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Abstract In this paper we investigate the divisor C14 inside the moduli space of
smooth cubic hypersurfaces inP

5, whose general element is a smooth cubic containing
a smooth quartic rational normal scroll. By showing that all degenerations of quartic
scrolls in P

5 contained in a smooth cubic hypersurface are surfaces with one apparent
double point, we prove that every cubic hypersurface contained in C14 is rational.
Combining our proof with the Hodge theoretic definition of C14, we deduce that on a
smooth cubic fourfold every class T ∈ H2,2(X, Z) with T 2 = 10 and T · h2 = 4 is
represented by a (possibly reducible) surface of degree four which has one apparent
double point. As an application of our results and of the construction of some explicit
examples, we also prove that the Pfaffian locus is not open in C14.
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1 Introduction

Cubic hypersurfaces in P
5 are among the most studied objects in algebraic geometry.

This is surely due to the wealth of geometry that they carry along and, possibly, to the
fact that they are somehow a very simply defined class of geometric objects, whose
rationality is not yet well-understood. The study of the moduli space C of smooth
cubic fourfolds, particularly through GIT and the period map, has known some very
striking advances in recent years, see for example [18,19,24], and this analysis has
been developed in parallel to the study of rationality. In particular, Hassett described
a countable infinity of divisors Cd that parametrize special cubic 4-folds, that is cubic
hypersurfaces containing a surface not homologous to a complete intersection, see
[15]. One expects that rational cubic fourfolds should be strictly contained in the
union of these special divisors Cd (more precise conjectures have been formulated by
Kuznetsov and Hassett, see [16, Section 3] for the state of the art on the subject).

An interesting and well studied locus of rational cubics is given by Pfaffian cubics,
i.e. cubic hypersurfaces admitting an equation given by the Pfaffian of a 6 × 6 anti-
symmetric matrix of linear forms. These cubics form a dense set in the Fano-Hassett
divisor C14, which is not open in C14, as we shall show in Theorem 4.7 and Remark 4.8.
As a special surface for C14 one can take either a smooth quartic rational normal scroll
or a smooth quintic del Pezzo surface but also, for instance, the isomorphic projection
of a smooth surface of degree 8 and sectional genus 3 in P

6, see [21, Theorem 2].
The Pfaffian cubics form a subset in C14, which consists exactly of cubic fourfolds
containing a smooth quintic del Pezzo surface, see [6, Proposition 9.2].

Other examples of rational cubic fourfolds are given by a countable infinity of
irreducible divisors Wi in C8, the divisor of cubic 4-folds containing a plane. The
familiesWi ’s are thus of codimension two in C and consist of cubic 4-folds containing
a plane P such that the natural quadric fibration obtained by projection from P has
a rational section, yielding directly the rationality of these cubic hypersurfaces. As
first remarked in [1] and as we shall also show in the last section, there exist rational
cubic hypersurfaces in C8 such that the associated quadric fibration has no section,
see Remark 4.6 for details. Another countable union of divisors in C18 parametrizing
rational cubic fourfolds has been recently constructed in [2], by showing that these
cubics are birational to fibrations of del Pezzo sextic surfaces that admit a section.
More recently, the second and third named author proved that a general cubic fourfold
in C26 and in C38 is rational. This confirms, for these two divisors, the expectations of
Kuznetsov conjecture on the rationality of cubic fourfolds (see [21] for more details).
Up to now, the general members of these countable loci in C8 and C18 together with the
general elements of C14, C26 and C38 are the only known examples of rational cubic
fourfolds.

So far, a direct proof of the rationality of all the elements of C14 was not known.1
Moreover, C8 ∩ C14 �= ∅ and C14 intersects also many other divisors Cd for which the
general member is not known to be rational. The geometric description of the divisor

1 A long time after this paper was posted on arXiv, Kontsevich and Tschinkel [17] showed that for a smooth
proper family over a smooth connected curve the rationality of the generic fiber implies the rationality of
all the fibers, that is rationality specializes.
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C14 allows us to extend the known rationality of a general element of C14 to each
element of the family using generalized one apparent double point surfaces, dubbed
OADP surfaces in the following (see Sect. 2 for precise definitions). In fact, the mere
existence of an OADP surface inside a cubic 4-fold implies its rationality. One of the
main results of this paper is the following.

Theorem All the cubic 4-folds contained in the irreducible divisor C14 are rational.
The way to the proof of the previous Theorem requires a complete understanding of

the details of some results proved by Fano in [12], of which we give new and modern
formulation (and proofs). Some of these results have been frequently cited and used in
the literature but a modern detailed account does not seem to have appeared elsewhere.
More precisely, they rely on the study of the rationalmap defined by quadrics vanishing
on a smooth quartic rational normal scroll, on its restriction to a cubic hypersurface
containing the scroll and on the family of quartic rational normal scrolls contained in
a cubic fourfold in C14. In particular, we are able to prove the next result.
Theorem 3.7 Let X be a cubic fourfold contained in C14\C8 and let T be the Hilbert
scheme of quartic rational normal scrolls contained in X. Then dim(T ) = 2 and each
point of T corresponds to a smooth quartic rational normal scroll contained in X.

Then we consider the intersection of C8 with C14. The general associated cubic
fourfolds contain a plane and (the class of) a smooth quartic scroll. By the class
of a smooth quartic scroll, we mean a 2-cycle in A(X) with the same intersection
theoretical properties as a smooth quartic scroll. The components of C8 ∩ C14 had
already been described in [1] but our approach here is more direct and different. In
fact, without relying on the arithmetic of the intersection lattices involved, we exhibit
explicit examples of cubics contained in the components of the intersection C8 ∩ C14
and study the degenerations of such cubics. In particular, we check which components
intersect the Pfaffian locus P f of the moduli space, and we prove that the Pfaffian
locus is not open in C14. These results are summarized in the next theorem.

Theorem 4.4 There are five irreducible components of C8 ∩C14. The components are
indexed by the value P · T ∈ {−1, 0, 1, 2, 3}, where P ⊂ X is a plane and T the class
of a small OADP surface such that T 2 = 10 and T · h2 = 4.

Voisin proved in [24] that, for an arbitrary cubic fourfold X ⊂ P
5, every class

P ∈ H2,2(X, Z) = H4(X, Z) ∩ H2(�2
X ) with P · h2 = 1 and P2 = 3 is represented

by a plane in X . Theorems 3.9 and 4.4 yield the following analogous statement.

Corollary 4.5 Let X ∈ C14 and let T ∈ H2,2(X, Z) with T · h2 = 4 and T 2 = 10.
Then T is represented by a small OADP surface contained in X.

Generically, the cycle T above is a smooth quartic rational normal scroll with the
exception of the component where P · T = −1, where the general element does not
contain any smooth quartic rational normal scroll nor any smooth quintic del Pezzo
surface and T is the union of two quadric surfaces intersecting along a line. This yields
the following result.

Theorem 4.7 The set P f ⊂ C14 is not open in C14. Analogously, the set of smooth
cubic fourfolds containing a smooth quartic rational normal scroll is not open in C14.
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1.1 Description of the contents

In Sect. 2 we develop some technical results that will be used in the rest of the paper.
In particular, we explain the relation between certain varieties defined by quadratic
equations and the OADP condition.

In Sect. 3 we reconstruct, state in modern terms and prove Fano’s deformation
argument and then we show the rationality of every element of C14\C8. In Sect. 4 we
describe the components of C8 ∩ C14, prove the rationality of every cubic in this set,
discuss their geometry and analyze their intersections with the Pfaffian locus. Finally,
we give a quick proof of the non-openness of the Pfaffian locus.

The paper ends with a section containing some examples of cubic hypersurfaces in
C8 ∩ C14 crucial for the proof of the non-openness of the Pfaffian locus.

2 Preliminary results

2.1 Small varieties and varieties with one apparent double point.

We begin by recalling a characterization of 2–regular reduced schemes from [9].

Definition 2.1 A non-degenerate scheme X ⊂ P
N is 2-regular in the sense of

Castelnuovo–Mumford if its homogeneous ideal I (X) is generated by quadratic equa-
tions and if I (X) has a linear resolution. In particular the first syzygies of I (X) are
generated by the linear ones.

Examples of 2-regular irreducible varieties are non-degenerate irreducible varieties
X ⊂ P

N of minimal degree deg(X) = codim(X) + 1, which are also characterized
by the previous algebraic property.

Definition 2.2 A scheme X ⊂ P
N is small if for every linear space P ⊂ P

N such
that Y = P ∩ X has finite length deg(Y ) we have dim(〈Y 〉) = deg(Y ) − 1, that is the
deg(Y ) points are linearly independent in P

N .

Definition 2.3 Let X = X1 ∪ X2 ∪ · · · ∪ Xr ⊂ P
N be a reduced scheme with

Xi irreducible and with Xi � X j for every i and j . The sequence of schemes
X1, X2, . . . , Xr ⊂ P

N is a linearly joined sequence if

(X1 ∪ X2 ∪ · · · ∪ Xi ) ∩ Xi+1 = 〈X1 ∪ X2 ∪ · · · ∪ Xi 〉 ∩ 〈Xi+1〉

for every i = 1, . . . , r − 1, where 〈Y 〉 denotes the linear span of a scheme Y ⊂ P
N .

One should remark that the previous property depends on the order of the irreducible
components, see [9, Example 0.5].

