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Abstract

Under mild conditions on measures used in the perturbation, we establish the L?”-
independence of spectral radius for generalized Feynman—Kac semigroups without
assuming the irreducibility and the boundedness of the function appeared in the con-
tinuous additive functionals locally of zero energy in the framework of symmetric
Markov processes. These results are obtained by using the gaugeability approach
developed by the first named author as well as the recent progress on the irreducible
decomposition for Markov processes proved by the third author and on the analytic
characterizations of gaugeability for generalized Feynman—Kac functionals developed
by the second and third authors.
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1 Introduction and main results

It is well known that Schrédinger operator £ := —%A + V, where V is a Kato
class function on R?, is self-adjoint in L?(R4; dx) and so it can be represented by its
spectral family. The Schrodinger operator generates a strongly continuous semigroup
{Ptv = ¢ L.t > 0} in L2(RY; dx). This Schrodinger semigroup admits a probabilis-
tic representation (cf. [17,41]): for f € CC2 (RY), the space of C 2_smooth functions on
R? with compact support,

1
PY f(x) =By [eXp (—/ V(Xs)ds) f(Xz)} . 120, x eRY,
0

where X = {X;;¢t > 0,P,,x € Rd} is a d-dimensional Brownian motion. Hence
(PIV),ZO is also called a Feynman—Kac semigroup of Brownian motion. This semi-
group can be extended to a strongly continuous symmetric semigroup in L” (R¢; dx)
for any p € [1, oo[, and a bounded semigroup on L% (R?; dx) (cf. [40]). We denote
the L?-Schrodinger semigroup by (P,V) +>0. There is a spectral family associated with
the infinitesimal generator £ of (P;V)tzo in LP(R%; dx) when 1 < p < co. When
p = 00, L on L®(R?; dx) is defined to be the dual of £ on L>®(R?; dx),
whose domain D(£) may not be dense in L>(R?; dx). Let L be the closure of
D(L) in L*®(R?; dx). Then the spectrum of — £ can be defined for the densely
defined closed operator £(> : L% — L. Note that the semigroup (P, ),>¢ on L®
defined by the restriction I3tV = Ptvl joo 18 strongly continuous on L. Moreover,
we can deduce ||I3ZV||OO,OO < ||PtV||o<,,OO < M||I3,V||Ooqoo. Here M is the positive
constant appeared in ||PtV||O<>,C,O < MeCt, (C > 0) under the Kato class condition
for V. So the bottom of the spectrum of —£( coincides with the spectral radius
Moo 1= — lim;_s oo %log | PZV loo.0c0- An interesting but challenging question is when
the LP-spectral family of £ is independent of p € [I, o] (see Remarks 2 after
Theorem 1.3 of [40]). When V is in certain function space, Simon [40, Theorem 1.3]
showed that the bottom of the spectrum (also called spectral radius) of £ is indepen-
dent of p € [1, o0]; in other words, A, := —lim; %log I PtV lp,p is independent
of p € [1, oc]. This result has been extended in Hempel and Voigt [23,24] to a larger
class of V with V~ being in an extended Kato class of Brownian motion and V*
locally integrable. Moreover, it is shown in [23,24] that the L?-spectral family for
the Schrodinger operator —%A + V is independent of p € [1, oo] for a subclass of
V. Inspired by [23,24,40,41], Sturm [44] later obtained L”-independence of the spec-
trum of uniformly elliptic operators on Riemannian manifolds under a sub-exponential
volume growth condition.

Note that fot V (Xs)ds in the Feynman—Kac representation of the Schrodinger semi-
group (P,V) >0 above is a continuous additive functional of the Brownian motion X
having finite variation and signed Revuz measure p(dx) = V(x)dx. On the other
hand, Brownian motion X has many continuous continuous additive functionals of
finite variation but whose signed Revuz measure can be singular with respect to the
Lebesgue measure. Local time of Brownian motion on the unit sphere is such an exam-
ple. In this case, the corresponding Revuz measure u is the surface measure on the

@ Springer



LP-independence of spectral radius . . . 603

unit sphere. Moreover, for any u € W'2(R¢), the space of L?-integrable functions on
R? whose distributional gradients are also L2-integrable, it admits a quasi-continuous
version u and there is a Fukushima’s decomposition (cf. [8,22])

U(Xy) —u(Xo) =M+ N}, >0,

where M} is a continuous martingale additive functional of X having finite energy and
N" is a continuous additive functional of X having zero energy. Hence it is natural to
consider generalized Feynman—Kac semigroup defined by

P f(x) = Ex [exp(N)' + AP f(X0)]

where A" is a continuous continuous additive functionals of finite variation with
signed Revuz measure i andu € W12 (R?). Intuitively, its corresponding Schrodinger

operator is
! A + ! A
20 T\t

where Au should be understood in a distributional sense (cf. [16]). Furthermore, if
X is a discontinuous symmetric strong Markov process on R? such as an isotropic
a-stable Lévy process, X has discontinuous additive functionals as well. For example,
for a bounded function F (x, y) on R? x R that vanishes along the diagonal in certain
rate, t —> AF ==Y _._, F(Xs_, Xy) is a purely discontinuous additive functional
of an isotropic a-stable Lévy process X. This gives arise a non-local generalized
Feynman—Kac semigroup

PPT F(x) == E, [exp (N;‘ FAM Af) f(x,)] .
The infinitesimal generator of ( P,"’M ’F) (>0 18
(—A)*? — (u + (—A)“/2u> + a non-local perturbation involving F,

where again (—A)%/?y should be interpreted in a distributional sense.

Using the large deviation principle for occupation time distribution, Takeda [45,46]
proved the L?-independence of the spectral radius of symmetric Markov semigroups
whose symmetrizing measure satisfies the tightness condition. After that, Takeda [49]
extended the results on L”-independence of the spectrum radius in [45,46] to the
case of Feynman—Kac semigroup under the tightness condition for the symmetrizing
measures of the Markov processes. Meanwhile, Takeda [47] proved a characterization
of L?-independence of spectral radius of Feynman—Kac semigroup without assuming
the tightness condition for the symmetrizing measures. The results in [47,49] was
extended to the case of generalized Feynman—Kac semigroups in [19,31,50,51]. The
method of the proofs in [19,31,45-47,49-51] are all based on the large deviation
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principle for occupation time distribution. The results on the L”-independence of
spectral radius in [45—47,49-51] are summarized in the survey paper [48].

In [4,5] (see also [2, Theorem 2.12]), the first named author developed a new
approach to study L”-independence of spectral radius for generalized Feynman—Kac
semigroups generated not only by continuous additive functionals but also by discon-
tinuous additive functionals in the context of symmetric Markov processes. The new
approach is based on the following two ingredients: (i) the analytic characterization
of gaugeability for continuous and discontinuous Feynman—Kac functionals obtained
in [2,3], respectively; (ii) Chen and Zhang’s approach [16] to generalized Feynman—
Kac transform ¢"", where N* is the continuous additive functional of zero energy
for bounded u in the associated Dirichlet space, by realizing it as a combination of
Doob’s h-transform, a Girsanov transform and a Feynman—Kac transform by contin-
uous additive functional of finite variation. This new approach, which does not use
large deviation, has the advantage that it not only extends earlier results in [47-51] to
a larger class of symmetric Markov processes but also gives several new criteria; see,
e.g., [2, Remarks 4.10 and 5.6]. In [5], for generalized Feynman—Kac transform, u
is assumed to be bounded. However, when the symmetric Markov process is a Feller
process having strong Feller property, using a large deviation approach, the function
u can be allowed to be any continuous function in Fjoc as in Theorem 1.2 of [19,31].
Given the importance of Schrodinger semigroups and Feynman—Kac transforms in
analysis and in probability theory, it is desirable to establish these results for general
u and general strong Markov processes.

The main purpose of this paper is to study L”-independence of spectral radius
for generalized (possibly non-local) Feynman—Kac semigroups for a large class of
symmetric strong Markov processes and for general u locally in the domain of the
corresponding Dirichlet spaces. This paper adopts the gaugeability approach of the first
named author in [4,5] but with refinements. We do not require the underlying symmet-
ric Markov process to be irreducible, nor do we assume the symmetric Markov process
to have doubly Feller property or strong Feller property. Using the recent refinements
from [27,28] by the second and third named authors on the analytic characterization
for the gaugeability of generalized Feynman—Kac functionals, we are able to extend
results in both [4,5] and [19,31] (see Theorems 1.1, 1.2, 1.3 below).

Girtner—Ellis theorem provides a useful way to establish large deviation principle.
One of the conditions of the Gértner—FEllis theorem is the existence of logarithmic
moment generating function ([18, Sect. 2.3]). We point out that the L”-independence
of spectral radius of the generalized Feynman—Kac semigroups implies the existence
of logarithmic moment generating function of the generalized Feynman—Kac semi-
group.

We now state the setting of this paper. Let £ be a Lusin metric space (i.e., a
space that is homeomorphic to a Borel subset of a compact metric space) and m a
o-finite Borel measure on E with full topological support. Let E; be a one point
compactification of E with a point 0 ¢ E if E is a locally compact separable metric
space. Otherwise we add d as an isolated pointto E. Let X = (2, Foo, Iy, X, Py, x €
Ej) be an m-symmetric right process on E with lifetime ¢ := inf{t > 0 : X; = 9}.
The transition function P;(x, dy) is defined to be P;(x,dy) := P.(X; € dy) and
set
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Prfx) =Ex[f(Xo) : 1t < ] =E[f(XD)] = /Q J (X (@)Px(dw)

for bounded or non-negative Borel function f on E. Let (£, F) be the Dirichlet form on
L?(E: m) associated with X. Then (£, F) is automatically quasi-regular (cf. [8,39]).
We further assume that X satisfies the absolute continuity condition (AC) (see Sect. 2
for its definition).

Suppose u is a signed smooth measure, that is, ¢ is o -finite and its total variation
measure |u| is a smooth measure (see [22, Sect. 2.2] for the definition of smooth
measures). Let " and 11~ denote the positive and negative variation measure of  in
its the Jordan decomposition, which are smooth measures Let ARF (resp. A* ) be the
positive continuous additive functional associated to 1™ (resp. ™) (see (2.1) below
or [22, Theorem 5.1.4]). We define A* := AR — AR Let Fioc be the family of all
functions locally in F in the broad sense, i.e., u € .7'-“10C if and only if there exist an
increasing sequence {O,} of finely open nearly Borel sets satisfying | J°-, O, = E
and {u,} C F such that u = u, m-a.e. on O,. Since (£, F) is quasi-regular, every
u e f'loc admits an £-quasi-continuous m-version i, and we omit tilde from i, i.e., we
always assumeu € Flocis represented by its £-quasi-continuous version. Every f € F
admits the Beurling—Deny decomposition and LeJan formulae (see [22, Theorem 3.2.1
and Lemmas 3.2.3, 3.2.4 and 3.2.5]):

1 .
E(f,8) = Fuip(E) + / (f () = fFO)* T (dxdy) + / f)?k(dx),
E x E\diag E

where M@) is called the energy measure of continuous part, J is called the jumping

measure, and « is called the killing measure. Hereafter, we fix a u € .7:'100. We may
and do assume u(d) = 0 because we can always take u as u(x) — u(d) whenever
we need. The energy measure u of the contmuous part is well-defined by setting

M(u) = M(u y on Op. The energy measure u of the jumping part is defined by
/,L<u (dx) = ZfE (u(x) — u(y))*J(dxdy) and the energy measure /,L of the killing
part is defined by y, (dx) f E u(x)%k (dx). We define the energy measure () of

u € Foc by 144 T u w T uw - . This definition is consistent with the deﬁmtlon
of energy measure ,u for u € F withu(d) =0.

Let N* be the contlnuous additive functional of zero quadratic variation appeared
in a Fukushima decomposition of u(X;) — u(Xp) up to the lifetime (see (2.3) below).
Note that N* is not necessarily of bounded variation in general. Let F' be a bounded
symmetric function on £ x E which is extended to a function defined on Ey x Ej
so that F(x,0d) = F(9,x) = F(x,x) = 0 for x € Ej (actually there is no need to
define the value F(d,y) for y € E). Then AF := Y _,_, F(X,_, X;) (whenever
it is summable) is an additive functional of X. It is natural to consider the following
generalized non-local Feynman—Kac transforms by the additive functionals A :=

“ 4 A* + AF of the form

ea(t) :=exp(Ay), te]0,¢], (1.1)
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because the process X admits many continuous additive functionals which do not
have bounded variations, and many discontinuous additive functionals. We define
O: f(x) :=Ex[ea(?) f(X;)] for any Borel function f whenever Q; f makes sense. In
this case, Q; f is also Borel measurable under (AC). Owing to (AC), Q; f (x) = 0 for
allx € E if f = 0 m-a.e. So Q; can act on any non-negative m-measurable function.
Let (N, H) be a Lévy system of X (see (2.2) below for the definition). Let Q be the
quadratic form defined by

where

1 1
Ew, fg) = —/ Sdp.g + _/ gditqu,
2/, 2 J;

H(f, g) = fE F)g(x)m(dx) + fE /E F)g ™Y — )N (x, dy)up (dx).

In view of Stollmann-Voigt’s inequality, Q(f, g) is well-defined for f, g € F pro-
vided || + N(IF)pn + py € Sp(X). Here S} (X) denotes the class of smooth
measures in the strict sense of Dynkin class (see Sect. 2 below for the definition of
S})(X)). For p € [1, oo], we define || Q|| », p by

1O: flI
” Qt”p,p = sup #(S oo)’ (13)
rerrEmny N 1lp

where || - ||, is the L”-norm of the measure space (£, B(E), m). Note here that the
supremum can run over f € Lf_(E; m) N B(E)\{0} since |Q; f| < Q| f]. One can
define the L?-spectral radius A, (X, u, u, F) € [—00, oo] by

Ap(X,u, pu, F)
:=sup{a € R : 3y € [0, oo such that || Q[ p,, < ye ¥ for any t > 0},

with the convention sup ¥ = —oo. By (1.3), the semigroup property of (Q;);~o yields
the subadditivity of ¢ — log || Q|| p, p. So one has

.1 1
ApXou, i, F) = = | lim —log|Q;llp.p = — inf = log | Q:llp.p- (1.4)

If (Q, F) is bounded below on L2(E; m) under [l +NUF Dy +pmw) € SlD(X), then
(Q¢)r>0 forms a symmetric Cp-semigroup on L2(E; m) associated to (Q, F) (see [6,
Theorem 3.1], [7, Theorem 1.4]), in particular, (Q;);>0 is an analytic Cp-semigroup
on L?(E; m). Consequently, by [20, Chapter IV Corollary 3.12] with [20, Chapter II
Definition 4.13], the spectral bound equal growth bound condition (see [20, Chapter IV
Definition 2.1] for the definitions of spectral bound and growth bound) is satisfied under
the lower boundedness of (Q, F) on L*(E; m) and |u|+ N(|F)ip + ) € Sh(X),

@ Springer



LP-independence of spectral radius . . . 607

that is, A2 (X, u, u, F) is the largest lower bound of the quadratic form (Q, F) on
L%(E:m), ie.,

AQ(X,u,M,F)zinf{Q(f,f): fe]-"with/fzdmzl}. (1.5)
E

Using the symmetry of (Q;);>¢ and interpolation, it is easy to deduce (cf. [4, (4.2)])
that

191122 = 1Q:llp.p = 1Qtllov,c0 forall p e[l 0]

and therefore
X u, p, Fy = 2pX,u, u, F) > AooX, u, u, F) forall p e [1,00]. (1.6)

Thus to establish the L”-independence of spectral radius, it suffices to show
MX u, 1, F) < dooX,u, i, F). For @ > 0, denote by X@ the a-subprocess
of X. Let S}E x X) (resp. S}{ X), S 11‘ x (X)) denote the class of smooth measures in the
strict sense of extended Kato class (resp. Kato class, local Kato class) with respect
to X. Let S}\, Ke (X) (resp. S ,1\, K (X)) be the family of natural Green-tight measures
of Kato class (resp. natural semi-Green-tight measures of extended Kato class) with
respect to X and S})O (X) the family of Green-bounded smooth measures with respect
to X (see Sect. 4 for the definitions of these families). It follows directly from the
definition that for 8 > o >0, § }\, K X@)y s }V K (X®)). Such monotone property
holds for other Kato classes as well.
Throughout this paper, we assume the following condition:

pEHNE = D eSky(X), i € SkX) and p” + N(F )y € SHX).
(A)

Under (A), (Q, F) on L2(E; m) is well-defined and lower bounded and (Q;) />0 18
a Co-semigroup associated to (Q, F), and so (1.5) always holds. Moreover, (Q;);>0
forms a strongly continuous semigroup on L2(E; m) and there exists C; > 0 such
that || Q¢ll2,2 < Ce€?! forall ¢+ > 0, hence X, u,u, F) > —Cr > —oo always
holds (see [29, Lemma 2.1 and Remark 2.1]).

