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Abstract In this paper we prove a conjecture of Alexander and Currier that states,
except for covering maps of equidistant surfaces in hyperbolic 3-space, a complete,
nonnegatively curved immersed hypersurface in hyperbolic space is necessarily prop-
erly embedded.

1 Introduction

Suppose that φ : Mn → R
n+1 is an immersed hypersurface with principal curvatures

κ1, . . . , κn . Then φ is said to be

• convex at a point if κi ≥ 0 for all i = 1, . . . , n.
• of nonnegative Ricci curvature if κi (

∑n
k=1 κk) ≥ κ2

i for all i = 1, . . . , n.
• nonnegatively curved if κiκ j ≥ 0 for all i, j = 1, . . . , n.
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1104 V. Bonini et al.

It is easily seen that up to orientation all three of the curvature conditions above are
pointwise equivalent for hypersurfaces immersed in Euclidean space. An immersed
hypersurface in Euclidean space is said to be locally convex if the hypersurface is
locally supported by a hyperplane. It is not true that nonnegativity of the sectional
curvatures alone implies local convexity of a hypersurface (cf. [23]).

The studyof nonnegatively curved immersed hypersurfaces goes back toHadamard,
who showed that a compact, strictly convex, immersed surface in Euclidean 3-space
is necessarily embedded [20]. This result was later extended in [11,23,28,31] to such
that a complete, nonnegatively curved, nonflat, immersed hypersurface in Euclidean
space is necessarily embedded as a boundary of a convex body.

In this paper we consider oriented immersed hypersurfaces φ : Mn → H
n+1 in

hyperbolic space. The following pointwise curvature conditions are no longer equiv-
alent:

• (strictly) convex at a point if κi > 0 for all i = 1, . . . , n.
• nonnegative Ricci curvature if κi (

∑n
k=1 κk) ≥ n − 1 + κ2

i for all i = 1, . . . , n.
• nonnegatively curved if κiκ j ≥ 1 for all i, j = 1, . . . , n.
• (non-strictly) horospherically convex if κi ≥ 1 for all i = 1, . . . , n.

In fact, they are in strictly ascending order as listed above (cf. [1,2,15,16]). Do Carmo
andWarner [14] showed that a compact, convex, immersed hypersurface in hyperbolic
space is necessarily embedded. For noncompact cases, even with strict convexity, a
complete, immersed hypersurface in hyperbolic space may not be embedded [16]
(see also [27], pg. 84). On the other hand, Currier [12] showed that a (non-strictly)
horospherically convex, complete, immersed hypersurface in hyperbolic space is nec-
essarily embedded and, if noncompact, a horosphere. Therefore one wonders whether
a complete immersed hypersurface with nonnegative sectional curvature or even non-
negative Ricci curvature is necessarily embedded?

Naturally the embeddedness problem for a complete noncompact hypersurface in
hyperbolic space is related to its asymptotic boundary at infinity. The asymptotic
boundaries at infinity of complete hypersurfaces with nonnegative curvature in hyper-
bolic space have been studied in [1,2,16]. In [16], using hyperbolic Gauss maps and
the geometry of horospheres, Epstein showed that a complete embedding of R2 into
H

3 with nonnegative Gaussian curvature has a single point asymptotic boundary at
infinity. Epstein also showed [16] that a complete, strictly convex, immersed surface in
H

3 with a single point asymptotic boundary at infinity is necessarily embedded as the
analog of van Heijenoort’s theorem [31] in hyperbolic 3-space. Epstein then asked if a
complete immersed surface inH3 with nonnegative Gaussian curvature is necessarily
embedded [16].

Based on a theorem of Volkov and Vladimirova [32] and the splitting theorem of
Cheeger and Gromoll [10], Alexander and Currier proved the following theorem in
[1].

Theorem 1.1 (Theorem 1.1 of [1]) Let M be a nonnegatively curved, complete, non-
compact, C2 hypersurface, of dimension n ≥ 2, properly embedded in hyperbolic
spaceHn+1. Suppose that M is not an equidistant hypersurface. Then M is diffeomor-
phic to R

n and is the graph in Busemann coordinates of a height function with value
in (−∞,∞) defined on an entire horosphere H. The restriction of the height function
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On nonnegatively curved hypersurfaces in Hn+1 1105

to any 2-plane in H is a subharmonic function of polynomial growth. In particular,
the boundary at infinity ∂∞M consists of a single point.

Alexander and Currier then in [2] gave the precise statement of the conjecture as:
Except for covering maps of equidistant surfaces in H

3, every nonnegatively curved
immersed hypersurface inHn+1 is properly embedded. They also mentioned a sketch
of a proof of this conjecture for higher dimensions (n ≥ 3) suggested by Gromov.
Their conjecture remains completely open in the case when n = 2.

In this paper we present proofs of the conjecture of Alexander and Currier for the
case when n = 2 as well as all higher dimensions (n ≥ 3). Our main theorem is as
follows:

Main Theorem Except for covering maps of equidistant surfaces in H3, a complete,
nonnegatively curved, immersed hypersurface in hyperbolic space Hn+1 for n ≥ 2 is
properly embedded.

