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Abstract We show that the spectral determinant of the isotropic quantum harmonic
oscillator converges exponentially to one as the space dimension grows to infinity. We
determine the precise asymptotic behaviour for large dimension and obtain estimates
valid for all cases with the same asymptotic behaviour in the large. As a consequence,
we provide an alternative proof of a conjecture posed by Bär and Schopka concerning
the convergence of the determinant of the Dirac operator on Sn , determining the exact
asymptotic behaviour for this case and thus improving the estimate on the rate of
convergence given in the work of Møller (Math Ann 343:35–51, 2009).

Keywords Spectral determinant · Quantum harmonic oscillator · Dirac operator ·
Zeta function

1 Introduction

Within the last 50 years there has been an interest within the mathematical physics
community in the calculation of the spectral (or functional) determinant of operators
defined by elliptic operators. This quantity depends globally on the spectrum of the
operator in question, and is normally quite difficult to compute, with typical situations
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1082 P. Freitas

for which this becomes feasible being those where the spectrum is known explic-
itly such as balls [4] and spheres [3, and the references therein], for instance. Some
instances where the spectrum is not known explicitly but it is still possible to carry out
this computation are polygons [1] or Sturm–Liouville operators [5,8].

An added difficulty stems from the fact that computing the determinant usually
requires a regularisation procedure to make sense of what would otherwise be an
infinite product of a sequence of numbers converging to infinity [7,11]. One of the
standard ways to proceed is to build the spectral zeta function associated with the
operator and then use the formula that would be correct in the finite dimensional case.
More precisely, if λk is a non-decreasing sequence of positive real numbers such that
λk approaches infinity as k goes to infinity, then we define the zeta function associated
with this sequence by

ζλ(s) =
∑

k

1

λsk
(1)

for s in a suitable subset of the complex plane. The spectral determinant is then defined
by e−ζ ′

λ(0).When the operator has a zero eigenvalue, this is normally not counted,while
if the eigenvalues λk are not all positive, there are other ways to define the determinant,
as in the case of the Dirac operator on the sphere Sn which we will be referring to
below [3].

The purpose of this paper is to study the determinant of the quantum isotropic
harmonic oscillator in Rn with Hamiltonian given by

Hn = −Δ + |x |2, x ∈ R
n . (2)

This defines a self-adjoint operator in L2(Rn) with purely discrete spectrum whose
(strictly positive) eigenvalues and eigenfunctions can be computed explicitly, allowing
us to write the corresponding zeta function as in (1) above. From this it will be possible
to evaluate the determinant for any given dimension and, in particular, we shall obtain
a recursion formula which will make this feasible in a relatively straightforward way.
However, as happens in some of these cases, the resulting expressions soon become
quite involved as the dimension increases. We will thus follow another direction to
obtain further information on the behaviour for large values of the dimension. In
particular, we are interested in studying and quantify precisely the intriguing behaviour
of spectral determinants of certain families of operatorswith the dimension,whichhave
been identified numerically in [3], namely, their convergence to one as the dimension
grows large. To do this, we shall obtain an integral representation of the corresponding
zeta functionwhichwill then allow us to derive an explicit expression for the derivative
of the zeta function at zero. This is done in terms of two closed loop integrals and a
real integral on a half-line, for which we then manage to both obtain estimates valid
for all dimensions which display the correct order in their asymptotic behaviour, and
the exact asymptotic behaviour. In fact, we see that the two-term approximation for
large n obtained in this way is already quite accurate even in low dimension.

As a by-product of our approach, and by relating the zeta function for the harmonic
oscillator to that for the Dirac operator on spheres, we are able to derive precise
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The spectral determinant of the harmonic oscillator 1083

asymptotics for the behaviour of the determinant of the latter as the dimension becomes
large. As stated in Corollary E below, while the results in [9] yield a control of the

decay for | log det(DSn )| of order
(√

5/3
)n

, we show that this decay is of (precise)

order
(√

2/2
)n

n−1/2 and determine explicitly the first two terms in the asymptotics.