Our main results are the following:

Theorem 1.1 Suppose that

there is a ty > 0 so that Py, is a bounded operator from LI(E; m) to L°°(E; m).
1.7

Then A,(X, u, u, F) is independent of p € [1, c0].

Theorem 1.1 extends [4, Theorem 5.3], in which m(E) < oo, u = 0, ut +
N(F)huy € SéKoo XDyand u~ € SID(X) are assumed. Theorem 1.1 extends also
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[5, Theorem4.1],in whichm(E) < oo, the boundednessofu € F,, |u|+N(|F)uy €
SéKoo XMy and M)y € SéKoo (XM) are assumed.

Theorem 1.2 Suppose that p* + N(eFJr — Dug € ﬁa>051]\,K1 (X®)Y and Hw) €
Sy k.. XW). Then the following holds.

1 hooX,u, p, F) > min{A2(X, u, u, F), 0}. Consequently, A ,(X, u, i, F) is inde-
pendent of p € [1, oo] provided }>»(X, u, u, F) < 0.
2. Assume that X is conservative. Suppose one of the following holds:

(i) X is transient and @~ + N(F " )uy € S}DO (X). Assume one of the following:
(a) u~ := max{—u, 0} € LP(E; m) for some p € [1, o0].
(b) tuy € Sp,(X) and m(E) < oo
(¢) pw(E) < oo.
(ii) u € Floc is a bounded function and u~ + N(F ™ )upy € SIIVKOO (XM,
Then hoo X, u, , F) = 0if 1o(X, u, u, F) > 0. Hence 1, (X, u, u, F) is inde-
pendent of p € [1, ool if and only if Mo(X, u, u, F) <O.

Note that the conditions of Theorem 1.2 are satisfied if X is transient, u ™+ N (e” -
Din € Sy, X), ) € Syg (X), and u~ + N(F)up € Sp (X). The first
condition in Theorem 1.2 is satisfied if u* + N(ef " — Dy € SI]\'KOQ (XM). Theo-
rem 1.2(1) extends [4, Theorem 5.4], in whichu = 0, u* + N(|F|)uy € S& Ko (XM
and u~ € SlD (X) are assumed. Moreover [4, Theorem 5.4] requires the irreducibility
condition (I) for the use of the gauge theorems developed in [2,3] (see Sect. 2 for
the definition of (I)). Theorem 1.2(1) extends also [5, Theorem 4.2], in which the
boundedness of u € F,, |u| + N(|F)un € SéKoc (XM)y and M) € SéKOO(X(l))
are assumed. Theorem 1.2 extends also [47, Theorem 3.1], in which the transience
and the conservativeness of X, u = 0, F =0, |u| € Sé Ke (X) are assumed (see also
[50,51]). Here [47, Theorem 3.1] requires the irreducibility condition (I) for the use
of large deviation principle. Our Theorem 1.2 does not require condition (I).

Theorem 1.3 Assume m € Si]VKoo (X)), Then Ap(X,u, i, F) is independent of p €
[1, o0].

The condition (A) is satisfied if |£|+N (| F ) ptp + 1ty € Sy (X). Theorem 1.3
extends [4, Theorem 5.5], in which u = 0, m € S{.,  (XV) and |uu| + N(|F|)un €
SIC Koo (XM) are assumed. Theorem 1.3 extends also [5, Theorem 4.3], in which the
boundedness of u € Fo,m € St (XW), [ul+N(Fpn € St (XD)and py €
S]C Koo (XD) are assumed. Moreover, Theorem 1.3 extends [31, Theorem 1.2(1)], in
which the doubly Feller property of X, u € Fioc N C(Ey), m € S}(OO XDy, ut +
NE" = Dpy € SLeX) N SLe(X) and u= + N(F )py € LX) N SHX)
are assumed. As noted above, [5, Theorem 4.3] and [31, Theorem 1.2(1)] require the

irreducibility condition (I). Our Theorem 1.3 does not require (I).
We emphasize again that Theorems 1.1, 1.2 and 1.3 are new even if we consider

the case of Feynman—Kac semigroup P/ f(x) := E, [eAy f(X;)] without assuming
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the irreducibility condition (I). For readers’ understanding, we summarize the sim-
plified versions below. Let 1, (X, u) := 1,(X, 0, , 0) be the LP-spectral radius of
Feynman—Kac semigroup (Pt“ )i>0. Assume ut e S}z gX)and u~ € SlD (X). Then
we have the following:

Theorem 1.4 (Simplified version of Theorem 1.1) Suppose that (1.7) holds. Then
Ap(X, ) is independent of p € [1, co].

Theorem 1.5 (Simplified version of Theorem 1.2) Suppose that ™+ € Ng=0 S}VKI(X(“) ).
Then we have the following.

(1) Aoo(X, ) > min{A2(X, ), 0}. Consequently, A,(X, 1) is independent of p €
[1, oo] provided 1> (X, n) < 0.
(2) Assume that X is conservative. Suppose one of the following holds:

(i) Xis transient and u~ € S})O X).
(i) u= € Syx, XD).

Then Aoo(X, ) = 0if Ao(X, ) > 0. Hence 1, (X, ) is independent of p €
[1, ool if and only if 22(X, ) < 0.

Theorem 1.6 (Simplified version of Theorem 1.3) Assume m € S}\,KOo (XD, Then
Ap(X, ) is independent of p € [1, o0].

Of course, all assumptions for u in Theorems 1.4, 1.5 and 1.6 are satisfied when ||
belongs to Sé Ke (XM (denoted by Koo (X (MY in [2]), a class of 1-order Green-tight
smooth measures of Kato class in the strict sense. Moreover, Theorems 1.1, 1.2 and
1.3 are new without assuming the irreducibility condition (I) even if we treat the case
of L?-spectral radius for Markov semigroup (P;);>0, which are the special cases of
Theorems 1.4, 1.5 and 1.6.

Finally, we expose a new example in the framework of Brownian motion on Rieman-
nian manifold. For the details, see Example 7.4 below. Let (M, g) be a d-dimensional
complete smooth Riemannian manifold with lower Ricci bound. Let m := vol, be
the volume measure of (M, g) and A, the Laplace-Bertrami operator of (M, g).
In this case, the Brownian motion X associated to %Ag is conservative. Assume
infyepy m(B1(x)) > 0and p € [1, 00[. Take V € LP(M; m) and set © = Vm. Sup-
pose p > d/2 (resp. p > 1) ford > 3 (resp.d = 1,2),or p = 1 with |u| € S}<(X).
Then |u| € SICKoo (XM (see Propositions 7.6 and 7.7 below). Let A, (X, n) be the
LP-spectral radius of Feynman—Kac semigroup (Pt” )+>0 associated to the Schrodinger
operator — % Ag — . Then A, (X, ) is L?-independent provided one of the following
conditions holds:

e Py, maps LY (M; m) to L®°(M; m) as a bounded operator for some 7y > 0.
o Loa(X, ) <0.
o me St (X

The rest of the paper is organized as follows. In Sect. 2, we summarize some basics
of Dirichlet forms that will be used in this paper. In Sect. 3, we present some results
on Girsanov transform in connection with the generalized Feynman—Kac transform
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by eNt' for bounded u € .7:'106. The results of this section are slight extension of some
earlier results and will be used to reduce to the case of u = 0 by applying the approach
of Chen and Zhang [16] to realize the transformation eNi' as a combination of a
Girsanov transform and a Feynman—Kac transform by continuous additive functional
of finite variation followed by a Doob’s A-transform. In Sect. 4, we recall the definition
of natural (semi-)Green tight measures of (extended) Kato class from [28], which are
the extensions of the various Kato class measures introduced in [2]. and summarize
the results on the characterization for the gaugeability of non-local Feynman—Kac
functionals. In Sect. 5, we prove main theorems for the case that u € Floc is a finely
continuous nearly Borel bounded function. In Sect. 6, we prove the main results of
this paper in the general case. In Sect. 7, we give several examples on measures that
are in various Kato classes used in the main results of this paper.

In this paper, we use := as a way of definition. For a, b € R, a Vv b := max{a, b},
a A b :=min{a, b}.

2 Preliminary

Let E be a Lusin metric space and m a o -finite Borel measure on E with full topological
support. Let d be a point added to E as an isolated point of Ey := E U {9} (it is
added to E as the one-point compactification of E provided E is a locally compact
separable metric space). The point 9 also serves as the cemetery point for E. Let
X = (RQ,Fx, Ft, X;, Py, x € Ey) be an m-symmetric special standard process on
E with lifetime ¢ := inf{t > 0 : X; = 9} and (£, F) the associated symmetric
Dirichlet form which is quasi-regular on L?(E;m). An increasing sequence {Fy} of
closed set is said to be an E-nest if | i | Fp, is dense in F with respect to 511 /2.
norm. A subset N of E is said to be £-polar or E-exceptional if there exists an £-nest
{Fy} such that N C ﬂ,fil(E\Fk). It is known that a subset N of E is £-polar if
and only if it is X-exceptional, i.e., there exists a Borel set N containing N such that
Puw(og < ¢) = 0 (see [39, Chapter IV Theorem 5.29(i)], cf. [22, pp. 152]). For a
statement P (x) depending on x € E, we say that P(x) holds g.e. x € E if the set
{x € E : P(x) does not holds} is £-polar. A function f on E is said to be £-quasi-
continuous on E if there exists an £-nest { F;} such that f|f, is continuous on each Fj.
Aset B(C Ejy) iscalled nearly Borel if there exist Borel subsets B;, B, of E such that
By C BC ByandP,(X; € Bo\By, 3t € [0, 00[) = O0forallv € P(Ej). Here P(Ejy)
denotes the family of all probability measures on Ey and P, (dw) := f E Py (dw)v(dx).
Denote by B" (Ej) (resp. B"(E)) the family of nearly Borel subsets of Ej (resp. E).
A set A is called finely open if for each x € A, there exists a B € B"(E) such that
E\A C B and P,(op > 0) = 1. The family of finely open sets defines a topology on
E which is called the fine topology of X. An increasing sequence {G,} of finely open
nearly Borel sets is said to be a nest if Py (lim,— o0 76, = ¢) = 1 forqe. x € E.
Denote by E the family of nests {G )} of finely open nearly Borel sets. Note that for an
E-nest {F,,} of closed sets, {G;} € E by setting Gy := ka'mt, k € N, where F,f"m
means the fine interior of Fy. A set B C E is said to be X-invariant if B € B"(E)
and
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Py (X; € Bforallt € [0,¢[, X,— € Bforallt €]0,¢[) =1, x € B.

By definition, any X-invariant set is finely open. A set N C E is called properly
exceptional if N is a nearly Borel m-negligible set and E\N is X-invariant. We say
that (£, F) (or X) is irreducible ((I) in abbreviation) if any (7;),~¢-invariant set B
satisfies m(B) = 0 or m(B¢) = 0. We do not assume the irreducibility condition (I) in
this paper, but we use it in the proof by reducing the case in which (I) is satisfied. Here
(Tt)¢=0 1s the strongly continuous semigroup on L2(E ; m) associated with (£, F). The
transition kernel of X is denoted by P;(x, dy), t > 0. The correspondence between X
and (£, F) is given by T; f (x) = P, f(x) m-a.e. x € E, where

Prf(x) =Bl f(Xe) i1 <]:= /Ef(y)Pz(x,dy) xekE, t>0.

(Here and in the sequel, unless mentioned otherwise, we use the convention that a
function defined on E takes the value 0 at 9). The process X is said to satisfy the
absolute continuity condition with respect to m ((AC) in abbreviation) if for any
x € Eandt > 0, m(A) = 0 implies P;(x, A) = 0 for all A € B(E). Throughout
this paper, we assume (AC). For ¢« > 0, there exists an «a-order resolvent kernel
Ry (x, y) which is defined for all x, y € E (see Lemma 4.2.4 in [22]). Since o +—
Ry (x, y) is decreasing for each x,y € E, we can define 0-order resolvent kernel
R(x,y) := Ro(x,y) := limyg—0 Ry (x, y) provided X is transient. R(x, y) is called
the Green function of X. For a non-negative Borel measure v, we write Ryv(x) :=
fE Ry (x, y)v(dy) and Rv(x) := Rov(x). Note that Ry f (x) = Ry (fm)(x) for any
f € B4(E) or f € By(E). The space of bounded continuous functions on E will
be denoted as Cp(E). The process X is said to have resolvent strong Feller property
((RSF) in abbreviation) if R, (By(E)) C Cp(E) for any/some o > 0. A measure v
on (E, B(E)) is said to be smooth if v charges no £-exceptional set and there exists
an £-nest { F,,} of compact sets such that v(F,,) < oo for each n € N. Let S(X) be the
family of positive smooth measures on E. We say that a positive continuous additive
functional (PCAF in abbreviation) A” of X and a positive measure v € S(X) are in
the Revuz correspondence if they satisfy for any ¢ > 0, f € B4 (E),

t
/f(x)v(dx) =1 lim 1Em [/ f(XX)dA:] 2.1
E o 1 0

v € S(X) is said to be of finite energy integral provided F C L'(E; v) in the sense
that for any f € F, its £-quasi-continuous m-version f belongs to L'(E; v). For
simplicity, we always assume that any f € F (or more generally f € Fioc) is taken
to be £-quasi-continuous. Denote by So(X) the family of measures of finite energy
integrals. For v € Sp(X) and o > 0, there exists a unique Uyv € F such that
Eq(Ugv,v) = fE vdv for any v € F. Uyv for v € So(X) is called the «-potential
of v. v € So(X) if and only if there exists an £-nest {F,} such that 15, v € Sp(X)
for each n € N. It can be proved that for v € So(X), RyV is an £-quasi-continuous
m-version of U, v, hence (v, Ryv) = E,(Uyv, Uyv) < 00. We define Sop(X) := {v €
So(X) : V(E) < ooand Uyv € L°(E; m)}. In the same way of the proof of [22,
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Theorem 5.1.6], for v € Spo(X), there exists a PCAF A} in the strict sense such that
Rov(x) =K, [[;° e *dA}]forx € E. We say that v € S(X) is a smooth measure in
the strict sense if there exists an £-nest { F,,} of compact sets such that 15, v € Spo(X)
for each n € N. Denote by S;(X) the family of positive smooth measures in the
strict sense. For any v € §;(X), v is associated to a PCAF (A});>o of X in the strict
sense under Revuz correspondence, in particular, Ryv(x) = E [ [~ e ' dA}] for
x € E. §1(X) is the subclass of S(X) associated to the PCAFs in the strict sense under
Revuz correspondence (see [22] for the case of locally compact separable state space).
These statement are shown in the framework of regular Dirichlet forms ([22]), whose
proof remains valid in our general setting. A measure v € S1(X) is said to be in the
Dynkin class (resp. Green-bounded) of X if sup, . g Ryv(x) < oo for some o > 0
(resp. sup, g Rv(x) < oo and Xis transient). A measure v € S (X) is said to be in the
Kato class (resp. extended Kato class) with respect to X if limy_, o0 SUP, g RoV(x) =
0 (resp. limy—, oo SUpP, ¢ ReV(x) < 1). A measure v € §1(X) is said to be in the local
Kato class if for any compact subset K of E, 1x v is of Kato class. Denote by S}) (X)
(resp. S})O (X)) the family of measures of Dynkin class (resp. Green-bounded), and by
S}( (X) (resp. S}E x X), Si x (X)) the family of measures of Kato class (resp. extended
Kato class, local Kato class). Clearly, Sk (X) C S, (X) C S},(X), S (X) C S} xX)
and S 1D0 X)csS 1D (X). In view of Theorem 3.1 in [42], any v € § ID (X), in particular
any v € SID0 (X), is a Radon measure on E, because of the regularity of the Dirichlet
form.