Our approach for solving the conjecture of Alexander and Currier in higher dimen-
sions (n ≥ 3) is based on the recentwork [4] on horospherically concave hypersurfaces
in hyperbolic space (cf. Definition 2.2), which may be considered as an extension of
the embedding theorem in [16]. Please see Theorems 2.2 and 2.3 in Sect. 2. This
approach was initiated by Epstein in [16]. One key issue is to derive the injectivity
of the hyperbolic Gauss map. We will rely on the injectivity theorem of Schoen and
Yau [25,26], while Epstein [16] used the embeddedness. The other key issue is the
size estimate for the asymptotic boundary at infinity. We will rely on the Hausdoff
dimension estimate of Zhu [34], while Epstein’s approach in [16] is based on similar
results of Huber [21] for subharmonic functions.

To prove the conjecture of Alexander and Currier in dimension n = 2, we first
establish a new proof of the classical result of Volkov and Vladimirova [32], which
states that the only way to isometrically immerse the Euclidean plane R2 in H

3 is as
a covering map of an equidistant surface about a geodesic line or as a horosphere.
Our proof of the main theorem is then based on the sharp growth estimate (4.5) in
Lemma4.2 for solutions toGaussian curvature equations based on [21,29,30]. The key
lower bound estimate for solutions to Gaussian curvature equations, which is needed
to use [29,30], is based on the non-collapsing result of Croke and Karcher [13] and
a Harnack-type estimate from Li and Schoen [22]. Our approach in spirit is to show
that a complete, noncompact, nonnegatively curved, nonflat, immersed surface in H3

lies inside a horosphere, hence has an asymptotic boundary at infinity of exactly one
point. Then the embeddedness follows from Epstein [16].

This paper is organized as follows: in Sect. 2 we introduce the geometry of horo-
spherical metrics for horospherically concave hypersurfaces in hyperbolic space and
some framework from [3,4,18]. In Sect. 3 we apply the embedding Theorems 2.2
and 2.3 (see also [4]) to prove the conjecture of Alexander and Currier [2] in higher
dimensions (n ≥ 3). In Sect. 4 we present the proof of the conjecture of Alexander
and Currier [2] in the case when n = 2.
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1106 V. Bonini et al.

2 Hyperbolic Gauss maps and horospherical metrics

In this section we recall the definitions of hyperbolic Gauss maps and horospherical
concavity to set our terminologies and notations. Readers are referred to the papers
[3,4,15,17,18] for more details.

For n ≥ 2, we denote Minkowski spacetime by R
1,n+1, which is the vector space

R
n+2 endowed with the Minkowski spacetime metric 〈, 〉 given by

〈x̄, x̄〉 = −x20 +
n+1∑

i=1

x2i ,

where x̄ ≡ (x0, x1, . . . , xn+1) ∈ R
n+2. Then hyperbolic space, de Sitter space, and

the positive null cone are given by the respective hyperquadrics

H
n+1 =

{
x̄ ∈ R

1,n+1 : 〈x̄, x̄〉 = −1, x0 > 0
}

,

S
1,n =

{
x̄ ∈ R

1,n+1 : 〈x̄, x̄〉 = 1
}

,

N
n+1+ =

{
x̄ ∈ R

1,n+1 : 〈x̄, x̄〉 = 0, x0 > 0
}

.

We identify the ideal boundary at infinity ∂∞H
n+1 of hyperbolic space with the unit

round sphere Sn sitting at �0 = {x̄ ∈ R
1,n+1 : x0 = 1}.

Definition 2.1 (cf. [6,15,17]) Let φ : Mn → H
n+1 denote an immersed oriented

hypersurface in Hn+1 with unit normal η : Mn → S
1,n . The hyperbolic Gauss map

G : Mn → S
n

of φ is defined as follows: for p ∈ Mn , the image G(p) ∈ S
n is the point at infinity of

the unique horosphere inHn+1 passing through φ(p) and whose outward unit normal
at φ(p) agrees with η(p).

Given an oriented, immersed hypersurface φ : Mn → H
n+1 with unit normal

vector field η : Mn → S
1,n , the light cone map ψ associated to φ is defined by

ψ := φ − η : Mn → N
n+1+ .

As the ideal boundary S
n of Hn+1 is identified with the unit round sphere at �0, we

have
ψ = eρ(1,G), (2.1)

where ψ0 = eρ is the so-called horospherical support function of the hypersurface φ

[18]. Note that, in our convention given in Definition 2.1, horospheres with outward
orientation are the unique surfaces such that both the hyperbolic Gauss map and the
associated light cone map are constant. Moreover, if x ∈ S

n is the point at infinity of
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On nonnegatively curved hypersurfaces in Hn+1 1107

such a horosphere, then ψ = eρ(1, x) where ρ is the signed hyperbolic distance of
the horosphere to the point O = (1, 0, . . . , 0) ∈ H

n+1 ⊆ R
1,n+1.

Considering the fact that horospheres are intrinsically flat, one can then use horo-
spheres to define concavity/convexity for hypersurfaces in hyperbolic space.

