness of u and F+. By assumption, e−2u(ν̄2 + N (eU F−)μH ) ∈ S1D0
(U(1))

and e−2u(ν̄1 + N (eU (eF
+ − 1))μH ) ∈ S1NK1

(U(α)) for any α > 0. Applying Step 1
for (1) under (ii) to U, we have λ∞(U, e−2u ν̄, F) ≥ min{λ2(U, e−2u ν̄, F), 0}. Hence
we have the conclusion as above.

(2): First note that U is conservative under the conservativeness of X, because
{Ut }t∈[0,∞[ is a Px -martingale under μ〈u〉 ∈ S1K (X). Assume (i). Then e−2u(ν̄1 +
N (eU (eF

+ − 1))μH ) ∈ S1NK1
(U) and e−2u(ν̄2 + N (eU F−)μH ) ∈ S1D0

(U)

by Lemmas 5.1(3) and 4.11(7)(b), equivalently, e−2u ν̄1 + NU (eF
+ − 1)μHU ∈

S1NK1
(U) and e−2u ν̄2 + NU (F−)μHU ∈ S1D0

(U). Applying Step 1 for (2)

under (i) to U, we have λ∞(U, e−2u ν̄, F) = 0 if λ2(U, e−2u ν̄, F) > 0. Since
λ2(X, u, μ, F) = λ2(U, e−2u ν̄, F) and λ∞(X, u, μ, F) = λ∞(U, e−2u ν̄, F), we
have λ∞(X, u, μ, F) = 0 if λ2(X, u, μ, F) > 0.

Finally we assume (ii). By assumption, we have e−2u(ν̄1+ N (eU (eF
+ −1))μH ) ∈

S1NK1
(U(α)) for all α > 0 and e−2u(ν̄2 + N (eU F−)μH ) ∈ S1NK∞(U(1)) by Lem-

mas 5.1(3) and 4.11(7)(a), equivalently, e−2u ν̄1 + NU (eF
+ − 1)μHU ∈ S1NK1

(U(α))

for α > 0 and e−2u ν̄2+ NU (F−)μHU ∈ S1NK∞(U(1)). Applying Step 1 for (2) under
(ii) to U, we have λ∞(U, e−2u ν̄, F) = 0 if λ2(U, e−2u ν̄, F) > 0. Hence we have the
conclusion as above.

Step 3: Finally, we prove the assertion without assuming (I). By [36], under (AC),
for each x ∈ E there exists an X-invariant set Ex such that E = ⋃

x∈E Ex ,
Ex ∩ Ey �= ∅ implies Ex = Ey , and each XEx satisfies (I). Moreover, there
exists at most countable sets {xi }i∈I such that E = ⋃

i∈I Exi forms a disjoint
union. We set Qi

t f (x) := Ex [eA(t) f (Xt ) : t < τExi
] for f ∈ Bb(E) and

define the L p(Exi ;m)-spectral radius λip := λp(XExi , u, μ, F) for (Qi
t )t≥0. We

see that the condition (i) (resp. (ii)) for XExi holds under (i) (resp. (ii)). So we can
apply the result of Step 2 to XExi . Since Qt1(y) = Qi

t1(y) for y ∈ Exi , we see
‖Qt‖∞,∞ = supy∈E Qt1(y) = supi∈I supy∈Exi

Qi
t1(y) = supi ‖Qi

t‖∞,∞. From

this we can deduce λ∞(X, u, μ, F) = inf x∈E λi∞ by use of the minimax theorem
(see [52, Corollary in pp. 407]) and λ2(X, u, μ, F) ≥ λi2 as done in the Step 2 of
the proof of Theorem 5.2. Consequently, we have λ∞(X, u, μ, F) = inf i∈I λi∞ and
λ2(X, u, μ, F) ≤ λi2 for each i ∈ I . Thus we can obtain (1) and (2) without assuming
(I). Note that each irreducible componentXExi is conservative ifX is conservative. ��
Theorem 5.4 Assume m ∈ S1NK∞(X(1)). Then λp(X, u, μ, F) is independent of p ∈
[1,∞].
Proof Step 1: First we prove the assertion under u = 0. From (A), μ+ + N (eF

+ −
1)μH ∈ S1EK (X). Then there exists a sufficiently large β > 0 such thatμ++N (eF

+−
1)μH ∈ S1NK1

(X(β)) by [30, Lemma 4.5]. Recall that λ2(X(β), μ, F) < ∞ always
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holds under (A) by (1.5). Then there exists γ > 0 such that λ2(X(β), μ, F) < γ ,
equivalently λ2(X(β), μ + γm, F) < 0. Note here that X(β) is a transient pro-
cess, hence μ− + N (F−)μH ∈ S1D0

(X(β)). Since m ∈ S1NK∞(X(β)), we have

μ+ + γm + N (eF
+ − 1)μH ∈ S1NK1

(X(β)). Applying Theorem 5.3(1) under (i)

to X(β), λp(X(β), μ+ γm, F) = λ2(X(β), μ+ γm, F) for all p ∈ [1,∞]. Since

λp(X(β), μ+ γm, F) = β − γ + λp(X, μ, F) for p ∈ [1,∞],

we obtain the L p-independence of λp(X, μ, F).

Step 2: Next we prove the assertion without assuming u = 0. By Lemma 5.1, μ+ +
N (eU (eF

+ − 1))μH ∈ S1EK (X). Since μ〈u〉 ∈ S1K (X) and u is bounded, we get

ν̄1 + N (eU (eF
+ − 1))μH ∈ S1EK (X). Then

e−2u ν̄1 + NU (eF
+ − 1)μHU ∈ S1EK (U)

from Lemma 4.11(3). Since m ∈ S1NK∞(X(1)), we have e−2um ∈ S1NK∞(U(1)) by

Lemma 4.11(6). Moreover, e−2uμ− + NU (F−)μHU ∈ S1D(U). We can apply the
result from Step 1 to U so that λ∞(U, e−2u ν̄, F) = λ2(U, e−2u ν̄, F). Thus we have
λ∞(X, u, μ, F) = λ∞(U, e−2u ν̄, F) = λ2(U, e−2u ν̄, F) = λ2(X, u, μ, F). ��

6 Proof of Theorems 1.1, 1.2 and 1.3

In this section, we removed boundedness assumption on u imposed in the last section
and consider general u ∈ Ḟloc which is finely continuous and nearly Borel measurable
on E .We do not assume the irreducibility ofX. The L p-spectral radius λp(X, u, μ, F)

is defined by

λp(X, u, μ, F) := − lim
t→∞

1

t
log ‖Qt‖p,p.