It is known that the family of equivalence classes of the set of PCAFs in the strict
sense and the family of positive measures belonging to S1(X) are in one to one corre-
spondence under the Revuz correspondence ([22, Theorem 5.1.4]).

Let (N(x,dy), H;) be a Lévy system for X, that is, N(x,dy) is a kernel on
(Ey, B(Ey)) and H; is a PCAF with bounded 1-potential such that for any nonnegative
Borel function ¢ on Ej x Ej vanishing on the diagonal and any x € Ej, non-negative
Borel function g on [0, oo and (F;)-stopping time 7',

T
Ec | Y e6)p (X, Xy) | =B, UO fE g(s)qs(xs,y)N(XS,dymHg] 22)
]

s<T

(see [8, A.3.33]). To simplify notation, we will write
No(x) = /E ¢ (x, y)N(x,dy).
il

Let uy be the Revuz measure of the PCAF H. Then the jumping measure J and
the killing measure « of X are given by

1
J(dxdy) = zN(x, dy)ug(dx) and «(dx) = N(x,{0})ug(dx).

These measures appear in the Beurling—-Deny decomposition of £ (cf. [8,22]): for
f’ g € ]:e,
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Ef.9)=E(f. 9 +/ (f () = fFON(gx) — g(y)J (dxdy)

E x E\diag

+/E J(x)g(x)k (dx),

where £° is the strongly local part of £.

As noted before, u € Fio is represented by its £-quasi-continuous version. So u is
finely continuous q.e. (cf. [22, Theorem 4.2.2]), i.e., there exists a properly exceptional
set N such that u is nearly Borel measurable and finely continuous on E\N, more
strongly, for any x € E\N,

P, (u(X,) is right continuous at ¢ € [0, {[ and li#n u(Xs) =u(X;-) atr €]0, {[) =1.
sTt

If we replace the state space E with E\ N, there is no essential change of L”-spectral
radius of (Q;);>0. So we may and do assume that u € _7:'10.3 is always finely continuous
and nearly Borelon E. Foru € .7-'100 with p ) € S(X), the additive functional u(X;) —
u(Xo) admits the following decomposition ([33, Theorem 4.2], [34, Theorem 1.2]):

u(X) — u(Xo) = MY + N} 2.3)

holds for all € [0, ¢[ Py-a.s. for q.e. x € E, where M" is a locally square integrable
martingale additive functional, and N* is a continuous additive functional (CAF in
abbreviation) which is locally of zero energy. Moreover, if 1, € SlD(X), then we
can construct M/ as a square integrable martingale additive functional according to
the proof of [31, Theorem 6.2(2)], precisely, M“ can be constructed as the sum

M = M+ M + M~ 2.4)

under () € Sh(X), where M;"/, M;"* and M;"“ are the jumping, killing and contin-
uous part of M" respectively. Those are defined for all € [0, oo[ under the law P, for
all x € E (see the proof of [31, Theorem 6.2(2)]). Note that we do not assert that (2.3)
holds beyond the lifetime ¢. If u is strictly £-quasi-continuous, i.e., there exists an
increasing sequence {F,} of closed sets such that P, (lim, .00 0g\F, = 00) = 1
for all x € E and u|f,us) is continuous on F, U {0} for each n € N, then
N; == u(X;) —u(Xo) — M/ is continuous at all # € [0, oo[ under P, forall x € E,
consequently (2.3) holds for all ¢ € [0, oo[ under P,.

Let p ), u?u), u{m and “I<(u> be the smooth Revuz measures in the strict sense
associated with the quadratic variational processes (or the sharp bracket PCAFs in the
strict sense) (M"), (M*), (M*J) and (M"*) respectively. Then

) (@) = 15 () + ) (@A) + pfy (@),

Note that £(f, f) = $v(s)(E) with vy = pup, + u , + 2, provided f € ..
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3 Girsanov transforms

Throughout this section, we fix u € ]:"loc which is s bounded finely continuous function
M) € SII( (X) and the convention #(d) = 0. In particular, we always have N(UZ)MH €
SLX)and N(eV —U -1y € SL(X), where U (x, y) := u(x)—u(y) forx, y € Ej.
From this, we have the generalized Fukushima’s decomposition in the strict sense:

u(X,) — u(Xo) = M+ M + M"* + N*, 1€l0,¢[

P,-a.s. for all x € E. Note that M*:¢, M"-J, M"¥ are defined as square integrable
martingale additive functionals for all time under 1) € S}< (X) (see the proof of [31,
Theorem 6.2(2)]). We set MY by

MU = M7 4 M (3.1)
There also exists a purely discontinuous square integrable martingale additive func-
tional M¢” 1 such that AM,EU_1 = VX=X 1 1 €0, oo[ Py-as. forall x € E.

Mfu_l is given by

t
M =Ml Y @ - U - DXL X) —/0 N(” —U = 1)(X;)dH,, 1 €0, 00

O<s<t
3.2)
Put M, := M ' 4+ M and let
Uy := Exp(M);, t € [0, o0[ 3.3)
be the solution of the SDE
t
U =1 —i—/ Us_dM;, te€]0,o00[, Py-as. (3.4)
0

Note that U; is positive and a local martingale. Therefore it is a supermartingale.
Moreover, {U;};c[0,00[ 15 @ martingale with respect to X for any starting point under
the boundedness of u and () € S}< (X). This was proved in [16, Lemma 4.1] when
u is a bounded function in F, with ) € S }( (X) but its proof remains valid under
the present generality.

LetU = (2, T, F1, X4, IP’}(C], ¢) be the Girsanov transformed process of X by Uj;.
The transition semigroup {P!},>0 of U is defined by

PV f(x) :=EY[f(X)] = Ex[U, £ (X))].

The following proposition is an extension of [5, Theorem 3.1] and [28, Theorems 3.1
and 3.2].
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Proposition 3.1 We have the following:

1. U, can be represented as follows:

_ ! 1
U = exp (M,U + M~ / N(” — U — 1)(X,)dH, — §<M“>,> :
0
t €10, ool. (3.5)
2. Uis an e~ **m-symmetric Markov process on E.
3. Let A; be a PCAF of X with Revuz measure v, then the Revuz measure for A as
a PCAF of U is e =24y,
4. The Dirichlet form (Y, FY) on L*(E; e=?*m) associated to U satisfies that
FU = F and for any f € FU

1
NS =5 fE e Ol (dx)
+ / (F(0) = F()2e @40 J (dxdy)
(Ex E)\diag

+ / F0)2e Wi (dx).
E

(5) A Lévy system (NY, HY) of U is given by NY (x, dy) := e *O)N(x,dy) and
HY = f(; e X)AH;. That is, uyv = e " uy.

(6) {U:}ie[o,00[ IS a uniformly integrable martingale with respect to X@ for any
a > 0 and any starting point. Moreover, if X is transient and Ly, € S})O (X),
then {U;}ie[0,00] IS a uniformly integrable martingale with respect to X for any
starting point.

Proof The proof of (1) is easy. The proofs of (2) and (4) were done in [28, Theorems 3.1
and 3.2], whose proofs are mimics of the proofs of [16, Lemma 3.1, Theorem 3.4]. (3)
also holds in the same way by the proof of [16, Theorem 3.3], which was not directly
stated in [28] but needed for the proofs of (4) and (5). Note that in [28, Theorems 3.1
and 3.2], strict £-quasi-continuity of u was assumed, but this condition was not used
in the proof. The assertion (5) is noted in [5] after its Theorem 3.1. It remains to
prove (6). By [4, Theorem 3.2], it suffices to check sup, . IE)(CQ) [[M]s] < o0 and
AM; > § — 1 for some § €]0, 1[. Here E)(Ca) is the expectation with respect to X@),
Indeed, AM; = VX=X _ | > ¢=2lulle=1 _ 1 and

sup E [[M o] = sup E[(M) o]

xekE xekE
= sup E{ [(M”*”>w+ > (AM,)Z}
xe€E 0<t<o0

YEE O<t<oo

= sup ]Egca) |:<M_M’C>OO + Z (eU(X,_,X,) _ 1)2j|
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Y€E 0<t<o0

=sup B |

xeE

< sup Eff‘) |: o+ 2l Z U(X;—, Xz)2:|
[ —u,

) +ez||u||oo/ N((ﬁ)(X,)dH,]

o0
sup I, U e Y d(M *"’C),+e2”"”wf e‘”N(UZ)(Xt)dH,]
0 0

xeE

< Q.

The proof for the transient case is similar. O

Remark 3.2 The boundedness of u € .7‘-'10C in Proposition 3.1 is needed to establish
(3.5).

4 (Semi-)Green-tight measures of (extended) Kato classes and
gaugeability

Let 1 be a signed smooth measure in the strict sense whose associated CAF of X is
AR = AFT — AM” Here A*" and A"~ are the PCAFs of X with Revuz measures
ut e S1(X) and u~ € §1(X), respectively. Now we start with the notion of Green-
tight measures of (extended) Kato class in the strict sense given in [2, Definition 2.2].

Definition 4.1 (Green-tight Kato class measures) Let v € S1(X) and take an « > 0.
When o = 0, we always assume the transience of X.

1. v is said to be an «-order Green-tight measure of Kato class with respect to X if
v e S11< (X) and for any ¢ > 0 there exists a compact subset K = K (¢) of E such
that

sup Re (1gev)(x) = sup / Ry, y)v(dy) <.

xeE xeE

2. v is said to be a a-order semi-Green-tight measure of extended Kato class with
respectto X if v € S}; x (X) and there exists a compact subset K of E such that

sup Ry, (1gcv)(x) = sup/ »Ra(x, yv(dy) < 1.

xeE xeE

3. v is said to be an a-order Green-tight measure of Kato class with respect to X in
the sense of [2] if for any & > O there exists a Borel subset K = K (¢) of E with
V(K) < oo and a constant § > 0 such that for all v-measurable set B C K with
v(B) < §,

sup Ry (1pukev)(x) = SUP/ Ro(x, y)v(dy) < e. 4.1
BUK®

xeE xeE
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4. v is said to be a a-order semi-Green-tight measure of extended Kato class with
respect to X in the sense of [2] if there exists a Borel subset K of E withv(K) < oo
and a constant § > 0 such that for all v-measurable set B C K with v(B) < 4,

sup Ry (1pukev)(x) = Sup/ Ro(x, y)v(dy) < 1. (4.2)
BUK®

xeE xeE

In view of the resolvent equation, for positive «, the a-order Green-tightness of Kato
class is independent of the choice of « > 0. Let denote by S ! K (X) (resp. S 1 CKE X))
the family of positive order Green-tight measures of Kato class (resp. the fam1ly of
positive order Green-tight measures of Kato class in the sense of [2]) with respect to X.
The class S}(OO (X) (resp. S}(l (X)) is then denoted as the family of 0-order Green-tight
measures of Kato class (resp. 0-order semi-Green-tight measures of extended Kato
class), and the class Sé Koo (X), (resp. Sé K (X)) is then denoted as the family of the
family of 0-order Green-tight measures of Kato class in the sense of [2], (resp. the
family of 0-order semi-Green-tight measures of extended Kato class in the sense of
[2]) with respect to X. Clearly, S1 K X)) = S1 (X(l)) Note that since a Green
kernel is invariant under time change by PCAF assoc1ated to a non-negative smooth
measure with full quasi support, the definitions of S CKe (X) and Sc e (X) are invariant
under such time change in contrast to the Kato class Sy L (X). It is known in [2] that
Sk, X) C St X) C S (X) N Sp(X), S! ekt (X) C Sp(X) and St (X) C

S}( (X). Since any measure v in Definition 4.1 belongs to S p, (X), itis a Radon measure,
the Borel set K in Definition 4.1(3), (4) can be taken to be a closed set or an open set
(see [2, remark after Definition 2.2]). Moreover, such closed set K can be taken to be a
compact set, in particular, we always have Sé K X)ycsS 11(;0 X), Sé Ke X)cs }(OO X)
and SICKl X) C S}<1 (X). Indeed, take v € SICKJr (X), e > 0, and a closed set K such
that (4.1) holds. Then there exists a compact subset C C K with v(K\C) < § fora
given § > 0, because v € S})O (X) is a Radon measure on E. Since v € SIC K (X), we
have sup, g Rylcev(x) = sup, g Relgeu\o)v(x) < €.

Let v € S1(X) and denote by Ay PCAF in the strict sense associated to v in Revuz
correspondence. Denote by S the support of A” defined by S}, :={x € E : P,(R =
0) = 1}, where R(w) := inf{t > 0 : A/ (w) > 0}. S} is nothing but the fine support of
v, i.e., the topological support of v with respect to the fine topology of X. Let X, v)
be the time changed process of X by A} and (£, F) the associated Dirichlet form

on L?(S"; v), where S is the support of v. It is known that & Fisa quasi-regular
Dirichlet form and S"\S}, is é- polar, i.e., 1-capacity 0 set with respect to (£, F). The

lifetime of (X, V) is given by Az. Let C¥ : 2F — [0, oo] be the weighted 1-capacity
with respect to (év’, f), i.e., for an open subset G of E, we define

C'(G) :=inf{&(f, f): f€F, f> Rip v-ae.onG)}
and for arbitrary subset A of E

CY(A) :=inf{C"(G) : A C G, G is an open subset of E},
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where Iélgo(x) =E, [fooo e’A;,go(X,)dA,”] is the 1-order resolvent of a v-a.e. strictly
positive bounded function ¢ € L!(E; v) under (X, v) and c‘:’l(f, f) = év‘(f, )+
f e f 2dv. We emphasize that C" is defined to be an outer capacity on E. By definition,
C"(E\S") = 0. Note that C*(E) < &1(Rip, Rip) = [, 9(x)Rip(x)v(dx) < oo
always holds. Note also that CV is tight in the sense that there exists an increasing
sequence {K,} of compact subsets of S” such that lim,_. o, C"(S"\K,) = 0 equiv-
alently lim,—, - C"(E\K,) = 0. Hence any quasi closed set with respect to C" is
quasi compact in the sense of Fuglede [21, Lemma 2.2]. By [21, Theorem 2.10], any
decreasing sequence {A,} of quasi closed subsets of E with respect to C" satisfies

cY (ﬂ An> - ggc”mn). 4.3)
n=1

Now we introduce the following new classes of (semi-)Green-tight measures of
(extended) Kato class by replacing the v-measure smallness condition “v(B) < §”
in Definition 4.1 with the capacity smallness condition “C"(B) < §” for the time
changed process induced by the measure v.