Definition 2.2 (cf. [4,18,24]) Let φ : Mn → H
n+1 be an immersed oriented hyper-

surface and let Hp denote the horosphere in H
n+1 that is tangent to φ(M) at φ(p)

whose outward unit normal at φ(p) agrees with η(p). Wewill say that φ is horospheri-
cally concave at p if there exists a neighborhood V ⊂ Mn of p so that φ(V \{p}) stays
outside ofHp. Moreover, the distance function of the hypersurface to the horosphere
does not vanish up to the second order at p in any direction.

Due to [18], we have the following characterization of horospherically concave
hypersurfaces.

Lemma 2.1 ([18]) Let φ : Mn → H
n+1 be an immersed oriented hypersurface. Then

φ is horospherically concave at p if and only if the principal curvatures κ1, . . . , κn
of φ at p are simultaneously > −1. In particular, φ is horospherically concave at p
implies that dG is invertible at p and therefore the hyperbolic Gauss map of φ is a
local diffeomorphism.

In light of Lemma 2.1 we give another definition for our later needs.

Definition 2.3 Letφ : Mn → H
n+1 be an immersed oriented hypersurface. It is called

uniformly horospherically concave if the principal curvatures ki (x) ≥ −1 + δ, i =
1, . . . , n for any x ∈ Mn and some δ > 0.

To realize the second statement of Lemma 2.1, let {e1, . . . , en} denote an orthonor-
mal basis of principal directions of φ at p and let κ1, . . . , κn denote the associated
principal curvatures. Then dφ(ei ) = ei and dη(ei ) = −κi ei for i = 1, . . . , n, so as
in [18], it follows that

〈(dψ)p(ei ), (dψ)p(e j )〉R1,n+1 = (1 + κi )
2δi j = e2ρ〈(dG)p(ei ), (dG)p(e j )〉Sn ,

(2.2)
where gSn denotes the round metric on S

n . Now given an immersed oriented horo-
spherically concave hypersurface φ : Mn → H

n+1, one can use the hyperbolic Gauss
map (or light cone map) to induce a canonical locally conformally flat metric on Mn

as follows:

Definition 2.4 ([16–18]) Let φ : Mn → H
n+1 be an immersed oriented horospheri-

cally concave hypersurface. Then the hyperbolic Gauss map G : Mn → S
n is a local

diffeomorphism. We consider the locally conformally flat metric

gh = 
∗〈, 〉Ln+2 = e2ρG∗gSn (2.3)

on Mn and call it the horospherical metric associated to the immersed oriented horo-
spherically concave hypersurface φ.
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For a horospherically concave hypersurface φ, its associated light cone map 
 is
spacelike and parameterizes a codimension 2 submanifold inR1,n+1. φ and η provide
two unit normal fields to 
 and the second fundamental form is given by

I I
(ei , e j ) =
(

1

1 + κi
φ − κi

1 + κi
η

)

gh(ei , e j ) (2.4)

where {e1, . . . , en} is an orthonormal basis of principal directions with respect to φ.
Hence, due to the Gauss equations in R

1,n+1, the sectional curvatures of the horo-
spherical metric gh on Mn are given by

Kgh

(
ei

1 + κi
,

e j
1 + κ j

)

= 1 − 1

1 + κi
− 1

1 + κ j
= κiκ j − 1

(1 + κi )(1 + κ j )
. (2.5)

When n ≥ 3, the Schouten tensor then is given by

Schgh (ei , e j ) =
(
1

2
− 1

1 + κi

)

gh(ei , e j ). (2.6)

When n = 2, instead, one considers the symmetric 2-tensor

P = −∇G∗g
S2
dρ + dρ ⊗ dρ − 1

2

(
|dρ|2G∗g

S2
− 1

)
G∗gS2 , (2.7)

whose eigenvalues are
1

2
− 1

1 + κ1
and

1

2
− 1

1 + κ2
, (2.8)

whose trace is the Gaussian curvature

Kgh = κ1κ2 − 1

(1 + κ1)(1 + κ2)
, (2.9)

and whose divergence is 2dKgh . Hence we get the Gaussian curvature equation

− �G∗g
S2

ρ + 1 = Kgh e
2ρ. (2.10)

When the hyperbolic Gauss map G : Mn → S
n of a horospherically concave

hypersurface φ : Mn → H
n+1 is injective, one may push down the horospherical

metric gh onto the image
� = G(M) ⊂ S

n (2.11)

to obtain the conformal metric

ĝh = (G−1)∗gh = e2ρ̂gSn , (2.12)

where ρ̂ = ρ ◦ G−1 : � → R. When there is no confusion, we will also refer to
this conformal metric ĝh as the horospherical metric. The correspondence between
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On nonnegatively curved hypersurfaces in Hn+1 1109

horospherically concave hypersurfaces φ : Mn → H
n+1 in hyperbolic space and the

conformal metric ĝh on the image � of the Gauss map G have been promoted in
[3–5,16,18]. The following result follows from the so-called global correspondence
from [4,5,18] and will be useful to our work here.

