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Abstract In this paper, we use the theory of twisted stable maps to construct com-
pactifications of the moduli space of pairs (X — C,S + F) where X — C is a
fibered surface, S is a sum of sections, F is a sum of marked fibers, and (X, S + F)
is a stable pair in the sense of the minimal model program. This generalizes the work
of Abramovich—Vistoli, who compactified the moduli space of fibered surfaces with
no marked fibers. Furthermore, we compare our compactification to Alexeev’s space
of stable maps and the KSBA compactification. As an application, we describe the
boundary of a compactification of the moduli space of elliptic surfaces.

Mathematics Subject Classification 14J10 - 14D23

1 Introduction

A fibered surface is a flat proper morphism f : X — C from a smooth projective
surface to a smooth projective curve with sections o1, ..., 0y, and generic fiber a
stable v-pointed curve of genus y. As surfaces fibered in curves appear naturally
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(e.g. elliptic surfaces), it is natural to ask for geometric compactifications of their
moduli. Abramovich and Vistoli [9] used the theory of twisted stable maps to Deligne—
Mumford stacks to construct a compactification g (MW) of the moduli space of
fibered surfaces.

In this paper we use the general theory of twisted stable maps developed in [10]
to extend their results in [9] to the pairs case, and construct compactifications of the
moduli space of pairs (f : X — C, S + F) where (X — C, 01, ..., 0,) is a fibered
surface,

v n
S+F=) Si+) F
i=1 j=1

isasum of sections S; := 0;(C) and marked fibers F; with their reduced structure, and
(X, S+ F) is a stable pair in the sense of the minimal model program (see Definition
2.3). Using this approach, we are able to describe the stable reduction process (see
Theorem 1.4) in a more straightforward manner than solely using techniques from the
minimal model program (MMP).

Our first theorem generalizes Propositions 6.10 and 6.13 of [9]. See also Corollary
1.8.2 of [3].

Theorem 1.1 (See Theorem 4.2 and Corollary 4.7) There exists a morphism
(2 ’Cg,n(ﬂy,\)) i AV(M)/,U)

from the space of twisted stable maps with target ﬂy,v to the space of Alexeev stable
maps with target M, .

The space Ay (V) of Alexeev stable maps to a projective scheme V is a higher
dimensional analogue of the moduli space of Kontsevich stable maps /\_/lg,n(V). It
parametrizes maps g : (X, D) — V from a semi-log canonical (slc) surface pair
(X, D) such that wx (D) is a g-ample QQ-line bundle with numerical data v as con-
structed in [7] (see Theorem 2.6 for more details). We fix the degree of the twisted
stable map throughout, which we suppress from the notation; v depends on this choice
of degree. Finally, we note that the fact that a twisted stable map gives rise to an
Alexeev stable map was essentially proven in Corollary 1.8.2 of [3].

We identify the surface pairs in the image of the morphism ¢ and call these twisted
surfaces (see Definition 4.9). As a consequence of properness for the moduli space of
twisted stable maps, we obtain the following.

Theorem 1.2 (See Theorem 5.2) There exists a proper Deligne-Mumford stack
f;’n(M y,v) With projective coarse moduli space parameterizing pairs (X — C —

My,u, S + F) where:

L. (X — C, S+ F) is a twisted fibered surface, and
2. (X,S+F)— M, , is an Alexeev stable map with numerical data v.
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Moduli of fibered surface pairs from twisted stable maps 1009

The map ¢ factors as KCq , (My,v) — fg’n(ﬁy,,,) — AV(M%V) where the first map
is surjective and the second forgets the fibration X — C.

It is an interesting question to ask if the morphism f;’n(ﬁy,u) — Ay (My,v) is
surjective onto the irreducible components of Ay (My,v) that it hits. This amounts to
the following deformation-theoretic question. Given a normal twisted fibered surface
(f: X - C,S+ F), does a small deformation of X extend to a small deformation
of f : X — C? This question is answered in the affirmative in arbitrary dimension
but without marked fibers in [17].

Now we briefly explain the idea behind using twisted stable maps to understand
fibered surface pairs. Since the generic fiber of a fibered surface f : X — C with v
sections is a v-pointed genus y stable curve, there is a naturally induced rational map
C - /\_/l),,v, to the moduli stack of stable curves. That is, there exists a nonempty
open subset U C C such that X|y — U is a family of stable curves inducing a
morphism U — M%U.

Since /Vy,u is a proper Deligne-Mumford stack, the rational map C --» Mw
extends to a morphism C — /\_/ly,U from a smooth projective orbifold curve C with
marked points Elc C C\U, where C has coarse space C containing U as an open dense
subset.

We now have a fiber product diagram, where / — ﬂy,v represents the universal

family:
X—U
C—— MV,V

Then [’ : X' — C, the coarse space of X — C, will be a fibered surface pair birational
to f : X — C, with sections S; and marked fibers F; above the marked points El.c.

From this construction, the map C — M%v induces a birational model (X' —
C, S + F) of a fibered surface pair, along with a morphism C — M},,v. Now using
twisted stable maps, we compactify the space of such maps by allowing the source
curve C to degenerate to a nodal orbifold curve and obtain a morphism to A(My,v)
by taking coarse space of the pullback of the universal family of ﬂ},,u.

1.1 Stable maps versus stable pairs

One is often interested in the space of stable surface pairs instead of stable maps. For
a twisted fibered surface (X — C, S+ F) (see Definition 4.9) over a smooth curve C
such that (X, S + F) is a stable pair, there is a uniquely determined map C — M,,),,
given by taking the coarse space of C — ﬂy,v as above. In this case, no information
is lost by forgetting the map. However, this may no longer be true on the boundary of
the moduli space since the source of a stable map may not be stable as a pair, i.e. the
pair (X, S + F) might not be stable.
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1010 K. Ascher, D. Bejleri

We let F, g‘ ,, (v, v) denote the compactification of the space of twisted stable fibered
surface pairs (X — C, S+ F) provided by the minimal model program (see Definition
5.6).

Theorem 1.3 (See Theorem 5.7 and Corollary 5.11) The moduli space fé‘,’,n(y, V) is
a proper Deligne—Mumford stack equipped with a morphism f;,n(y, V) — ./Vg,n.

More precisely, we lift a one parameter family of twisted stable fibered surfaces in
the interior of F, ;”n(y, v) to a family of twisted stable maps. There is then a unique
limit in fg’n(y, V). One obtains this stable limit by running stable reduction on the
family of twisted stable maps, taking the coarse space, and then running the MMP.
The key point we wish to emphasize is that the resulting stable limit comes equipped
with a compatible fibration onto a pointed stable curve.

In passing from f;’n(ﬁ%,}) to f;yn(y, v), one begins with the data (f : X —
C —> My,v, S + F) of a twisted fibered surface pair and an Alexeev stable map to
My,u, then runs the minimal model program on the pair (f : X — C, S+ F) to make
wx (S + F) ample in the absolute sense rather than ample relative to the morphism
X — M, . Itis natural to ask if this process is functorial:

Question 1 Is there a morphism Fy , (ﬁy’v) — Fg (v, v) that forgets the map to
M., . ?
yov?