Definition 4.2 (Natural (semi-)Green-tight measures of (extended) Kato class) Let
o > 0andv e §1(X).

1. v is said to be an «-order natural Green-tight measure of Kato class with respect
toXifv e S}) X) (v e SlD0 (X) for @ = 0) and for any ¢ > 0 there exists a closed
subset K = K (&) of E and a constant § > 0 such that for all v-measurable subset
B C K with CY(B) < é,

TBUKC
sup E, [/ e_‘”dA;’] <e.
xek 0

2. vis said to be a 0-order natural semi-Green-tight measure of extended Kato class
with respect to X if v € SlDO (X) and there exists a closed subset K of E and a
constant § > 0 such that for all v-measurable subset B C K with C"(B) < §,

sup E, [A?BUKC] <1.

xeE

In view of the resolvent equation, for positive «, the «-order natural Green-tightness
is independent of the choice of @ > 0. We use S]]v K+ (X) to denote the family of
positive order natural Green-tight measures of Kato class with respect to X. The class
S 11\, Koo (X) (resp. S }V i (X)) is then denoted as the family of 0-order natural Green-
tight measures of Kato class (resp. the family of 0-order natural semi-Green-tight
measures of extended Kato class) with respect to X. Similarly, as we remarked after
Definition 4.1, the closed set K appeared in Definition 4.2 can be taken to be compact,
because the weighted 1-capacity C" is tight. Clearly, S 1lv K X)=S }V Ke (XM), Since

f 5 & dv < CV(B) holds for the v-a.e. strictly positive bounded function g := (1?190)2 €
LY (E;v), by [28, Lemma 4.2], we have S{.x (X) C Sy, (X) and Si4 (X) C

@ Springer



LP-independence of spectral radius . . . 619

Szlv e (X), hence Slc K X) c S}\] K (X). It is shown in [27, Proposition 4.1] that
Sk XDy =5 (XD =8, (XD) (Sg_(X) = St (X) = Sy (X) under
the transience of X) provided X is a (resolvent) doubly Feller process.

Let G be a non-empty finely open nearly Borel subset of E. The cemetery point 9
is also an isolated point of G U {3}. Let XY := (2, X;, PY) = (Q, XU, P,) the part
process of X on G defined by

X% .= {Xt <76, under P,

Tl 9 t>1g

We consider the lifetime ¢g of X© defined by ¢ :=inf{r > 0: X ,G = 0} under IP’?.
Of course, the distribution of ¢ under IF’? coincides with the distribution of 75 under
Py.

Lemma 4.3 Let G be a finely open nearly Borel subset of E. Suppose that (1.7) holds
for X. Then (1.7) holds for X©.

Proof It is easy to see || P ll1,.00 = Sup{ll P, fllo : f € LL(E;m), | flly = 1}. Then
the assertion is clear from

1P 100 = sup{ll P flloo = f € LY(E;m), f =0 m-ae.on E\G, || fIh =1}

> sup{l|PE flloo : f € LL(G;m), I £1l1 = 1} = IPC 11,00
O

It is known that the Dirichlet form (£g, Fg) on L2(G; m) associated to XY is
quasi-regular. So we can consider several notions on (£g, Fg). For example, the
family So(X©) of measures of finite energy with respect to X and so on. For a Borel
measure on E, denote by v|g the restriction of v on G defined by v|g(A) := v(A) for
A € B(G). For the proof of main theorems, we need the following lemma.

Lemma 4.4 Let G be a finely open nearly Borel set. Then we have

1. v € So(X) (resp. v € Soo(X)) implies v|g € So(X%) (resp. vig € Soo(X9)).
v e S(X) (resp. v € S1(X)) implies v|g € S(XY) (resp. v|g € S1(X9)).

v e SE(X) implies v|g € SH(X%).

Ve S{;(X) implies v|g € Si(XG).

v € S} (X) implies v|g € Sk (X9).

SR W

Suppose further that X is transient. Then
6. v e Sy, (X) implies v|g € S}, (XY).
7. v e Stg (X) implies v|g € S (X9).
8. v e Sty (X) implies v|G € S¢, (XO).
9. v e Syx (X)implies vig € Sy (XY).
10. v € Sy, (X) implies v|G € Sy, (X9).
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Proof The proof of the first assertion in (1) is easy, because F C L'(E; v) implies
Fo C LY (G;v). (2) easily follows from (1). The assertions of the second part of (1)
and (3)—(5) follow from the estimate:

[e9] G [e9]
RSv|G(x) :=EY U e—afdA,”] =E, [/ e_"”dAt”} <E, [/ e“”dA;’:|
0 0 0

= Ryv(x).

Here IF’? is the law for the part process X¢. The assertion (6) follows the estimate
RCv|g(x) < Rv(x). The proof of (7) follows the following: For any & > 0, take a
Borel set K = K (¢) with v(K) < oo and a subset B of K, we see for B := BN G
and Kg := K N G that

sup RGIBGU(G\K(;)V|G(X) < sup RIBU(E\K)V(X) < €.
xeG xekE

The proof of (8) is similar. We now prove (9) and (10). By [28, Lemma 4.4],
for any decreasing sequence {D,} of Borel subsets of G, it suffices to prove
lim,, oo C;(Dy) = 0 implies lim,,, oo C¥(Dy,) = 0. Here CV (resp. C;) denotes
the 1-weighted capacity with respect to ()V(, V) (resp. ()V(G, v|g)). Recall that these
1-weighted capacities has the continuity for decreasing sequence of quasi-closed sets

by (4.3). Denote by D_ngG the év’G-quasi—closure of D,,. Then we have
N ¢ g
T <G . T <G
Ct; (ﬂ D, ) = lim CG(Dy%) =0,
n=1

that is, (), D_,LEG is an Evg-polar set. Applying [32, Lemma 3.5(ii)] to the Dirichlet
form (€, F) on L%(S”; v) associated to the time changed process (X, v), we have the

&-polarity of (22, D_ngG, ie., CY (ﬂ;’;l D_ngG> = 0. Applying [32, Lemma 3.5(iv)]

to (év' , F ) again, we see the & -quasi-closedness of D_nSG. Hence

n—o00

« o «
lim CY(Dy) < lim C'(D, %) =" (ﬂD_n G) =0.
n=1

We see that for any C € B(E),

EZ[AY] = Ex[AY o] < E[AY L.

Now the assertions follow from this estimate. O

Let (N, H) be a Lévy system of X. Consider a finely open nearly Borel set G.
Define N (x, dy) := 16(y)N(x,dy) + N (x, Ey\G)85(dy) and let HC be the PCAF
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of X¢ under PY associated to the Revuz measure jty|g. Then HS under PY has
the same distribution as H;n,; under P, for x € G. The following lemma follows
immediately from the definition of Lévy system (2.2).

Lemma4.5 (N9, HO) is the Lévy system of X©.

Let ¢ be a bounded non-negative symmetric function defined on E x E satisfying
¢(x,x) = 0 for x € E. We further assume that ¢ is extended to be a function
on Ey x Ey with ¢p(x,9) = ¢(9,x) = 0 for x € Ey. Then we see NG(¢)(x) =
J . »)N(x, dy).

Lemma 4.6 Let ¢ be the function as above and G a finely open nearly Borel set. If
N@nn € Sy, X) (resp. N(@)un € SpxX), N@)uu € Sp(X), N@)un €
Sy X)), then NO(@)un € Sky, (XO) (resp. NG @)un € Shx(XO), N(@)un €
SpX), NC(@)un € Sp, (X9)).

Proof First we prove that N(¢)uy € S(}:;K (X) (resp. N(p)n € SlD X), N(p)ug €

Sp, X)) implies NO(@)un € Spx(X?) (resp. N@)un € Sp(X9), NC@)un €
SLO (X9)). For a > 0, we see that

RENC (@) (x) = EC [ /0 ” e—“NG@)(Xx)st}

_E, f ¢ e f ¢<Xs,y>N(xs,dy>st]
LJO G

<E, / T / ¢<Xs,y)N(Xs,dy)st]
0 E

_E, /O e—“N(qs)(xs)dHY] — ReN(@)r (x)

implies the assertions by Lemma 4.4(5), (6). Next we prove that N(¢)upg € S}VKI X)
implies N9 (¢)upy € S}VKI (X9). This follows from that for C € B(G)

ES [ fo “ NG(¢>(xs>st} _E, [ /O R NG(¢>(xs)st}
<E, [ fo “ N(¢)<Xs)st]

with Lemma 4.4(8). O

For a finely open nearly Borel set G, ( QtG),Zo denotes the Feynman—Kac semigroup
obtained from the part process XY, which is defined by QtG f(x) :=Eslea®) f (X)) :
t < 16]. Under (A), we see that (Q,G),zo is a Cp-semigroup on L?(G; m) associated
to the quadratic form (Q, F5) on L*(G; m).

For an AF A, we say that (X, A) is gaugeable if

sup Ey [exp(A;)] < 00.

xeE
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From here to the end of Theorem 4.10, we assume the transience of X and irreducibility
condition (I) for the characterization of gaugeability of Feynman—Kac functionals.
The following lemmas and theorem are proved in [27] under the assumption that
E is a locally compact separable metric space and m is a positive Radon measure
with full support, which are modifications of Lemmas 2.7, 2.14, Theorems 2.8, 2.15,
Corollaries 2.9, 2.16 and Theorems 2.10, 2.11 in [2]. Those proofs remain valid in the
framework of this paper and they are quite similar as those in [2].

Lemma 4.7 (cf. [27, Lemma4.2]) Set A := A* + AT and e (1) := exp(A;). Suppose
that pt + N(ef" — Duy € S}VK] X)and u= + N(F)ug € s})O(X) hold. Then
we have the following:

1. If (X, A) is gaugeable, then for any 6 > 0 there is a constant c(§) > 0 such that

o0
gl gax) < ZEX [ea(rly) ity <] <c(®) <00 forallx € E.
n=0

Here 17 := inf{s > 0 : A" > t} is the right continuous inverse of A" with
np = wt+ %N(e”FJr — Dy and g4 (x) := Ex[ea(¢)] is the gauge function for
A= A* + AL
2. The following are equivalent:
(a) (X, A) is gaugeable.
¢ ut Ft
(b) E, [fo ea(d(A + Al )] < o0 for some x € E.

n
() sup,.p Ex [fof ea(td(A" +Af+)] < .
(d) E, [sup,e[oyg] eA(t)] < oo for some x € E.
(e) sup,cp By [sup,cjo ea®)] < oo
(f) (X*, AT 4 AFTY s gaugeable. Here X* is the killed process of X by
7Ali_7AF7
e it

Remark 4.8 (cf. [27, Remark 4.1]) If m € S})O (X), under the same condition as in
Lemma 4.7, without using time change, we have the following: Suppose that (X, A)
is gaugeable with A = A* + AF and ey (1) == exp(A;). Then, for any § > 0, there is
a constant ¢(§) > 0 such that

o
lgall gatx) < Exlea(nd) :ns < ] <c(8) <oo forallx € E.
n=0

By Remark 4.8, we can prove the following:

Lemma 4.9 (cf. [27, Lemma 4.3]) Suppose m € S})O X), ut + N(eF+ — Duy €
Syk,X)and u= + N(F ) € Spy (X). Set A := A* + AF and ea(1) = exp(A,).
Then the following are equivalent:

1. (X, A) is gaugeable.
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2. For some § > 0 and some x € E,

o
ZEX [ea(nd) :nd < ¢] < 0. (4.4)
n=1

Forall 5 > 0andall x € E, (4.4) is true.

For some x € E, E, [fog eA(t)dt] < 0.

sup, g Ex [f(); eA(t)dt] < 0.
There exists some t > 0 such that sup, g Ey [ea(t) 1t < ¢] < oo.

There are constants C > 0 and b > 0 such that sup, g Ey[ea(?) : 1 <] <
Ce ™ forallt > 0.

NS L AW

Recall that the quadratic form (Q, F) defined in (1.2). We consider the case u = 0.
Using Lemma 4.9, we can prove the following theorem, whose proof is similar to that
of [2, Theorem 2.12].

Theorem 4.10 (cf.[27, Theorem 4.2]) Suppose thatm € SIDO X) withm(E) < oo and
u = 0. Assume ut + N(F" — Dupy € Sy, X) and u= + N(F)py € Sp (X).
Set A := A* + AF and es (1) == exp(A;). Then (X, A) is gaugeable if and only if

A2 (m) ::inf{Q(f, f): f eCwith / f2dm=1} > 0.
E

Consider the non-local Feynman—Kac transforms by the additive functionals A :=
N“+ A"+ AT of the form (1.1) under (A) for finely continuous nearly Borel u € Flioc.
If such u is a bounded function and () € S [1( (X), then {U; };¢[0,00[ forms a uniformly
integrable martingale on [0, oo[ under XM by Proposition 3.1(6). We have that for all
1 €10,¢[,

ea(t) = U X0=u(X0) oy (Af + Af) , (4.5)

where vV = vi — vy and vy := /,L++N(€U —U—-Nug +%,u?u> and vy := ™. Hence
forx € E and f € B, (E),

Ey lea(®) f(X)] = e @ EY [exp (A} + AT) (¢" £)(X)]. (4.6)

Recall that S, is the fine support of A} for a smooth measure v € S1(X). We have
the following:

Lemma4.11 (cf. [28, Lemma 4.5], [27, Lemma 4.1]) Suppose that u ]'-"10C is a

bounded finely continuous nearly Borel function and 1,y € Sll( (X). Then the following
hold:

1. Forv € S;,(X), e™*v € SH(U).
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2. Forv e Sp(X), e"*v e Sk (U).
3. Forv € Sp(X), e 2y € S} ().
4. Forv € S}(m (XD, ¢=2uy ¢ S11<oo (U,
5. Forv e St (XW), ey e St (UW).
6. (a) Assume iy € Sy (XD). Forv e Sy, (X)), e7%v e Sy, (UD).
(b) Assume that X is transient and () € SI]VKoo (X). Forv € S}\,KOc (X), e 2y €
Svk., 0.
(7) (a) Assume fLyy € S}VKOO(XU)). For v € S}\,KI(X(I)), we have e~y €
Syx, (UD).
(b) Assume that X is transient and (L) € Sll\’Koo (X). Forv € S}\,Kl (X), we have
e v € Sy (U).