Theorem 2.1 (cf. [4,5,18]) For n ≥ 2, let φ : Mn → H
n+1 be a complete uniformly

horospherically concave (see Definition 2.3) hypersurface with injective hyperbolic
Gauss map G : Mn → S

n. Then

• φ induces a complete conformal metric ĝh = e2ρ̂gSn on the image � = G(M) ⊂
S
n with bounded curvature.

• More importantly, the asymptotic boundary ∂∞φ(M) ⊂ S
n at infinity of the hyper-

surface φ inHn+1 coincides with the boundary ∂� ⊂ S
n of the Gauss map image.

• One may use the image � of Gauss map as the parameter space to reparametrize
φ so that the Gauss map

G(x) = x : � → S
n

and

φt = eρ+t

2
(1 + e−2(ρ+t)(1 + |∇ρ|2))(1, x) + e−(ρ+t)(0,−x + ∇ρ) (2.13)

is the normal flow of the hypersurface φ(M).

The contribution of [3] is the use of the normal flow of a horospherically concave
hypersurface with injective hyperbolic Gauss map to possibly unfold the hypersurface
into an embedded one. This is because the leaves of regular part of the normal flow are
the same as the level surfaces of the geodesic defining function of the horospherical
metric ĝh (cf. [3,4]). For instance, it is observed in [3] that any horospherical ovaloid
can be deformed along its normal flow into an embedded one. Consequently this leads
to new proofs of Obata type theorems for horospherical ovaloids. In [4,5], based on
the global correspondence theorem, we established an extension of the embedding
theorem of Epstein [16] as follows:

Theorem 2.2 (cf. [4,5]) For n ≥ 2, let φ : Mn → H
n+1 be a complete uni-

formly horospherically concave hypersurface with injective hyperbolic Gauss map
G : Mn → S

n. Suppose that the asymptotic boundary ∂∞φ(M) at infinity of the
hypersurface is a disjoint union of smooth closed embedded submanifolds in Sn. Then,
along the normal flow from the hypersurface, the leaves eventually become embedded.

An argument similar to those in [16,31] results in the following slight extension of
the embedding theorem of Epstein [16].

Theorem 2.3 For n ≥ 2, let φ : Mn → H
n+1 be a complete, locally strictly convex,

immersed hypersurface. Suppose that the asymptotic boundary ∂∞φ(M) at infinity of
the hypersurface is a single point in Sn. Then the hypersurface is in fact embedded.
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1110 V. Bonini et al.

Proof For convenience of readers, we would like to present a proof based on the
arguments in [16,31], which are similar to those in [4]. Since the asymptotic boundary
at infinity of the hypersurface is a single point in S

n , one may find a family of round
(n − 1)-spheres in S

n to foliate the sphere Sn with the point and its antipodal point
deleted. Then the family of hyperplanes whose asymptotic boundary at infinity are the
family of round (n − 1)-spheres foliates hyperbolic space. To finish the argument one
simply needs to observe that, close to the first touch point of the hyperplanes and the
hypersurfaces from the antipodal point, the hypersurface is locally embedded and the
intersections of the hyperplanes and hypersurfaces are embedded convex topological
spheres. Moreover, everything remains the same up to the end. The connectedness and
convexity of the hypersurface force each intersection to be connected and convex. The
embeddedness of the intersections is due to [14]. ��

3 Embeddedness in higher dimensions

In this section we consider noncompact hypersurfaces immersed in hyperbolic space
with nonnegative sectional curvature and present a proof for the conjecture of Alexan-
der and Currier [2] in higher dimensions (n ≥ 3). Based on the injectivity of
development maps of Schoen and Yau [25,26] and the Hausforff dimension estimates
of Zhu [34], the proof of the conjecture of Alexander and Currier [2] is rather straight-
forward following our work in [4] and the brief summary in the previous section.

First of all, from the curvature relations (2.5), we have:

Lemma 3.1 Suppose that φ : Mn → H
n+1 is a nonnegatively curved immersed

hypersurface. Then φ is horospherically concave and the horospherical metric is also
nonnegatively curved.

Proof It is easily seen that a nonnegatively curved hypersurface in hyperbolic space
is horospherically concave, in fact, it is strictly convex. Then the lemma is a simple
consequence of (2.5). ��

There does not seem to be any analog of Lemma 3.1 available if we consider
nonnegative Ricci curvature for the hypersurface φ instead. In higher dimensions
(n ≥ 3), using the works in [25,26,34], we obtain the following:

Lemma 3.2 For n ≥ 3, let φ : Mn → H
n+1 be a complete, nonnegatively curved,

immersed hypersurface. Then the hyperbolic Gauss map is a development map from
(Mn, gh) and injective. Moreover, the Hausdorff dimension of ∂G(M) = S

n\G(M)

is zero.