Recall that

λ∞(X, u, μ, F) ≤ λp(X, u, μ, F) ≤ λ2(X, u, μ, F) (6.1)

always holds for p ∈ [1,∞].
Proof of Theorem 1.1 The proof is based on Theorem 5.2. For simplicity, write λp for
λp(X, u, μ, F) for p ∈ [1,∞]. Since u ∈ Ḟloc is a finely continuous nearly Borel
function and it satisfies μ〈u〉 ∈ S1K (X), we see N (1E×E |U |1{|U |>1})μH ∈ S1K (X)

Consequently the quantity

∫ t

0

∫
E
|u(y)− u(Xs)|1{1<|u(y)−u(Xs )|}N (Xs, dy)dHs
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is a PCAF of Kato class in the strict sense. We define

Ku,2
t :=

∑
0<s≤t

1{s<ζ }(u(Xs)− u(Xs−))1{1<|u(Xs )−u(Xs−)|}

−
∫ t

0

∫
E
(u(y)− u(Xs))1{1<|u(y)−u(Xs )|}N (Xs, dy)dHs .

Then Ku,2
t is a purely discontinuous square integrable local martingale with�Ku,2

t :=
Ku,2
t − Ku,2

t− = 1{t<ζ }(u(Xt ) − u(Xt−))1{|u(Xt )−u(Xt−)|>1}, because μ〈u〉 ∈ S1K (X).
Applying [14, Lemma 3.1] to φ(x, y) := 1E×E (x, y)(u(y) − u(x))1{|u(x)−u(y)|≤1},
there exists a purely discontinuous locally square integrable local martingale Ku,1

t
with

�Ku,1
t := Ku,1

t − Ku,1
t− = 1{t<ζ }(u(Xt )− u(Xt−))1{|u(Xt )−u(Xt−)|≤1}.

It is shown in [14, Lemma 3.1] that

Ku,1
t = lim

n→∞

⎛
⎝ ∑

0<s≤t
1{s<ζ }(u(Xs)− u(Xs−))1{1/n<|u(Xs )−u(Xs−)|≤1}

−
∫ t

0

∫
E
(u(y)− u(Xs))1{1/n<|u(y)−u(Xs )|≤1}N (Xs, dy)dHs

⎞
⎠ .

We setGk :={x ∈ E : |u(x)| < k}. Then {Gk} is a nest of finely open nearly Borel sets.
We set uk := (−k) ∨ u ∧ k for k ∈ N. Then u = uk on Gk . Clearly, K

u,1
t = Kuk+1,1

t

for t < τk := τGk . By definition for Ku,2
t and Kuk+1,2

t , we see that for t < τk

K u,2
t − Kuk+1,2

t =
∫ t

0

∫
E
(uk+1(y)− uk+1(Xs))1{|uk+1(y)−uk+1(Xs )|>1}N (Xs, dy)dHs

−
∫ t

0

∫
E
(u(y)− u(Xs))1{|u(y)−u(Xs )|>1}N (Xs, dy)dHs .

Define the smooth measure μk in the strict sense by

μk(dx) := 1Gk (x)
∫
E
(uk+1(y)− uk+1(x))1{|uk+1(y)−uk+1(x)|>1}N (x, dy)μH (dx)

− 1Gk (x)
∫
E
(u(y)− u(x))1{|u(y)−u(x)|>1}N (x, dy)μH (dx).

Then the total variation |μk | of μk is estimated by

|μk |(dx) ≤ 21Gk (x)
∫
E
(u(y)− u(x))2N (x, dy)μH (dx) ≤ 21Gk (x)μ〈u〉(dx).

123



Lp-independence of spectral radius . . . 637

Thus we have |μk | ∈ S1K (X) from μ〈u〉 ∈ S1K (X). In particular, μk is a signed smooth
measure in the strict sense belonging to S1K (X) − S1K (X). Consider the generalized
Fukushima’s decomposition up to lifetime for finely continuous nearly Borel u ∈ Ḟloc
with μ〈u〉 ∈ S1K (X) ⊂ S1(X):

u(Xt )− u(X0) = Mu
t + Nu

t , t ∈ [0, ζ [ Px -a.s.

for all x ∈ E . Here Mu
t is locally square integrable local MAF in the strict sense and

Nu
t is a CAF in the strict sense locally of zero energy. From this, uk+1|Gk admits the

following generalized Fukushima’s decomposition

uk+1(Xt )− uk+1(X0) = Muk+1
t + Nuk+1

t , t ∈ [0, τk[ Px -a.s.

for all x ∈ Gk . It follows from that on {t < τk}

Mu
t − Muk+1

t = Mu,c
t + Mu,d

t − Muk+1,c
t − Muk+1,d

t

= Ku,2
t − Kuk+1,2

t = Aμk
t ,

where Aμk
t is a CAF of bounded variation associated to the signed smooth measure

μk in the strict sense. Hence for t < τk

Nu
t = u(Xt )− u(X0)− Mu

t = uk+1(Xt )− uk+1(X0)− Muk+1
t − Aμk

t

= Nuk+1
t − Aμk

t .

Define (Q(k)
t )t≥0 by

Q(k)
t f (x) := Ex [eA(t) f (Xt ) : t < τk]

= Ex [exp(Nu
t + Aμ

t + AF
t ) f (Xt ) : t < τk]

= Ex [exp(Nuk+1
t + Aμ−μk

t + AF
t ) f (Xt ) : t < τk].