Proof The proofs of (1)—(5), (6)(a) and (7)(a) are essentially done in [27, Lemma 4.1].
The continuity of u is assumed in [28, Lemma 4.5], [27, Lemma 4.1], but its proof does
not depend on it. Moreover, the strict £-quasi-continuity of u is also assumed in [28,
Lemma4.5], [27, Lemma 4.1] instead of the uniform integrability of {U; };¢[0,00] under
X @ The assertion of [27, Lemma 4.1] is a special case of [28, Lemma 4.5]. Both of
them require the irreducibility condition (I). But the proof of [28, Lemma 4.5] does
not use (I). So we can apply [27, Lemma 4.1] without (I). Though the transience of
X is also assumed in [27], the proofs of (1)—(5), (6)(a) and (7)(a) remain valid without
assuming it. The statements of (6) and (7) are improvements of [27, Lemma 4.1(6),
(7)]. It suffices to prove (6)(b), because the proof of (7)(b) is similar. Suppose that X is
transient and ft() € S}\, Koo (X). Then {U;}1¢[0,00f 18 @ uniformly integrable martingale
with respect to X. By Holder’s inequality,

11
o 41, =2 [ a2, < B et s ]
xXe

it suffices to prove that for p > 1

lim sup EX[U{’DH] < 00. 4.7)

}’l—>OOx€E

Wy NV =U=p .
Take v € S}VKOO (X) and assume S; D SO( ! . g-e. In this case, for p €

11,00 and g = %, the measure 1, defined by
q 2 Pq
up = N@Y = p*U = Dpr + (0 = Disfy
satisfies u, € § }\, Ke (X), hence for any decreasing sequence {D,} of Borel sub-

sets satisfying Py(lim,o00p, > ¢) = 1 qe. x € S D Sg” g.e., we have

lim,— o0 SUP,cf EX[AI;LQ’"] = 0. Thus we can obtain
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EN

1 1
lim supE,[UF ] < lim supEy [exp (A’;,f”)]q =
n—0o0 . n n—o0o g 1 — lim sup E, I:Agp :|
n—00 . .p Dn

=1

J+N (U -U-Dup

Therefore we have e~ 2y € S 11\, k., X) under S, D Sh g.e. It is easy

y CaFNEY—U-1)
to see S(‘jﬂ” ' 5’0” T o g.e. so that ey + Hw)) € SIlVKoo (U), hence

e v e Sy (U). o

Lemma 4.12 Suppose that E is a locally compact separable metric space with one
point compactification Ey , m is a positive Radon measure with full support, and
(€, F) is a regular Dirichlet form on L*>(E; wm). Let v be a function defined on Ej.
Suppose that v € F, v(d) = 0 and v is finely continuous q.e. on E. Then v is strictly
E-quasi-continuous on Ej.

Proof By [22, Theorem 2.1.3], v admits a strictly £-quasi-continuous m-version v
with ©(d) = 0. Then v itself is finely continuous q.e. by [22, Theorem 4.2.2]. Since
v = ¥ m-a.e., we can conclude from [22, Lemma 4.1.5] that there exists a capacity
zero set N such that v = v on E\N. Taking a common strict £-nest {F},} of closed
sets such that N C ﬂ;’ozl (E\F,) and v is continuous on each F,, U {9}, we see that v
coincides with v on each F;, U {d}. This implies the strict £-quasi-continuity of v on
Ey. O

Remark 4.13 Lemma 4.12 is a refinement of [22, Lemma 4.2.2(1)].

Lemma4.14 Forv € Sy, (X)), we have inf g By [ [o~ e™*'dA}'] = 0 for every
o > 0, that is, R,V is an a-potential.

Proof We may assume that E is a locally compact separable metric space, m is a
positive Radon measure on E with full support, and (£, F) is a regular Dirichlet form
on L2(E ; m). Indeed, (see [39, Chapter IV Theorems 1.2, 1.6 and Corollary 1.4]), by
replacing E with | ;2 Ex for some E-nest { Ex} of compact sets, there exists a locally
compact separable metric space E* such that

(i) E is a dense subset of E? and B(E) = {A € B(E") : A C E}.
(ii) The relative topologies on Ey induced by E, E¥ coincide for every k € N.

(iii) The image (€%, F*) of (£, F) under inclusion map i : E — E* is a Dirichlet
form on L2(E%; m¥), where m® := moi~! is a positive Radon measure with full
support.

(iv) {F¢}is an EF-nest, then {F; N E} is an £-nest. Conversely, if {F; N E;} is an
E-nest, then {Fy} is an E%-nest.

(v) NFis Ef-polar if and only if N* N E is £-polar. In particular, E*\ E is £%-polar.

(vi) A function u” : E* — R is £-quasi-continuous if and only if u*|£ is £-quasi-
continuous.
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(vii) Let X = (2, X;, Py)xck, be a Borel right process properly associated to the
quasi-regular Dirichlet form (£, F). Then there exists an £-polar set N such that
E\N is X-invariant and if X* is the trivial extension to E* (cf. [39, Chapter IV
3.23(i)]) of X restricted to E\N, then X* is a Hunt process properly associated
to (7, F% on L2(E®; m¥), where Eg is taken as the one point copactification
of E*.

As noted in the proof of [39, Chapter IV Theorem 2.4], we can see that every PCAF
(A;)r=0 of X in the strict sense can be extended (e.g. by 0) to a PCAF (Af),zo of X?
in the strict sense. In particular, for every v € S;(X), its trivial extension v¥ defined
by v¥(A) = v(A N E) for A € B(E*) belongs to S;(X*). The following are easily
confirmed:

1. For the PCAF (A;);>0 of X in the strict sense associated to v € S1(X), we

have E, [ [;? e *'dA;] = E?(x)

time from i(B) with respect to X*. In particular, inf ez E, [fooo e dA] =
inf s pe Eiu [fooo e_"”dA?], because P, s (A* = 0) = 1 for x* € E*\E.

2. v e SHX) (resp. v € Sy (X), v € Sp (X)) implies v¥ € S} (XF) (resp. V¥ €
SL(XF), 17 e Sk (XH).

3.ve S/]VKOQ(X(I)) (resp. v € S}\,KI(X(I))) implies V¥ e S}VKOO(Xﬁ’(l)) (resp. vF €
SIIVK] (Xﬁ,(l))).

%
|:f0’<3) e_"”dAf]. Here riﬁ(B) is the first exit

So we can and do assume the local compactness of E and so on in the present proof.
By definition of v € § }V Ke (X)), for any & > 0, there exists a Borel subset K and a
constant § > 0 so that for every Borel subset B C K with C¥(B) < §,

TBUKC
sup E, |:/ e_‘”dA;’] <e.
xeE 0

We may assume such Borel set K can be taken to be compact. On the other hand, by
[22, Theorem 2.3.15] there exists an increasing sequence of £-nest { F} of closed sets
such that v(F;) < oo and 15, v € So(X) for each k € N. Let j > 1 be large enough
so that C"(K\F;) < 8. Let u1(x) := Rylpnxv(x) and uz(x) := E,[e” ¥k
Then u; € F. Moreover, us € F due to the regularity of (£, F). It is easy to see
u1(9) = up(d) = 0. Then we have the strict £-quasi-continuity of u; + up on Ej
by Lemma 4.12. Let {K,,} be a strict £-nest of closed sets such that (11 + u2)|x,u(5)
is continuous on each K, U {9}. Hence inf,cp(u; + uz)(x) < (u; + uz)(x) —
(u1 +up)(@) =0as K, > x — 0. It follows that

inf Ryv(x) = inf (Rolknr,v(x) + Relgeuk\ V(X))
xekE xeE

< inf (R,1 g, | [ agar | 4og, [emeonor
= wlknFv(x) + Ex A e TdA; |+ Ey e ’Ra”(Xaszj)

f
xek

p FREVENED oy —QoKNF;
< lng Rolgnp;v(x) + Ex e “dA; | + [[Rev]lecEx | e i
xXe ()
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< inf (u1(x) + & + [[Ryvlloou2(x))
xek

< &+ max{[|Ravlloc, 1} inf (11 (x) +uz(x)) = &.
xe

Since ¢ > 0 is arbitrary, we have infycg Ryv(x) = 0. O

Remark 4.15 In [4, Lemma 4.6], the first author proved infc g Ey [fooo e“’”dA}’] =0
(¢ > 0) forv € Sé Koo (XY under the condition that X is transient and has no
killing inside. Since S¢., (X)) C Sy (X)) (see [28, before Proposition 4.2]),
Lemma 4.14 extends [4, Lemma 4.6].

5 LP-independence of spectral radius for generalized Feynman-Kac
semigroups with bounded u

Throughout this section, we assume condition (A) holds and thatu € floc is abounded
finely continuous and nearly Borel function and ) € S ,1( (X). We do not assume (I).
Note that under (A), (Q;);>0 associated with the generalized Feynman—Kac transform
(1.1) is a bounded semigroup in L (E; m). Indeed there exists pg > 1 sufficiently
close to 1 such that pu™ + N(ePF+ — Dug € S}SK(X) for any p € [1, po[. Indeed,

+ ,)F+_
sup E,[APH 4 ANE" —Dua

xeE

F+_ F+_ Ft
< sup E, [Ai” +Ar ”"”} + sup E, [(p — DAl AN )’*”]

xeE xeE

o
< supE, [Aﬁfr + AN _1)“”i|

xeE
t
+(p =~ Dsup B[4 T+ (p — DT I sup [/ N <F+><xs)de}
xeE xeE 0
yields the assertion, because of u™ + N(FNuy € Sll) (X). Here we use the estimate

ePFT — eF < IF o (o= DFT 1y < (p — 1)2IF e

Let g := p/(p — 1) be the conjugate exponent of p €]1, po[. We then see that for
small r > 0

N
E.fexp(pAl" + pAF )] = E[Exp(APE" 4+ A" =11
1

< < 0
= + pFT_
1—sup, .y B [AP*" +A¢ B

6.D
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and
E.[exp(gN/)]

t 2
= ¢ UWEs [exp (/ N(e?Y — qU — 1)(X,)dHy + %(M“ﬂ,) equ(xﬂ}
0

24l

A

< Q.

1 —sup, . BV [fo’ NV — qU — 1)(X)dH, + %(M—uvq,]

Here U, = (2,X,, ]P’,[C]") is the Girsanov transformed process by U,q =
Exp(M“qU7l+M’q“'”), andqU (x, y) := qu(x)—qu(y). Uy isan e~ 24" m-symmetric
Markov process. Note here that e 2 (N (e1V — qU — Dpy + %M?u)) € S,1< (Uy)

holds by Lemma 4.11(2), because of the boundedness of u and 1) € S}( (X). Thus,
for sufficiently small # > 0 we have

10¢llc0,00 = Qs 1lloo < sup Exlexp(Ny' + A} + A)]

xeE

U1t ut Fro 1
< sup E,[exp(¢gN," )] sup E,[exp(pA; + pA; )]7 < oo.

xeE xeE

By use of the Markov property, there is Co €]0, 0o[ depending on ||u ]|« such that
101 llco.00 < Cooe€! forallt > 0, hence Aoo(X, u, jt, F) > —Cs > —00. Thus we
have

_COO S)"OO(Xs uv :u/! F) S)“p(Xv u? Ms F) S)"Z(Xi uv M! F) for p € [lvoo]'
(5.2)

In this section and the next, we will adopt the approaches from [4,5] to establish the
LP-independence of spectral radius A, (X, u, i, F) .

Lemma 5.1 We have the following:

1.t + NEf" = Dupy e St « X) is equivalent to p* + NEYEr —)uy €
S} ¢ X) provided iy € Sg (X).

2. Fix a > 0 and assume the transience of X ifa = 0. u* + N(eF+ — Duy €
SéK] (X@) is equivalent to u* + NV (ef — ))uy € SéKl (X@) provided

0 € Sk (X

3. Fix o > 0 and assume the transience of X ifa = 0. u* + N(eF+ — Dug €
SIIVKI (X@) is equivalent to ut + NV (f — ))uy € S}VKI (X@) provided
I € Sy, X®).

Proof Since eV(ef" — 1) = (¥ — D(ef" — 1)+ (" — 1) and |eV — 1](ef" —

1) < elUleyef™ — 1), it suffices to show that N(|U|(e" — D)up € Sk(X)

(resp. € SéKOC (X@), ¢ S}\,KDC (X)) under ) € S)(X) (resp. € SéKOO(X(“)),

€ Sll\’Koo (X®))). This can be easily confirmed because of N(UZ)MH € S}((X)
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(resp. € St (X@), € Sy (X)) under iy € Si(X) (resp. € S¢y (X)),
€ Syx, XN and N((e"" = DI < (@I — el Pl N(FHuy € SpX).
]

Theorem 5.2 Suppose that (1.7) as well as condition (A) holds. Then X, (X, u, u, F)
is independent of p € [1, oo].

Proof Step 1: First we prove the assertion under u = 0 and m(E) < oo. We write
ApX, w, F) == 1p(X,0, u, F) for p € [1, 00]. Note that 1>(X, u, F) < oo holds
under (A) by (1.5). Suppose first A»(X, i, F) > 0. Then for any ¢ €]0, A2 (X, u, F)[,
there is 6(¢) > 0 such that
10ll22 < e P2 mFI=E) for 1 > §(e). (5.3)
Assume that (1.7) and (A) hold. On the other hand, since ut + N(eF+ — Duy €

s! x (X), there exists p > 1 sufficiently close to 1 such that put —1—N(61”FJr —Dupg €
Sgx (X). By Markov property of X and (5.1), there exists C = C(p) > 0 such that

sup [exp (pAﬁﬁ + pAer)] < Ce“ forall t>0.

xeE

Thus for every f € LY(E; m) withg = # and x € E, by Holder’s inequality,

101 F 0] = Ex [exp (4 +AF) £ (X |
< (B [ow (pat” + pa1)]) " B0 L1k )

l/p
= (Ce“) TP IS Nl (5:4)
Under A>(X, u, F) > 0, for any ¢ €]0, A2(X, u, F)I, there is §(¢) > 0 so that (5.3)
holds. Then for ¢ > §(¢) + 1y, by (5.4) and (5.3),

1 1
1Qilloc.00 = 10 loo = 101y (@i Dlloo = (C“®) 7 1Py I o1 Q- g
2

1 1 1=2 2
= (Ce“) 1P Qg Ulow 1113
1 1 1=2
= (Ce“) " PN 1 Qiig Voo * (V/im(Epe (70 G2 Xm =00

This implies Loo (X, t, F) > A (X, p, F) — ¢ and 30 oo (X, i, F) > 2 (X, i, F).
Hence AooX, p, F) = rX,u, F) = Ap,X,u, F) for p € [1,00] under
(X, w, F) > 0. The condition (A) implies 't + N(ef" — Dy € SL (X)) and
(1.7) remains valid under X® . Moreover, {Q:}r>0 is still well-defined as a strongly
continuous semigroup in L2(E ; m), because (A) for X holds under (A) for X. Thus,
we can apply the above argument with respect to X, By taking o > 0 so large with
the relation

2
q
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Ap(X@ Py =a+1,X, 1, F), pell, o],

we see A (X@, u, F) > 0 for such « > 0, consequently Aoo(X@, u, F) =
M (X@, w, F), thatis, »,(X, p, F) = M (X, p, F) for p € [1, 00].