Theorem 2.4 [9, Thm. 0.4] Let X ⊂ P
N be a reduced scheme. Then the following

conditions are equivalent:
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(i) X is small;
(ii) X is 2-regular;
(iii) X is a linearly joined sequence of irreducible varieties of minimal degree.

Let us recall that, given homogeneous forms fi of degree di ≥ 1, i = 0, . . . , M , a
vector of homogenous forms (g0, . . . , gM ) is a syzygy if

∑M
i=0 fi gi = 0. If d1 = · · · =

dM = d and if deg(gi ) = h for every i = 0, . . . , M , then we say that (g0, . . . , gM ) is a
syzygy of degree h and for h = 1 we shall say that the syzygy is linear. For i < j the
syzygies (0, . . . , 0, f j , 0, . . . , 0,− fi , 0, . . . 0), corresponding to the trivial identity
fi f j + f j (− fi ) = 0 are called Koszul syzygies. We say that the Koszul syzygies are
generated by the linear ones if they belong to the submodule generated by the linear
syzygies.

Next we state a result of Vermeire, which applies to 2-regular schemes, but also for
example to quintic del Pezzo surfaces in P

5.

Proposition 2.5 ([23, Proposition 2.8]) Let f0, . . . , fM be homogeneous forms in
N + 1 variables of degree d ≥ 2 such that the Koszul syzygies are generated by the
linear ones. Then the closure of each fiber of the rational map

φ = ( f0 : . . . : fM ) : P
N ��� P

M

is a linear space P
s , which for s > 0 intersects scheme theoretically the base locus

scheme of φ along a hypersurface of degree d.

Let us introduce the following important definition.

Definition 2.6 Let X be an equidimensional reduced scheme in P
2n+1 of dimension

n. The scheme X is called a (generalized) variety with one apparent double point,
brieflyOADP variety, if through a general point of P

2n+1 there passes a unique secant
line to X , that is a unique line cutting X scheme-theoretically in a reduced length two
scheme.

The name OADP variety is usually reserved for the irreducible reduced schemes
satisfying the previous condition and it comes from the fact that the projection of X
from a general point into P

2n acquires a singular point p, which is double. In fact,
the singular point p arises by collapsing two distinct points q1, q2 collinear with the
center of projection and the tangent cone at p is the union of the projections of the
tangent spaces at q1 and q2 so that it consists of two P

n’s intersecting at p.
Let G(k, n) denote the Grassmannian of k-dimensional linear subspaces in P

n . The
abstract secant variety SX of a variety X ⊂ P

2n+1 is the restriction of the universal
family ofG(1, 2n+1) to the closure of the image of the rational map which associates
to a pair of distinct points of X × X the line spanned by them. If X is an OADP
variety, by definition the tautological morphism p : SX → P

2n+1 is birational so that,
by Zariski’s Main Theorem, the locus of points of P

2n+1 through which there passes
more than one secant line has codimension at least two in P

2n+1.
The upshot is that any cubic hypersurface in P

2n+1 containing an OADP variety is
birational to the symmetric product X (2) if X is irreducible, or to the product of two
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irreducible components of X if it is reducible (see e.g. [20]). By definition, the secant
variety to the variety X ⊂ P

2n+1 is SX := p(SX ) ⊆ P
2n+1.

We define the join S(X,Y ) of two reduced schemes X = X1 ∪ · · · ∪ Xr ⊂ P
M and

Y = Y1 ∪ · · · ∪ Ys ⊂ P
M , with each Xi and Y j irreducible for every i = 1, . . . , r and

for every j = 1, . . . , s, by first defining the join of two irreducible components as

S(Xi ,Y j ) =
⋃

x �=y, x∈Xi , y∈Y j

〈x, y〉 ⊆ P
M ,

and finally letting

S(X,Y ) =
⋃

i, j

S(Xi ,Y j ) ⊆ P
M .

Clearly dim(S(Xi ,Y j )) ≤ min{dim(Xi ) + dim(Y j ) + 1, M}. Moreover, with these
definitions we have that SX = S(X, X).

Let us state an interesting consequence of the two previous results and of the
definition of generalized OADP variety.

Corollary 2.7 Let X ⊂ P
N be a non degenerate reduced algebraic set scheme-

theoretically defined by quadratic forms such that their Koszul syzygies are generated
by linear syzygies. If through a general point of P

N there passes a positive finite
number of secant lines to X, then X ⊂ P

N is a generalized OADP variety.
In particular a small algebraic set X ⊂ P

N such that through a general point of
P
N there passes a positive finite number of secant lines to X is a generalized OADP

variety.

Proof Let f0, . . . , fM be the quadratic forms defining X and let φ : P
N ��� P

M be
the associated rational map. By Proposition 2.5 the closure of the fiber of φ passing
through a general point p ∈ P

N is a positive dimensional linear space L p containing
all the secant lines to X passing through p (φ contracts these secant lines to the point
φ(p)). Then L p ∩ X is a quadric hypersurface in L p by Proposition 2.5. Moreover,
dim(L p) = 1 because otherwise through p would pass infinitely many secant lines to
the positive dimensional quadric L p∩X and a fortiori to X , contrary to our assumption.
In conclusion L p is the unique secant line to X passing through p. ��

We recall the next result for future reference.

Proposition 2.8 ([13, Proposition 9.1.1, third formula]) Let X ⊂ P
5 be a smooth

cubic hypersurface and let S1, S2 ⊂ X be two smooth surfaces such that the scheme-
theoretic intersection S1 ∩ S2 contains a smooth curve C of degree d and genus g.
Then:

multC (S1 · S2) = 3d + KS1 · C + KS2 · C + 2 − 2g, (1)

where KSi denotes the canonical class of Si and multC (S1 · S2) the multiplicity of
intersection of S1 and S2 along C.
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3 Cubic hypersurfaces in C14

3.1 Smooth quartic rational normal scrolls in P
5 and the linear system of

quadric hypersurfaces through them

Let C be the moduli space of smooth cubic hypersurfaces in P
5, which is a quasi-

projective variety of dimension 20. For generalities on this space see [15].
Let us recall from [15, Sect. 4] that C14 ⊆ C is defined as the locus of smooth

cubic hypersurfaces X ⊂ P
5 containing a 2-dimensional algebraic cycle T such that

T 2 = 10 and T · h2 = 4, where h is the cycle of a hyperplane section of X . The
locus C14 is easily seen to be equal to the closure of smooth cubic hypersurfaces in
P
5 containing a smooth rational normal scroll of degree 4. In fact, if T ⊂ X is a

smooth quartic rational normal scroll, then T 2 = 10 by the self-intersection formula
and T · h2 = deg(T ) = 4.

The rationality of cubic hypersurfaces in P
5 often depends on the fact that they

contain an OADP surface, irreducible or reducible. Indeed in this case (see [20, Sect.
5] for an extended discussion of the details), the cubic hypersurface is birational to
the symmetric product of an irreducible OADP surface or to the ordinary product
of two distinct irreducible components of an OADP surface, whose secant join fills
the whole space. Examples of surfaces with one apparent double point are: smooth
quintic del Pezzo surfaces; smooth quartic rational normal scrolls and more generally
small varieties whose secant variety (or join) fills the whole space; the union of two
disjoint planes. A generalization of OADP surfaces has been considered recently in
[21], providing a new geometric insight to rationality of cubic fourfolds.

There are two types of smooth quartic rational normal scroll surfaces: S(2, 2),
projectively generated by two conics in skew planes and isomorphic to F0 = P

1 ×P
1,

and S(1, 3), projectively generated by a line and a twisted cubic and isomorphic to
F2. The first type is the most general one and it depends on 29 parameters while the
second type depends on 28 parameters. The application of Proposition 2.5 to a smooth
quartic rational normal scroll yields the following result, which is quite well known.

Proposition 3.1 Let T ⊂ P
5 be a smooth quartic rational normal scroll and let

ψ : P
5 ��� P

5 be the rational map defined by the linear system |H0(IT (2))|. Then:
a) the closure of the image Q = ψ(P5) ⊂ P

5 is a smooth quadric hypersurface;
b) the closure of a general fiber of ψ is a secant line to T ;
c) the closure of a fiber of dimension greater than one is a plane cutting T along a

conic.

An explicit birational representation of a smooth cubic hypersurface containing a
smooth quartic rational normal scroll T has been described by Fano in [12] and by
Tregub in [22].

In the desire of being as self-contained as possible, we will now provide a short
and complete proof of Fano’s result. It is important to point out that here we consider
any smooth cubic hypersurface containing a smooth quartic rational normal scroll, as
in [4, Theorem 4.3].
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Theorem 3.2 ([12], [4, Theorem 4.3]) Let the notation be as in Proposition 3.1. Let
X ⊂ P

5 be a smooth cubic hypersurface containing a smooth quartic rational normal
scroll T , and let ψ̃ : BlT X → Q be the morphism induced by restricting ψ to X.
Then ψ̃ is a birational morphism onto a smooth quadric hypersurface Q ⊂ P

5 such
that the following properties hold.

a) The [closures of the] positive dimensional fibers of the restriction of ψ to X are
either secant (or tangent) lines to T contained in X or (at most a finite number
of) planes cutting T in a conic.

b) the inverse map ψ̃−1 : Q ��� BlT X is not defined along an irreducible surface
S′
T , whose singular points are the images of the planes cutting T in a conic and

contained in X. In particular, the cubic hypersurface X contains a twodimensional
family of secant lines to T and S′

T has at most a finite number of singular points.
c) If X does not contain any plane cutting T in a conic, then S′

T ⊂ P
5 is a smooth

surface of degree 10 and sectional genus 7, which is the projection from a tangent
plane of a smooth K3 surface ST ⊂ P

8 of degree 14 and sectional genus 8. The
surface S′

T is isomorphic to the Hilbert scheme of secant lines to T contained in
X. The conic CT ⊂ S′

T , image of the exceptional divisor on the blow-up of ST via
tangential projection, is also the image via ψ of the secant lines to T lying in the
planes cutting T in a conic.