The difficulty in answering the above question is that the steps of the minimal
model program are not always compatible with arbitrary base change. Thus one needs
a strong vanishing theorem or a fine study of the actual birational transformations that
occur in families of twisted fibered surfaces when stabilizing. In [2], we carry this out
in the case of elliptic surfaces y = v = 1.

1.2 Applications

A key application of the above theorems is in constructing well behaved degenerations
of fibered surfaces. Given a one parameter family of smooth projective fibered surfaces
with sections, we can choose to mark all fibers that are not stable curves. Taking the
relative log canonical model produces a birational family of twisted surface pairs with
mild singularities. Theorem 1.2 then allows one to use twisted stable maps to produce a
unique flat degeneration consisting of an slc union of fibered surfaces with components
glued over nodes of the base curve.

The advantage of this construction is that the structure of a fibered surface is pre-
served, and the limit of the family can be computed completely from the corresponding
twisted stable maps. In effect, this reduces questions about degenerations of surfaces
to those about maps of stacky curves. These degenerations play a similar role in the
study of fibered surfaces as Kulikov degenerations play in the study of K3 surfaces.
Indeed the log canonical models of Kulikov degenerations of elliptically fibered K3s
are a special case of the preceding construction.
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Moduli of fibered surface pairs from twisted stable maps 1011

1.2.1 Elliptic surfaces

An interesting question then is to determine which surfaces appear on the boundary
of F;’n(y, v). That is, what are the stable limits of families of v-pointed genus y
fibrations over an n-pointed genus g stable curve provided via MMP?

Using the work of La Nave [14], we can answer this question in the case when
y = v = 1, i.e. the case of elliptic surfaces. The starting point is the analysis of log
canonical models of elliptic surfaces with a section and marked fibers carried out in
[1]. Using these results, we describe the twisted elliptic surface pairs appearing on
the boundary explicitly. Furthermore, La Nave in [14] describes how the steps of the
minimal model program affect the central fiber of the stable limit of the corresponding
twisted stable maps. As a result, we obtain a complete description of the boundary
components of ]—;‘,”n(l, 1):

Theorem 1.4 (see Theorem 6.5) The boundary of }'g,’,n(l, 1) parametrizes broken
elliptic surfaces (see Definition 6.4) consisting of an slc union of elliptic components
and trees of pseudoelliptics (see Definition 6.3) glued along fibers.

The above theorem is key to understanding moduli spaces of A-weighted stable
elliptic surfaces which we study in [2]. We note that Brunyate [ 11] used similar methods
to describe the boundary of the moduli space of elliptic K3 surfaces in the case where
the section and singular fibers are marked with very small coefficients.

Finally, one can hope to apply these results in understanding degenerations of
classes of surfaces that come equipped with a natural pencil of curves. For example,
the anti-canonical pencil on a degree one del Pezzo surface has a unique base point,
and by blowing up this point you obtain a rational elliptic surface with section. One
can then compute the limit of a family of such del Pezzo surfaces by computing the
degenerations of the corresponding elliptic surfaces, and running a well chosen MMP
that produces a degeneration of the original family.

1.3 Enumerative geometry

Using the theory of twisted stable maps, Abramovich-Graber-Vistoli construct
Gromov-Witten invariants of Deligne—-Mumford stacks in the algebraic setting. In
our case, these are computed by virtual invariants on KCg , (/Vy,u). The map in Theo-
rem 1.1 suggests that one may be able to use birational geometry of fibered surfaces
to understand Gromov-Witten invariants of /Vy,u.

This leads us to ask the following question, and make the following conjecture:

Question 2 Do the spaces ‘7:51’)»" (v, v) admit a virtual fundamental class?

Conjecture 1 The map Kg,n(my,,,) — fg,n(ﬁ%v) in Theorem 1.2 is a virtual
normalization. That is, it induces an equivalence between natural virtual fundamental
classes.

Conjecture 1 is a natural generalization to surfaces of the well known result [5,
Proposition 4.2.2] of Abramovich—Corti—Vistoli that the space of twisted covers is the
normalization of the space of admissible covers.
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1012 K. Ascher, D. Bejleri

One might also expect to construct weighted invariants of /V},, v asin [6]. However,
weighted maps to stacks are not well behaved and it is unclear how to compactify the
moduli space. The minimal model program suggests a way to get around this.

Indeed, in [2] we study moduli spaces &, 4 of A-weighted stable elliptic surfaces.
These are replacements of the moduli space of weighted stable maps to M ;. One
can hope to construct an analogue of quasi-map invariants of Mm using these spaces.

Question 3 Do the spaces &, 4 admit a virtual fundamental class?

The difficulty in answering the above question is the fact that for arbitrary coeffi-
cients A, the infinitesimal structure of the moduli space of stable pairs has not been
developed. Indeed, we do not have a good deformation theory of stable pairs with
arbitrary coefficients. We hope the considerations in this paper and [2] will help better
understand this phenomenon.

1.4 Higher dimensions

In this paper we restrict to fibered surfaces in order to avoid the subtleties involved
with slc singularities and moduli of stable pairs in higher dimensions. There should
not, however, be serious difficulties in extending the results of this paper to higher
dimensions assuming we have access to a suitable moduli space of stable pairs.

More precisely, given a Deligne-Mumford stack M, of n-dimensional stable pairs
(X, D) with volume v and projective coarse moduli space M,, one can use twisted
stable maps to M, to construct a moduli space of (n + 1)-dimensional pairs (X —
C - M,,D + F). Here (X — C, D) a flat family with generic fiber of type M,
with coarse map C — M, the divisor F' is a sum of reduced marked fibers, and
(X, D+ F) - M, is an Alexeev stable map.

This is carried out inductively starting with curves in [3] to study moduli spaces
and stable reduction of higher dimensional pairs equipped with a plurifibration.

1.5 Determining the main components

An important question that arises when compactifying moduli spaces is to characterize
the main components moduli theoretically. In our case, one may be interested in
determining the closure in F, ;,n (My, v) of the locus of normal fibered surfaces. An often
fruitful approach is to use logarithmic geometry to characterize the main component
as a moduli of objects endowed with a natural log structure (see [13] for the case of
stable curves and [4] for an introduction to logarithmic geometry).

This approach almost works in our setting. Abramovich—Vistoli characterize the
smoothable nodal orbifold curves as those that are balanced, that is, étale locally
isomorphic to

[Spec(klx. y1/xy))/ ]
around each node where u, is the group of r-th roots of unity acting by (x,y) —

(ox, o~} y).Itis shownin [16] that a family of balanced twisted curves can be endowed
with a canonical log structure making it a log smooth morphism. It follows that the
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Moduli of fibered surface pairs from twisted stable maps 1013

fibered surface stack X — C induced by a balanced twisted stable map C — My,v
carries a canonical log structure making X a log smooth Deligne-Mumford stack.

However, it is not necessarily true that the coarse space X of X’ is a log smooth
surface. Therefore the best we can do is describe the main component of F, ; n (My, v)as
parametrizing coarse spaces of log smooth fibered surface stacks. One may hope that
a better understanding of the infinitesimal structure of the morphism X ,, (M%U) —
f;’n(ﬁy,v) can be used to exploit this fact in studying the boundary of the main
component.

1.6 Conventions

We work over a field of characteristic 0 convenience. We expect the results of this
paper to hold in positive, possibly large enough, characteristic. Indeed the theory of
twisted stable maps has been developed in arbitrary characteristic in [8]. The main
difficulties for moduli of surfaces in positive characteristic are discussed in [7] and
many of these have since been addressed in the literature.