Let Uk+1 be the Girsanov transformed process defined by uk+1 just as we define U
for u. Denote by Uk+1

t its Girsanov density. Since uk+1 ∈ Ḟloc is a bounded finely
continuous nearly Borel function having a finite value at ∂ and μ〈uk+1〉 ∈ S1K (X),
{Uk+1

t }t∈[0,∞[ is a uniformly integrable martingale under X(α) by Proposition 3.1(6).
Then one can apply Lemma 4.11 to Uk+1. From Proposition 3.1(1), we have

Q(k)
t f (x) = e−uk+1(x)EUk+1

x

[
exp
(
Aν̄k

t + AF
t

)
( f euk+1)(Xt ) : t < τk

]
.

Here ν̄k := ν̄k1 − ν̄k2 , ν̄k1 := μ+ + μ−k + N (eUk+1 − Uk+1 − 1)μH + 1
2μ

c〈uk+1〉 and
ν̄k2 := μ− + μ+k . We will apply Theorem 5.2 for (UGk

k+1, 1Gk ν̄
k, 1Gk×Gk F), where

UGk
k+1 is the part process of Uk+1 on Gk . For this, we further need to check conditions.
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By assumption, ν̄k1 + N (eF
+ − 1)μH ∈ S1EK (X). From Lemmas 4.11(3) and 5.1, we

have

e−2uk+1 ν̄k1 + Ñ (eF
+ − 1)μH̃ ∈ S1EK (Uk+1).

Here (Ñ , H̃) is a Lévy system of Uk+1. By Lemmas 4.4(5) and 4.6,

1Gk (e
−2uk+1 ν̄k1 + ÑGk (eF

+ − 1)μH̃ ) ∈ S1EK (UGk
k+1).

Similarly, we can obtain 1Gk (ν̄
k
2+ ÑGk (F−)μH̃ ) ∈ S1D(UGk

k+1) by use of Lemmas 4.11

and 4.4. Moreover, the condition (1.7) holds for UGk
k+1, which can be similarly proved

by a similar estimate with (5.7) obtained by replacing U with Uk+1. Thus one can
apply Theorem 5.2 for (UGk

k+1, 1Gk ν̄
k, 1Gk×Gk F) so that

λ(k)∞ = λ
(k)
2 , (6.2)

where λ
(k)
p := λp(U

Gk
k+1, 1Gk ν̄

k, 1Gk×Gk F) is the L p-spectral radius for the Feynman–

Kac semigroup (Q(k)
t )t≥0 for p ∈ [1,∞]. In the same way of Step 3 in the proof of

Theorem 5.3 without assuming (I), we can prove λ2 ≤ λ
(k)
2 and λ∞ = infk∈N λ

(k)∞
by use of Terkelsen’s minimax theorem. Hence λ2(X, u, μ, F) ≤ λ∞(X, u, μ, F).
Therefore, we obtain λ∞(X, u, μ, F) = λ2(X, u, μ, F) by (1.6). ��
Proof of Theorem 1.2 (1): It suffices to prove the assertion under (ii). Let {Gk}, uk ,
μk , ν̄k and Uk+1 be the notions constructed in the proof of Theorem 1.1. Recall that
λ

(k)
p := λp(U

Gk
k+1, 1Gk ν̄

k, 1Gk×Gk F) is the L p-spectral radius for the Feynman–Kac

semigroup (Q(k)
t )t≥0 for p ∈ [1,∞]. As in the proof of Theorem 1.1, (A) holds for

(UGk
k+1, 1Gk ν̄

k, 1Gk×Gk F). We prove

λ(k)∞ ≥ min{λ(k)
2 , 0}. (6.3)

The proof is based on Theorem 5.3. Under the condition, |μk | ∈ S1NK∞(X(1)). By

assumption, we have ν̄k1 + N (eF
+ − 1)μH ∈ S1NK1

(X(α)) for all α > 0. By Lem-

mas 4.11(7) and 5.1, we have e−2uk+1 ν̄k1 + Ñ (eF
+ − 1)μH̃ ∈ S1NK1

((Uk+1)(α)) for all

α > 0. Here (Ñ , H̃) is a Lévy system of Uk+1. From Lemmas 4.4(10) and 4.6, we
have 1Gk (ν̄

k
1 + ÑGk (eF

+ − 1)μH̃ ) ∈ S1NK1
((UGk

k+1)(α)) for all α > 0. Similarly,

1Gk (ν̄
k
2 + ÑGk (F−)μH̃ ) ∈ S1D(UGk

k+1).

One can apply Theorem 5.3(1)(ii) to the case (UGk
k+1, 1Gk ν̄

k, 1Gk×Gk F) so that (6.3)
holds. The rest of the proof is the same after (6.2) in the proof of Theorem 1.1.
Therefore, we have λ∞(X, u, μ, F) ≥ min{λ2(X, u, μ, F), 0}.
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(2): Since λ2(X, u, μ, F) > 0, we have from (1) that λ∞(X, u, μ, F) ≥ 0. Assume
now that X is conservative. The proof for (ii) is already done in Theorem 5.3(2). We
prove the assertion for (i). By Jensen’s inequality,

‖Qt1‖∞ = sup
x∈E

Ex [exp(Nu
t + Aμ

t + AF
t )] ≥ sup

x∈E
Ex [exp(Nu

t − Aμ−
t − AF−

t )]

≥ sup
x∈E

Ex [exp(Nu
t − Aμ−∞ − AF−∞ )]

≥ exp

(
sup
x∈E

Ex [Nu
t ] − sup

y∈E
Ey[Aμ−∞ + AF−∞ ]

)

= exp

(
sup
x∈E

Ex [Nu
t ] − ‖R(μ− + N (F−)μH )‖∞

)
.