Proof The scroll T is the base locus of the rational map ψ : P
5 ��� P

5, and the
general secant line to T is not contained in X and cuts X in one point outside T . Thus
the restriction of ψ to X is birational and ψ̃ is a birational morphism. Proposition 3.1
implies that the positive dimensional fibers of the restriction of ψ to X are exactly as
in a).

Let S′
T ⊂ Q be the fundamental locus of ψ̃−1 and let E = ψ̃−1(S′

T ) ⊂ BlT X .
Since Q is smooth, E is a divisor in BlT X and it is irreducible by [11, Proposition
1.3] because BlT X has Picard group isomorphic to Z ⊕ Z. Then S′

T = ψ̃(E) ⊂ Q is
irreducible.

Since X contains at most a finite number of planes, the general positive dimensional
fiber of ψ̃ has dimension one by part a) and (S′

T )red is an irreducible surface. Let

Z = {q ∈ S′
T : dim(ψ̃−1(q)) ≥ 2} � S′

T

and let V = Q\Z . Then ψ̃−1(V ) → V is a projective birational morphism between
smooth varieties such that each positive dimensional fiber has dimension at most
one. By a result of Danilov, see [7], ψ̃−1(V ) → V is the blow-up of V along the
smooth surface S′

T \Z so that the base locus scheme of ψ̃−1 is smooth outside Z . By a
straightforward adaptation of [11, Proposition 2.1 b)] we deduce that Sing(S′

T ) = Z
is at most a finite set in bijection with the planes cutting T in a conic and contained in
X , proving b).

Let �T ⊂ P
5 be the union of the planes cutting T along a conic. Since these conics

vary in a pencil, the three dimensional variety �T is a rational normal scroll of degree
three. Then either �T is a Segre 3-fold P

1 × P
2 ⊂ P

5 (if T � S(2, 2)), or �T is a
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cone over a twisted cubic with vertex a line (if T � S(1, 3); in this case the vertex of
the cone is the directrix line of T ).2

Let� be a plane meeting T in a (possibly reducible) conic D. If� is not contained
in X , then�∩X consists of the conic D plus a line L , which is thus secant to T . These
lines describe a rational scroll of degree five ZT ⊂ X , linked to T via X inside �T .
We claim that the image of �T (and hence of ZT ) via ψ is a conic CT ⊂ S′

T . We shall
prove the claim for �T � P

1 × P
2, the remaining case being similar. The restriction

of ψ to �T � P
1 × P

2 is given by a linear system in |H0(O(2, 2))|, having T as base
locus scheme and hence as a fixed component. Since T is a divisor of type (0, 2) inside
P
1 × P

2, the restriction of ψ is given by the complete linear system |H0(O(2, 0))|,
proving the claim (see also Corollary 3.5 for a different geometrical incarnation of the
conic CT ).

Under the hypothesis of c) one immediately deduces from b) that S′
T is a smooth

irreducible surface and that the restriction of ψ̃ : BlT X → Q to E = ψ̃−1(S′
T ) → S′

T
is a P

1-bundle over S′
T whose image in X , let us say M , is the locus of secant lines to

T contained in X . From this it follows that S′
T is isomorphic to the Hilbert scheme of

secant lines to T contained in X . For the geometrical description of S′
T as the tangential

projection of ST we refer to [12] or to [4, Theorem 4.3], where it is also proved that
M is a divisor in |OX (5)| having triple points along T . ��

3.2 Singular quadrics through a smooth quartic rational normal scroll.

In this paragraph we describe the geometry of quadric hypersurfaces through a quartic
rational normal scroll. First we give a synthetic description of how families of quadrics
of given rank are constructed and then we collect in a proposition the description of
these singular quadrics. Finally we use this to study secant lines of rational normal
scrolls contained in a cubic fourfold.

3.2.1 Rank 4 quadrics

Let T ⊂ P
5 be a smooth quartic rational normal scroll. The projection of T from a

proper secant line L , not lying on a plane cutting T in a conic, is a smooth quadric
surface Q ⊂ P

3 and the join S(L , Q) ⊂ P
5 is a rank 4 quadric through T . By varying

L we get a four dimensional family �1 of rank 4 quadrics through T .
Let Q̂ be a rank four quadric through T and let Vert(Q̂) = L be a line. The

projection of Q̂ from L is a smooth quadric Q ⊂ P
3. Then the projection of T from

L is also Q. Therefore either L ⊂ T is a line of the ruling or length(L ∩ T ) = 2
(otherwise the degree of the projection of T from L would be 4, if L ∩ T = ∅; or 3, if
length(L ∩ T ) = 1). So L is a secant or a tangent line to T , not contained in a plane
cutting T along a conic (otherwise Q would be singular).

2 Recall that the only conics living inside S(1, 3) are the directrix union a fiber.

123



174 M. Bolognesi et al.

3.2.2 Rank 3 quadrics

We have seen in Sect. 3.2.1 that, starting from a proper secant line L , we obtain a rank
4 quadric S(L , Q) through T . When L degenerates to a tangent line to T , including
the lines contained in T , the projection from L remains smooth. The projection from
a secant line L ′ to T contained in a plane cutting T in a conic C is a rank three quadric
Q′ ⊂ P

3. In the degeneration of L to L ′, the rank four quadric surface S(L , Q)

degenerates into a rank three quadric S(L ′, Q′), whose vertex is the plane spanned by
the conic C .

Lemma 3.3 The vertex of every rank 3 quadric Q̂ through T cuts T along a conic,
which for T = S(1, 3) is reducible.

Proof The projection of T from the vertex of Q̂, Vert(Q̂), is a conic Ĉ so that every line
of the ruling of T cuts the vertex of Q̂ because it cannot dominate Ĉ . Then the points
of intersection of the lines of the ruling with Vert(Q̂) describe a curve D ⊂ Vert(Q̂) of
degree atmost 2, which is a section of the ruling of T . If D is a conic, then T = S(2, 2).
If D is a line, then T = S(1, 3) and there exist a twisted cubic D′ disjoint from D,
which is also a section of the ruling. Since D′ projects onto a conic, D′ cuts Vert(Q̂)

in a point q /∈ D. The line Lq of the ruling of T passing through q cuts D in a point
q ′. Then Lq ⊂ Vert(Q̂) because q, q ′ ∈ Vert(Q̂) and D ∪ Lq is a conic contained in
Vert(Q̂). ��

An explicit and straightforward computation gives the description of all the singular
quadric hypersurfaces containing T , summarized in the following result.

Proposition 3.4 Let T ⊂ P
5 be a smooth quartic rational normal scroll. The locus

of singular quadric hypersurfaces through T is a degree 6 hypersurface � ⊂ P
5 =

|H0(IT (2))|, supported on the union of two quadric hypersurfaces�1,�2 ⊂ P
5. The

quadric hypersurface �1 is smooth and it occurs with multiplicity 2 in � while the
quadric �2 has rank 3 and its vertex P is the plane defining the cubic rational normal
scroll �T ⊂ P

5 determined by the pencil of planes cutting T along conics.
The locus of quadrics of rank less than or equal to 4 consists of �1 ∪ P while the

locus of quadrics of rank 3 is a conic � ⊂ �1 ∩ �2. Note that, if the scroll is S(1, 3),
then P ⊂ �1.

Putting together Theorem 3.2 and Proposition 3.4 we obtain a different geometrical
description of the surface S′

T parametrizing secant lines to T contained in a smooth
cubic fourfold X ⊂ P

5 through T .

Corollary 3.5 Let notation be as in Proposition 3.4 and Theorem 3.2. Let X ⊂ P
5

be a smooth cubic hypersurface containing a smooth quartic rational normal scroll
T and not containing a plane cutting T in a conic.

Then the closure of the locus of quadrics of rank four containing T and whose
vertex is a line contained in X is a smooth surface ŜT ⊂ �1, isomorphic to the
surface S′

T ⊂ P
5. Moreover, the image of the conic CT ⊂ S′

T under this isomorphism
is the conic � ⊂ �1 ∩ �2.
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In the sequel we shall use the next quite striking result, which was claimed without
proof in [12].

Lemma 3.6 ([12, bottom of page 75/top of page 77]) Let T1, T2 ⊂ P
5 be two smooth

quartic rational normal scrolls intersecting in a 0–dimensional scheme of length 10.
Then there exists a unique quadric hypersurface W ⊂ P

5 containing T1 ∪ T2, whose
vertex is either a line L secant to T1 and to T2 or a plane � intersecting each Ti along
a conic Ci with C1 �= C2

If T1 and T2 are contained in a cubic hypersurface X ⊂ P
5, then L ⊂ X, respectively

� ⊂ X.

Proof Wewill first show that there exists a unique quadric hypersurface in P
5 through

T1 ∪ T2. Then some computations will exclude the higher rank cases.
Let Y = T1 ∩ T2, which by hypothesis is a 0–dimensional scheme of length 10.