Proof Due to the uniform horospherical concavity (strict convexity) of the hyper-
surface φ, the completeness of the hypersurface implies the completeness of the
horospherical metric gh . In the light of Lemma 3.1, (Mn, gh) is a complete, nonnega-
tively curved Riemannian manifold. Therefore the lemma follows from the injectivity
theorem of Schoen and Yau in [25,26] and the Hausdorff dimension estimates of Zhu
in [34]. We also refer to [7] for comments on Schoen and Yau’s theorem. Since gh has
nonnegative Ricci curvature, we can get the conclusion. ��
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On nonnegatively curved hypersurfaces in Hn+1 1111

One more ingredient for our proof of the conjecture of Alexander and Currier [2]
in higher dimensions (n ≥ 3) is the following:

Lemma 3.3 Suppose that φ : Mn → H
n+1 is a nonnegatively curved immersed

hypersurface. Then along the normal flow (2.13) the hypersurface remains nonnega-
tively curved.

Proof For the normal flow (2.13) in hyperbolic space, one knows exactly how the
principal curvatures evolve:

κ t
i = κi + tanh t

1 + κi tanh t
. (3.1)

One may then calculate the sectional curvatures K t
i j = κ t

i κ
t
j − 1 for t > 0 to find

K t
i j = κ t

i κ
t
j − 1 = Ki j (1 − tanh2 t)

(1 + κ1 tanh t)(1 + κ2 tanh t)
≥ 0, (3.2)

where Ki j are the sectional curvatures of φ. ��
We are now ready to prove the conjecture of Alexander and Currier [2] in higher

dimensions (n ≥ 3).

Proof of the main theorem in higher dimensions For n ≥ 3, let φ : Mn → H
n+1 be

an immersed, complete, noncompact hypersurface with nonnegative sectional curva-
ture. In the light of Lemma 3.2 the hyperbolic Gauss map G : Mn → S

n is injective
and the Hausdorff dimension of ∂G(M) ⊂ S

n is zero. According to Theorem 2.1 (cf.
[4]), we have

∂∞φ(M) = ∂G(M).

Now, if ∂∞φ(M) = ∂G(M) were empty, then φ(M) would be compact. Moreover,
since any set of Hausdorff dimension zero is totally disconnected, due to the splitting
theorem of Cheeger and Gromoll [10], the asymptotic boundary ∂∞φ(M) = ∂G(M)

consists of either one single point or exactly two points.
When ∂∞φ(M) is a single point, the result follows from Theorem 2.3. Assume

∂∞φ(M) consists of exactly two points. We then first apply Theorem 2.2 (please also
see [4]) and observe that along the normal flow the nonnegatively curved hypersurface
φt is embedded for sufficiently large t . Notice that the nonnegativity of the sectional
curvatures of φt follows from Lemma 3.3. Therefore, from Theorem 1.1 of Alexander
and Currier, for t sufficiently large the hypersurface φt has to be an equidistant hyper-
surface about a geodesic line in hyperbolic space. This forces the hypersurface φ to
be an equidistant hypersurface in hyperbolic space. Thus the proof of the conjecture
of Alexander and Currier [2] in higher dimensions (n ≥ 3) is complete.

4 Embeddedness of nonnegatively curved surfaces

In this final section we consider noncompact, complete surfaces immersed inH3 with
nonnegative Gaussian curvature and present a proof of the conjecture of Alexander
and Currier [2] in dimension 2.
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Suppose thatφ : M2 → H
3 is a complete, nonnegatively curved, immersed surface.

We may assume the surface is locally strictly convex after a change of orientation,
if necessary. Therefore the hyperbolic Gauss map G : M2 → S

2 is a local dif-
feomorphism, and the horospherical metric gh is complete (cf. Theorem 2.1) and
nonnegatively curved in the light of (2.9). In fact, the symmetric tensor P associated
with the horospherical metric gh satisfies

− 1

2
gh < P <

1

2
gh (4.1)

according to (2.8). With the complex structure given by the horospherical metric gh
the Gauss map G is a conformal map into the Riemann sphere. Lemma 3.2 breaks
down in dimension 2 because of the abundance of local holomorphic functions (the
lack of Liouville Theorem). The search for a type of Picard theorem for holomorphic
functions analogous to Lemma 3.2 in dimension 2 is technically much more difficult,
though it seems to be a classic topic. We are going to rely on the growth estimate
(4.5) in Lemma 4.2 based on [21,29,30] for the support function ρ as a solution to
the Gaussian curvature equation (2.10). The novelty of our approach is to recognize
that nonflatness implies that the asymptotic boundary at infinity consists of exactly
one point and embeddedness then follows directly from the embedding theorem of
Epstein [16] as a hyperbolic analog of the embedding theorem of van Heijenoort [31].

Let π : M̃2 → M2 be the universal covering map. Then we consider the new
parametrization φ̃ = φ ◦ π : M̃2 → H

3 with the hyperbolic Gauss map G̃ =
G ◦π : M̃2 → S

2 and the horospherical metric g̃h = π∗gh whose Gaussian curvature
Kg̃h = Kgh ◦ π ≥ 0. Most importantly we have the symmetric tensor

P̃ = P ◦ π = −∇2
G̃∗g

S2
ρ̃ + dρ̃ ⊗ dρ̃ − 1

2

(

|dρ̃|2
G̃∗g

S2
− 1

)

G̃∗gS2 ,

where ρ̃ = ρ ◦ π and

− 1

2
g̃h < P̃ <

1

2
g̃h . (4.2)

It follows fromTheorem15 in [21] ofHuber that (M2, gh) is parabolicwhen the surface
φ is nonnegatively curved. Therefore the universal cover M̃2 of M2 is biholomorphic
to the complex plane C.