Step 2: Next we prove the assertion under u = 0 without assuming m(E) < oo. Let
{G,} be anest of finely open Borel sets satisfying m(G,) < oo foreachn € N. Such a
{G,} always exists. Indeed, for f € L! (E; m)N L°°(E; m) with f > 0 on E, the set
G, :={x € E : Ry f(x) > 1/n} does the job. We consider the part process X°" on G ,.
Note that (1.7) holds for X° by Lemma 4.3. Moreover, condition (A) holds for each
XS» by Lemma 4.6. For p € [1, oc], let)»g’) = A,(X%, 16,1, 16, xG, F) be the LP-
spectral radius for the Feynman—Kac semigroup (Qf")),zo defined by Qfm fx) =
E [ +AT £(X) 1t < 16, ] for each n € N. Recall that (Qt(")),zo is associated to
(Q, Fg,). Applying Step 1 for X9, we have the LP-independence of Ag’):

A =5, (5.5)

Since E = |, G, m-ae. (ie. (102 (E\G,) is m-negligible) and Q" 1(y)
increases to Q;1(y) on U;’lozl G, we have

101 loc,00 = m=sup O, 1() = sup (m—sup Qf")l(y)> = sup |0} lloo,co-
yeE neN yeGy neN
Here m-sup denotes the m-essentially supremum. From this, we can deduce
hoo(X, 11, F) = infen 2. Indeed, define £, (1) := L10g [| 0" [lo,00. For > 0, by
Fatou’s lemma,

AR AF . Al AF
Eyle ALy < 6,1 = Ey[_llmte o 1{s<76n}]
s—

: A +AT
< lim Ey[e s 1{s<r(;n}]
s—>t

< 1im | Q% [loo,00-
s—1

Here in the equality we used the fact that for each fixed t > 0, P, (X; = X;—) = 1
holds for all x € E. It follows that [| Q" [lse.co < lim,_, | Q" [lo.00» and s0 f;(¢) is

lower semi continuous in . Let X := [1, oo] which is compact, and define

T ) e (n)
fn(00) := lim —1log | Q; " lloo,0c0 = inf —1og | O; " [l 00, 00-
t—oo t >0t

Then t — f,(¢) is a lower semi continuous function on the compact set X. By the
minimax theorem (see [52, Corollary in pp. 407]), we have
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sup(— k(”)) = sup 1nf fu (D)
neN neN‘€

1
= inf sup —log 10 loo.00
neN t

inf — 10g 10t llco.00 = —Aoo (X, i, F). (5.6)
teX t

On the other hand,
X, u, F) =inf{Q(f, f): f € Fwith / fzdmz 1}
E
< inf{Q(f, ) f e Fg, with / fzdm: 1} :k;n).
Gn

Consequently, we have from (5.5) that

koo X, u, pt, F) = inf 2% = inf 25" > 20(X, u, 1, F)
neN neN

and so Aoo (X, u, i, F) = XX, u, u, F) in view of (1.6).

Step 3: Finally we prove the assertion without assuming ¥ = 0. By Lemma 5.1(1),
the condition (A) implies u* + N (eV (eF+ — D))y € S}EK(X) under () € S11< X)
because of the boundedness of # and F+. Note that A (X, u, i, F) < oo under (A) by
(l 5). By assumption, we have e 2m(E) < coand e_zu(\';1+N(eU(eF+ Dpg) €

EK(U) and e~ 24 (7 +N(eUF yar) € S »(U) by Lemma 4.11(1), (3), equivalently
wehave e 2451+ NV (eF " ~1)uyu € Sk (W) ande 245+ NV (F ) o € Sh(U),
where (NY, HY) is aLévy system of U. Here v := uT +N(eV —U — Dy + %,ufu)
and vy := pu~. Weset v := vy — 2. By (1.7), P, is a bounded operator from LY(E:m)
to L°°(E; m). Then we see that for f € L2(E; e~ 2*m)

IPY flloo = sup Ey [Usy f (X1)]

xeE

sup Ex[Ug]'2 Py £2 () !/

xeE

sup Ec[UZ1211 P Iy 2 1 F 1l 2 o)

xeE

1/2
sup B [UZ1211 Py 1y 212 | £11 2 o-20mm)- (5.7)

xeE

IA

IA

IA

Since sup, g EX[U%] < oo under pqy € S1 X), m
from L2(E; e~ 2m) to L°(E; ¢e~2*m). From this, Pzro is a bounded operator from
LY (E; e=%m) to L°(E; e~ *m), because of the e‘z“m-symmetry of (P,U)[Zo. Thus
(1.7) holds for (P,U)zzo- Then one can apply Step 2 to U so that A, (U, e 25, F)
is independent of p € [1, 0o], in particular, Aoo(U, e 2“D, F) = A (U, e 2y, F).
Since A (X, u, u, F) = 4, (U, ey, F)for p € [1, oo], wehave Aoo (X, u, u, F) =

is a bounded operator

@ Springer



632 Z.-Q.Chenetal.

A (X, u, u, F). Thus we obtain that A,(X, u, u, F') is independent of p € [1, oo],
because Aoo(X,u, u, F) < ApX,u,u, F) < AX,u,u, F) always holds for
p €]l, oo[. O
Theorem 5.3 Consider the following conditions:

(i) X is transient. u= + N(eFJr — Duy € Szvil X), nw € Slvioo(X) and = +
N(F )uy € S})O(X) hold.

(ii) Suppose that = + N(eF+ — Dunr € Ng=o S}VKI (X@)Y holds and W)y €
Syk.. XD) holds.

Then we have the following:

(i) Suppose that (i) or (ii) holds. Then Aoo(X, u, ;t, F) > min{A (X, u, u, F), 0}.
Consequently, ., (X, u, u, F) isindependent of p € [1, oo] provided 1o(X, w, F)
<O0.

(ii) Suppose that (i), or (ii) with u= + N(F " )upy € S}VKOO(X“)) holds and assume
that X is conservative. Then hoo(X, u, pu, F) = 0 if Ao(X, u, u, F) > 0. Hence
Ap(X, u, u, F) is independent of p € [1, o] if and only if Ar(X, u, u, F) < 0.

Proof Step 1: First we prove the assertion under u = 0 and the irreducibility condition
(D). We write A, (X, u, F) = Ap(X, u, u, F) for p € [1, co].

(1): Under (A), we see A2(X, u, F) < oo by (1.5). Note that (i) implies (ii). So it
suffices to prove the assertion under (ii). Take any A < min{A,(X, i, F), 0}. Clearly,
forevery 0 <o < Aa(X, p, F) — A,

inf{5a<f, - /E £ (1 + Am)(dx)
- f FO)fO) ™ — DN (x, dy)up (dx):
E x E\diag

f e F with / () 2m(dx) = 1} =X, u, F) — (A —a) > 0.
E

By assumption, we have pu™ + N(eF+ — Dug € S}VKI(X(")), u- o= am +
N(F)un € Sp(X) = Sp, (X@). Applying [29, Corollary 1.2] to X, we have
that (X@, ArH*m 4 AF) is gaugeable, where we use (I). Then

+im
sup e 0,100 = sup (e"" sup ., [eAﬁL AL L < {])

t>0 t>0 xeE
(@ [ ArTAm L AF
= sup sup EY [e t t :t<§]
t>0 xeE
pAAIm F
<supEW [supett T A | < o0, (5.8)
xekE t<¢

where the last inequality is due to [27, Lemma 4.2(2)] with respect to X®. Since
o > 0 can be taken to be arbitrarily close to 0, the estimate (5.8) under (ii) implies
that
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1
roo (X, p, F) = — lim ;IOg Qi 1o = A.

This inequality holds for any A < min{A(X, u, F), 0}. Thus we can conclude
Ao X, i, F) = min{A(X, u, F), 0}. In particular, Ar(X, u, F) < 0 implies
roo X, , F) = A(X, u, F). This together with (5.2) yields that A,(X, u, F) is
independent of p € [1, co] when A2(X, u, F) <O0.

(2): Since A> (X, u, F) > 0, we have from (1) that Ao (X, £, F) > 0. Assume now
that X is conservative. Under (i), we have that

x> B Ak + AL =B, [als + a0
=R(n + NF Hpg)(x)
is bounded. Then

10:1lloo = sup Ey[exp(AL + AF)] > sup E,[exp(—A} — A7)

xeE xekE

> sup Ey[exp(—Ah, — AL)]

xeE

> exp (— sup E.[Ah% + Af;]) > exp(—|[R(™ 4+ N(F ) iwa) lloo)-
XE

Under (ii) with = + N(F)up € Sy (X)), we have

]

x> E@[AL + AL 1 =E, [/
0

= Ro(u™ + N(F7)pn)(x)

e—atd(A;l«7 + A?](F)'LLH):I

is bounded and is an a-potential, i.e., infyc g E[A% + Al 1=0by Lemma 4.14.
Then

I10: 1100 = sup Ex[exp(AL° + AF)] > sup Er[exp(—A} — A7)

xeE xeE

o _ —
> sup [exp (—e“’Ex [/ e d(A* 4 ANT )“H)]>i|
xeE 0

> exp <—e°” inf E@[AL + Ago‘]) =1.
xeE
In either cases, we have
1
roo X, i, F) = — lim —log [|Qs1]lec < 0.
—oo f
Therefore Aoo (X, u, F) =0 < A2 (X, u, F).
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Step 2: Next we prove the assertion under the irreducibility condition (I) only without
assuming # = 0. Note that U also satisfies (I).

(1): By Lemma 5.1(3), the condition u* + N(ef " — Dy € S}VKI (X@) implies
u+ N@U e = D)un € Shgx, (X)) under 1) € Sk (XD) because of the
boundedness of u and F*. By assumption, e 2 (vy + NEYF )ug) € SlD0 (UM
and e=2(p; + NV (e — D))uy) € S},Kl (U@) for any & > 0. Applying Step 1
for (1) under (ii) to U, we have Aoo (U, =249, F) > min{r, (U, e~2“, F), 0}. Hence
we have the conclusion as above.

(2): First note that U is conservative under the conservativeness of X, because
{Ut}te0,00[ 18 @ Py-martingale under ¢,y € S}< (X). Assume (i). Then e~ 24(; +
NEY (" — Dup) € Sy, (U) and e (B + N(EUF)uu) € S}, (U)
by Lemmas 5.1(3) and 4.11(7)(b), equivalently, e=2“%; + NV(eF" — Dupyv €
Sy, (U) and e Dy + NU(F )uyu € Sp (U). Applying Step 1 for (2)
under (i) to U, we have Aoo(U,e 2D, F) = 0 if 22(U,e 2D, F) > 0. Since
X, u, 1, F) = 2(U, e 29, F) and Aoo(X, u, 1, F) = Aoo(U, e 24, F), we
have Aoo (X, u, u, F) =0if Ap(X, u, , F) > 0.

Finally we assume (ii). By assumption, we have e 2D+ N(eV (eF+ —1)ug) €
Sy, (U@) forall @ > 0 and e (b3 + NV F)un) € Syg_(UD) by Lem-
mas 5.1(3) and 4.11(7)(a), equivalently, ey + NV (ef" — Dy € Sk 4, (U®)
fora > 0and e 2“0y + NY(F7)puyu € Sy (UD). Applying Step 1 for (2) under
(ii) to U, we have oo (U, e~ 24D, F) = 0 if Ao (U, e =29, F) > 0. Hence we have the
conclusion as above.

Step 3: Finally, we prove the assertion without assuming (I). By [36], under (AC),
for each x € E there exists an X-invariant set E, such that £ = UxG £ Ex,
E, N Ey, # ¢ implies E, = Ey, and each XEx gatisfies (I). Moreover, there
exists at most countable sets {x;};e; such that £ = Uie ; E; forms a disjoint
union. We set Qi f(x) = Eilea(t)f(X,) : t < tg,,] for f € By(E) and
define the LP”(Ey,; m)-spectral radius kfv = Ap(XEXi,u, w, F) for (Qi),zo. We
see that the condition (i) (resp. (ii)) for X5 holds under () (resp. (i1)). So we can
apply the result of Step 2 to XExi | Since 0/ 1(y) = Q;l(y) for y € E,;, we see
Qtllcc,00 = supyep Qrl1(y) = supje; supyep, Qi1(y) = sup; Qi lloc,00- From
this we can deduce Ao (X, u, i, F) = infycp )\fx, by use of the minimax theorem
(see [52, Corollary in pp. 407]) and A (X, u, u, F) > )»é as done in the Step 2 of
the proof of Theorem 5.2. Consequently, we have Ao (X, u, i, F) = inf;¢; AL and
rMmX u, uw, F) < ké for eachi € I. Thus we can obtain (1) and (2) without assuming
(I). Note that each irreducible component X Exi is conservative if X is conservative. O

Theorem 5.4 Assume m € S]lVKoo (X)), Then Ap(X, u, u, F) is independent of p €
[1, co].

Proof Step 1: First we prove the assertion under # = 0. From (A), u* + N(e” -
Dupn € S}EK (X). Then there exists a sufficiently large 8 > 0 such that ™+ N(eF+ -
Dun € Syg, (XP) by [30, Lemma 4.5]. Recall that 12(X'P), i, F) < oo always
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holds under (A) by (1.5). Then there exists y > 0 such that A,(X®, u, F) < y,
equivalently A>(X®, 1 + ym, F) < 0. Note here that X#) is a transient pro-
cess, hence = + N(F )uy € S})O(X(ﬁ)). Since m € Szlvkoo(X(ﬂ))’ we have
wt +ym+ Nef — Duy e Sy, X#). Applying Theorem 5.3(1) under (i)
to XP 0, XB)p + ym, F) = A(XP, u+ ym, F) forall p € [1, co]. Since

ApXP i+ ym F)y=p—y+2r,X,u, F) for p e [l, o],

we obtain the L”-independence of A, (X, u, F).

Step 2: Next we prove the assertion without assuming # = 0. By Lemma 5.1, u™* +
NEVEr" — Dpy € SLe(X). Since ppy € SL(X) and u is bounded, we get
b1+ NV (" —1))uy € Sk (X). Then

e 25 + NV (" — Dpyu € Sk U)

from Lemma 4.11(3). Since m € Sll\’Koo (XM), we have e 2m € SJIVKOO (UM by
Lemma 4.11(6). Moreover, e’2“,u’ + NU(F’);LHU € S})(U). We can apply the
result from Step 1 to U so that Ao (U, e 2“D, F) = A (U, e 2D, F). Thus we have
oo X, u, o, F) = hoo(U, €240, F) = A (U, e 249, F) = 1 (X, u, u, F). o

6 Proof of Theorems 1.1, 1.2 and 1.3

In this section, we removed boundedness assumption on © imposed in the last section
and consider general u € Fioc which is finely continuous and nearly Borel measurable
on E. We do not assume the irreducibility of X. The L?-spectral radius A , (X, u, u, F)
is defined by

1
ApX,u, w, F) == _tl—l>rgo ;10g 1Ol p,p-
Recall that
)“OO(Xv M’ M? F) S)\p(Xsuv H»F)S)Q(X»Ma l’l/v F) (6'1)

always holds for p € [1, oo].

Proof of Theorem 1.1 The proof is based on Theorem 5.2. For simplicity, write A, for
ApX,u, u, F) for p € [1,00]. Since u € .7:'10C is a finely continuous nearly Borel
function and it satisfies j1uy € Sk (X), we see N(lpxe|ULgui=1)pn € SkX)
Consequently the quantity

t
/0/E|u(y)_u(XS)|1{1<|u(y)—u(XS)|}N(XSady)st
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is a PCAF of Kato class in the strict sense. We define

2
K2 = ) Lsagy (X)) — u(Xs )1 <uxy) —u(x, )

O<s<t

t
- A / (u(y) — u(Xs))l{l<|L1(y)—u(XS)|}N(Xss dy)dH;.
E

Then K/’ 2isa purely discontinuous square integrable local martingale with AK;' 2=
Ki"? = K2 = Tjeegy u(X0) = (X =) L) —u(x, =1}, because 1y € Sk (X).
Applying [14, Lemma 3.1] to ¢ (x, y) = 1gpxp(x, y)(u(y) — u ) 1{ju@)—uy)|<1}
there exists a purely discontinuous locally square integrable local martingale K,' 1
with

MK = K = K = T (X0 = u X)) L —uex 1<)

It is shown in [14, Lemma 3.1] that

K,“’1 = nlingo Z Tgory(u(Xs) — u(Xs N1 n<juxy)—u(x,_)<1)
O<s<t

t
—/ /(u(y)_u(XS))1{1/n<|u(y)—u(Xx)\§1}N(Xs7dy)dHS
0o JE

Weset Gp:={x € E : |u(x)| < k}. Then {G} is anest of finely open nearly Borel sets.
We set uy := (—k) V u A k for k € N. Then u = uy on Gy. Clearly, K,“’l = K,u“"’1
for t < 14 := 16,. By definition for K;"z and K,”"“’z, we see that for t < 7

t
2
K/“* — K =/ /(uk+1(y)—uk+1(Xs))1{|uk+1(y)—uk+1(xx)\>1}N(Xs,dy)st
o JE
t
—/ /(”(y)_M(Xs))1{|u(y)—u(Xx)\>1}N(Xs,dy)st-
0o JE

Define the smooth measure p in the strict sense by

i (dx) = 1g, (x) /E(Mk+1(y) — Uk 1 CN gy )~ 01> N (6, dy) e (dx)
—1g,(x) /E(u(y) —uC)(u(y)—u) >N (x, dy) g (dx).