We can suppose that T1 � P
1 × P

1 is embedded in P
5 by |H0(OT1(1, 2))|, that is

T1 � S(2, 2) (the case T1 � S(1, 3) is similar and left to the reader). The quadric
hypersurfaces defining T2 restrict to divisors in |H0(OT1(2, 4))| and we have the short
exact sequence:

0 → TorP
5

1 (OT1 ,OT2) → IT2,P5|T1 → IY,T1 → 0,

where TorP
5

1 (OT1 ,OT2) is supported on Y . From TorP
5

i+1(IT2,P5 ,OT1) = TorP
5

i (OT2 ,

OT1) = 0 for every i ≥ 1, from the 2-regularity of T2 ⊂ P
5 and from the previous exact

sequence, it follows that h1(IY,T1(2, 4)) = 0. Thus Y imposes independent conditions
to |H0(OT1(2, 4))| (see also [10, Lemma 1.1] for a similar argument). Therefore we
have:

5 = h0(OT1(2, 4)) − deg(Y ) = h0(IY,T1(2, 4)) ≥ h0(IT2,P5(2)) − h0(IT1∪T2,P5(2)),

yielding

h0(IT1∪T2,P5(2)) ≥ 1. (2)

Let ψ = ψ2 : P
5 ��� Q ⊂ P

5 be the rational map associated to T2, defined in
Proposition 3.1, and let ϕ be the restriction of ψ to T1. The map ϕ is given by a linear
system |D| ⊆ |H0(OT1(2, 4))| having the length 10 base locus scheme Y = T1 ∩ T2.
From D2 = 16 − 10 = 6, we infer that S = ϕ(T1) ⊂ Q ⊂ P

5 is an irreducible
surface such that 6 = deg(ϕ) · deg(S). Proposition 3.1 implies deg(ϕ) ≤ 2, yielding
deg(S) ∈ {3, 6}. The surface S is degenerate in P

5 by (2) (ψ2 induces a one-to-
one correspondence between the quadrics vanishing on T1 ∪ T2 and the hyperplanes
containing S). Let M = 〈S〉 � P

5 with 3 ≤ dim(M) ≤ 4. Since S ⊂ Q ⊂ P
5 and

since deg(S) ∈ {3, 6}, we deduce dim(M) = 4 and h0(IT1∪T2,P5(2)) = 1.
Let W ⊂ P

5 be the unique quadric hypersurface containing T1 ∪ T2. Let Q′ ⊂ P
5

be a smooth quadric hypersurface and let Z ⊂ Q′ be a smooth surface. Then, letting
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h be the class of a hyperplane section on Z , the self-intersection formula for Z on Q′
yields

Z2 = 7h2 + 4h · KZ + 2K 2
Z − 12χ(OZ ).

Suppose W were smooth. The previous formula implies that T 2
i = 8 as cycles

inside W . From H4(W, Z) = Zα ⊕ Zβ with α2 = 1 = β2 and α · β = 0, from
deg(Ti ) = 4 and from T 2

i = 8, we get Ti = 2α + 2β. This would imply T1 · T2 = 8,
contrary to our assumption. Thus W ⊂ P

5 is not of maximal rank. A computation as
in [10, Proposition 2.2] shows that W cannot be of rank 5. Therefore W ⊂ P

5 is of
rank 3 or 4.

Let us suppose first rank(W )=4, let L = Vert(W ) and let W := S(L , Q) with Q a
smooth quadric surface. Then L is a secant line to T1 and to T2, see Sect. 3.2.1, and the
scheme T1 ∪ T2 intersects L in a scheme of length at least four. If T1 ∪ T2 is contained
in a cubic hypersurface X , then the multiplicity of intersection of L with X is at least
four and L is contained in X .

Suppose rank(W )=3 and letW = S(�,C), i.e.W is the quadric obtained as a cone
whose vertex is the plane� ⊂ P

5 and whose base is a smooth conicC ⊂ 〈C〉 = P
2 ⊂

P
5 such that � ∩ 〈C〉 = ∅. Then � ∩ Ti is a conic Ci ⊂ Ti by Lemma 3.3 and we

have C1 �= C2 because T1 ∩ T2 is zero dimensional. If T1 ∪ T2 is contained in a cubic
hypersurface X , then C1 ∪ C2 ⊂ � ∩ X yields � ⊂ X . ��

3.3 Fano’s construction revisited and rationality of cubics in C14\C8

Let T be the Hilbert scheme of (degenerations of) smooth quartic rational normal
scrolls contained in a general X ∈ C14. In order to calculate the dimension of C14 we
need to estimate the dimension of T . Let us recall that for any smooth quartic rational
normal scroll T ⊂ P

5 we have dim(|H0(IT (3))|) = 27. The Hilbert scheme H
parametrizing smooth quartic rational normal scrolls in P

5, is irreducible, generically
smooth and it has dimension 29. Hence

dim(T ) = dim(H) + dim(|H0(IT (3))|) − dim(C14) ≥ 56 − dim(|O
P5(3)|) = 1

(3)

and codim(C14, C) = dim(T )−1.3 We shall immediately prove, that dim(T ) = 2 for
a general X ∈ C14 without appealing to abstract deformation theory of T inside X .

We now come to one of the gems in Fano’s paper [12, pages 75–76]. As far as we
know this geometrical construction has not been yet translated intomodern geometrical
language despite the great interest that this example has generated over the decades.
Let us remark that, obviously, Fano did not state the next result in this form.

Theorem 3.7 Let X ∈ C14, let T ⊂ X be a smooth quartic rational normal scroll, let
�T ⊂ P

5 be the rational normal scroll given by the pencil of planes spanned by the

3 Actually the fact that codim(C14) ≥ 1 is well known also for Noether-Lefschetz reasons.
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conics contained in T and let T be the closure of the family of smooth quartic rational
normal scrolls contained in X (i.e. the Hilbert scheme of smooth quartic rational
normal scrolls contained in X).

Then:

a) dim(T ) = 2;
b) there exists a unique irreducible 2-dimensional component S̃T ⊆ T containing

T , which is birational to the Hilbert scheme of secant lines to T contained in X;

Proof By (3) we know that dim(T ) ≥ 1 for any X ∈ C14. Let L ⊂ X be a proper
secant line to T , not belonging to the scroll ZT , residual to T in �T ∩ X (see the
proof of Theorem 3.2 for the definitions). By projecting T from L , we deduce that
T ⊂ W = S(L , Q̂) ⊂ P

5 with Q̂ = πL(T ) ⊂ P
5 a smooth quadric surface. Let


i = P
1, i = 1, 2, be the parameter spaces of the two ruling of lines contained in Q̂.

Then, letting

P
3
λ := S(L , Lλ), λ ∈ 
1, Lλ ⊂ Q̂;

P
3
μ := S(L , Lμ), μ ∈ 
2, Lμ ⊂ Q̂,

we can define two pencils of cubic surfaces

Fλ = P
3
λ ∩ X, λ ∈ 
1

and

Gμ = P
3
μ ∩ X, μ ∈ 
2.

Modulo a renumbering, we can also suppose that, for general λ ∈ 
1 and for
general μ ∈ 
2, we have that

P
3
λ ∩ T = L ′

λ ⊂ T

is a line of the ruling of T and that

P
3
μ ∩ T = Cμ ⊂ T

is a twisted cubic curve having L has a secant line.
Let L̃μ ⊂ Gμ be the unique line contained in the smooth cubic surface Gμ which

is skew with L and with Cμ. Let us set

T̃L :=
⋃

μ∈
2

L̃μ ⊂ X ∩ W.

Then T̃L ⊂ X is a rational scroll such that πL(L̃μ) = πL(Cμ) = Lμ is a line for μ

general. By varying the line L ⊂ X secant to T , we can construct a two dimensional
family of such surfaces, whose general member is a rational scroll. Among the secant
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lines of T contained in X , there exists a one dimensional family describing the quintic
rational scroll ZT ⊂ X , consisting of secant lines to T contained in a plane meeting
T in a conic. Thus a general line L ′ of the ruling of ZT is such that the corresponding
plane � of �T is not contained in X . By degenerating a general secant line L to
the secant line L ′ to T , the smooth quadric Q̂ = πL(T ) degenerates to a rank three
quadric surface Q̂′, whose vertex is the plane � not contained in X . Equivalently, we
are degenerating a general quadric corresponding to a general point in the surface ŜT ,
defined in Corollary 3.5, to a quadric corresponding to a point in � ⊂ ŜT such that
the vertex of the corresponding rank three quadric is not contained in X . Let C ′ ⊂ �

be the unique conic such that C ′ ∪ L ′ = � ∩ X . Then � ∩ T = C ′ and the limits of
the P

3
μ’s contains �. The two rulings of the smooth quadric Q̂ = πL(T ) degenerate

into the unique ruling of Q̂′ and the scroll T̃L converges to T .
Let us denote by S̃T ⊆ T the irreducible two dimensional family just constructed,

consisting of two dimensional cycles algebraically equivalent to T . In particular,
dim(T ) ≥ 2. Moreover, for a general secant line L to T , the rational scroll T̃L ⊂ X
is a smooth quartic rational normal scroll such that C ′

λ = P
3
λ ∩ T̃L is a twisted cubic

having L as a secant line and such that L̃μ = P
3
μ ∩ T̃L is the line defined above. Thus

T̃L and T have opposite behavior with respect to the intersection with the two pencils
{P3

λ}λ∈
1 and {P3
μ}μ∈
2 .