2 Moduli of stable pairs

We begin with the relevant background from the theory of stable pairs, stable maps
and their moduli. The starting point for compact moduli spaces of higher dimensional
varieties is the higher dimensional generalization of a stable curve.

Definition 2.1 Let (X, D) be a pair of a normal variety and a Q-divisor such that
Kx + D is Q-Cartier. Suppose that there is a log resolution f : ¥ — X such that

Ky +) apE = f*(Kx + D),

where the sum goes over all irreducible divisors on Y. We say that the pair (X, D) has
log canonical singularities (or is Ic) if allag < 1.

Definition 2.2 Let (X, D) be a pair of a reduced variety and a Q-divisor such that
Kx + D is Q-Cartier. The pair (X, D) has semi-log canonical singularities (or is slc)
if:

e The variety X is S2,
e X has only double normal crossings in codimension 1, and
e Ifv: XV — X is the normalization, then the pair (X", 3" d;v_ ' (D;) 4+ D") is log
canonical, where DV denotes the preimage of the double locus on X".
Definition 2.3 A pair (X, D) of a projective variety and Q-divisor is a stable pair if:
1. (X, D) is an slc pair, and
2. wx (D) is ample.

There is also a notion of stable maps for surface pairs due to Alexeev [7].

Definition 2.4 Let X be a connected projective surface, let D C X be a divisor, and
let M C P" be a projective scheme. Then the morphism f : X — M is called an
Alexeev stable map of the pair (X, D) to M if:

@ Springer



1014 K. Ascher, D. Bejleri

1. the pair (X, D) is slc (in particular (wx(D))"™! is invertible for some integer
m > 0);
2. the line bundle wy (D)™ is f-ample.

Remark 2.5 Note that condition (2) in Definition 2.4 is equivalent to the statement
that the line bundle wy (D) ® f*©y;(mn) is ample for sufficiently large n. This is
independent of the choice of projective embedding of M since condition 2 evidently
is.

Given a stable map f : X — M from an slc surface pair (X, D), one has a well
defined triple of rational numbers:

v = ci(wx(D)?, vy =ci(wx(D)) - c1(f*Oun),  v3=c1(f*Oun))*.

When D is a reduced divisor, there exists a projective moduli space of stable maps:

Theorem 2.6 [7] Given rational numbers vy, vy and v3, there is a Deligne—Mumford
stack Ay(M) admitting a projective coarse moduli space for stable maps f :
(X, D) — M with invariants v = (v1, v2, v3) where (X, D) is an slc surface pair
and D is a reduced divisor.

3 Twisted stable maps of Abramovich—Vistoli

Here we introduce the space of twisted stable maps of Abramovich and Vistoli. We
urge the interested reader to consult [10].

Recall that if Y C P" is a projective variety with polarization Oy (1), Kontsevich
constructed a proper Deligne-Mumford stack

’Cg,n(Ya d) == /Vg,n(y9 d)

with projective coarse moduli space K ,, (Y, d) parametrizing degree d stable maps
from a genus g curve into Y. Now replace Y by a proper tame Deligne—-Mumford
stack M with a projective coarse moduli space M and polarization Ops(1). In [10]
the space K (M, d) of n-pointed twisted stable maps C — M of degree d and
genus g is defined as follows.

Definition 3.1 A twisted nodal n-pointed curve of genus g over a scheme T is a
diagram

x¢

1

\

N<——Q=<—0O
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Moduli of fibered surface pairs from twisted stable maps 1015

where

1. C is a tame DM stack, proper over T, and étale locally is a nodal curve over T,
2. Eic (i =1,...,n) are disjoint closed substacks in the smooth locus of C — T';
3. EZC — T are étale gerbes;

4. C — C is the coarse space map;

5. C — C is an isomorphism over the generic point of each component of C;

6. the coarse space C — T is a family of genus g curves overs 7.

By the tame assumption on C, it follows that C — T is a flat family connected
nodal curves over T (see [10, Proposition 4.1.1]) and that the coarse space Eic of the

gerbe Eic embeds into C. This makes (C, ZZ.C) — T into an n-pointed nodal curve of
genus g over 1.

Definition 3.2 An n-pointed twisted stable map f : (C, Eic ) = M of genus g and
degree d over T is a diagram

M

M

—_—

R

N<—Q0Q=<—0Q

where

. C—>C—T, Eic) is a twisted nodal n-pointed curve of genus g over T';

2. C — M is arepresentable morphism of stacks, and

3. the coarse map (C, Zl.c) — M is an n-pointed genus g stable map of degree d
over T.

Then we have the following:

Theorem 3.3 [10, Theorem 1.4.1] There is a proper Deligne—Mumford stack

Kg.n(M, d) parametrizing n-pointed twisted stable maps of genus g and degree d
to M.

Remark 3.4 We will supress the degree d in the notation of KCg , (M) for convenience.

4 Fibered surfaces from twisted stable maps

In this section, we use twisted stable maps from [10] to extend the fibered surface
results of [9] to stable fibered surface pairs. As a result, we obtain birational models of
stable fibered surface pairs (f : X — C, § + F) with section S and reduced marked
fibers F, and compare these to the log canonical models provided by the minimal
model program.
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1016 K. Ascher, D. Bejleri

4.1 From twisted stable maps to fibered surfaces

In [9], a complete moduli of fibered surfaces is constructed as a special case of the
moduli space of twisted stable maps where the target stack is taken to be M = MW,
the stack of v-pointed genus y curves. Indeed, a twisted stable map C — My,,, from
an unmarked twisted nodal curve C gives rise to a fibered stack-like surface (X —
C,S1,...,S8)) (see Definition 4.1) with sections S; by pulling back the universal
family. The coarse space (X — C,S; + --- + §,) is then a fibered surface with
sections S; and genus y fibers.

It is proven in Proposition 6.13 of [9] that X — C — My,,, is an Alexeev stable
map (see Definition 2.4). In this way, one obtains a morphism to the stack of stable
maps from a surface fibered in genus y curves with v sections (X — C, S1+---+S5,)
over a genus g curve C, to the coarse moduli space of stable curves M},,U. Furthermore,
this morphism is finite on each connected component of the source.

Our goal is to understand what happens when we additionally consider marked
points and marked fibers. That is, we consider an slc surface fibered in genus y curves

v n
fIX—)C,ZS,‘—i-ZFj
i=1 j=1

with v sections §; and n reduced marked fibers F; over a genus g curve C.
Let(wm:C— T, Zl.c) be a twisted nodal n-pointed curve over T and let ¢ : C —
ﬂy,v be a representable morphism. Consider the pullback of the universal family

U—-M,,:
u

— M,

This gives a family of genus y nodal curves f : X — C over C with sections
St ..., Sy. In particular, X is a tame stack with trivial stabilizer at the generic point
so that XY — (Y is a family of nodal curves. Here X and C are the coarse spaces and
X9 and C? are the necessarily non-empty open loci over which the coarse map is an
isomorphism; i.e. these are the non-stacky loci.

Definition 4.1 Atuple (f : X - C —> T, S;, Eic) as above is a stack-like surface
fibered in genus y curves with v sections and marked fibers over T'.