Then we see that

λ∞(X, u, μ, F) = − lim
t→∞

1

t
log ‖Qt1‖∞ ≤ − lim

t→∞
1

t
sup
x∈E

Ex [Nu
t ]. (6.4)

Now suppose (a). Since

Nu
t = u(Xt )− u(X0)− Mu

t ≥ −u−(Xt )− u+(X0)− Mu
t , (6.5)

we have Ex [Nu
t ] ≥ −Ex [u−(Xt )] − u+(x), because Mu is a square integrable mar-

tingale when μ〈u〉 ∈ S1NK∞(X(1)) ⊂ S1K (X). So it suffices to prove that

lim
t→∞

1

t
inf
x∈E(Ex [u−(Xt )] + u+(x)) = lim

t→∞
1

t
inf
x∈E(Ptu

−(x)+ u+(x)) ≤ 0. (6.6)

Take g ∈ L1(E;m) with 0 < g ≤ 1m-a.e. on E such that u ∈ L1(E; gm). Under (a),
we have

〈gm, Ptu
−〉 ≤ 〈gm, (Pt |u−|p)1/p〉

≤

⎧⎪⎨
⎪⎩
‖u−‖1 (p = 1),

‖u−‖p‖g‖
p−1
p

1 (1 < p <∞),

‖u−‖∞‖g‖1 (p = ∞).

Then

‖g‖1 lim
t→∞

1

t
inf
x∈E(Ptu

−(x)+ u+(x)) ≤ lim
t→∞

1

t

(
〈gm, Ptu

−〉 +
∫
E
u+gdm

)
= 0.
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Therefore, we obtain the assertion in this case. Next suppose (b) or (c). From (6.5),

we see Ex [Nu
t ] ≥ −Ex [(u(Xt )− u(X0))

2] 12 . So it suffices to prove

lim
t→∞

1

t
inf
x∈E Ex [(u(Xt )− u(X0))

2] 12 ≤ 0. (6.7)

Since μ〈u〉 ∈ S1NK∞(X(1)) ⊂ S1K (X), μ〈u〉 is a smooth measure in the strict sense.

Consider the Lyons-Zheng’s decomposition for u ∈ Ḟloc satisfying μ
j
〈u〉 ∈ S1(X) (see

[35, Corollary 5.3]):

u(Xt )− u(X0) = 1

2
Mu

t −
1

2
Mu

t ◦ rt

under Pm. Here rt is the time reverse operator defined by XT (rtω) := X(T−t)−(ω)

for t < T . It is known that Em[G ◦ rt ] = Em[G] for non-negative Ft -measurable G.
We then see that

Em[(u(Xt )− u(X0))
2] ≤ Em

[
1

2
(Mu

t )2 + 1

2
(Mu

t ◦ rt )2
]

≤ Em[〈Mu〉t ] ≤ Em[〈Mu〉∞]
=
∫
E
Rμ〈u〉dm ≤ ‖Rμ〈u〉‖∞m(E) <∞

when μ〈u〉 ∈ S1D0
(X) and m(E) <∞. If μ〈Mu〉(E) <∞, we see

Em[(u(Xt )− u(X0))
2] ≤ Em[〈Mu〉t ] ≤ 2tμ〈Mu〉(E).

Then we have M := limt→∞ 1
t Em[(u(Xt )− u(X0))

2] <∞ in either case.
Take g ∈ L1(E;m) with 0 < g ≤ 1 m-a.e. Then

‖g‖1 lim
t→∞

1

t
inf
x∈E Ex [(u(Xt )− u(X0))

2] 12

≤ lim
t→∞

1

t
Em[(u(Xt )− u(X0))

2] 12 ‖g‖
1
2
1

= lim
t→∞

1√
t

(
1

t
Em[(u(Xt )− u(X0))

2]
) 1

2 ‖g‖
1
2
1 = 0.

Thus we have (6.7). Therefore, we obtain λ∞(X, μ, F) = 0 < λ2(X, μ, F). ��
Proof of Theorem 1.3 Let {Gk}, uk , μk , ν̄k and Uk+1 be the notions constructed in
the proof of Theorem 1.1. Recall that λ

(k)
p := λp(U

Gk
k+1, 1Gk ν̄

k, 1Gk×Gk F) is the

L p-spectral radius for the Feynman–Kac semigroup (Q(k)
t )t≥0 for p ∈ [1,∞]. As

in the proof of Theorem 1.1, (A) holds for (UGk
k+1, 1Gk ν̄

k, 1Gk×Gk F). Since m ∈
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S1NK∞(X(1)), we have e−2uk+1m ∈ S1NK∞((Uk+1)(1)) by Lemma 4.11(6). Then one

can apply Theorem 5.3 to UGk to the case (UGk
k+1, 1Gk ν̄

k, 1Gk×Gk F) so that

λ(k)∞ = λ
(k)
2 . (6.8)

The rest of the proof is similar to that of Theorem 1.1. ��

7 Examples

In this section, we give three examples on measures that are in various Kato classes
used in the main results of this paper.

Example 7.1 (Brownian motion) Let X = (�, Xt ,Px ) be a d-dimensional Brownian
motion.X is a typical irreducible doubly Feller process onRd . The associatedDirichlet
form on L2(Rd ; dx) is (H1(Rd), 1

2D), where H1(Rd) := { f ∈ L2(Rd ; dx) : |∇ f | ∈
L2(Rd; dx)} and D( f , g) := ∫

Rd ∇ f (x) · ∇g(x) dx . Fix a u ∈ H1(Rd)loc ∩ C(Rd).
For a signed Borel measure μ on R

d , μ is said to be of Kato class with respect to X
if and only if

lim
r→0

sup
x∈Rd

∫
|x−y|<r

|μ|(dy)
|x − y|d−2 = 0 for d ≥ 3,

lim
r→0

sup
x∈Rd

∫
|x−y|<r

(log |x − y|−1)|μ|(dy) = 0 for d = 2,

sup
x∈Rd

∫
|x−y|≤1

|μ|(dy) <∞ for d = 1.

Denote by Kd the family of non-negative measures of Kato class with respect to X.
Then we have Kd = S1K (X) by [1]. Under d ≥ 3, μ ∈ Kd is said to be Green-tight if

lim
R→∞ sup

x∈Rd

∫
BR(0)c

μ(dy)

|x − y|d−2 = 0.

Denote by K∞d the family of Green-tight measures of Kato class under d ≥ 3. Then
K∞d = S1K∞(X) = S1CK∞(X) = S1NK∞(X) under d ≥ 3. It is proved in [53, Propo-

sition 1] that f ∈ L1(Rd; dx) satisfying | f (x)|dx ∈ Kd , then | f (x)|dx ∈ K∞d
provided d ≥ 3. It is shown in [19, Lemma 5.1(2)] that for f ∈ L1(Rd ; dx) satisfying
| f (x)|dx ∈ S1K (X), then | f (x)|dx ∈ S1K∞(X(1)) = S1CK∞(X(1)) = S1NK∞(X(1)). The
following is proved in [5, Lemma 5.2].