Let T2 ∈ T be a general element in an irreducible component T ′ of T to which T
belongs. From 10 = T 2 = T · T2 and by the generality of T2 we deduce that T and T2
intersect in a 0–dimensional scheme of length 10. By applying Lemma 3.6 to T and
T2, we conclude that T2 is obtained from T by the previous geometrical construction
yielding T ′ = S̃T and dim(T ) = 2. Moreover, we also showed that S̃T is the unique
irreducible component of T containing T , proving the first part of b).

Let S′
T be the surface defined in Theorem 3.2, which parametrizes via ψ̃ the secant

lines to T contained in X .
The cubic hypersurface X contains at most a finite number of planes, so for a

general T2 ∈ S̃T the unique quadric hypersurface WT2 containing T ∪ T2 provided by
Lemma 3.6 has rank four.We can define a rationalmapαT : S′

T ��� S̃T , by associating
to a general secant line to T contained in X the scroll T2 ∈ S̃T produced via Fano’s
deformation argument of Lemma 3.6. Again by Lemma 3.6 this map is birational and
the inverse associates to a general T2 ∈ S̃T the unique vertex of the rank four quadric
WT2 containing T ∪ T2. ��

Remark 3.8 If X does not contain any plane of �T , the surface S′
T is smooth by

Theorem 3.2, part b). The description of Fano’s deformation shows that the secant
lines to T contained in �T produce the same scroll T . Thus the conic CT ⊂ S′

T is
contracted to a point by αT . Under the previous hypothesis one can show that αT

extends to a morphism, which is the the blow-down of the conic C ⊂ S′
T , and also

that S̃T is isomorphic to a smooth K3 surface of degree 14 and genus 8, a fact which
is known since [5].

Addington and Lehn show the existence of a two dimensional family of surfaces
of degree four parametrized by a smooth K3 surface S as above for a generic Pfaffian
cubic in [3, Section 2] via linear algebra, expanding the details of the construction
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drafted by Beauville and Donagi in [5, Remarques (1)]. For such a generic Pfaffian
cubic they prove that each member of the family is an irreducible small surface by
exhibiting an explicit resolution for each member of the family, see [3, Section 2],
and that a general member of the family is a smooth quartic rational normal scroll.
Below we shall generalize this fact to every X ∈ C14\C8 by showing that every surface
corresponding to each point of the Hilbert scheme S̃T is a smooth quartic rational
normal scroll inside X .

The next result, which is probably well known to the experts in the field, seems
to have not been explicitly stated and/or proved till now. As we shall see later in
Theorem 4.7, the locus of X ∈ C14 containing a quartic rational normal scroll is
constructible but not open in C14.

Theorem 3.9 Every X ∈ C14\(C8 ∩ C14) contains a smooth quartic rational normal
scroll and hence it is rational. Moreover, the family of smooth quartic rational normal
scrolls contained in such a X is an equidimensional projective surface.

Proof First we describe the Hilbert scheme of quartic rational normal scrolls via an
incidence correspondence over the moduli space of cubics (Step 1 ). Then, a degen-
eration argument shows that under our hypothesis every [T0] ∈ T is a smooth quartic
rational normal scroll (Step 2).

Step 1 LetH be the irreducible component of the Hilbert scheme of P
5 whose general

member is a smooth quartic rational normal scroll. Every element [T ] ∈ H has degree
four, dimension 2 and Hilbert polynomial equal to 2t2 +3t +1, being a flat projective
deformation of a smooth quartic rational normal scroll in P

5.
Let C̃ ⊂ P

55 = P(H0(O
P5(3))) be the open subset parametrizing smooth cubic

hypersurfaces in P
5. Let

C14 = {([T ], [X ]) ∈ H × C̃ : T ⊂ X},

let π1 : C14 → H be the restriction to C14 of the first projection and let π2 : C14 → C̃
be the restriction to C14 of the second projection.

Recall that dim(H) = 29 and that for a general [T ] ∈ H we have that π−1
1 ([T ]) is

an open subset of P(H0(IT (3))) = P
27. Thus C14 contains an irreducible component

W of dimension 56 dominating H. Moreover W is a closed subset of H × C̃ so that
π2(W ) = C14 is a closed irreducible subset of C̃ of dimension 54. In fact, we have
seen in Theorem 3.7 that the family of quartic rational normal scrolls contained in a
general [X ] ∈ C14 is two dimensional.

Thus the image of C14 in C is exactly C14, which is irreducible–a well known
fact–and a divisor in C, see also [15]. In particular, for every [X ] ∈ C14 let
T = π1(π

−1
2 ([X ])) ⊂ H.

Step 2 We claim that if [X ] ∈ C14\(C8 ∩C14), then every [T0] ∈ T is a smooth quartic
rational normal scroll.

By definition of H we can suppose that there exists a one dimensional family
{Tλ}λ∈C , [Tλ] ∈ H, where C is a smooth analytic curve (small disk), such that 0 ∈ C
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and Tλ is a smooth quartic rational normal scroll for every λ ∈ C\0. Thus each
irreducible component of T0 has dimension two and it is covered by lines, the limits
of the lines of the ruling of Tλ. Since X does not contains planes (and hence quadric
surfaces) by hypothesis, we deduce that every [T0] ∈ T is irreducible and generically
reduced.

Let us use the same notation as above. Fix a general point p ∈ P
5 and let lλ, λ �= 0,

be the unique secant line to Tλ ⊂ P
5 passing through p. A limit line l0 intersects

T0 ⊂ P
5 along a scheme whose length is at least two. In particular T0 ⊂ P

5 is a
non-degenerate scheme by the generality of p.

If T0 is reduced, then T0 ⊂ P
5 is an irreducible non-degenerate surface of degree

four having a secant/tangent line passing through a general point p ∈ P
5. Thus, either

T0 is a smooth quartic rational normal scroll or it is a cone over a quartic rational
normal curve (in the last case the limit line l0 would necessarily be the line through
p and the vertex of the cone). The surface T0 cannot be a cone because in this case
the tangent space to T0 at its vertex would be P

5, forcing the singularity of X at the
vertex of T0. Thus, if T0 is reduced, then it is a smooth quartic rational normal scroll,
as claimed.

Suppose T0 is not reduced. The scheme T0 is irreducible and generically reduced
and has Hilbert polynomial equal to 2t2 +3t +1 so that R0 = (T0)red is an irreducible
surface of degree four in P

5, which is degenerated. Otherwise R0 would be a surface of
minimal degree in P

5 which has Hilbert polynomial 2t2+3t+1 and it would coincide
with T0, which is non reduced by hypothesis. Moreover, R0 is covered by lines, which
are limits of the lines covering Tλ. From this it follows that R0 is an external projection
of a quartic rational normal scroll S0 ⊂ P

5.
If S0 were a cone over a smooth quartic rational normal curve, then T0 would be

non reduced only at the point p0 ∈ R0 which is the image of the vertex of S0. The limit
secant line l0 through a general point p ∈ P

5 introduced above would be necessarily
tangent to T0 at p0. The generality of p would yield that the tangent space to T0 at p0
is the whole space P

5, showing that such a T0 cannot be contained in X . If S0 ⊂ P
5

were a smooth quartic rational normal scroll, then, by Proposition 2.5, R0 is either a
general projection of S0 or the external projection of S0 from a point on the scroll �

generated by the planes spanned by the pencil of conics on S0. In the first case, there
is a unique non reduced point p0 ∈ T0 supported at the unique singular point of R0.
Proceeding as above, we deduce that Tp0T0 = P

5 and hence T0 cannot be contained
in X . If R0 is the projection of S0 from a point of �, then T0 has embedded points
along the line L = Sing(R0). The tangent space at each point of L has dimension
four and intersects P

4 = 〈R0〉 along a P
3. If such a T0 were contained in X , then the

intersection X ∩ 〈R0〉 would be a cubic hypersurface in 〈R0〉, containing R0 and non
singular along L . This is impossible, as shown for example by a direct calculation, so
that T0 is necessarily reduced.

In conclusion, the family of smooth quartic rational normal scrolls contained in
X ∈ C14\C8 is not-empty and proper so that it coincides with T . ��

Remark 3.10 Under the hypothesis of Theorem 3.9, every irreducible component of
T is a smooth K3 surface S ⊂ P

8 which is a general linear section of G(1, 5) ⊂ P
14.

From our perspective the surface S is obtained in this way: we fix a T ⊂ X and
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construct the surface S′
T , which is smooth by Theorem 3.2 and which parametrizes

secant and tangent lines to T contained in X ; by contracting the conic CT ⊂ S′
T to a

point one obtains the surface S.
Let S[2] denote the Hilbert scheme of length two subschemes of the smooth

irreducible projective surface S. Then S[2] is a smooth irreducible projective vari-
ety of dimension 4. One can also describe S[2] as the blow-up of the symmetric
product S(2) along the image of the diagonal �S ⊂ S × S, yielding a birational
morphism ϕ : S[2] → S(2). Let E := ϕ−1(�S) and let (p, p) ∈ �S . Then
ϕ−1((p, p)) � P(tpS), where tpS is the affine tangent space to S at p, i.e. E is
the union of the exceptional divisors of the blow-up’s of S at each point p ∈ S.

By definition of Hilbert scheme, each point p ∈ S corresponds to a unique smooth
quartic rational normal scroll Tp ⊂ X and, by Theorem 3.2, the Hilbert scheme of
secant lines to Tp contained in X is isomorphic to Blp S. Under this isomorphism, the
secant lines to Tp contained in �Tp correspond to the exceptional divisor P(tpS) �
ϕ−1((p, p)).