4.1 Flat cases

In this subsection we present a proof to the following theorem of Volkov and
Vladimirova [32]. Our proof paves a way for us to handle the nonflat cases in next
subsection.

Theorem 4.1 ([32]) Let φ be an isometric immersion from Euclidean plane to hyper-
bolic 3-space. Then φ is either a covering map of an equidistant surface about a
geodesic line in H3 or it is an embedded horosphere.
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On nonnegatively curved hypersurfaces in Hn+1 1113

Proof First of all it follows from (2.9) that Kgh ≡ 0 whenever Kφ ≡ 0. There-
fore (R2, gh) is isometric to the Euclidean plane. Let z = (x, y) be the Euclidean
coordinate for (R2, gh) so that

|dz|2 = gh = e2ρG∗gS2 .

From the properties of the tensor P , we know that P is a symmetric 2-tensor, which
is trace-free, divergence-free and bounded in the sense that

−1

2
|dz|2 < P <

1

2
|dz|2.

In coordinate z = x + √−1y, we have

P=
(
P11 P12
P21 P22

)

=
(−ρxx + 1

2 (ρ
2
y − ρ2

x ) + 1
2e

−2ρ −ρxy − ρxρy

−ρxy − ρxρy −ρyy + 1
2 (ρ

2
x − ρ2

y) + 1
2e

−2ρ

)

.

One readily checks P11 −√−1P12 and P22 +√−1P21 are bounded and holomorphic
functions on C. From Liouville’s theorem, Pi j are constants, which implies that the
principal curvatures of the surface are both constant (i.e. the surface is an isoparametric
surface). Therefore it is a horosphere when P = 0 and an equidistance surface when
P �= 0 according to the classification of isoparametric surfaces in hyperbolic 3-space
(cf. for example, [8,9,32]). So the proof is complete. ��

We would like to point out that in the case when P = 0 (i.e. when the surface is a
horosphere), one in fact can explicitly find that

ρ(x, y) = log

(

C
[
(x − x0)

2 + (y − y0)
2
]

+ 1

4C

)

(4.3)

for some positive constant C .

4.2 Nonflat cases

In this subsectionwe consider a complete, noncompact, nonnegatively curved, nonflat,
immersed surface φ : M2 → H

3. We will focus on how to recognize and use the
nonflatness. From Huber’s result [21], we know the universal cover (M̃2, g̃h) is
globally conformal to the Euclidean plane. Let z = (x, y) be the Euclidean coordinate
for M̃2 so that

e2ρ̃0 |dz|2 = g̃h = e2ρ̃ G̃∗gS2 .

Rewrite the relation above as

|dz|2 = e2(ρ̃−ρ̃0)G̃∗gS2 = e2ρ0 G̃∗gS2
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for ρ0 = ρ̃ − ρ̃0 and consider the symmetric 2-tensor

P0 = −∇2
G̃∗g

S2
ρ0 + dρ0 ⊗ dρ0 − 1

2

(

|dρ0|2G̃∗g
S2

− 1

)

G̃∗gS2 . (4.4)

It is perhaps helpful to think that with the Gauss map G̃ and support function eρ0 , P0
corresponds to a “surface” inH3 as in Theorem 2.1. What is this “surface”? From the
discussion in the flat cases in the previous subsection we know that it is a horosphere
if P0 vanishes. The following is a simple calculation.

Lemma 4.1 In the (x, y) coordinates

(P0)11 = ∂2x ρ̃0 − 1

2
((∂x ρ̃0)

2 − (∂y ρ̃0)
2) + P̃11,

(P0)22 = ∂2y ρ̃0 − 1

2
((∂y ρ̃0)

2 − (∂x ρ̃0)
2) + P̃22,

(P0)12 = (P0)21 = ∂x∂y ρ̃0 − (∂x ρ̃0)(∂y ρ̃0) + P̃12,

where

P̃ = −∇2
G̃∗g

S2
ρ̃ + dρ̃ ⊗ dρ̃ − 1

2
(|dρ̃|2

G̃∗g
S2

− 1)G̃∗gS2

is the Schouten tensor for the surface φ̃.

Proof We let x = x1, y = x2. As |dz|2 = e2ρ0 G̃∗gS2 , we have that

S
2
�k
i j = −δik(ρ0) j − δ jk(ρ0)i + δi j (ρ0)k .

Therefore,

(HessS2ρ0)i j = ∂i∂ jρ0 − S
2
�k
i j∂kρ0

= ∂i∂ jρ0 + [δik(ρ0) j + δ jk(ρ0)i − δi j (ρ0)k](ρ0)k
= ∂i∂ jρ0 + 2(ρ0)i (ρ0) j − δi j (ρ0)

2
k .