A similar result holds for the phase term. From a computational point of view, the
precision of these approximations is quite good, as may be seen by comparing them
with the values given in [3]. Except for the case of the two-sphere, where the error is
of the order of 1.8% for the absolute value and 0.6% for the phase, in all other cases
this error is below 0.18% and decays quite fast.

The structure of the paper is as follows. In the next sectionwe state some of the basic
properties about the operator Hn , together with the main results of the paper. We then
prove the recurrence formula in Sect. 3, wherewe also compute some examples of both
the zeta function and of the determinant to illustrate these results. In Sect. 4 we derive
the integral representation for the zeta function, together with some of its properties.
In Sect. 5 we begin by obtaining the explicit expression for the determinant. This is
then analysed, first from the point of view of its asymptotic behaviour for large n, for
which we explicitly determine the first two terms in the expansion of − log det(Hn).
We then obtain estimates for this quantity which are valid for all n and which display
the same asymptotic behaviour (although with worse constants). Finally, in the last
section we establish the connection with the Dirac operator on spheres and obtain the
asymptotic behaviour for the determinant in this case.

2 Preliminaries and main results

The spectrum of (2) in L2(Rn) is discrete and its eigenvalues and eigenfunctions are
given by the equation

− Δu + |x |2u = λu, x ∈ R
n . (3)

Thesemaybe calculated explicitly via separation of variables andusing the eigenvalues
of the one-dimensional harmonic oscillator which are solutions of the problem

−ϕ′′(y) + y2ϕ = σϕ(y), y ∈ R.

The corresponding eigenvalues of this problem are given by σk = 2k + 1 (k =
0, 1, 2, . . . ) and the associated eigenfunctions are of the form

ϕk(y) = e−y2/2hk(y),

where the functions hn are Hermite polynomials—see, for instance, [14].
We then obtain that, for the n-dimensional problem,

λk = 2|α| + n, where |α| = α1 + · · · + αn, α j ∈ N0.
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1084 P. Freitas

From the above we see that for each value of k = |α| the corresponding eigenvalue of
the form 2k + n will have multiplicity

mk =
(
n + k − 1

k

)
. (4)

Wemay now define the zeta function for the quantum harmonic oscillator in dimension
n by

ζ H
n (s) :=

∞∑

k=0

mk

(2k + n)s
, (5)

where the series is absolutely convergent for Re(s) > n.
We first show that the family of harmonic zeta functions may be defined by a simple

two-term recursion formula which, in particular, shows that all elements of this family
may be written in terms of the Riemann zeta function.

Theorem A (A recursion formula) The family of harmonic zeta functions defined
by (5) satisfies the following recursion relation

ζ H
n+2(s) = 1

4n(n + 1)
ζ H
n (s − 2) − n

4(n + 1)
ζ H
n (s), (6)

for all positive integers n and complex numbers s in the domain of the functions
involved. Furthermore,

ζ H
1 (s) = (

1 − 2−s) ζ(s) and ζ H
2 (s) = 2−sζ(s − 1).

Some of the properties of the functions ζ H
n (s) may already be derived from this

formula. It implies, for instance, some of the results in Theorem B below. However,
in order to study the asymptotic behaviour and the estimates for the determinant, we
will rely mostly on the integral representation formula derived in Sect. 4 in the proof
of Theorem B.

In order to proceed, we shall thus derive an integral representation for ζ H
n (s) and

show that it is possible to extend this function to the whole complex plane, except
possibly for a finite number of singularities. This will be done in a standard way as
for the Riemann zeta function.

Theorem B (Analytic extension) The harmonic zeta function ζ H
n (s) defined by (5)

may be extended to the whole complex plane as a meromorphic function whose only
singularities are simple poles at the positive even integers less than or equal to n when
n is even, and at the odd positive integers less than or equal to n when n is odd. In
either case, the residue at the simple pole s = n is given by

Res
s=n

[
ζ H
n s
]

= 1

2n(n − 1)! .
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The spectral determinant of the harmonic oscillator 1085

In particular, ζ H
n (s) is analytic at zero, allowing us to define the determinant for the

harmonic oscillator Hn by

det(Hn) = e−[ζ H
n (s)

]′
s=0 .