TheHilbert scheme F(X) of lines contained in X can be interpreted as the parameter
space of secant lines to the family of smooth rational normal scrolls contained in X in
a natural way, yielding a different interpretation of the well known isomorphism with
S[2].

In fact, we can consider S[2] as the Hilbert scheme parametrizing couples of smooth
quartic rational normal scrolls contained in X . If a (general) point [(p1, p2)] ∈ S[2]
corresponds to two distinct Tp1 , Tp2 contained in X , we can associate to [(p1, p2)] the
vertex of the unique rank four quadric surface containing two distinct quartic rational
normal scrolls Tp1 , Tp2 (see Lemma 3.6). This extends to a morphism from S[2] to the
Hilbert scheme of lines contained in X in the following way. A length two subscheme
T ∈ ϕ−1((p, p)) can be seen as a limit of [(Tp, Tp′)] ∈ S[2] with Tp �= Tp′ . Thus
there exists a unique rank three quadric surface determined by the degeneration of
Tp′ to Tp, see proof of Theorem 3.7. Then this plane cuts Tp along a conic and a line
L . By mapping T to L one gets a morphism φ : S[2] → F(X), which is indeed an
isomorphism.

This construction in some sense generalizes the same isomorphism obtained in [5]
for Pfaffian cubics. While the proof of Beauville and Donagi is based on a linear
algebra argument and on some explicit geometry of the Grassmannian G(2, 6), the
approach sketched above relies completely on the geometry of quartic scrolls inside
X and of their secant lines.

4 Irreducible components of C14 ∩ C8 and the Pfaffian locus in C14

Let

A(X) = H2,2(X, Z) = H4(X, Z) ∩ H2(�2
X )

denote the lattice of algebraic 2-cycles on the cubic fourfold X ⊂ P
5 up to rational

equivalence and let dX be the discriminant of the intersection form on A(X).

Let β ∈ Z, let S ⊂ P
5 be a smooth quintic del Pezzo surface and let P ⊂ P

5 be a
plane. Let
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C′
β = {[X ] ∈ C14 ∩ C8 : X ⊃ S ∪ P with S · P = β} ⊂ C8 ∩ C14.

Let h2 be the class of a smooth cubic surface W ⊂ X , intersection of X with a
general P3 ⊂ P

5 and let T = 3h2 − S ∈ A(X). Since h4 = 3, h2 · S = 5 and S2 = 13,

we get T · h2 = 4, T
2 = 10 and T · P = 3 − β.

Let τ ∈ Z, let T ⊂ P
5 be a smooth quartic rational normal scroll and let P ⊂ P

5

be a plane. Let

C′′
τ = {[X ] ∈ C14 ∩ C8 : X ⊃ T ∪ P with T · P = τ } ⊂ C8 ∩ C14.

Proposition 4.1 The set C′
β , respectively C′′

τ , defined here above is not empty if and
only if β, respectively τ , belongs to {0, 1, 2, 3}.
Proof If β < 0, then the cycle P · S has to contain a curve. Since S is defined by
quadratic equations the scheme-theoretic intersection P ∩ S is either a line L ⊂ S or
a conic C ⊂ S. From KS · L = −1 and KS · C = −2, we deduce from formula (1)
that multL(P · S) = 1, respectively multC (P · S) = 0, contrary to our assumption.
The argument for C′′

τ with negative τ is identical and will be omitted.
The surfaces T and S are scheme-theoretically defined by quadratic equations

whose first syzygies are generated by the linear ones. If P ∩ T , respectively P ∩ S
is 0-dimensional, then τ ≤ 3, respectively β ≤ 3, by the last part of [8, Theorem
1.1]. If P ∩ T , respectively P ∩ S, contains a curve then τ , respectively β, belongs
to {0, 1, 2, 3} by the above argument, concluding the proof of the only if part. One
may also prove these facts as in [1, Theorem 4], via a different argument using lattice
theoretic methods and Riemann bilinear relations.

Example 5.1 proves the if part. ��
Remark 4.2 The closure of the locus of smooth cubic hypersurfaces inP

5 containing a
pair of skew planes is irreducible, has codimension 2, see [22], and it will be indicated
by C̃−1. For a general [X ] ∈ C̃−1 we have rk(A(X)) = 3 and dX = 21. If T ⊂ X
were a smooth quartic rational normal scroll, respectively if S ⊂ X were a smooth
quintic del Pezzo surface, then an easy direct computation shows that dX = 21 would
imply [X ] ∈ C′′−1, respectively [X ] ∈ C′

4, which is impossible by Proposition 4.1.
This remark due to Tregub in [22] has some striking consequences on the topological
properties of the Pfaffian locus, see Theorem 4.7 below.

A general [X ] ∈ C̃−1 contains cycles T with T · h2 = 4 and T
2 = 10. In particular,

such a X contains the reducible small surface consisting of the union of two general
quadrics each one residual to one of the two skew planes contained in X . A general

[X ] ∈ C̃−1 contains also cycles S with S · h2 = 5 and S
2 = 13. In particular C̃−1 is an

irreducible component of C8 ∩ C14.

Example 4.3 (C′
β �= ∅ for β ∈ {0, 1, 2, 3}) By a direct computation one shows that

there exists a smooth cubic hypersurface X ⊂ P
5 containing a smooth quintic del

Pezzo surface S and a plane P such that S ∩ P is a scheme of length β consisting
exactly of β reduced points (see Example 5.1). Let P{ ⊂ C14 be the subset of Pfaffian
cubics, that is cubic hypersurfaces in P

5 admitting an equation given by the Pfaffian
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of a 6×6 anti-symmetric matrix of linear forms. By [6, Proposition 9.2,part(i)] the set
P{ ⊂ C14 consists exactly of cubic fourfolds containing a smooth quintic del Pezzo
surface.Moreover by [6, Proposition 9.2, part (ii) ] the closure ofP{ in C is irreducible
of dimension 19 and hence it coincides with C14. In particular P{ is dense in C14.

We are now in position to give an alternative, geometrical and self-contained proof
of the main result of [1]. Moreover, we shall also show that every element in C8∩C14 is
rational, a fact claimed only for the general element of some components in [1]. This
result, together with Theorem 3.9, will prove that every element in C14 is rational.

In fact, the proof of the rationality of the generic cubic contained in the component
with dX = 32 proposed in [1] relied on the openness of the locus of Pfaffian cubics
inside the divisor C14. Since Theorem 4.7 will show that the Pfaffian locus is not open,
then we also fill in this gap and also simplify some arguments in [1].

Theorem 4.4 The codimension two locus C8 ∩ C14 has five irreducible components.
The cubic hypersurfaces contained in each component contain a small OADP surface
of degree four and hence they are rational. The components are indexed by the value
P · T ∈ {−1, 0, 1, 2, 3}, where P ⊂ X is a plane and T the class of a small O ADP
surface such that T 2 = 10 and T · h2 = 4.

The proof is based on a degeneration argument that shows the following claim: every
point in the Hilbert scheme of quartic rational normal scrolls contained in a fixed X
as in the statement corresponds either to a smooth rational normal scroll or to a small
reducible OADP surface. In order to prove this claim, we go through a case by case
analysis. Finally, we shall compute the irreducible components by lattice-theoretic
arguments and by showcasing explicit examples (contained in Sect. 5).

Proof The notation will be as in the proof of Theorem 3.9. Let X ⊂ P
5 be such

that [X ] ∈ C14 ∩ C8 and recall that H is the irreducible component of the Hilbert
scheme of P

5 whose general member is a smooth quartic rational normal scroll. Let
T ⊂ H be theHilbert scheme parametrizing schemes T ⊂ P

5 withHilbert polynomial
p(t) = 2t2 + 3t + 1 which are contained in X . Since a general cubic hypersurface in
C14 contains a two dimensional family of smooth quartic rational normal scrolls, we
deduce that dim(T ) ≥ 2 by semicontinuity.Moreover, each [T ] ∈ T is a projective flat
degeneration of a smooth quartic rational normal scroll. In particular, each irreducible
component of T of dimension two is covered by lines which are the limits of the lines
covering a general element inH, which is a smooth quartic rational normal scroll. Let
us remark that a priori, for some particular choice of X , every element in T might be
reducible, see for example Remark 4.2. By repeating the same argument via the limit
secant line we used in the proof of Theorem 3.9, we can conclude that any T0 ∈ T is
a non-degenerate scheme in P

5 such that through a general point of P
5 there passes a

secant/tangent line to T0.

Claim: A general element T0 ∈ T is either a smooth rational normal scroll or a small
reducible OADP surface

Suppose that T0 is a reduced scheme Then T0 is a non-degenerate reduced surface
of degree four. If T0 is irreducible, then it is a smooth quartic rational normal scroll,
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as shown in the proof of Theorem 3.9. If T0 is not irreducible, then it is the union of
surfaces of degree lower or equal to three, all covered by lines. Thus T0 can be the
union of planes, quadric surfaces and rational scrolls of degree three. Since the Hilbert
polynomial of a hyperplane section is 4t + 1, a general hyperplane section of T0 is the
union of irreducible rational curves such that two irreducible components intersect at
a point. Therefore the intersection of two irreducible components of T0 occurs along a
line. Since T0 is also non-degenerate, the intersection of two irreducible components
equals the intersection of the corresponding linear spans (otherwise 〈T0〉 � P

5). Thus
T0 ⊂ P

5 is a linearly joined sequence of surfaces of minimal degree and hence a small
surface by Theorem 2.4. Then T0 is also an OADP surface by Corollary 2.7 since
through a general point of P

5 there passes a secant/tangent line to T0.