Proposition 7.2 ([5, Lemma 5.2], see Proposition 7.6 below)

1. Assume p > d/2 (resp. p ≥ 1) for d ≥ 3 (resp. d = 1, 2). Let f ∈ L p(Rd; dx).
Then | f (x)|dx ∈ S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).
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2. Suppose that u ∈ L2
loc(R

d ; dx) is bounded with |∇u| ∈ L2(Rd; dx)∩ L p(Rd ; dx)
for some p > d (resp. p ≥ 2) under d ≥ 3 (resp. d = 1, 2). Then u ∈ H1(Rd)e
with μ〈u〉 ∈ S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).

Proposition 7.2(1) partially extends [1, Theorem 1.4(iii)]. We shall point out that
the condition in Proposition 7.2(2) can be relaxed in the following Proposition 7.3(2),
whose proof is similar to that of [5, Lemma 5.1(2)].

Proposition 7.3 The following holds.

1. Suppose that u ∈ L2
loc(R

d; dx) satisfies |∇u| ∈ L2(Rd ; dx) and |∇u(x)|2dx ∈
S1K (X). Then u ∈ H1(Rd)e with |∇u(x)|2dx ∈ S1NK∞(X(1)) = S1CK∞(X(1)) =
S1K∞(X(1)).

2. Suppose that u ∈ L2
loc(R

d; dx) satisfies |∇u| ∈ L2
loc(R

d; dx) ∩ L p(Rd ; dx) for
some p > d (resp. p ≥ 2) under d ≥ 3 (resp. d = 1, 2). Then u ∈ H1(Rd)loc
with |∇u(x)|2dx ∈ S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).

Let φ ∈ C∞([0,∞[) satisfy φ(0) = 0 and φ(t) = log t for t > 1. Set
u(x) := φ(|x |). Then u is an unbounded function onRd and satisfies u ∈ H1(Rd)loc∩
C∞(Rd ; dx) and |∇u| ∈ L2

loc(R
d ; dx) ∩ L p(Rd; dx) for any p > d. In this case, we

have |∇u(x)|2dx ∈ S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).

Example 7.4 (Diffusion process on Riemannian manifold) Let (M, g) be a d-
dimensional complete smooth Riemannian manifold. We assume that Ricci curvature
of (M, g) has a lower bound κ(d − 1) with κ ∈ R, that is, Ricg ≥ κ(d − 1). Let
m := volg be the volume measure of (M, g) and �g the Laplace-Bertrami opera-
tor of (M, g). Then, it is known that the 1

2�g admits a smooth heat kernel pt (x, y)
admitting following estimates (see [26]): for any ε > 0, there exists positive constants
C1(ε),C2(ε) depending on κ , d such that for all x, y ∈ M and t > 0

C1(ε)
−1

V√t (x)
exp

(
−C2(ε)t − d(x, y)2

(2− ε)t

)
≤ pt (x, y)

≤ C1(ε)

V√t (x)
exp

(
C2(ε)t − d(x, y)2

(2+ ε)t

)
. (7.1)

Here Vr (x) := m(Br (x)) is the volume of the r -ball. Moreover, C2(ε) can be taken
to be zero provided κ ≥ 0 or d = 1. Let X be the diffusion process associated
to 1

2�g . Then X is a doubly Feller m-symmetric conservative process on (M, g). It
is proved in [38, Example 5.3] that for any f ∈ L p(M;m) with p ∈ [1,∞[ we
have | f |m ∈ S1K (X) provided p > d/2 (resp. p ≥ 1) for d ≥ 2 (resp. d = 1)
and infx∈M V1(x) > 0. Though the positivity of injectivity radius is assumed in [38,
Example 5.3], this assertion remains valid under infx∈M V1(x) > 0 because

V̄κ(r)
V1(x)

V̄κ(1)
≤ Vr (x) ≤ V̄κ(r) for r ∈]0, 1[
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and V̄κ(r) ≈ ωdrd/d for small r > 0. Here ωd is the area of the unit sphere S
d−1

in the Euclidean space Rd and V̄κ(r) := ωd
∫ r
0 sκ(t)d−1dt is the volume of r -ball in

the d-dimensional space form M
κ
d of constant curvature κ . Here sκ(t) := sin

√
κt√

κ
for

κ > 0, sκ(t) := t for κ = 0, sκ(t) := sinh
√−κt√−κ

for κ < 0. We summarize this in the
following.

Proposition 7.5 Suppose infx∈M V1(x) > 0 and take p ∈ [1,∞[. Assume p > d/2
(resp. p ≥ 1) for d ≥ 3 (resp. d = 1, 2). Let f ∈ L p(M;m). Then | f |m ∈ S1K (X).

Moreover, we have the following stronger assertion:

Proposition 7.6 Suppose infx∈M V1(x) > 0 and take p ∈ [1,∞[. Assume p > d/2
(resp. p ≥ 1) for d ≥ 3 (resp. d = 1, 2). Let f ∈ L p(M;m). Then | f |m ∈
S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).

Proof of Proposition 7.6 By Proposition 7.5, | f |m ∈ S1K (X) under infx∈M V1(x) > 0.
It is proved in [27, Proposition 4.1] that S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1))

under the doubly Feller property of X. By (7.1), we have that for x, y ∈ M and t > 0

pt (x, y) ≤ C1

V√t (x)
exp

(
C2t − rx (y)2

Ct

)
,

where rx (y) := d(x, y). We may assume f ≥ 0. It suffices to show that for any
t0 ∈]0, 1] and any increasing sequence {K�} of compact sets with

⋃∞
�=1 K� = M

lim
n→∞ sup

x∈M
Ex

[∫ t0

0
e−αs1Kc

�
f (Xs)ds

]
= 0 (7.2)

for sufficiently large α > C2 in view of the proof of [19, Lemma 2.3]. We define

St0α (x, y) :=
∫ t0

0
e−αt pt (x, y)dt ≤ C1

∫ t0

0
e−αt 1

V√t (x)
exp

(
C2t − rx (y)2

Ct

)
dt .