The asymptotic behaviour of this quantity when the spatial dimension becomes large
is now given in the following

Theorem C (Determinant: asymptotic behaviour) The spectral determinant of the
harmonic oscillator satisfies

lim
n→+∞ det(Hn) = 1.

More precisely, we have

− log det(Hn) = [
ζ H
n (s)

]′
s=0

= 2−n
[
h1n−1/2 + h2n−3/2 + O

(
n−5/2

)]

as n → +∞, where

h1 =
√
2

π3/2

[
2
(
γ + log

(π

2

))
cos

(nπ

2

)
− π sin

(nπ

2

)]

and

h2 = 1

2
√
2π7/2

{ [
2
(
π2 − 16

)
γ + 2π2 log

(π

2

)

+16
(
3 − 2 log

(π

2

))]
cos

(nπ

2

)

+π
(
16 − π2

)
sin
(nπ

2

)}
.

The next result provides estimates which are valid for all dimension. Here the
emphasiswas on deriving a simple closed form expressionwith the correct quantitative
behaviour, thus bounding the values of the determinant.

Theorem D (Determinant: estimates) The derivative of ζ H
n (s) at zero satisfies

∣∣∣
[
ζ H
n (s)

]′
s=0

∣∣∣ ≤ 2−n

⎧
⎨

⎩
2√
π

[(
γ + log π

2

)2 + π2
]1/2

Γ (n + 1/2)
Γ (n + 1)

+ 2
nπ coth

(π

2

) × 1
sinhn

(π

2

)

⎫
⎬

⎭

for all integers n.
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1086 P. Freitas

Remark 1 Note that the leading term in the asymptotic expansion of the above bound
for large n is of the form

2−n

√
n

× 2√
π

[(
γ + log

(π

2

))2 + π2
]1/2

,

which is of the same order as that of the leading term given by Theorem C.

These results, together with the fact that the determinant of the Dirac operator on
Sn is related to det(Hn), allow us to derive a proof of Conjecture 1 in [3]. A proof of
this result had already been obtained by Møller in [9] and was based on a recurrence
formula for certain coefficients which dominate the behaviour of the absolute value
of the zeta function and the corresponding derivative for the operator D2 defined
on spheres. With our approach we are able to obtain the exact rate of decay of the
determinant.

Corollary E (The Dirac operator on Sn) For the Dirac operator on the standard
round sphere Sn (n ≥ 2) defined by

det(DSn ) = exp
(
i
π

2
ζ D2

n (0)
)
exp

(
−1

2

[
ζ D2

n (s)
]′
s=0

)
,

we have

[
ζ D2

n (s)
]′
s=0

= 2	n/2
−n+2
[
d1n−1/2 + d2n−3/2 + O

(
n−5/2

)]
,

as n → +∞, where

d1 =
√
2

π3/2

[
2 (γ + log (π)) cos

(nπ

2

)
− π sin

(nπ

2

)]

and

d2 = 1

2
√
2π7/2

[
2
((

π2 − 16
)

(γ + log(π)) + 24
)
cos

(nπ

2

)

+π
(
16 − π2

)
sin
(nπ

2

)]
.

The asymptotic behaviour of the phase as n → +∞ is given by

φD
n = π

2
ζ D2

n (0)

= 2	n/2
−n+1 cos
(nπ

2

)[√ 2

π
n−1/2 − 16 − π2

2
√
2π5/2

n−3/2 + O
(
n−5/2

)]
.
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The spectral determinant of the harmonic oscillator 1087

Using the same approach as in the proof of Theorem D, it is possible to derive similar

estimates for
[
ζ D2

n (s)
]′
s=0

.

3 Proof of the recurrence formula

For all s with real part larger than n we have

ζ H
n+2(s) =

∞∑

k=0

(
n + k + 1

k

)
1

(2k + n + 2)s

=
∞∑

k=1

(
n + k

k − 1

)
1

(2k + n)s

=
∞∑

k=1

k(n + k)(n + k − 1)!
k!(n + 1)n(n − 1)!