Taking the coarse space of a stack-like fibered surface gives us a flat family of
fibered surfaces X — C — T with sections Sy, ..., S, so that the generic fiber of
X — C is a stable v-pointed genus y curve. Furthermore, C comes with marked
points Eic and we can take F; := f _I(Eic )red to be reduced marked fibers on X.
Then we have that
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%
X—>C—>T,ZS,~+X’1:FJ~
i=1 j

is a flat family of fibered surface pairs over 7' with marked sections, marked fibers, and
stable generic fiber. Furthermore, there is a canonical coarse space map C — M, ,
which gives rise to a map (X, > /_; Si + 3} Fj) — M, by composition.

Theorem 4.2 (See also Proposition 1.8.1 of [3]) Suppose ¢ : (C, EIC) — /\_/ly,v isa
p_ointed twisted stable map. Then the coarse space map (X, Y /_ Si + Z’;z 1 Fj) —
M, of the corresponding stack-like fibered surface is a stable map in the sense of
Alexeev.

Proof of Theorem 4.2 We break the proof of this theorem into two parts—first we
show that the pair is slc, and then show that the pair satisfies the relative positivity
assumption.

Proposition 4.3 The coarse space (X — C,3 11 S; + 3 i_| Fj) of a stack-like
fibered surface is an slc pair.

Proof The condition of being slc is étale local, so we may replace X by an étale
neighborhood which has a global chart of X — C. That is, we have a family of stable
curves Y — U with sections S l’ over a marked nodal curve (U, E;j) as well as marked

fibers G ; above Z]U. Furthermore,

v m vV n
YOS+ G | /T= X)) S+ F
i=1 j=1 i=1 j=1

and (U, EJU) / I' = (C, E]C) for I" a finite group with an essential group action on
Y —>U.

By Lemma 6.6 of [9], ¥ has slc singularities. Furthermore, the sections S are
contained in the smooth locus of the family Y — U, and G are fibers over smooth
points of U. Therefore (Y, ) S/ + > G;) is slc. By Lemma 6.4 in [9], the pair
(X,> Si+) Fj)isslcifand only if Kx + ) S; + > F; is Q-Cartier.

The property of being Q-Cartier is local so we may check over a neighborhood
of p € C. If the point p is a node or an unmarked point of C, then we may take
a small neighborhood V' of p avoiding the markings Eic, so that (Xvy, > (Si)|vy) is
slc by Proposition 6.10 of [9]. Therefore to conclude, we only need to check in a
neighborhood of a marked point p = Zic .

Since p is a smooth point of C, we may suppose that C is smooth and that (X —
c,>'S j -+ F) is a fibered surface with FF = f ’l(p)red a reduced marked fiber.
Furthermore, we can write (X, Y~ S; 4+ F) = (Y, )~ S/ +G)/ T as above where I acts
freely away from p and '), = T'.

By Proposition 6.10 of [9], the pair (X, Y_ S;) isslcandso Kx + ) _ S; is Q-Cartier.
Thus all that remains to check is that F is Q-Cartier. However, X has finite quotient
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1018 K. Ascher, D. Bejleri

singularities, as it is the quotient of a family with quotient singularities by a finite
group, and thus is Q-factorial. Therefore, F is Q-Cartier.

Corollary 4.4 Let (X - C —> T, S;, Ef) be a family of stack-like surfaces fibered
in genus y curves with v sections over a family of n-pointed stacky nodal curves. Then
the coarse space

(x>co>1 Y s+ F)

is a flat family of slc fibered surface pairs over T whose construction commutes with
arbitrary base change T' — T.

Proof The stacks X and C are tame and so flatness of X — T and C — T implies
flatness of the coarse space. Furthermore, taking coarse space commutes with arbitrary
base change for tame stacks so that the fibers of the coarse space are slc pairs by the
proposition. O

Next we need to consider positivity of wx (3} S; + ) F)).

Proposition 4.5 Let (g : X — C,S;, E]C) be a stack-like surface fibered in genus
y curves with v sections over a family of n-pointed stacky nodal curves. Let (f :
X — C,Y Si + ) F)) be the coarse fibered surface pair. Then wy(}_ S; + 3 F))
is f-ample.

Proof Wedenote S =) S;, F =) F;,S=)_§;,and £ = )_%,. Consider the

diagram

4

_

=

e
—

og
QA<—

X
|
C

where ¥ and 7 are coarse moduli space maps. The morphism v is proper and quasi-
finite with branch locus contained in F. Letting F = ) F; be marked fibers of g over
F, we have

V(S + F) = wg(S+ F)

and it suffices to check that wg (S + F ) is g-ample by base change. The fibration g has
reduced fibers so F' = ¢*=C and for any fiber G of g, wg(S + F)|g = wg(Slg). It
follows that w, (S + F) is g-ample since (g : X — C, &;) is a family of stable pointed
curves. O

Proposition 4.6 Let (g : X — C, S, EJC) be as above and suppose the induced map

, EJC) — /Vy,v is a twisted stable map. Let i : X — M%v be the induced coarse
map. Then wy (S + F), with notation as above, is -ample.
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Proof As above, we have the following diagram

v x

.

_ T .C

)

M%V MV,V

=

<~ QN <—

wherelo f = ;L_.We need to show that wx (S + F) ® u*H" is ample for H an ample
line bundle on M, , and k large enough. Pulling back by the finite morphism v, it
suffices to check that

(xS + F) ® W HY) = wx (S + F) @ y*u* H:

is ample as in the above proposition. Now y*u*H* = g*7*I* H*. Furthermore,
wy = g*wc ® w, since C is Gorenstein.
Putting this together, we have

ox( S+ F) @y H = g*oc ® wy(S + g* =€) @ g*n*I* H*
= 0y(S) ® g"(we (=€) @ 71" HF)
= wg(S) ® g* ¥ (we () @ I*HY)

Since C — M,,,v is a twisted stable map, we know that wc(X€) @ I*(H¥) is
ample for k large enough and so 7*(wc(2€) ® I* HX) is ample by finiteness of 7.
Furthermore, g : (X, §) — Cis afamily of pointed stable curves so wg (S) is g-ample.
Therefore,

wg(S) ® g*1* (e (Z€) @ I"HY)

is ample for k large enough. O
This concludes the proof of Theorem 4.2. O
Corollary 4.7 Taking the coarse space of a stack-like fibered surface induces a mor-
phism
(2 ’Cg,n(ﬂy,v) - Av(ﬁy,v)

that is locally of finite type.

Remark 4.8 The infinitessimal structure of the map in Corollary 4.7 may be com-
plicated and we do not discuss this here. One expects this to be a finite ramified
morphism, but the ramification locus may be hard to determine. See also [17] where
arelated question is discussed in arbitrary dimension but without marked fibers.

O
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4.2 From fibered surfaces to twisted stable maps

Next we identify which fibered surfaces appear as the coarse space of a stack-like
fibered surface (¥ — C — M, ,, S;, Eic) with marked sections and marked fibers.
Note that the coarse pair

v n
fiX—>C>My. ) Si+> F
i=1 j=1

consists of a fibered surface f : X - C — M%V with v sections S; and n reduced
marked fibers F; such that:

1. the generic fiber of f is a stable v-pointed genus y curve, and
2. every non-stable fiber of f is contained in the support of the marked fibers ) F;.