By Bishop-Gromov inequality and V̄κ(1)/V̄κ (
√
t) ≤ c1/td/2 for t ∈]0, 1],

∫ t0

0
e−αt 1

V√t (x)
exp

(
C2t − r2

Ct

)
dt

≤ 1

V1(x)

∫ t0

0

V̄κ(1)

V̄κ(
√
t)

exp

(
−(α − C2)t − r2

Ct

)
dt

≤ 1

infx∈M V1(x)

∫ t0

0

c1

t
d
2

exp

(
−(α − C2)t − r2

Ct

)
dt

= c1r2−d

infx∈M V1(x)

∫ t0/r2

0

1

u
d
2

exp

(
−(α − C2)r

2u − 1

Cu

)
du

123



644 Z.-Q. Chen et al.

≤ c1r2−d

infx∈M V1(x)

∫ ∞

0

1

u
d
2

exp

(
−(α − C2)r

2u − 1

Cu

)
du

≤ c1c2r2−d

infx∈M V1(x)

∫ ∞

0

(
1

u
d
2+1

∧ 1

)
exp

(
− (α − C2)r2u

2
− 1

2Cu

)
du

≤ c1c2r2−de−
√

(α−C2)/Cr

infx∈M V1(x)

∫ ∞

0

(
1

u
d
2+1

∧ 1

)
du,

where we use that there is c2 > 0 such that 1
ud/2 ≤ c2

(
1

u
d
2 +1

∧ 1

)
exp
( 1
2Cu+

(α−C2)r2u
2

)
. Consequently, there are positive constants C1(α, d),C2(α, d) such that

St0α (x, y) ≤ C1(α, d)d(x, y)2−d exp(−C2(α, d)d(x, y)).

Note here thatC2(α, d) can be taken to be large for sufficient largeα. From this, we can
calculate that for q := p

p−1 under p > d/2 (resp. p > 1) with d ≥ 3 (resp. d = 1, 2)

sup
x∈M

∫
M
St0α (x, y)qm(dy) = sup

x∈M

∞∑
k=−∞

∫
2k−1<d(x,y)≤2k

St0α (x, y)qm(dy) <∞.

Indeed,

0∑
k=−∞

∫
2k−1<d(x,y)≤2k

d(x, y)q(2−d)e−C2(α,d)qd(x,y)m(dy)

=
∞∑
k=0

∫
1

2k−1 <d(x,y)≤ 1
2k

d(x, y)q(2−d)m(dy)

≤ c3ωd

d2q(d−2)
∞∑
k=0

(
1

2k

)d−q(d−2)
= c3ωd

d2q(d−2)
∞∑
k=0

(
1

2k

) 2p−d
p−1

<∞

and

∞∑
k=1

∫
2k−1<d(x,y)≤2k

d(x, y)q(2−d)e−C2(α,d)qd(x,y)m(dy)

≤
∞∑
k=1

∫
2k−1<d(x,y)≤2k

e−C2(α,d)qd(x,y)m(dy)

≤
∞∑
k=1

e−C2(α,d)q2k−1 V̄κ(2k) <∞
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provided κ ≥ −
(
C2(α,d)q
2(d−1)

)2
. This condition holds for sufficiently large α > 0. Note

here that V̄κ(r) ≤ ωdrd/d when κ ≥ 0, and V̄κ(r) ≤ ωd
(2
√−κ)d−1 exp((d − 1)

√−κr)

when κ < 0. Therefore, we obtain that for p > 1

sup
x∈M

Ex

[∫ t0

0
e−αt (1Kc

�
f )(Xt )dt

]
= sup

x∈M

∫
Kc

�

St0α (x, y) f (y)m(dy)

≤
(
sup
x∈M

∫
M
St0α (x, y)qm(dy)

) 1
q
(∫

Kc
�

| f |pdm
) 1

p

,

which tends to 0 as �→∞. If p = 1 and d = 1, 2, St0α (x, y) is bounded above. This
proves the desired assertion. ��

The following proposition can not be directly obtained from [19, Lemma 5.1(2)],
because the large time upper estimate for heat kernel like [19, (5.1)] can not be obtained
for complete smoothRiemmanianmanifolds even if itsRicci curvature is non-negative.

Proposition 7.7 Suppose infx∈M V1(x) > 0. Assume f ∈ L1(M;m) and | f |dm ∈
S1K (X). Then | f |dm ∈ S1K∞(X(1)) = S1CK∞(X(1)) = S1NK∞(X(1)).

Proof The assumption infx∈M V1(x) > 0 is used for the short time heat ker-
nel estimates. Fix a sufficiently small t0 ∈]0, 1[. We already obtain St0α (x, y) ≤
C1(α, d)d(x, y)2−de−C2(α,d)d(x,y). We may assume d ≥ 3, because St0α (x, y) is
bounded if d = 1, 2. Since | f |dm ∈ S1K (X), for given ε > 0, there exists a suffi-
ciently small r > 0 such that

sup
x∈M

∫
d(x,y)<r

St0α (x, y)| f (y)|m(dy) ≤ sup
x∈M

∫
d(x,y)<r

Rα(x, y)| f (y)|m(dy) < ε

by [38, Theorem 3.1] under d ≥ 3 and infx∈M V1(x) > 0. Note here that the assump-
tion (A2.3) in [38] is satisfied under inf x∈M V1(x) > 0 with the help of Bishop and
Bishop-Gromov inequalities. Then

sup
x∈M

∫
Kc

�

St0α (x, y)| f (y)|m(dy) < ε + sup
x∈M

∫
Kc

�∩{d(x,y)≥r}
St0α (x, y)| f (y)|m(dy)

≤ ε + C(α, d, r)
∫
Kc

�

| f (y)|m(dy),

where C(α, d, r) := sups≥r C1(α, d)s2−de−C2(α,d)s . Letting � →∞ and ε → 0, we
obtain

lim
�→∞ sup

x∈M

∫
Kc

�

St0α (x, y)| f (y)|m(dy) = 0.