1

(2k + n)s

=
∞∑

k=1

k(n + k)

n(n + 1)

(
n + k − 1

k

)
1

(2k + n)s

= 1
n(n + 1)

∞∑

k=1

(
n + k − 1

k

)
k2 + kn + n2/4

(2k + n)s

− 1
n(n + 1)

∞∑

k=1

(
n + k − 1

k

)
n2/4

(2k + n)s

= 1
4n(n + 1)

∞∑

k=1

(
n + k − 1

k

)
1

(2k + n)s−2

− n
4(n + 1)

∞∑

k=1

(
n + k − 1

k

)
1

(2k + n)s

= 1
4n(n + 1)ζ

H
n (s − 2) − n

4(n + 1) ζ
H
n (s).

A direct evaluation of (5) for n = 1, 2 yields

ζ H
1 (s) =

∞∑

k=0

1

(2k + 1)s
= (

1 − 2−s) ζ(s)

and

ζ H
2 (s) =

∞∑

k=0

k + 1

(2k + 2)s
= 1

2s

∞∑

k=0

1

(k + 1)s−1 = 2−sζ(s − 1).

Since the functions ζ H
1 (s) and ζ H

2 (s) are meromorphic, the result then follows.
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1088 P. Freitas

This recurrence formula may be used to compute ζ H
n (s) for any n, although expres-

sions do get quite involved even for small dimension. Some examples are as follows:

ζ H
3 (s) = 1

8

(
1 − 1

2s−2

)
ζ(s − 2) − 1

8

(
1 − 1

2s
)

ζ(s)

ζ H
4 (s) = 1

3 × 2s+1 [ζ(s − 3) − ζ(s − 1)]

ζ H
5 (s) = 1

3 × 27

[(
1 − 1

2s−4

)
ζ(s − 4)

−10
(
1 − 1

2s−2

)
ζ(s − 2) + 9

(
1 − 1

2s
)

ζ(s)
]

ζ H
6 (s) = 1

15 × 2s+3 [ζ(s − 5) − 5ζ(s − 3) + 4ζ(s − 1)] ,

clearly displaying the dual behaviour for odd and even n.
An interesting feature of (6) is that since it does not involve the explicit dependence

on the variable s it also provides an analogous recursion formula for the derivative
of ζ H

n (s), thus allowing for a more direct way to compute the determinant without
having to compute anyderivatives other than those for ζ H

1 (s) and ζ H
2 (s). For illustrative

purposes, we present here the first six determinant values obtained in this way.

det(H1) = √
2 det(H2) = 2−1/12e−ζ ′(−1)

det(H3) = 2−1/16e
3
8 ζ ′(−2) det(H4) = 211/720e

1
6 [ζ ′(−1)−ζ ′(−3)]

det(H5) = 23/256e
5
128 [ζ ′(−4)−2ζ ′(−2)] det(H6) = 2−191/60480e

1
120 [−ζ ′(−5)+5ζ ′(−3)−4ζ ′(−1)]

4 Analytic extension to the complex plane

The proof that each element in the family of functions ζ H
n (s) defined by (5) may be

extended meromorphically to the complex plane basically follows the steps used for
the same purpose for the Riemann zeta function, and it will provide us with an integral
representation which may then be used to obtain the desired estimates and asymptotic
behaviour.

We begin with the following

Lemma 1 The harmonic zeta functions ζ H
n (s) have the following integral represen-

tation

ζ H
n (s) = e−π isΓ (1 − s)

2n+1π i

ˆ
C

zs−1

sinhn(z)
dz,

where the contour C starts from +∞ on the real axis, travels along the positive part
of the real axis up to some positive value, encircles the origin once without containing
any of the values ±ikπ , k ∈ N, and returns to +∞ along the positive part of the real
axis.

Proof As in [12,13, p. 18ff], we start from

ˆ +∞

0
xs−1e−(2k+n)xdx = Γ (s)

(2k + n)s
, Re(s) > 0.
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The spectral determinant of the harmonic oscillator 1089

Multiplying both sides by

(
n + k − 1

k

)
and summing over k from zero to infinity we

obtain

Γ (s)ζ H
n (s) =

ˆ +∞

0
xs−1

∞∑

k=0

(
n + k − 1

k

)
e−(2k+n)xdx,

where the interchange between the series and the integral is justified by the absolute
convergence of the former for Re(s) > n.