Furthermore, w (D S; + ) F;) is f-ample by Proposition 4.5. This motivates the
following definition:

Definition 4.9 Let (f : X — C,3>_1_; S; + >, F;) be an slc fibered surface pair
andlet S =) S;, F =) F;.Then (f : X — C, S+ F) is said to be a twisted
fibered surface pair if

(a) the generic fiber of f over each irreducible component of C is a v-pointed genus
y curve,

(b) the support of every non-stable fiber is contained in either the double locus or the
support of F, and

() wr(S+ F)is f-ample.

Remark 4.10 Note that in this definition we are still requiring that our fibered surfaces
f : X — C are equidimensional morphisms flat over the smooth locus of C. In
particular, there is a unique coarse moduli space map C — M%U when C is smooth.
This data is preserved when we consider stable limits in the space of maps A(My,,,).
In Sect. 5, we will consider stable limits of twisted surfaces without the data of the
map, in which case the limits may not be flat fibrations and so may not have a well
defined coarse map to M},,v.

Remark 4.11 Condition (¢) in Definition 4.9, that w s (S+ F) is f-ample, is equivalent
to requiring that wx (S + F) be f-ample since C is Gorenstein so wx = w5 ® f*wc.
Therefore this condition really asserts that f : (X, S + F) — C is a stable map.
Consequently, we often refer to (X, S 4 F) as the relatively stable model over C. In
this case, (X, S 4+ F) is uniquely determined by

X = Projc | €D £ Ox(m(Kx + 5 + F))

m=>0

as a fibered surface over C. Here Kx is a Q-Cartier divisor corresponding to wy.
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The following proposition shows that Definition 4.9 completely characterizes the
coarse spaces of stack-like fibered surfaces with marked fibers.

Proposition 4.12 Let (f : X — C,31_, S+, F;) be atwisted fibered surface
pair over a smooth curve C. Then it is the coarse space of a stack-like twisted surface
(X = C— My, 8. Z5).

Proof Since the generic fiber of f is a v-pointed genus y surface, there is a rational
map C --» /\_/ly,U defined on some open subset C° C C. By properness of the moduli
stack of stable curves, there exists a twisted curve C with coarse space C and coarse
map an isomorphism over C° such that C® — M, ,, extends to C — M, ,,. We mark
C by the union of stacky points C\Cy and any marked points in Cy lying under stable
marked fibers in ) F; and denote by Z]C the corresponding marked points.

Pulling back the universal family and universal sections on ./Vy,v gives us a stack-
like fibered surface (X — C, S;, ZJC). Let (f' : X' — C,} S/ + ZFJ’) be the
corresponding coarse fibered surface pair. Denoting S = ) S;, F = ) F; and
similarly for X’, there is a birational map w : X’ --» X over C satisfying

1. w is defined away from the non-stable fibers of f,
2. u (S =S.

Consider a resolution of indeterminacies of the birational morphism g.

z
N
X’ X
Since the pairs are slc, standard arguments show (see e.g. Lemma 6.3 of [1]) that:

a0, Oz(m(Kz + o, 'S+ o, ' F + Exc(@))) = Ox(m(Kx + S + F))
B:Oz(m(Kz + ;'S + B F' + Exc(B)) = Ox(m(Ky + S' + F')).

However, every divisor contracted by u is marked with coefficient 1 in the boundary
of X’ and is exceptional for « so it appears in Kz 4+ o 'S 4+ o ' F + Exc(a) with
coefficient 1. Similarly for divisors contracted by ="' in X. Therefore

Kz 4o 'S+ a ' F+Excla) = Kz + B.'S" + B, ' F' + Exc(f).
It follows that

[xOx(m(Kx + S+ F)) = f,Ox (m(Kx' + S" + F")).

Since the pairs are relatively stable models over C, they must be isomorphic with p
the isomorphism by Remark 4.11. O
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5 Compact moduli of fibered surfaces

For some purposes, it is beneficial to keep the information of the map f : X — C as
part of the data parametrized by the moduli space. While the stable map (X, S+ F) —
MW parametrized by Ay (My,v) often determines the map X — C, this is not always
the case, as illustrated by the following example of Abramovich and Vistoli.

Example 5.1 (Abramovich—Vistoli) Let C and C’ be two non-isomorphic stable curves
of some fixed genus g that become isomorphic over an algebraically closed field. Then
X = C x C’ has two non-isomorphic fibrations X — C and X — C’ that induce the
same constant map to M .

In this section, we study variations of the moduli problem for fibered surfaces that
reintroduce the data of the fibration.
We begin with a definition of F3 , (M,,). This is the moduli problem for pairs

(f:X—>C—>M,,,S+F)

where f : X — C is a v-pointed genus y fibration with sections S = > ;_, S; and
marked fibers F = }_ F; such that

1. (f: X_—> C, S+ F) is twisted,

2. C - M, , is the coarse moduli space map, and

3. X,S+F)— M, is a stable map with volume v.

Theorem 5.2 The functor .7-'; B (M},, v) is representable by a proper Deligne—Mumford

stack with projective coarse space, and the morphism ¢ : /ng,,(my,,,) — AV(M),,U)
factors as

’Cg,n(my,v) e f;n(ﬁy,v) g AV(M]/‘V)

where the first map is surjective and the last map is forgetting the fibration f : X — C.

Proof We can consider the product Ay(My,,) x Kg (M, ;). Over this we have a
universal surface, a universal curve, as well as universal maps to My,v. Taking the
relative Hom stack over the product, we obtain a Deligne-Mumford stack D locally
of finite type paramaterizing triples

X —>M,,,C—>M,,,X— C)

consisting of an Alexeev stable map of volume v, a Kontsevich stable map, and a
morphism X — C.

Note that .7-2,”" (My,v) is a substack of D. On the other hand, taking coarse space
yields a morphism K ,, (Hw) — D. By Proposition 4.12, the image of this mor-
phism is f;’n(ﬁy,,,). Since g, (M,.,) is proper, it follows that T;)H(M%U) is also
proper. In particular, it is a closed substack of D and so is itself a Deligne—Mumford
stack.

@ Springer



Moduli of fibered surface pairs from twisted stable maps 1023

Composing with the projection D — Ay(My) x Kgn(My,) — Ay(My )
yields the map f;’n(ﬁy,v) — AV(MW,). The factorization is clear by construction.

To demonstrate projectivity, we show that the morphism Fy , (M,.,) — Ay(M,,,)
is quasi-finite. This implies that it is finite on the level of coarse spaces, yielding
projectivity as both spaces are proper and Ay (M%v) has a projective coarse moduli
space by [7, Theorem 4.2]. This is tantamount to showing that given a twisted fibered
surface pair (f : X — C, S+ F), there are finitely many v-pointed genus y -fibrations
f’: X = C’ over an n-pointed genus g stable curve making (f' : X — C', S+ F)
into a twisted fibered surface pair.