Thus we obtain the assertion. ��
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Remark 7.8 1. It is still open if | f |dm ∈ S1K∞(X) = S1CK∞(X) = S1NK∞(X) for

f ∈ L1(M;m) satisfying | f |dm ∈ S1K (X) when X is transient.
2. The assertions of Propositions 7.6 and 7.7 remain valid for RCD∗(K , N )-space

(X , d,m) for K ∈ R and N ∈]1,∞[ satisfying supx∈X m(Br (x)) ≤ V̄ N
κ (r)

with κ := K/(N − 1) and infx∈X m(B1(x)) > 0 (see [26] for the definition
of RCD∗(K , N )-space). Here V̄ N

κ (r) := ωN
∫ r
0 sN−1κ (s)ds (ωN := πN/2

�(1+N/2) ),

which is the volume of r -ball in M
N
κ provided N ∈ N.

Example 7.9 (Relativistic symmetric stable process) Take 0 < α < 2 and m ≥ 0. Let
X = (�, Xt ,Px ) be a Lévy process on R

d with

E0

[
e
√−1〈ξ,Xt 〉

]
= exp

(
−t
{
(|ξ |2 + m2/α)α/2 − m

})
.

If m > 0, it is called the relativistic α-stable process with mass m (see [12]). In
particular, if α = 1 and m > 0, it is called the relativistic free Hamiltonian process
(see [25])). Whenm = 0,X is nothing but the usual (rotationally) symmetric α-stable
process. It is known that X is transient if and only if d > 2 under m > 0 or d > α

under m = 0, and X is a doubly Feller conservative process.
Let (E,F) be the Dirichlet form on L2(Rd; dx) associated with X. Using Fourier

transform f̂ (x) := 1
(2π)d/2

∫
Rd ei〈x,y〉 f (y)dy, it follows from Example 1.4.1 of [22]

that

⎧⎪⎨
⎪⎩
F :=

{
f ∈ L2(Rd ; dx) :

∫
Rd
| f̂ (ξ)|2

(
(|ξ |2 + m2/α)α/2 − m

)
dξ <∞

}
,

E( f , g) :=
∫
Rd

f̂ (ξ) ¯̂g(ξ)
(
(|ξ |2 + m2/α)α/2 − m

)
dξ for f , g ∈ F .

It is shown in [15] that the corresponding jumping measure J of (E,F) satisfies

J (dxdy) = Jm(x, y)dxdy with Jm(x, y) = A(d,−α)
�(m1/α|x − y|)
|x − y|d+α

,

where A(d,−α) = α2d+α�( d+α
2 )

2d+1πd/2�(1− α
2 )
, and �(r) := I (r)/I (0) with

I (r) :=
∫ ∞

0
s
d+α
2 −1e−

s
4− r2

s ds

is a decreasing function satisfying �(r) " e−r (1 + r (d+α−1)/2) near r = ∞, and
�(r) = 1+� ′′(0)r2/2+ o(r4) near r = 0. In particular,

⎧⎪⎪⎨
⎪⎪⎩
F =

{
f ∈ L2(Rd; dx) :

∫
Rd×Rd

| f (x)− f (y)|2 Jm(x, y)dxdy <∞
}
,

E( f , g) := 1

2

∫
Rd×Rd

( f (x)− f (y))(g(x)− g(y))Jm(x, y)dxdy for f , g ∈ F .
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For a signed Borel measure μ on R
d , μ is said to be of Kato class with respect to

X if and only if

lim
r→0

sup
x∈Rd

∫
|x−y|<r

|μ|(dy)
|x − y|d−α

= 0 for d > α,

lim
r→0

sup
x∈Rd

∫
|x−y|<r

(log |x − y|−1)|μ|(dy) = 0 for d = 1 = α,

sup
x∈Rd

∫
|x−y|≤1

|μ|(dy) <∞ for d = 1 < α.

Denote by Kd,α the family of non-negative measures of Kato class with respect to X.
Then we have Kd,α = S1K (X) by [38, Theorem 3.2, Example 5.1]. It is shown in [37,
Theorem 2.1] that for any f ∈ L p(Rd; dx), | f (x)|dx ∈ S1K (X) provided p > d/α

(resp. p ≥ 1) for d ≥ α (resp. d < α). More strongly, under m = 0, it is shown
in [5, Lemma 5.1] that for any f ∈ L p(Rd; dx), | f (x)|dx ∈ S1CK∞(X(1)) provided
p > d/α (resp. p ≥ 1) for d ≥ α (resp. d < α).

Let pt (x, y) be the heat kernel of X. The following global heat kernel estimates
were proved in [11, Theorem 2.1]: There exists C1,C2 > 0 such that

C−12 �m
1/C1

(t, x, y) ≤ pt (x, y) ≤ C2�
m
C1

(t, x, y), (7.3)

where

�m
C (t, x, y)

:=
{
t−d/α ∧ t Jm(x, y), t ∈]0, 1/m],
md/α−d/2t−d/2 exp

(
−C−1

(
m1/α|x − y| ∧ m2/α−1 |x−y|2

t

))
, t ∈]1/m,∞[.

It is shown in [13, Theorem 1.2 and Example 2.4] or [9,10, Theorem 1.2] that pt (x, y)
is jointly continuous in (t, x, y) ∈]0,∞[×Rd × R

d .

The following proposition extends [5, Lemma 5.1] for general m ≥ 0:

Proposition 7.10 Let 0 < α < 2 and X be a relativistic symmetric α-stable process
on Rd .

1. Assume p > d
α
(resp. p ≥ 1) if d ≥ α (resp. d < α). Let f ∈ L p(Rd; dx). Then

| f (x)|dx ∈ S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).

2. Assume p > d
α
(resp. p ≥ 1) if d ≥ α (resp. d < α). For u ∈ Floc ∩ C(Rd),

μ〈u〉 ∈ S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)) if fu(x) :=
∫
Rd (u(x) −

u(y))2 Jm(x, y)dy is in L p(Rd; dx). In particular, if u ∈ C1
c (R

d), then μ〈u〉 ∈
S1NK∞(X(1)) = S1CK∞(X(1)) = S1K∞(X(1)).