Assume T0 ⊂ P
5 is a non-reduced non-degenerate scheme If T0 is irreducible,

then the same argument as in the proof of Theorem 3.9 shows that T0 cannot be
generically reduced. Thus (T0)red would be a (possibly reducible) quadric surface
Q0 and T0 would define the cycle 2Q0 inside X . The scheme T0 can be obtained
as a flat projective deformation of a one dimensional family {Tλ}λ∈C ⊂ H of small
OADP surfaces consisting of two quadric surfaces Q′

λ, Q
′′
λ intersecting along a line.

Moreover, we can also suppose that Q0 = Q′
λ for every λ ∈ C . In particular, for

every λ �= 0 the surface Tλ is contained in smooth cubic hypersurfaces belonging to
C14. Since X ∈ C14 we have π−1

1 (T0) �= ∅ so that X ∈ W = π2(π
−1
1 (C)) ⊂ C14,

where the πi are the projections as in Theorem 3.9. Then we can suppose that X = X0
is the limit of a flat family {Xμ}μ∈D with Xμ ∈ W for every μ �= 0. Let us point
out that Xμ ∈ C̃−1 for every μ �= 0 since, by construction, a general element of
W contains a cycle of the form Q′

λ + Q′′
λ for some λ ∈ C\0. Therefore there exist

cycles Tμ = Q′
μ + Q′′

μ = Q0 + Q′′
μ inside Xμ such that rk(〈h2, Tμ〉) = 2 and such

that rk(〈h2, Q0, Q′′
μ〉) = 3 for every μ �= 0. Moreover, the discriminant of 〈h2, Tμ〉

is equal to 14 for every μ �= 0. If P0 ⊂ X = X0 is the unique plane such that
h2 = P0 + Q0, then rk(〈h2, P0, Tμ〉) = rk(〈h2, Q0, Q′′μ〉) = 3 for every μ �= 0.
Then T0 = 2Q0 ∈ 〈h2, P0〉 is in contrast with the semicontinuity of the rank of A(Xμ)

over C (or with the fact that C14 is closed in C). This proves that π−1
1 (T0) = ∅, that is:

every cubic hypersurface containing a reduced T0 as above is singular. This fact can be
also verified by a long computation, which shows that a general element in π−1

1 (T0)
has three singular points. In an analogous way, one can prove that a non-reduced T0
must be generically reduced along each irreducible component of (T0)red.

From now on we can suppose that T0 is a non-reduced, generically reduced scheme
having at least two irreducible components, which are either planes or quadric surfaces
or cubic scrolls. If one of its components is a cubic scroll, then there is only another
irreducible component which is necessarily a plane. From this it follows that (T0)red
would be a linear projection of a small OADP surface consisting of a cubic rational
normal scroll and a plane. Then the same argument used in Theorem 3.9 shows that T0
would have an embedded point p0 at the acquired intersection of the two irreducible
components with Tp0T0 = P

5 and X would be singular.
Therefore we can assume that each irreducible component of T0 is either a plane

or an irreducible quadric surface. Then, once again, it is not difficult to see that T0 is
necessarily a linear projection of a small OADP surface with embedded points at the
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acquired intersections of the irreducible components of (T0)red, yielding the singularity
of each cubic hypersurface containing T0.

In conclusion, each cubic hypersurface in C14 ∩ C8 contains a small OADP surface
T ⊂ X such that T · h2 = 4 and T 2 = 10, as claimed.

Description of the irreducible components Let P ⊂ X be a plane such that
rk(〈h2, T, P〉) = 3 and let τ = P · T .

IfT is irreducible, thenT is a smoothquartic rational normal scroll so that 0 ≤ τ ≤ 3
by Example 4.3 or directly by Theorem 2.4. If T = S∪ P ′ with S ⊂ X a cubic rational
normal scroll and P ′ ⊂ X a plane we can take P = P ′. Since P ′ · S = 0 by (1), we
deduce P · T = P2 = 3. If every irreducible component of T has degree less than or
equal to 2, then X contains a pair of skew planes and one easily deduces τ = −1. In
conclusion −1 ≤ τ ≤ 3 and these examples exist by Example 5.1.

Denote by Aτ the lattice of rank 3 generated by 〈h2, S, P〉with τ = P · S as above.
We shall indicate by Dτ ⊂ C8 ∩ C14 the locus of smooth cubic fourfolds such that
there is a primitive embedding Aτ ⊂ A(X) of lattices preserving h2. For −1 ≤ τ ≤ 3
each Dτ is a nonempty subvariety by Example 5.1 and it is of pure codimension 2 in
C by a variant of the proof of [15, Thm. 3.1.2]. The argument at the end of the proof
of [1, Theorem 4] assures that for a general X ∈ Dτ we have A(X) = Aτ and that
each codimension 2 locusDτ is irreducible, showing that C8 ∩C14 has five irreducible
components. ��

Voisin proved in [24] that, for an arbitrary cubic fourfold X ⊂ P
5, every class

P ∈ H2,2(X, Z) with P · h2 = 1 and P2 = 3 is represented by a unique plane in X .
Theorems 3.9 and 4.4 yield the following analogous result.

Corollary 4.5 Let X ∈ C14 and let T ∈ H2,2(X, Z) with T · h2 = 4 and T 2 = 10.
Then T is represented by a small OADP surface contained in X.

Remark 4.6 To every X ∈ C8 one associates a rational fibration in quadric surfaces
induced by the projection of X from a plane P ⊂ X onto a skew plane. If this fibration
admits a rational section, then X is rational.

Let X be a general cubic in one of the five irreducible components of C8 ∩ C14
and let dX be the discriminant of X . In [1, Proposition 5] it is proved that the natural
quadric fibration associated to X admits a rational section if and only if τ is odd, that
is if and only if P ·T /∈ {0, 2}. For τ ∈ {−1, 1, 3} a general cubic in the corresponding
irreducible component admits a rational quadric fibration with a section and it is thus
rational, see [1]. Since every element in C14 is rational, a general cubic hypersurface
with P ·T ∈ {0, 2} is rational although the associated quadric fibration has no rational
section. The case P · T = 0 has been already observed in [1], where an explicit
example is also constructed.

Theorem 4.4, the discussion in Examples 4.3 and 5.1(e) below have essentially
shown the next result, which is in contrast with the usual common sense according to
which the Pfaffian locus should be open in C14.

Theorem 4.7 The set P f ⊂ C14 is not open in C14. Analogously, the set of smooth
cubic fourfolds containing a smooth quartic rational normal scroll is not open in C14.
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Proof Let C̃−1 = D−1 be the irreducible component of C8 ∩ C14 whose general
element is a smooth cubic hypersurface X ⊂ P

5 containing two skew planes P1, P2.
Suppose that P f were open in C14 and consider its intersection P f ∩ C̃−1 ⊂ C14.
By Example 5.1(e) we know that P f ∩ C̃−1 �= ∅. Hence, if P f were open, then
P f ∩ C̃−1 would meet the dense subset of cubics X ∈ C̃−1 such that rk(A(X)) = 3,
but as recalled in Remark 4.2 this is not possible.

The conclusion in the second statement follows once again from the existence of a
smooth cubic fourfold containing a quartic rational normal scroll and a pair of skew
planes, see Example 5.1, and by the fact that a general X ∈ C̃−1 does not contain a
smooth quartic rational normal scroll, see Remark 4.2 . ��

Remark 4.8 We recall that the Pfaffian locusP f and the set of cubics 4-folds contain-
ing a smooth quartic rational normal scrolls are images of quasi-projective varieties via
suitable morphisms (see [6, Sect. 8–9], respectively the proof of Theorem 3.9). Thus,
by Chevalley Theorem, they are constructible and in particular they contain an open
non-empty subset of C14. In fact, C14 is the closure of both these two open sets. If these
open subsets intersect an irreducible component of C8 ∩C14, then the general element
of this component is Pfaffian, respectively contains a smooth quartic rational normal
scroll. Since these open sets are purely theoretical, with no precise handy description,
it is hard to verify whether they intersect an irreducible component or not. Thus the
statement that a general element of Dτ , τ ∈ {0, 1, 2, 3}, is Pfaffian requires a quite
delicate analysis and cannot be deduced by simply exhibiting a Pfaffian cubic in Dτ ,
cfr. [1, Section 4]. The examples constructed in Example 5.1 show that P f ∩ Dτ �= ∅
for every admissible τ and that the intersection is non-empty also for the set consisting
of cubic four-folds containing a smooth quartic rational normal scroll.

5 Some cubic fourfolds containing smooth del Pezzo quintics

We shall give explicit examples of smooth cubic hypersurfaces in P
5 which contain

a quintic del Pezzo surface S ⊂ P
5 and a plane intersecting S in either the empty

scheme or a set of 1 ≤ i ≤ 3 linearly independent reduced points. Furthermore, we
will showcase an example of smooth cubic hypersurface containing S and two disjoint
planes obtained as linear spans of two irreducible conics on S. All our computations
have been done using Macaulay2 [14].

5.1 A del Pezzo surface of degree 5 in P
5

A del Pezzo surface of degree 5 in P
5 can be parametrized by the map associated to the

linear system of all cubic curves in P
2 passing through four points in general position.