The key point is that the space of deformations of (f : X — C, S + F) fixing
(X, S + F) is zero dimensional. Given that, the statement follows as fg,n(ﬁy,u) is
finite type. The deformations of the map X — C deform the fibers of X — C so
that they remain with trivial normal bundle. Therefore, as all fibers are algebraically
equivalent, they must all be contracted in any deformation. That is, any f' : X — C’
deforming f must factor through as X — C — C’. This implies all deformations of
f fixing (X, S + F) are induced by automorphisms of C preserving the marked points
lying under F. But C (with these marked points) is a stable pointed curve and so it
has discrete automorphism group. O

We note that by construction there is a morphism Fy , (ﬁ%v) — Koon (Vy,v). This
map is representable by Deligne-Mumford stacks. Indeed the fiber over a stable map
g :(C, El.c) — M%v is a closed substack of the stack of Alexeev stable maps to C
with polarization coming from wc (£€) ® g* H for some fixed very ample H on M%U.

5.1 From stable maps to stable pairs

Another interesting variant is the moduli space of triples (f : X — C, S + F) where
(X, S + F) is a stable pair, that is, (X, S + F) — Speck is a stable map to a point.
This moduli problem is obtained from the previous one by forgetting map X — My,,,
and taking the stable model (over a point) of the surface pair. One should think of this
as an analogue of the morphism g , (V) — Mg,n obtained by taking a stable map
(C, EI.C ) — V to the stabilization of the prestable curve curve (C, Eic ).

However, the situation is much more complicated in dimension 2. First, there is no
reason to expect that process of stabilizing the pair (X, S + F') is functorial: it may not
commute with base-change in families. A more fundamental issue is that it is unclear
that the stabilization of (X, S + F) preserves the structure of a fibration to a curve
and, even if it does, one must identify the resulting fibrations. The next proposition is
a key step in resolving this issue.

First we recall some facts about stable curves. For a pointed nodal curve (C, Eic ),
we form the dual graph of C by assigning a vertex to each irreducible component of
C and an edge for each node. For C, C C an irreducible component, we denote by
vy the valence of C, in the dual graph and marked points lying on C,, by n,. Then it
is clear that (C, Eic) is stable if and only if 2g(Cy) — 2 4+ vy + 1o > 0 for all «. Here
g(Cy) is the geometric genus of C,,.
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Proposition 5.3 Let (f : X — C, S+ F) be a twisted fibered surface pair. Let Cy, be
any component of C. Then for any component of the section Sy, lying above Cy, we have

(Kx + S+ F).Sq = 28(Cy) — 2 + vy + g

Proof First take the normalization ¢ : | |4 C 23 — C where ¢g : C//S — Cg is the
normalization of each irreducible component of C and ¢ = | |¢g. Consider the
pullback

X, —=X

Then f”is a v-pointed genus y fibration over a smooth genus g (C,) curve with sections
corresponding to the components S, of S lying over Cy.

Furthermore, ¢*(Kx + S + F) = Kx;, + G + ¢*S + ¢*F where G are the
vy many fibers lying over the points of C;, mapped to the nodes of C. Therefore
(f' : X, > C,,¢*S + ¢*F + G) is a twisted fibered surface pair over a smooth
curve with sections ¢*S and marked fibers ¢* F + G. Furthermore, ¢ is finite with
generic degree one on any section of f’ so

(Kx + S+ F).Sqe = (Kx;, +¢*S+ ¢*F + G).¢" (Sa)

for any component of the section S, lying over Cy,.

Therefore, it suffices to prove the formula in the case of a twisted fibered surface
over a smooth base curve. Thus, suppose (f : X — C, S + F) is a twisted surface
over a smooth curve C. By Proposition 4.12, there is a stack-like fibered surface (g :
X —C,S;, EJC) whose coarse space is (f : X — C, S + F). Consider the diagram

X ——

As in the proof of Proposition 4.6, the equality ¥ *wx (S + F) = wx (S + F) holds,
where Fl, e, Fn are the marked fibers of g lying over Fi, ..., F,. Then by the pro-
jection formula, it suffices to compute the degree of wy (S + F)| s; for any section
Si = C. Since g is a family of stable curves, the divisor S; passes through the smooth
lgcus of X, and so is a Cartier divisor. In particular, the adjunction formula holds and
F;.§ = Z]C for each j. Therefore,

v

T
—_

a)X(S+I?)|Sj=a)C ZEJC = 1*wc ZE;:
J J

and the desired formula follows since the degree of 7 is 1. O
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Consequently, we see thatif (f : X — C, S + F) is a twisted fibered surface, the
process of taking the stable model contracts components of the section in X if and
only if those components of C must be contracted to stabilize the curve. Therefore,
the stable model of (X, S + F) has a map to the stabilization of (C, EiC ).

Let X, — C, be acomponent of the twisted surface. When 2g(Cy) —2+vy +no <
0 so that C, and all the marked sections of X, — C, get contracted, the resulting
surface component must be mapped to a point in the stabilization of C. In particular,
the stable model of (f : X — C, S 4 F) is no longer an equidimensional morphism!
This motivates the following preliminary definition of a moduli functor for twisted
fibered surfaces without the map to M :

Definition 5.4 A v-pointed genus y slc fibration is a pair (f : X — C,S+ F)
where f : X — C is a projective morphism with connected fibers, S = Y _/_, S; isa
sum of sections and F = )/, F; is a sum of reduced marked vertical divisors such
that

(a) (X, S+ F)isan slc pair and (C, Eic) is a pointed nodal curve, and
(b) every component of X is either a v-pointed genus y twisted fibered surface pair,
or a surface pair contracted to a point by f.

Wesay (f : X — C, S+ F) is stable if (X, S 4 F) is a stable pair.

Remark 5.5 By Proposition 5.3, the base curve (C, Zl.c) of an slc fibration (f : X —
C, S + F) is a stable curve.

Definition 5.6 Consider the moduli stack of twisted stable v-pointed genus y slc
fibrations of volume v over an n-pointed genus g stable curve as in the above definition.
Denote the closure of the substack where f is equidmensional and C is smooth by

Fogn(y,v).

If(f: X — C,S+ F) is an slc fibration where f is equidimensional, then every
component of f is a twisted fibered surface of fixed genus and number of sections.
Therefore, (f : X — C,S + F) is itself a twisted fibered surface. Thus the stack
Fg.n(y,v) parametrizes stable degenerations of twisted fibered surfaces where we
forget the coarse moduli map C — M},,U. As implied by Proposition 5.3, the stable
limits may no longer have the structure of a twisted fibered surface.

Proposition 5.7 The functor f;’,n (v, v) is representable by a finite type Deligne—
Mumford stack.

Proof The construction is analogous to that of f;y " (My,,,). We let A, be the Kollar-
Shepherd-Barron-Alexeev (KSBA) moduli space of stable surface pairs of volume v,
i.e. Ay(V) when V is a point. Then over the product A, x ﬂg,n there is a universal
surface, a universal curve, and the relative Hom stack D parametrizing (f : X —
C, S 4+ F) with no conditions on the map f.

Now consider the locus in D where f is equidimensional and (f : X — C, S+ F)
is atwisted fibered surface. Then there is a unique coarse moduli space map C — M},, v
which is necessarily stable since (C, El.c ) is a stable curve. Therefore this locus is the

image (under the natural forgetful map) of the open substack of ]—"g,”n (My,,,) where
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the base curve is stable. In particular, it is constructible in D and we take fg‘n (y,v)
to be its closure. O

By construction, there are projections .7-';,”,1()/, v) — My, and fg’n(y, V) = A,.

Remark 5.8 Unlike 7y , (My,u), the space F, ,(y, v) is not manifestly proper. In the
next section we show that one can still use twisted stable maps to prove stable reduction
for g, (v, v).