3. If F is a bounded symmetric function on Rd × R
d with

|F(x, y)|≤c|x − y|γ for x, y ∈ R
d and F(x, y) = 0 for (x, y) ∈ R

d × Kc,
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where K is a compact subset of Rd , c and γ are two positive constants such that
γ > α, then for f (x) := ∫

Rd |F(x, y)|Jm(x, y)dy, | f (x)|dx ∈ S1NK∞(X(1)) =
S1CK∞(X(1)) = S1K∞(X(1)).

Proof (1): Take t0 < 1
m ∧ 1 so small and set St01 (x, y) := ∫ t00 e−t pt (x, y)dt . In view

of the proof of [19, Lemma 2.3], it suffices to prove

c := sup
x∈Rd

∫
Rd

St01 (x, y)qdy <∞, (7.4)

for q := p/(p−1) ∈]1,∞[ under p > d
α
, and supx,y∈Rd St01 (x, y) <∞ under p = 1

with d = 1 < α, because

sup
x∈Rd

∫
B∪Kc

St01 (x, y)| f (y)|dy ≤
(
sup
x∈Rd

∫
Rd

St01 (x, y)qdy

) 1
q (∫

B∪Kc
| f (y)|pdy

) 1
p

≤ c

(∫
B∪Kc

| f (y)|pdy
) 1

p

.

For this, we show

sup
x∈Rd

∫
{|x−y|α≤t0}

St01 (x, y)qdy <∞, (7.5)

sup
x∈Rd

∫
{|x−y|α>t0}

St01 (x, y)qdy <∞. (7.6)

For |x − y|α ≤ t0, we have from (7.3)

C−12 St01 (x, y) ≤
∫ |x−y|α

0
e−t
(
t−d/α ∧ t Jm(x, y)

)
dt

+
∫ t0

|x−y|α
e−t
(
t−d/α ∧ t Jm(x, y)

)
dt

≤ c1
e−|x−y|α

|x − y|d−α
+ II,

where

II :=
∫ 1/m

|x−y|α
e−t t−d/αdt ≤

⎧⎪⎪⎨
⎪⎪⎩

α
d−α

· e−|x−y|α
|x−y|d−α d > α,

e−|x−y|α (− logm|x − y|α) d = 1 = α,

e−|x−y|α · α
α−d

(
m

d−α
α − |x − y|α−d

)
d = 1 < α.

From these estimates, we can easily deduce (7.5).

123



Lp-independence of spectral radius . . . 649

For |x − y|α > t0, we have from (7.3)

C−12 St01 (x, y) ≤
∫ 1

m

0
e−t
(
t−d/α ∧ t Jm(x, y)

)
dt ≤ 1

|x − y|d+α

∫ 1
m

0
te−tdt .

From this estimate, we can easily deduce (7.6). When p = 1 under d = 1 < α, we
easily confirm the boundedness of St01 (x, y).
(2): The first statement is clear from (2). Note that C1

c (R
d) ⊂ F . We next show that

for u ∈ C1
c (R

d), fu ∈ L p(Rd ; dx) for every p ≥ 1. Clearly,

fu(x) ≤
∫
{y∈Rd :|x−y|<1}

‖∇u‖2∞
|x − y|d+α−2 dy +

∫
{y∈Rd :|x−y|≥1}

2‖u‖2∞
|x − y|d+α

dy

and so fu is bounded above by ωd

( ‖∇u‖2∞
2−α

+ 2‖u‖2∞
α

)
. Here ωd is the area of the

(d − 1)-dimensional unit sphere S
d−1 in R

d . Let K be the support of u. Then for
x ∈ Kc,

fu(x) ≤
∫
K
u(y)2

1

|x − y|d+α
dy ≤ ‖u‖2∞

∫
K

1

|x − y|d+α
dy.

Thus for some C > 1, | fu | is bounded above by C and estimated by C
∫
K

1
|x−y|d+α dy

on Kc. Taking a relatively compact open set G containing K , we see that for any
p ≥ 1

∫
Rd
| fu(x)|pdx ≤ C p

(
|G| +

∫
Gc

∣∣∣∣
∫
K

1

|x − y|d+α
dy

∣∣∣∣
p

dx

)

≤ C p
(
|G| + |K |p−1

∫
Gc

∫
K

1

|x − y|p(d+α)
dydx

)

= C p
(
|G| + |K |p−1

∫
K

∫
Gc

1

|x − y|p(d+α)
dxdy

)

≤ C p
(
|G| + |K |p−1 ωd

p(d + α)− d

∫
K

1

d(y,Gc)p(d+α)−d dy
)

<∞.

(3): By assumption,

| f (x)| ≤
∫
{y∈K :|y−x |<1}

c

|x − y|d+α−γ
dy +

∫
{y∈K :|y−x |≥1}

‖F‖∞
|x − y|d+α

dy

is bounded above by cωd
γ−α

+ ‖F‖∞|K | from γ > α and estimated by (c ∨
‖F‖∞)

∫
K

1
|x−y|d+α dy. Thus | f (x)| ≤ C

(
1 ∧ ∫K 1

|x−y|d+α dy
)
for some C > 1. Then

one can confirm the p-th integrability of f for any p ≥ 1 as in the proof of (2). ��
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Applying [19, Lemma 5.1(2)], it can be shown that for f ∈ L1(Rd ; dx) satisfying
| f (x)|dx ∈ S1K (X), we have | f (x)|dx ∈ S1K∞(X) = S1CK∞(X) = S1NK∞(X) provided
X is transient, that is, d > α (resp. d ≥ 3) holds for m = 0 (resp. m > 0) (for m > 0
see [19, Example 6.2 ]). The following Proposition can be similarly proved as for
Proposition 7.7. We omit its proof.

Proposition 7.11 Assume f ∈ L1(Rd; dx) and | f (x)|dx ∈ S1K (X). Then | f (x)|dx ∈
S1K∞(X(1)) = S1CK∞(X(1)) = S1NK∞(X(1)).
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