Then the total variation |ux| of uy is estimated by

Ikl (dx) < 216, (x) fE(u(y) — u(X)*N(x, dy)p (dx) < 216, (¥) ) (dx).
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Thus we have |ui| € Sk L (X) from M) € Sfl( (X). In particular, puy is a signed smooth
measure in the strict sense belongmg to S (X) — S1 (X). Consider the generallzed

Fukushima’s decomposition up to lifetime for finely continuous nearly Borel u € Floc
with 1 € Sk(X) C S1(X):

u(X;) —u(Xo) =M+ N/, te[0,¢] Py-as.

for all x € E. Here M/ is locally square integrable local MAF in the strict sense and
N/ is a CAF in the strict sense locally of zero energy. From this, ux1|g, admits the
following generalized Fukushima’s decomposition

upr1(X) — upr1(Xo) = M + N 1€ [0, %l Py-as.
for all x € Gy. It follows from that on {t < ;}

u u,c u,d Uki],C Ups,d
M} — M =M+ M — M — M

u,2 Ug+1,2 Mk
=K, - K; = A",

where A}* is a CAF of bounded variation associated to the signed smooth measure
Wk in the strict sense. Hence for ¢ < i

N = u(X;) —u(Xo) — M{' = w1 (X)) — upg1(Xo) — M — AP
_ N“k-H _ A#k
— N ,

Define (Q¥),~ by

0 f(x) = Exlea® f(X0) : 1 < ]
=E.lexp(N/ + Al + A[) (X)) 11 < 4]
=B, [exp(N,“" + AF " L ARy F(X) it < ).

Let U1 be the Girsanov transformed process defined by w1 just as we define U
for u. Denote by U, k1 its Girsanov density. Since ui41 € Floc is a bounded ﬁnely
continuous nearly Borel function having a finite value at 9 and (. ,) € S X),
{UtkJrl }te[0,00[ 18 @ uniformly integrable martingale under X @ by Proposition 3.1(6).
Then one can apply Lemma 4.11 to Ui 1. From Proposition 3.1(1), we have

0® f(x) = et (x)EU! [exp (Af" + AF ) (Fe ) (X,) i 1 < rk] .

Here % := o — 05, 0% i= u* 4+ 7 + NV — Uy — Dup + %%Hl and
v]2‘ = u + [,Lk We will apply Theorem 5.2 for (Uk+1’ 1Gk 16, %G, F), where

U,i’il is the part process of Uy on Gy. For this, we further need to check conditions.
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By assumption, \7’1‘ + N(eF+ — Dupg € S}EK(X). From Lemmas 4.11(3) and 5.1, we
have

e~ 2tk pk L+ N(e —Dug e SéK(UkJrl)'

Here (]\Nl, ﬁ) is a Lévy system of Uiy 1. By Lemmas 4.4(5) and 4.6,
1 —2uk1 pk N G -1
Gy (e |+ N (" YLF) € SEK(Uk+1)

Similarly, we can obtain 1(;k(v2 —|—NGk(F ) € sl (Uk+1) by use of Lemmas 4.11

and 4.4. Moreover, the condition (1.7) holds for U, jl, which can be similarly proved

by a similar estimate with (5.7) obtained by replacing U with Ui1. Thus one can
apply Theorem 5.2 for (U,g’;l, 16,v%, 16, %G, F) so that

A =28, (6.2)

where kfl,k) =Ap (U,?il N eh vk, 16, xG, F) is the L?-spectral radius for the Feynman-—
Kac semigroup (Qt(k))t>o for p € [1, oo]. In the same way of Step 3 in the proof of

Theorem 5.3 without assuming (I), we can prove A, < X(k) and Ao = infen A(k)
by use of Terkelsen’s minimax theorem. Hence Ax(X, u, u, F) < Aco(X, u, u, F).
Therefore, we obtain Aoo (X, u, i, F) = A(X, u, i, F) by (1.6). O

Proof of Theorem 1.2 (1): It suffices to prove the assertion under (ii). Let {G}, ux,
wk, ¥ and Ug,1 be the notions constructed in the proof of Theorem 1.1. Recall that
)»g() =Ap (Ufjl, 1g, ok, 16, %G, F) is the L?-spectral radius for the Feynman—Kac
semigroup (Q,k )i>0 for p € [1, oo]. As in the proof of Theorem 1.1, (A) holds for
(Uk+1’ le ,16,%x6, F). We prove

29 > mina ), 0}. 6.3)

The proof is based on Theorem 5.3. Under the condition, |ui| € S 11\/ Koo (XM, By
assumption, we have \7]1‘ + N(eF+ — Dpg € Slvil (X@) for all @ > 0. By Lem-
mas 4.11(7) and 5.1, we have e =2+ 5 + N = Dug € Shg, (Uee)@) forall
o > 0. Here (N, H) is a Lévy system of Uk+1 From Lemmas 4.4(10) and 4.6, we
have 1¢, (vf + NC* e —Dug) € Sy &, (U +1)<0f>) for all @ > 0. Similarly,

16, (0% + NO(F i) € SHUZ ).

One can apply Theorem 5.3(1)(ii) to the case (Uk+1, lck , 16, %G, F) so that (6.3)
holds. The rest of the proof is the same after (6.2) in the proof of Theorem 1.1.
Therefore, we have Aoo (X, u, i, F) > min{ir(X, u, u, F), 0}.
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(2): Since Ay (X, u, i, F) > 0, we have from (1) that Aoo (X, u, i, F) > 0. Assume
now that X is conservative. The proof for (ii) is already done in Theorem 5.3(2). We
prove the assertion for (i). By Jensen’s inequality,

0100 = sup Ey[exp(N* + A + AF)] > sup B [exp(N" — A) — AF7))

xeE xekE

> sup E[exp(N/ — A, — AL))]

xeE
> exp | sup B [N/] — sup E,[AL + AL
xeE yeE

= exp (Sup E[N/T—IR(k™ + N(F_)MH)Iloo> .

xeE

Then we see that

1 1
Aoo(X,u, p, F) = — lim —log [ Qr1flec = — llm n - sup iy «[N{]. (6.4)

xeE

Now suppose (a). Since
Nt = u(X) = u(Xo) = Mf = —u™ (X)) —u™ (Xo) — M{', (6.5)

we have Ey[N/] > —E,[u" (X;)] — u™t(x), because M" is a square integrable mar-
tingale when () € § ! NKa XMy ¢ Sk L (X). So it suffices to prove that

lim l inf (]E [ (X)]+uT(x)) = lim ; 1nf(Plu @) +utx) <0. (6.6)

—oo I x€ t—00

Take g € L'(E; m)with0 < g < Il m-a.e.on E suchthatu € LY (E: gm). Under (a),
we have

A

(gm, (Pylu~|P)!/P)
lu= (p=1,
p—1
=) lulplighy” (1< p < o0,
lu™ lloollgll (p = 00).

(gm, Piu—)

Then

1 1
llglh hm - 1nf (P,u @ +utx) < hm - <<gm Pu~ )+/ u+gdm> =0.
E
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Therefore, we obtain the assertion in this case. Next suppose (b) or (c). From (6.5),
we see Ex[N/] > —E,[(u(X;) — u(Xo))z]%. So it suffices to prove

lim L i B fw(X) — u(Xo)]E <0, 6.7)

t—oo I x€E

Since pu) € S NKe XMy c s! x X), ) is a smooth measure in the strict sense.

Consider the Lyons-Zheng’s decomposmon for u € Fio satisfying /L{u) € S1(X) (see
[35, Corollary 5.3]):

1 u 1 u
u(X;) —u(Xo) = —M 2Mt°rr

under P,. Here r; is the time reverse operator defined by X7 (r;w) = X7—H—(w)
fort < T. Itis known that E,[G o r;] = E[G] for non-negative F,-measurable G.
We then see that

2 1 2 1 u 2
Em[(t(X,) — u(X0)?] < En [E(Mf) M or) }
< Eal(M"),] < Eml[{M")]

=/ wydM < [[Ru @y lloom(E) < 00

E

when () € Sl (X) and m(E) < oo. If uyuy(E) < oo, we see
Em[@(X)) = u(X0)*1 < En[(M"),] < 2t 31, (E).

Then we have M = lim,, oo YEw[(u(X,) — u(X0))?] < oo in either case.
Take g € LI(E; m) with 0 < g < 1 m-a.e. Then

.1 1
lglli lim — inf B [(u(X,) — u(Xo))*]2
t—o0 t xeE

1 1 1
< lim ~En[@(X,) —u(Xo0)*12llgl}
t—o0 t
1

1 =
= lim — <;Em[(u(Xt) —M(Xo))2]> ||g||12 =

Thus we have (6.7). Therefore, we obtain Ao (X, £, F) =0 < A (X, u, F). O

Proof of Theorem 1.3 Let {Gy}, uy, px, v* and Upyq be the notions constructed in
the proof of Theorem 1.1. Recall that )»E,k) = P(Uk+1’ 1Gk .16,xG, F) is the

LP-spectral radius for the Feynman—Kac semigroup (Q, ),>0 for p € [1, o0]. As
in the proof of Theorem 1.1, (A) holds for (Uk+1’ le ,16,%xG, F). Since m €
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Sy, XD), we have e72“+1m € Sy ((Ugy1)") by Lemma 4.11(6). Then one
can apply Theorem 5.3 to U%* to the case (U,i’;l, 1g, K, 16, xG, F) so that

A0 =0, (6.8)
The rest of the proof is similar to that of Theorem 1.1. O

7 Examples

In this section, we give three examples on measures that are in various Kato classes
used in the main results of this paper.

Example 7.1 (Brownian motion) Let X = (2, X;, P,) be a d-dimensional Brownian
motion. X is a typical irreducible doubly Feller process on R?. The associated Dirichlet
form on L2(RY; dx) is (H'(RY), §D), where H'(RY) := {f € L2 (R%; dx) : [V f| €
L*(R?; dx)} and D(f, g) := [pa Vf(x) - Vg(x)dx. Fixau € H'(RY)jo N C(RY).
For a signed Borel measure x on RY, y is said to be of Kato class with respect to X
if and only if

d
limsup/ Lf;)_zzO for d > 3,
r"oxeRd [x—y|<r lx — y|

lim sup / (log |x — y|_1)|u|(dy) =0 for d=2,
lx—y|<r

r—>0x€Rd

sup / lul(dy) < oo for d=1.
lx—yl<1

xeRd

Denote by K, the family of non-negative measures of Kato class with respect to X.
Then we have K; = S}( (X) by [1]. Under d > 3, u € K is said to be Green-tight if

. / u(dy)
im sup —_— =

R0 cpa Jgo)e 1 — y|972

Denote by K 3° the family of Green-tight measures of Kato class under d > 3. Then
K = S}<oc X) = SICKoo X) = SIIVKao (X) under d > 3. It is proved in [53, Propo-
sition 1] that f € L'(R?; dx) satisfying | f(x)|dx € Kg, then | f(x)|dx € K3°
provided d > 3.1Itis shown in [19, Lemma 5.1(2)] that for f € L! (]Rd; dx) satisfying
|f()ldx € Sp(X), then [ f(x)|dx € S (XD) =St (XD) =83, (XD). The
following is proved in [5, Lemma 5.2].

Proposition 7.2 ([5, Lemma 5.2], see Proposition 7.6 below)

1. Assume p > d/2 (resp. p > 1) ford = 3 (resp. d = 1,2). Let f € LP(R?; dx).
Then | f(x)ldx € Sk (XD) = 5L, (XD) = 5} (XD,
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2. Suppose thatu € LIZOC(Rd; dx) is bounded with |Vu| € L*(R4; dx) N L? (R?; dx)
for some p > d (resp. p > 2) underd > 3 (resp. d = 1,2). Then u € H'(R?),
with juy € Sy (XV) = 8k (XV) = 5p (XD).

Proposition 7.2(1) partially extends [1, Theorem 1.4(iii)]. We shall point out that
the condition in Proposition 7.2(2) can be relaxed in the following Proposition 7.3(2),
whose proof is similar to that of [5, Lemma 5.1(2)].

Proposition 7.3 The following holds.

1. Suppose that u € LIZOC(Rd; dx) satisfies |Vu| € L*(R?; dx) and |Vu(x)|?dx €
Sk (X). Then u € H'(RY), with |Vu(x)*dx € Sy, (XD) = S, XD) =
Sk (XD),

2. Suppose that u € LIZOC(Rd; dx) satisfies |Vu| € leoc(Rd; dx) N LP(RY; dx) for
some p > d (resp. p > 2) under d > 3 (resp. d = 1,2). Then u € H'(R%)j0¢
with |Vu(x)|?dx € S}VKDC XMy = SéKOO(X“)) = S}<m (XM,

Let ¢ € C%([0, 00o]) satisfy ¢(0) = 0 and ¢(t) = logr for t > 1. Set
u(x) := ¢(|x|). Then u is an unbounded function on R¥ and satisfies u € H'(R%)jocN
C*®(RY; dx) and |Vu| € L} (RY; dx) N LP(R?; dx) for any p > d. In this case, we

have |Vu(x)Pdx € Sy (X1) = 5L, (XD) =85} (XD).

Example 7.4 (Diffusion process on Riemannian manifold) Let (M, g) be a d-
dimensional complete smooth Riemannian manifold. We assume that Ricci curvature
of (M, g) has a lower bound «(d — 1) with ¥ € R, that is, Ricg, > «(d — 1). Let
m := volg be the volume measure of (M, g) and A, the Laplace-Bertrami opera-
tor of (M, g). Then, it is known that the %A ¢ admits a smooth heat kernel p;(x, y)
admitting following estimates (see [26]): for any & > 0, there exists positive constants
Ci(g), Ca(e) depending on k, d such that forall x,y € M and ¢ > 0

Cie! d(x,y)?
V) exp <—C2(8)t oo e)t) = pi(x,y)
Ci(e) d(x, y)?
< m exXp <C2(8)t - (2 T g)l‘) . (71)

Here V,(x) := m(B,(x)) is the volume of the r-ball. Moreover, C,(e) can be taken
to be zero provided x > 0 or d = 1. Let X be the diffusion process associated
to %A ¢- Then X is a doubly Feller m-symmetric conservative process on (M, g). It
is proved in [38, Example 5.3] that for any f € LP(M;m) with p € [1, co[ we
have |f|m € S}((X) provided p > d/2 (resp. p > 1) ford > 2 (resp. d = 1)
and infyep Vi(x) > 0. Though the positivity of injectivity radius is assumed in [38,
Example 5.3], this assertion remains valid under infycps Vi(x) > 0 because

- Vix) -
Ve () v 0 <V.(x) V(@) for r€]0,1]

K
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and V, (r) =~ wgr? /d for small_r > (. Here wy is the area of the unit sphere sd-1
in the Euclidean space R4 and V, r) == wy for Sk (t)d’ldt is the volume of r-ball in

the d-dimensional space form M; of constant curvature . Here s, (¢) := M for
Kk >0,s.() :=tfork =0,s,(t) := Smh%” for k < 0. We summarize thls in the

following.