So,

(P0)i j = −(HessS2ρ0)i j + (ρ0)i (ρ0) j − 1

2
δi j (ρ0)

2
k + 1

2
e−2ρ0δi j

= −∂i∂ jρ0 − (ρ0)i (ρ0) j + 1

2
δi j (ρ0)

2
k + 1

2
e−2ρ0δi j

= −∂i∂ j (ρ̃ − ρ̃0) − (ρ̃ − ρ̃0)i (ρ̃ − ρ̃0) j + 1

2
δi j (ρ̃ − ρ̃0)

2
k + 1

2
e−2ρ0δi j .
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And

P̃i j = −∂i∂ j ρ̃ +S
2
�k
i j ρ̃k + ρ̃i ρ̃ j − 1

2
δi j ρ̃

2
k + 1

2
e−2ρ0δi j

= −∂i∂ j ρ̃ + (−ρ̃i (ρ0) j − ρ̃ j (ρ0)i +δi j (ρ0)k ρ̃k) + ρ̃i ρ̃ j − 1

2
δi j ρ̃

2
k + 1

2
e−2ρ0δi j .

Hence,

(P0)i j − (P̃)i j = ∂i∂ j ρ̃0 − (ρ̃0)i (ρ̃0) j + 1

2
δi j (ρ̃0)

2
k .

��
The most important technical tool in this case is the following sharp growth esti-

mates for solutions to Gaussian curvature equations based on [21, Theorem 10], [29,
Lemma 3], and [30, Theorem 2.1]. We will present the proof in the next subsection.

Lemma 4.2 Suppose that (R2, e2u |dz|2) is complete, noncompact, nonnegatively
curved, and nonflat. If the Gaussian curvature is bounded, then

u = −m log
√
1 + |z|2 + o(log

√
1 + |z|2) as |z| → ∞ (4.5)

for some m ∈ (0, 1].
We are now ready to prove that P0 vanishes.

Lemma 4.3 The Schouten tensor P0 in (4.4) vanishes identically on R
2 and ρ0 is

given as a solution in (4.3).

Proof First of all we know that P0 is trace-free and divergence-free since e2ρ0 G̃∗gS2 =
|dz|2 is flat. To show P0 is in fact identically zero one just needs to show |P0| ∈ L p(R2)

for some p > 1, in the light of, for instance, [33, Theorem3].As theGaussian curvature
of g̃h is bounded, by applying Lemma 4.2, we get

ρ̃0 = −m log
√
1 + |z|2 + o

(
log

√
1 + |z|2

)
as |z| → ∞

for some m ∈ (0, 1]. Then from (4.2) we know that

|P̃| ≤ Ce2ρ̃0 ≤ C

(1 + |z|2)m
2

, (4.6)

and hence |P̃| belongs to L p(R2) for some large p > 1. Since

− �ρ̃0 = Kg̃h e
2ρ̃0 , (4.7)
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from the Schauder and L p estimates of [19], we have

{
R2− 2

p ‖∂2ρ̃0‖L p(BR(0)) ≤ C
(
‖ρ̃0‖C0(B2R(0)) + R2− 2

p ‖Kg̃h e
2ρ̃0‖L p(B2R(0))

)
,

r‖∂ρ̃0‖C0(Br (z)) ≤ C
(‖ρ̃0‖C0(B2r (z)) + r2‖Kg̃h e

2ρ̃0‖C0(B2r (z))

)
.

(4.8)
From (4.6) and the first inequality of (4.8) as R → ∞, we have ∂2ρ̃0 ∈ L p(R2) for
any p sufficiently large since Kg̃h is bounded. Meanwhile, from the second inequality
of (4.8) and m ∈ (0, 1] for

r = (1 + |z|2)m
4 <

1

2
|z|,

at least when |z| > 2
√
2, we get

|∂ρ̃0(z)| ≤ C

(1 + |z|2)m
4

(log |z| + C),

which implies that |∂ρ̃0(z)|2 ∈ L p(R2) for p sufficiently large. Therefore, due to
Lemma 4.1, it follows that |P0| ∈ L p(R2).

With P0 = 0,wenowknow that the support functionρ0 and theGaussmap G̃ indeed
induce a real “surface”, which in fact is a horosphere. Thus the proof is complete. ��

We are now ready to complete the proof of the conjecture of Alexander and Currier
[2] in dimension 2.

Proof of the main theorem in nonflat cases in dimension 2 FromLemma4.3weknow
G̃ is an injective map which misses only one point q ∈ S

2. So the covering map π is
a diffeomorphism. From (4.3) and (4.5) we have

ρ̃ = ρ0 + ρ̃0 = (2 − m) log |z| + o(log |z|),m ∈ (0, 1]

as z → +∞. So ρ̃(G̃−1(ξ)) → +∞ as ξ → q, which, together with the proof of
Lemma 3.2 of [4], implies that ∂∞φ(M) = {q}. We remark that one may derive the
same conclusion from [5]. From the embedding theorem of Epstein in [16], we know
φ is embedding. ��

4.3 Proof of Lemma 4.2

In this subsection we prove Lemma 4.2. We start with [30, Theorem 2.1] as follows:

Theorem 4.2 ([30, Theorem 2.1]) Let v(x, y) be a C2 positive solution of

0 ≤ −�v ≤ Ce2v
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in a punctured neighborhood of the origin in R
2 for a constant C. Then either v has

C1 extension to the origin or

lim
|x |→0+

v(x, y)

log(1/
√
x2 + y2)

= m1

for some finite positive number m1.