We choose such a map f : P
2 ��� P

5, where the points are taken to be (1, 0, 0),
(0, 1, 0), (0, 1, 0), (1, 1, 1), and f is defined by

(t0, t1, t2) �→ (t20 t2 − t0t1t2, t0t1t2 − t21 t2, t0t
2
2 − t1t

2
2 , t20 t1

− t0t1t2, t0t
2
1 − t21 t2, t0t1t2 − t1t

2
2 ).
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If x0, . . . , x5 denote homogeneous coordinates onP
5, then the image S = f (P2) ⊂ P

5

is the del Pezzo surface defined by the five quadratic forms:

x2x4 − x1x5, x0x4 − x1x5 − x3x5 + x4x5, x2x3 − x0x5,

x1x3 − x1x5 − x3x5 + x4x5, x0x1 − x1x2 − x0x5 + x1x5.

On S there are five pencils of conicswhose linear spans determine five Segre threefolds
�i � P

1×P
2 ⊂ P

5, i = 0, . . . , 4. These pencils come as images of pencils σ0, . . . , σ4
on P

2 under the parametrization f , where σ0 is the pencil of conics passing through
the four base points of f , and σ1, . . . , σ4 are the pencils of lines passing through one
of these four points. From this one can explicitly determine �0, . . . , �4, and it turns
out that their homogeneous ideals are generated by the following quadratic forms:

�0 : x2x4 − x1x5, x2x3 − x0x5, x1x3 − x0x4;
�1 : x2x4 − x1x5, x0x4 − x1x5 − x3x5 + x4x5, x0x1 − x1x2 − x2x3 + x1x5;
�2 : x2x3 − x0x5, x1x3 − x1x5 − x3x5 + x4x5, x0x1 − x1x2 + x2x4 − x0x5;
�3 : x0x4 − x2x4 − x3x5 + x4x5, x1x3 − x2x4 − x3x5 + x4x5, x0x1 − x1x2

− x0x5 + x1x5;
�4 : x2x3 + x0x4 − x2x4 − x0x5 − x3x5 + x4x5, x1x3 − x1x5 − x3x5 + x4x5,

x0x1 − x1x2 − x0x5 + x1x5.

Two generic conics belonging to the same pencil on S are irreducible and the two
planes obtained as linear spans are disjoint. Two such conics in f (σ0) are:

C1 = V (x2 + x5, x1 + x4, x0 + x3, x3x4 + x3x5 − 2x4x5),

C2 = V (x2 + 2x5, x1 + 2x4, x0 + 2x3, 2x3x4 + x3x5 − 3x4x5).

We also fix three linearly independent points q1, q2, q3 ∈ S, and four planes
�0, . . . ,�3 ⊂ P

5 such that �0 ∩ S = ∅ and �i ∩ S = {q1, . . . , qi } (scheme-
theoretically), for i = 1, 2, 3. Explicitly,

�0 = V (x2 + x4, x1 + x3 + x5, x0 − x4),

�1 = V (x3 − x4 + x5, x1 + x2 − x5, x0 − x5),

�2 = V (x3 − x4, x1 − x5, x0 − x2 + x5),

�3 = V (x3 − x4 + x5, x1 − x5, x0 − x2 + x5),

where q1 = f (1, 1, 0) = (0, 0, 0, 1, 1, 0), q2 = f (1, 0, 1) = (1, 0, 1, 0, 0, 0) and
q3 = f (0, 1, 1) = (0, 1, 1, 0, 1, 1).

In Example 5.1, we exhibit the promised smooth cubic hypersurfaces in P
5. All of

them are basically obtained by choosing randomly cubic hypersurfaces containing the
given subschemes, until we get one that is smooth. This approach works well due to
the closedness of the discriminant locus in the space of cubic forms on P

5.

Example 5.1 The following five cubic forms F0, . . . , F4 on P
5 define smooth hyper-

surfaces containing the quintic del Pezzo surface S; moreover V (Fi ) contains �i for
i = 0, . . . , 3, and V (F4) contains the two disjoint planes 〈C1〉 and 〈C2〉.
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(a) F0 = x0x21 − x21 x2 + x0x1x3 + x21 x3 − x22 x3 + x1x23 − x20 x4 − x22 x4 + x1x3x4
− x2x3x4 − 2x2x24 + x0x2x5 − x23 x5 + 2x1x4x5 + x24 x5 − x0x25 − x3x25 + x4x25 ;

(b) F1 = x20 x1 − x0x1x2 + x21 x3 − x22 x3 + x1x23 − x0x2x4 − x0x3x4 + x2x24 − x20 x5+ 2x0x1x5 − x21 x5 + x0x2x5 + x2x3x5 − x0x25 − x1x25 − x3x25 + x4x25 ;

(c) F2 = x0x1x2 − x1x22 − x21 x3 − x22 x3 + x2x23 − x20 x4 + 2x22 x4 + x1x3x4 + x2x3x4
+ x0x24 − 3x2x24 + x21 x5 − 2x0x4x5 − 2x3x4x5 + 2x24 x5 + x0x25 + x3x25 − x4x25 ;

(d) F3 = 2x20 x1−2x0x1x2+x0x1x3−x21 x3−x0x2x3−x1x23+x0x1x4−x1x2x4+x22 x4−x0x24 +x2x24 −x20 x5+x21 x5−x0x3x5+2x1x3x5+x23 x5−x2x4x5−x24 x5+x0x25 ;

(e) F4 = −x20 x1 + x0x1x2 − x21 x3 + x0x2x3 − 3x20 x4 + x0x1x4 + x22 x4 − 2x0x3x4
− x2x3x4 − x2x24 + 2x0x1x5 − x1x2x5 + 3x0x3x5 + x2x3x5 + 2x23 x5 + x1x4x5
− 2x3x4x5 − x0x25 .

For every i, j = 0, . . . , 4, we have the decomposition �i ∩ V (Fj ) = S ∪ Ti, j , where
Ti, j is a smooth rational normal scroll surface of degree 4 if (i, j) �= (0, 4), while T0,4
is the small variety 〈C1〉∪〈C2〉∪V (x0, x3, x2x4−x1x5). In particular, the smoothness
of T1,4 implies that there exist smooth cubic fourfolds containing a smooth quartic
rational normal scroll and two disjoint planes. The ideal of T1,4 is generated by the
following six quadratic forms:

x2x4 − x1x5, x1x4 + 3x4x5 − x25 , x0x4 − x1x5 − x3x5 + x4x5,

x1x3 − x0x5 + x2x5 + 3x3x5 − x25 , x21 + 3x1x5 − x2x5,

x0x1 − x1x2 − x2x3 + x1x5.

Moreover, if P ⊂ X is a plane such that P · S = τ with 0 ≤ τ ≤ 3, then from
3h2 = S + Ti, j we deduce P · Ti, j = 3 − τ .

Here we give some pieces of Macaulay2 code which have been used to produce
and verify the examples above. The complete code can be found in the ancillary file
cubics.m2. We begin by starting Macaulay2 and loading two further packages
included with it.

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : loadPackage "Cremona"; -- version 4.2
i2 : loadPackage "Resultants"; -- version 1.1

We define a method which takes as input a projective scheme and returns a random
smooth cubic hypersurface containing the scheme. If such a smooth hypersurface does
not exist, the method goes in an infinite loop and does not produce any output. One of
its possible implementations (that does not take care of the growth of the coefficients)
is the following:

i3 : randomCubic = (I) -> ( -- I must be a homogeneous ideal in a polynomial ring
B := super basis(3,saturate I); C := 0;
while (C == 0 or discriminant C == 0) do C = (B * random(QQˆ(numcols B),
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QQˆ1))_(0,0);
return C);

The smoothness of the cubic hypersurface is checked through the computation of its
discriminant. It is however standard to implement a general method which checks
whether a given closed subscheme of a projective space is smooth and absolutely
connected. Now we build the parametrization f of the quintic del Pezzo surface S.

i4 : use Grass(0,2,Variable=>t);
i5 : P = {ideal(t_1,t_2),ideal(t_0,t_2),ideal(t_0,t_1),ideal(t_1-t_0,t_2-t_0)};
i6 : f = rationalMap(intersect P,3);
o6 = RationalMap (cubic rational map from PPˆ2 to PPˆ5)
i7 : S = image f;

The pencils σ0, . . . , σ4, the conics C1,C2 and the points q1, q2, q3 are obtained as
follows:

i8 : pencils = prepend(intersect P,P);
i9 : conics = (f ideal(pencils_0_0 + pencils_0_1), f ideal
(pencils_0_0 + 2*pencils_0_1));
i10 : points = (f ideal(t_2,t_0-t_1), f ideal(t_1,t_0-t_2), f ideal(t_0,
t_1-t_2));

One then easily verifies that our choice of the planes �0, . . . ,�3 is correct. To deter-
mine the Segre threefolds �0, . . . , �4, an idea is just to add another variable and to
compute the generic conic in each of the five pencils. We omit this code here, but it is
available in the ancillary file. Now we produce a cubic form F like F4 in Example 5.1.
The other cases are quite similar.

i11 : I = intersect(S,ideal super basis(1,conics_0),ideal super basis
(1,conics_1));
i12 : F = randomCubic I;

Thus the residual intersections Ti = �i ∩ V (F)\S can be obtained as follows (here
we are assuming that Sigma is the list of the ideals of �0, . . . , �4).

i13 : T = apply(5,i -> (Sigma_i + F):S);

Finally, the following code gives us an explicit birational map from P
4 to V (F).

i14 : ((rationalMap S)|F)ˆ-1;
o14 = RationalMap (birational map from PPˆ4 to hypersurface in PPˆ5)
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