5.2 Stable reduction

The following proposition allows us to lift a family of twisted fibered surfaces to a
family of stable maps.

Proposition 5.9 Let B be a smooth curve and let (X — C, S + F) — B be a family
of twisted fibered surfaces so that X, — C, — n is a normal fibered surface for
n € B the generic point. Then (X — C, S + F) is the coarse space ofafamlly of
stack-like fibered surfaces X — C — B induced by a morphism (C, E ) — ./\/ly V-

Proof Let El.c = f«F; be the marked points of C lying under the marked fibers of
f: X — C.Then X\F — C\(X U N) is a family of stable curves where

»=J=f
i

and N is the necessarily finite set of points p that are nodes of Cp, for some b € B.
Thus we have amap U := C\(X UN) — ﬂy,v.

It suffices to find a stack C — B flat over B with coarse space C — C an iso-
morphism over U so that the map U — ﬂy,v extends to a representable morphism
, EZC) — /\_/ly,u. Indeed given such an extension, let X — C be the pullback of
the universal family on ﬂy,v and let X — Y be the coarse space. There is a bira-
tional map Y --+ X over B. Let V be the maximal open set of definition of this map,
then Vj, = Y, N V is dense in Y}, for each b € B so that we obtain a birational map
Y, --+ X} on each fiber.

By Proposition 4.12, X, is the coarse space of A),. Since taking coarse space
commutes with base change for tame stacks, we have ¥, = X, and in particular,
the fiberwise birational map Y, --+ X} extends to an isomorphism. As Y is normal,
it follows that ¥ --+ X extends to an isomorphism ¥ — X (see for example [12,
Theorem 7.3]).

To construct the extension, consider (Cy, Z? ) the generic fiber of C — B. Then
there is a map C,\X"7 — ﬂw Xk 1. This extends uniquely to a representable

morphism (C,, El.c") — /Vy,v Xk n by properness of the moduli of stable curves.
Indeed, C,,\X" is a smooth punctured curve and by stable reduction, around each
puncture Zic , the morphism extends after a ramified cyclic cover of some order n;.
That is, the morphism extends over C,, the root stack of (Cj,, 21?7 ) of order n; at each
point.
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Therefore there is an open subset V' C B such that the morphism extends to the
preimage of V in the corresponding root stack C’ of (C, Zic ). By assumption, the
morphism was defined away from finitely many points on the complement of V. Since
C' is a smooth stack away from the points N, we may apply the purity lemma of
Abramovich—Vistoli [9, Lemma 2.4.1] to extend the morphism over all points except
possibly the preimages of N. At these points, although C’ may fail to be smooth, it will
have quotient singularities. Therefore we may take the canonical stack C of C’. Then
C is smooth so by the purity lemma the morphism extends over C, and (C, El.c) — B
is a flat family of nodal stacky curves. O

Corollary 5.10 Let (X — C,S + F) — B be a family of twisted fibered surfaces
over a smooth curve B such that the generic fiber of X — B is normal. Then there
exists a well defined coarse moduli space map C — M, ,.

Corollary 5.11 The space ]-"g’n (v, v) of slc surface fibrations is proper.

Proof Let B be a smooth curve with closed point p € B, let BY = B\p, and let
(X% = €9, 59 4 FO — BO

be a family of twisted surfaces with normal generic fiber X,, — C,, — 5. By Propo-
sition 5.9, this family is the coarse space of a family of twisted fibered surfaces
X% — €% — BY induced by a morphism (C°, Zl.co) — /\_/lyﬁv. By properness of
the moduli space of twisted stable maps, there is a unique extension to a family of
maps (C’, Zl.cl) — M},,v after a finite basechange B’ — B ramified at p.

Let X’ — (' be the pullback of the universal family. Then the coarse space (X' —
C’, 8’ + F’) is a family of twisted fibered surface pairs over B’ with stable and normal
generic fiber. Running the MMP on the family X’ — C’, we obtain a unique stable
limit which central fiber is an slc fibration by Proposition 5.3 and the discussion that
followed it. O

Remark 5.12 Corollary 5.11 gives us a method for computing stable limits in
Fen(y,v) using twisted stable maps. However, the surface pairs (X, S + F') associ-
ated to an slc surface fibration (f : X — C, S + F) are stable in their own right.
Thus, the stable limit in Fg ,(y, v) of a family of slc fibrations is also the stable limit
of the family of surfaces in .4, once we forget the map f. In particular, we see that
the KSBA stable limit of a family of surfaces that admit a fibered surface structure is
an slc fibration, a fact that is not obvious a priori.

6 Elliptic surfaces from twisted stable maps

In this section we elucidate and apply the above results in the special case of elliptic
surfaces, that is, (y, v) = (1, 1). This expands on the work done by La Nave [14],
who studied the moduli spaces .7-';’0(1, 1) and used twisted stable maps to explicitly
compute the stable limits of families of elliptic surfaces in this space.

The case of elliptic surfaces is much easier to work with by hand for several reasons.
The first is that M| ; = P' so that the underlying stable map of a twisted stable
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map is relatively easy to understand. Furthermore, the geometry of an elliptic surface
is determined by two discrete invariants that are completely classified: the possible
singular fibers classified by Kodaira and Nerdén and the degree of the fundamental line
bundle £ (see Chapter III of [15]). We review these in the next subsection.

6.1 Elliptic surfaces

For f : X — C asmooth, relatively minimal elliptic surface with section S, there are
finitely many singular fibers. These consist of configurations of rational curves with
dual graph given by an affine Dynkin diagram.

Table 15.1 in [18] gives the full classification in Kodaira notation for the fiber as
well as their monodromy. Fiber types I,, for n > 1 are reduced and normal crossings,
fibers of type I, I1*, I11*, and I V* are normal crossings but nonreduced, and fibers
of type 11, I11 and 1V are reduced but not normal crossings.

The configurations of these singular fibers are intimately related to the line bundle

Z:

Definition 6.1 The fundamental line bundle of a twisted elliptic surface f : X — C
with section S is & = (f;NS//X/)_l where (f' : X' — C, §') is the minimal semi-
resolution.

Here Ny, is the normal bundle of the section in X" which is well defined since
X’ is semi-smooth so §’ passes through the smooth locus. It turns out that .2 is an
effective line bundle on C that is independent of the choice of Sect. [15]. In fact, £
determines the canonical bundle of an irreducible elliptic surface (see [15, Proposition
III.1.1] and the generalization [1, Theorem 6.1]). For example a normal elliptic surface
is rational if and only if deg & = 1.

Returning to the question of configurations of singular fibers, the number of singular
fibers in a normal elliptic surface, counted appropriately, is equal to 12 deg(.Z). Here
counted appropriately means that each singular fiber is weighted by the order of
vanishing of the discriminant at the corresponding point in p. We can read this order
of vanishing from the Kodaira fiber type.

By understanding deg(-%) and the configurations of singular fibers on the elliptic
surface f : X — C,one obtains amethod to determine the degree of the corresponding
twisted stable map. For example, for a generic elliptic surface all the singular fibers
are nodal elliptic curves of type I;. These each contribute 1 to 12 deg(.Z) so there are
exactly 12 deg(%Z) of them. Therefore the coarse map C — M | is degree 12 deg(Z).