Remark 4.1 By considering v(x, y) − inf v(x, y), one can easily extend the above
theorem to the case that v(x, y) is just bounded from below.

To apply Theorem 4.2 we first take an inversion. Let z̃ = z
|z|2 be the inversion map.

Then

|dz|2 = 1

|z̃|4 |dz̃|2 and g = e2u |dz|2 = e2(u−2 log |z̃|)|dz̃|2 = e2v|dz̃|2

where

v(z̃) = u

(
z̃

|z̃|2
)

− 2 log |z̃|. (4.9)

We then have

− �̃v = Kg

(
z̃

|z̃|2
)

e2v = K̃ge
2v in R2\{0}. (4.10)

It is clear that, in order to apply Theorem 4.2, we need to obtain a lower bound first
for the conformal factor v. To this purpose we first observe that e−v is a subharmonic
function on (R2, e2v|dz̃|2), that is,

�ge
−v = e−v|∇gv|2 − e−v�gv = e−v(|∇gv|2 + K̃g) ≥ 0.

To obtain the lower bound, we recall [22, Theorem 1.2]. To state their theorem we
consider a Riemannian manifold M , x0 ∈ M , and a radius r such that, if M has no
boundary, r is less than half of the diameter of M ; if ∂M �= ∅, r < 1

5dist(x0, ∂M).

Theorem 4.3 ([22, Theorem 1.2]) Suppose that Mn is a Riemannian manifold with
Ric ≥ −(n − 1)k. Let x0 ∈ M and r given as above. Then for a nonnegative subhar-
monic function v we have, for a constant C depending only on the dimension and any
τ ∈ (0, 1

2 ),

sup
B(1−τ )r (x0)

v2 ≤ τ−C(1+√
kr) 1

vol(Br (x0))

∫

Br (x0)
v2dvol. (4.11)

We therefore have, for the conformal factor v in (4.10),

sup
B(1−τ )r (x0)

e−2v ≤ τ−C 1

volg(Br (x0))

∫

Br (x0)
e−2vdvolg

≤ τ−C vol|dz̃|2(Br (x0))
volg(Br (x0))

.

(4.12)
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Fortunately, we have a non-collapsing result in dimension 2 from [13, Theorem A]
as follows:

Theorem 4.4 ([13, Theorem A]) If (M2, g) is complete and nonnegatively curved,
then there exists a constant C(M) such that, for r ≤ 1,

volg(Br (x)) ≥ C(M)r2. (4.13)

Thus, the fact that the conformal factor v is bounded from below follows from
(4.12), (4.13), and the fact that vol|dz̃|2(Br (x0)) is bounded. In fact, in this way we
may conclude that v(x0) → ∞ as z̃(x0) → 0.

Now we are ready to finish the proof of Lemma 4.2.

Proof of Lemma 4.2 According to Theorem 4.2, we get

v(z̃) = m1 log
1

|z̃| + o

(

log
1

|z̃|
)

as z̃ → 0

for some constant m1 > 0. Next we claim that m1 ≥ 1 since the metric g = e2v|dz̃|2
is complete and noncompact at the origin.

Assume otherwise m1 < 1. Then let m2 ∈ (m1, 1) and rs be sufficiently small so
that

v < m2 log
1

|z̃| for all 0 < |z̃| < rs,

which implies

exp(v) < |z̃|−m2 for all 0 < |z̃| < rs

and

∫ rs

0
exp(v(t, 0))dt <

∫ rs

0
t−m2dt < ∞.

This contradicts the assumption that the metric g = e2v|dz̃|2 is complete and non-
compact at the origin.

Therefore, from (4.9), we have

u(z) = (2 − m1) log
1

|z| + o

(

log
1

|z|
)

as |z| → ∞,

where m = 2 − m1 ≤ 1.
To see m > 0 when g is nonnegatively curved and nonflat, we recall

−�u = Kge
2u ≥ 0 in R2.
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Taking an approach similar to that in the proof of [29, Lemma 3], for 0 < r2 < r1, we
have that

r2ū
′(r2) = r1ū

′(r1) + 1

2π

∫

r2<|z|<r1
Kge

2u, (4.14)

where

ū(r) = 1

2π

∫ 2π

0
u(r cos θ, r sin θ)dθ.

Then

|ū′(r)| ≤ 1

2π

∫ 2π

0
|∇u(r cos θ, r sin θ)|dθ

and therefore

lim
r2→0+ r2ū

′(r2) = 0.

Plugging this back into (4.14), we have that

r1ū
′(r1) = − 1

2π

∫

|z|<r1
Kge

2u .

Now, from u = m log 1
|z| + o(log |z|) as |z| → ∞, it follows that

lim
r1→∞ r1ū

′(r1) = −m = −
∫

R2
Kge

2u < 0,

as Kg ≥ 0 and is not identically 0. ��
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