Proposition 7.5 Suppose infycp Vi(x) > 0 and take p € [1, oo[. Assume p > d /2
(resp. p>1)ford >3 (resp.d = 1,2). Let f € LP(M; m). Then | f|m € S}((X).

Moreover, we have the following stronger assertion:

Proposition 7.6 Suppose infycpr Vi(x) > 0 and take p € [1, oo[. Assume p > d /2
(resp. p > 1) ford > 3 (resp. d = 1,2). Let f € LP(M;wm). Then |fIm €
SIIVKOO(X(U) — SéKOO(X(l)) — SII(OO(X(D)'

Proof of Proposition 7.6 By Proposition 7.5, | f|m € S}{ (X) under inf,¢p; Vi (x) > 0.
It is proved in [27, Proposition 4.1] that SIIVKOO XMy = SéKoo XMy = S}(oo (XM
under the doubly Feller property of X. By (7.1), we have thatforx, y € M and¢ > 0

C ()2
pr(x, y) < sz -exp (Czt— ’ éyt) )

where r,(y) := d(x,y). We may assume f > 0. It suffices to show that for any
to €]0, 1] and any increasing sequence {K,} of compact sets with UZ’;I Ki=M

0]
lim sup E, |:/ e_MlKgf(Xs)dSi| =0 (7.2)
0

n—)OOXEM

for sufficiently large & > C3 in view of the proof of [19, Lemma 2.3]. We define

f0 0 ot 0w 1 e (y)?
S(x,y) = e ' pi(x, y)dt < Cq e v exp | Cat — dr.
0 0 i) Cr

By Bishop-Gromov inequality and V. (1)/V, (/1) < ¢1/t%/? for t €]0, 1],

to 1 r2
—at
/ e exp (Czt - —) dr
0 Vi(x) c

- 1 /IO VK(I) ex ( (a—C)[—ﬁ)dt
“Vviml v T e

to 1 r2
<— | = — o)t — — | dt
= mfxeM Vi) / exp( @-Or-4 )

2—d to/r 1 ) 1
—(x—-C ——)d
% exp( (o )ru Cu) u

c1r
infyepy Vi(x) Jo u
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2—d % 1

cir 1
— €Xp (oa—Cz)r u—— |du
5 Cu

<
infyep Vi(x) Jo u

2—d 0
1 -C 1
- ciear ( LI 1) exp <_ (o 2)ru B )du
infrey Vi(x) Jo \y,2+! 2 2Cu

C]Czr2_d€_“/(a_C2)/Cr 00 1
< du
0

Td.
T

infrepm Vi(x)

where we use that there is ¢c; > 0 such that ud/2 < < )exp (ﬁ+
u2

W) Consequently, there are positive constants C1(«, d), C2(«, d) such that
S0(x, y) < Cie, d)d(x, y)*~? exp(—Cale, d)d(x, y)).

Note here that C»(«, d) can be taken to be large for sufficient large . From this, we can
calculate that for g := % under p > d/2 (resp. p > 1) withd > 3 (resp. d = 1,2)

o0

Sup/ S2(x, y)?m(dy) = sup Z / S2(x, y)?m(dy) < oo.
xeM xeMk 2k=1<d(x,y)<2k

Indeed,

0
3 / d(x, y)1C—d) = Co@d)ad(x3) gy dy)
= 2k=1<d(x,y)<2k

—Z/ d(x, )1 Dm(dy)

T <d(x, y)<—
__Gwd i( 1 )d_q(d_z) GOl ( 1 )pl 00
_oTa — s _ <
- q(d—2) k q(d-2) k
d2 P 2 d2 P 2
and

o
3 / d(x, y)1C—D) = Co@d)ad (v 3) )
2k=1 <d(x,y)<2k

o0
—Ca(a,d)qd(x,y)
< e m(d
= ;/Zk ] (dy)

~l<d(x,y)<2k

3 Il

<Y e @Dy 0F) < oo

k=1
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2
provided k > — (%ﬁ)ﬁ) . This condition holds for sufficiently large o > 0. Note

here that V. (r) < wqr?/d when k > 0, and V, (r) < (2\/:”*# exp((d — 1)s/—kr)
when « < 0. Therefore, we obtain that for p > 1

fo
sup E, [ /0 e—maK;f)(Xt)dt} = sup fK S9 FGImAy)

xeM xeM ]

1 7
(sup / Sé’(x,yﬂm(dy))" ( / |f|Pdm> :
xeM JM K

whichtendstoOas ¢ — oco.If p=1andd =1, 2, Sf)? (x, y) is bounded above. This
proves the desired assertion. O

IA

The following proposition can not be directly obtained from [19, Lemma 5.1(2)],
because the large time upper estimate for heat kernel like [19, (5.1)] can not be obtained
for complete smooth Riemmanian manifolds even if its Ricci curvature is non-negative.

Proposition 7.7 Suppose inf cpr Vi(x) > 0. Assume f € L' (M;m) and | f|dm €
Sg(X). Then | fldm € Sp (X)) = SL, (X)) =81, XD).

Proof The assumption infycp Vi(x) > 0 is used for the short time heat ker-
nel estimates. Fix a sufficiently small #y €]0, 1[. We already obtain S&O (x,y) <
Ci(a, d)d(x, y)2~de=Calad)dx.y) We may assume d > 3, because SO (x, y) is
bounded if d = 1, 2. Since |f|dm € S}( (X), for given ¢ > 0, there exists a suffi-
ciently small 7 > 0O such that

sup / S9(x, ) £ m(dy) < sup / Ra(e, »IF0)Im(dy) < &
xeM Jd(x,y)<r xeM Jd(x,y)<r

by [38, Theorem 3.1] under d > 3 and infcp Vi(x) > 0. Note here that the assump-
tion (A2.3) in [38] is satisfied under inf,cp V1(x) > O with the help of Bishop and
Bishop-Gromov inequalities. Then

sup / S9N G)Im(dy) < & + sup f S (6 NFO)Im(dy)
xeM JK xeM JKiN{d(x,y)=r}

=e+C(ad,r) /K Lf () Im(dy).
14

where C(a, d, r) := sup., Ci(a, d)s>4e=C2(@ds [ etting £ — oo and & — 0, we
obtain

=00 yem

lim sup [K S0 ) Imdy) = 0.
l

Thus we obtain the assertion. O
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Remark7.8 1. It is still open if | f|dm € Sp_(X) = St (X) = Sy, (X) for
f € L'(M; m) satisfying | f|dm € S} (X) when X is transient.

2. The assertions of Propositions 7.6 and 7.7 remain valid for RCD*(K, N)-space
(X,d,m) for K € Rand N €]l, oo[ satisfying sup, .y m(B,(x)) < VKN(r)
with k := K/(N — 1) and infyex m(B1(x)) > 0 (see [26] for the def}ivr/lzition

g

of RCD*(K,, N)-space). Here V. (r) == wy [g s~ ()ds (on = i)
which is the volume of r-ball in MY provided N € N.

Example 7.9 (Relativistic symmetric stable process) Take 0 < o < 2 and m > 0. Let
X = (2, X;, P,) be a Lévy process on R4 with

Eo [eﬁ@‘X”] = exp (—t [(|$|2 + m?y/? m}) .

If m > 0, it is called the relativistic a-stable process with mass m (see [12]). In
particular, if « = 1 and m > 0, it is called the relativistic free Hamiltonian process
(see [25])). When m = 0, X is nothing but the usual (rotationally) symmetric a-stable
process. It is known that X is transient if and only if d > 2 underm > O ord > «
under m = 0, and X is a doubly Feller conservative process.

Let (£, F) be the Dirichlet form on L2(R¢; dx) associated with X. Using Fourier
transform f(x) = W f]Rd e £(y)dy, it follows from Example 1.4.1 of [22]
that

Fi= {f € LR dx) : / F@P (7 +m? )2 —m) dt < oo},
R
&g = [ F@E) (6P 4w —m)de for fog € 7.

It is shown in [15] that the corresponding jumping measure J of (£, F) satisfies

W (m'/¥x = y))

J(dxdy) = Jp(x, y)dxdy with J,(x,y) = A(d, —«)
lx — y|d+a

k]

a2d+or(d4e)

where A(d, —a) = AP (1-9)

and U (r) := I1(r)/1(0) with

s r2

o
1(r) :=/ s%flefﬁdes
0

is a decreasing function satisfying W(r) =< e~ (1 4+ r@+*=D/2) pear r = oo, and
W(r) =14 W (0)r?/2+ o(r*) near r = 0. In particular,

F= {f e L*(RY; dx) : / |f(x) = £ T (x, y)dxdy < oo},
| R4 xR4
E(f.8) =3 / (fx) = FON(Ex) — g (x, y)dxdy for f, g € F.
R4 x R4
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For a signed Borel measure 1 on RY, 11 is said to be of Kato class with respect to
X if and only if

d
lim supf Lﬁi:o for d > «,
r=0 crd J|x—y|<r lx — ¢«

lim sup / (log|x — y|71)|,u|(dy) =0 for d=1=aqa,
lx—yl<r

r—>0x€Rd

sup / lnl(dy) <oo for d=1<a.
lx—yl=<1

xeRd

Denote by K4, the family of non-negative measures of Kato class with respect to X.
Then we have K4, = S,l< (X) by [38, Theorem 3.2, Example 5.1]. It is shown in [37,
Theorem 2.1] that for any f € LP(RY; dx), | f(x)|dx € S}<(X) provided p > d/«
(resp. p > 1) for d > « (resp. d < «). More strongly, under m = 0, it is shown
in [5, Lemma 5.1] that for any f € LP(R?; dx), | f(x)|dx € S (X)) provided
p >d/a (resp. p > 1) ford > o (resp. d < ).

Let p;(x, y) be the heat kernel of X. The following global heat kernel estimates
were proved in [11, Theorem 2.1]: There exists C1, C; > 0 such that

Cy e (. x,y) < pi(x.y) < CLOE (1. x, ), (1.3)
where
OE(, x, )
N I (x, ), t €10, 1/m],
= | md/a—d/2—d/2 exp (—C_l (ml/“|x — ] /\mz/“_l@)) ,t €]l/m, ool.

Itis shownin [13, Theorem 1.2 and Example 2.4] or [9,10, Theorem 1.2] that p; (x, y)
is jointly continuous in (¢, x, y) €]0, oo[de x RY,

The following proposition extends [5, Lemma 5.1] for general m > 0:

Proposition7.10 Let 0 < o < 2 and X be a relativistic symmetric a-stable process

on RA.

1. Assume p > g (resp. p > 1) ifd > a (resp. d < «). Let f € LP(R?; dx). Then
|f)ldx € Sy (X) =St (XD) =5 XD,

2. Assume p > g (resp. p > 1) ifd > a (resp. d < a). For u € Fioe N C(RY),
mw € Sy XDy = St XUy = Sp XD) if fulx) = fralulx) —
u(y))sz(x, y)dy is in L”(Rd; dx). In particular, if u € Cg (Rd), then ) €
Svk, XDy =8t X)) =55 (XD).

3. If F is a bounded symmetric function on R x R¢ with

|F(x,y)|<clx —y[" forx,y €R? and F(x,y) =0 for (x,y) € R! x K,
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where K is a compact subset of R, ¢ and y are two positive constants such that
v >« then for f(x) = [pa |F(x, Y| Jn(x, p)dy, |f(0)ldx € Sy, (XD) =
St XDy = 85p X),

Proof (1): Take ) < % A 1 so small and set Sio (x,y) = f(;o e ' p;(x, y)dt. In view
of the proof of [19, Lemma 2.3], it suffices to prove

¢ := sup / Sio(x, y)4dy < oo, (7.4)
xeRd JRY

forqg :== p/(p—1) €]1, ool under p > <, and SUP, yeRd SP(x, y) < counder p = 1

a’
withd = 1 < «, because

1 1

4 P
sup / SPCe, MIfO)Idy < (sup f Si"(x,y)‘fdy) ( / |f(y>|de)
xeRd JBUK¢ xeRd JRE BUK¢

1
< c</ |f<y>|pdy>‘ -
BUK¢

For this, we show

sup / Sio(x, y)4dy < oo, (7.5)
xeRd J{lx—y|* <1}
sup / SPx, y)dy < oo, (7.6)
xeRd J{|x—y|*>1to}

For |x — y|* < 19, we have from (7.3)

Lo lx—y|*
Cy 51°(x,y)§/ e (t‘d/“AtJm(x,y)) dr
0

1o
+ f e’ (t_d/“ Atdy(x, y)) dt
|

x—yl*
e =yl I
<c——— + 11,
|x — y|d=@
where
« o=yl
1/m da—oz "=yl d>a
Il := / e gy < e (—logm|x — y|%) d=1=ua,
[x—y|* o

d—a
e~ lx=y1* . e (mT —|x - y|°‘—d) d=1<a.
From these estimates, we can easily deduce (7.5).
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For |x — y|* > 1y, we have from (7.3)

1 1
m 1 m
Cy 80, y) < / et (f"/“ At (x,y)) dr < —/ te”'dr.
2 0 " lx — yléte Jo

From this estimate, we can easily deduce (7.6). When p = l underd = 1 < «, we
easily confirm the boundedness of § io (x, y).

(2): The first statement is clear from (2). Note that C 3 (R?) ¢ F. We next show that
foru € CC1 (Rd), fu € Lp(Rd; dx) for every p > 1. Clearly,

Va1 2ju13
Ju(x) S/ ————dy + ————dy
! {yeR9:|x—y|<1} |x - y|d+a—2 {yeR4:|x—y|>1} |x - )’|d+“

IVul3,
2—a
(d — 1)-dimensional unit sphere S*~! in R?. Let K be the support of u. Then for

x € K¢,

2
and so f; is bounded above by wy ( %) Here w,; is the area of the

fu(X)sf o |Mdy_ ||u||oo/ wdy.

Thus for some C > 1, | f,| is bounded above by C and estimated by C || % mdy
on K€. Taking a relatively compact open set G containing K, we see that for any

p=>1
p
dx)

[ incorar<cr (614 [
p—1

<|G| 1Kl /c/K [x — |p(d+a)dydx)

I

1

ol <|G|+|K|P //[—Ix_ﬂp(dw)dxdy)

<cr(iG @d ! d
Gl +1K pd+a)—d Jg d(y, GO)pdta)—d Y

1
—d
/K x — yjdra

(3): By assumption,

(o)l 5/ +dy+/ Mooy,
{yeK:|y—x|<1} |X — y[dTe—y {yeK:|y—x|=1} [x — y|dte

is bounded above by ;‘*’T‘fx + [|Flloo|K| from y > o and estimated by (¢ Vv

1Flloe) fy¢ —bmedy. Thus | £ ()] < C (1 A e mdy> for some C > 1. Then
one can confirm the p-th integrability of f for any p > 1 as in the proof of (2). O
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Applying [19, Lemma 5.1(2)], it can be shown that for f € L!(R¢; dx) satisfying
| f(x)ldx € Sg (X), we have | f(x)|dx € Sg_(X) =S¢ (X) = Sy (X) provided
X is transient, that is, d > « (resp. d > 3) holds for m = 0 (resp. m > 0) (form > 0
see [19, Example 6.2 ]). The following Proposition can be similarly proved as for
Proposition 7.7. We omit its proof.

Proposition 7.11 Assume f € L'(R%; dx) and | f (x)|dx € Sk (X). Then | f(x)|dx €
S}{oc (X(l)) — S(lfKoo(X(l)) — SIIVKOO(X(I))'
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