6.2 Local analysis of twisted fibers

Next we proceed with a local analysis to illustrate explicitly how each singular fiber
of a twisted surface is the coarse space of a stack-like surface.

Suppose that (f : X — C, S + F) is the stable model of an elliptic surface with
section over C, a DVR with marked central fiber. That is, start with a twisted elliptic
surface over the spectrum of a DVR. Theorem 1.1 of [1] describes what the central
fiber of the twisted surface (f : X — C, S + F) looks like, it has:
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Table 1 Singularities of

I1,111,1V and !

I1%, I11*, IV* fiber types IIr* A1, Ay, As
111* Ay, 243
% 34,
11 AT, A3, AS
11 AT, 243
1A% 343

1. a single irreducible component that is either a stable elliptic curve meeting the
section at a smooth point, or

2. an irreducible non-reduced curve with support P! meeting the section at a singular
point of the total space X.

We recall some results on the local singularities found for pairs (X, S + F) in [1].

Here A% _, denotes the singularity obtained by contracting a rational (—#) curve in
a smooth surface. By stable reduction for families of curves, the central fiber can be
filled in by a stable curve after a ramified base change of C.

To see this explicitly, note that the fibers have quasi-unipotent monodromy group.
Then we can take a cyclic Z/n’Z cover C' — C of the base ramified at the closed point
to make the monodromy unipontent. Consider the normalization of the pullback:

X —=X.

|

C'——~C

Here X' — C’isan elliptic fibration with trivial or unipontent monodromy. Therefore
the central fiber is a stable elliptic curve. We have that (X', §'+ F’) is an slc pair where
S’ is the section, and by construction (X’ — C', 8"+ F')/G = (X - C,S+ F)
where G = 7Z/nZ is the finite part of the monodromy.

The monodromy group determines the fiber type of F and the singularities of X
along F.Indeed the Kodaira fibers are paired based on dual monodromies with 7, and
I¥ self dual, and /7, 11,1V dual to I1*, 111*, I1V* respectively. This explains the
appearance of dual singularities A, and A} in the third columns of the tables for the sin-
gularities of the stable models (see Table 1). Indeed 71, I11, IV and IT*, I1I*, IV*
have potentially good reduction so that X’ — C’above is a smooth morphism in these
cases. Therefore the stable models for these fibers are the quotients of a smooth family
by dual group actions and so must have dual quotient singularities.

Now we can take the stack quotient X := [X'/G] — C := [C’/G] to obtain a
stack-like fibered surface. These local models provide charts for the global surface
obtained in the construction in Proposition 4.12 of a global stack-like elliptic surface
whose coarse space is a given twisted elliptic surface.
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6.3 Explicit stable reduction for elliptic surfaces

Finally we end with a discussion of the surfaces that appear on the boundary of
Fen(1, 1), by explicitly carrying out the process described in Corollary 5.11. This is
a direct application of the work of La Nave [14] in the case n = 0. In contrast to [14],
we study what happens as we keep the marked fibers with weight 1 throughout.

Definition 6.2 (See [1]) Let (f : X — C, S + F) be an elliptic surface over the
spectrum of a DVR. We say that f has

(a) a twisted fiber if the surface is twisted with central fiber not stable,

(b) an intermediate fiber if the central fiber is a weighted blowup of a twisted or
stable fiber at the point where the fiber meets the section (see Definition 4.9 of
[1]), and

(c) a Weierstrass fiber if the central fiber is reduced and irreducible.

Note that by the results of [1]:

(a) the twisted fibers are irreducible non-reduced curves of arithmetic genus 1 sup-
ported on a rational curve,

(b) the intermediate fibers consist of the nodal union of two irreducible components A
and E, where E supports either a stable genus 1 curve or a non-reduced arithmetic
genus 1 curve, and A is a reduced rational curve.

(c) Weierstrass fibers are reduced and irreducible curves of genus 1, and therefore
they are either smooth elliptic curves, nodal elliptic curves, or cuspidal cubics.

From Proposition 5.3, we know the the section of a component of a twisted slc
elliptic surface may be contracted if the component is fibered over P! with no marked
fibers and attached along one fiber. This motivates the following:

Definition 6.3 A pseudoelliptic surface is an irreducible surface Z obtained by con-
tracting the section of an elliptic surface (f : X — C, §).

We are now ready to describe the surfaces that appear on the boundary of F ,, (1, 1).

Definition 6.4 A broken elliptic surface pair (f : X — C, S+ F) is an slc elliptic
fibration as in Definition 5.4, such that (Fig. 1)

(a) X consists of an slc union of elliptic surface components with all fibers as in
Definition 6.2 and pseudoelliptic surfaces associated to such elliptic surfaces
which are contracted by f;

(b) the elliptic components of X are glued along twisted or stable fibers;

(c) the pseudoelliptic components are of one of the following two types:

(i) trees of Type I pseudoelliptic components constructed inductively by gluing a
twisted or stable fiber of a pseudoelliptic onto the arithmetic genus 1 component
of an intermediate fiber;

(ii) Type II pseudoelliptic components attached along precisely two irreducible
(twisted or stable) fibers.

Wesay (f : X — C, S + F) is stable if (X, S + F) is a stable pair.
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Fig. 1 A broken elliptic surface pair

Theorem 6.5 Let (X° — C°, 5% + FO) — B be a flat family of twisted stable
elliptic surface pairs over a smooth punctured curve B® = B\ p. Then after a finite
base change, the central fiber can be filled in uniquely by a stable broken elliptic
surface pair.

Proof As in the proof of Corollary 5.11, we lift this family of twisted surfaces to a
family of stack-like fibered surfaces X° — C% — B°. Replacing B with a finite
base change, we have a unique way to extend the family of twisted stable maps to
C, Zic) — /Vy,v. The central fiber of the family of coarse surfaces is the unique
limit in the space F (My,v) of Alexeev stable maps.

Denote this family of coarse surfaces by (X — C, S + F) — B. Then the central
fiber, denoted by (fy : Xo — Co, So + Fp) is a twisted elliptic surface. In particular,
it is equidimensional, relatively stable, with each fiber either stable or twisted. Then
running the MMP on the total space of this family, we must contract any components
of Cp that are not stable, as well as the components of the section lying above them.

Suppose Z is such a component of the central fiber attached to the rest of the
central fiber Y along a single twisted or stable fiber G. By [14, Theorem 7.1.2], the
contraction of the section of Z is a log flipping contraction of the total space X, whose
flip is the blowup on Y of the fiber G to an intermediate fiber. Thus any trees of
components Z fibered over rational curves with no marked fibers result in trees of
Type I pseudoelliptic components attached along intermediate fibers.

After this sequence of flips, we are left with the prestable components of Cy, that
is, the (Kx + S + F)-trivial components of the section. Such a component of the
section lies on an elliptic components Z of the central fiber over a rational component
of Co which is attached along two twisted fibers. The contraction of such a section
component is a log canonical contraction leading to a Type II pseudoelliptic attached
along two twisted fibers.

Finally, by [1, Proposition 7.4 and Section 8.3], a rational pseudoelliptic component
may be contracted by the log canonical linear series either onto the intermediate fiber
it is attached along, or onto a point. The latter case results in the contraction of the
component E of the intermediate fiber leading to a Weierstrass fiber. O
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