We now claim that

∞∑

k=0

(
n + k − 1

k

)
e−(2k+n)x = 1

2n sinhn(x)
. (7)

Indeed, differentiating

∞∑

k=0

yk = 1

1 − y

(n − 1) times with respect to y, we obtain

dn−1

dyn−1

∞∑

k=0

yk = (n − 1)!(1 − y)−n .

The left-hand side in the above expression equals

∞∑

k=n−1

⎛

⎝
k∏

j=k−n+2

j

⎞

⎠ yk−n+1 =
∞∑

k=0

⎛

⎝
k+n−1∏

j=k+1

j

⎞

⎠ yk

=
∞∑

k=0

(n + k − 1)!
k! yk

= (n − 1)!
∞∑

k=0

(
n + k − 1

k

)
yk,

and thus

∞∑

k=0

(
n + k − 1

k

)
yk = (1 − y)−n .

Letting y = e−2x and multiplying by e−nx yields (7). We thus have

Γ (s)ζ H
n (s) =

ˆ ∞

0

xs−1

2n sinhn(x)
dx, Re(s) > n.

123



1090 P. Freitas

Define now

In(s) =
ˆ
C

zs−1

2n sinhn(z)
dz, (8)

where C is the contour described in the lemma. This may be evaluated by considering
a path on the positive real axis from infinity to ρ(0 < ρ < π), the circle |z| = ρ

described counter-clockwise, and again the real axis from ρ to infinity. On the circle
of radius ρ and for ρ ∈ (0, π/2] we have

| sinh(z)|2 = sinh2(ρ cos θ) + sin2(ρ sin θ)

≥ ρ2 cos2 θ + 4

π2 ρ2 sin2 θ ≥ 4

π2 ρ2.

Hence
∣∣∣∣∣∣∣

‰

|z|=ρ

zs−1

2n sinhn(z)
dz

∣∣∣∣∣∣∣
≤ πn+1ρRe(s)−n

22n−1

and we see that the integral over this part of the contour goes to zero as ρ goes to zero,
provided Re(s) > n. Hence

In(s) = −
ˆ +∞

0

xs−1

2n sinhn(x)
dx +

ˆ +∞

0

(
xe2π i

)s−1

2n sinhn(x)
dx

= (
e2π is − 1

) ˆ +∞

0

xs−1

2n sinhn(x)
dx

= (
e2π is − 1

)
Γ (s)ζ H

n (s)

= 2π ieπ is

Γ (1 − s)ζ
H
n (s),

from which the integral representation follows. ��
The integrals In(s) are well-defined and uniformly convergent in any finite region in
the complex s-plane and thus define an analytic function of s. As with the Riemann
zeta function, the only possible singularities of ζ H

n (s) are the poles ofΓ (1−s), located
at the positive integers. From the series definition of the functions ζ H

n (s)we know that
there are no singularities for Re(s) > n, so it remains to inspect what happens at the
integers 1, . . . , n.

First note that for positive integer s the two integrals over the positive part of the
real axis from infinity to some positive ρ and then from ρ to plus infinity cancel each
other out. We are thus left to analyse what happens to

In(p) =
‰

|z|=ρ

z p−1

2n sinhn z
dz
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The spectral determinant of the harmonic oscillator 1091

for some ρ on (0, π) and p = 1, . . . , n. The integrand may be written as

[
z

2 sinh(z)

]n
z p−n−1

and we see that when p − n − 1 is odd the residue is non-zero and integral does not
vanish. We thus have simple poles at these values of p, which will be positive integers
with the same parity as n up and to including n. On the other hand, for all values of p
with a different parity from n this integral will vanish cancelling out the singularities
of the Γ function.

When s = n the integrand has a simple pole and we obtain

In(n) =
‰

|z|=ρ

zn−1

2n sinhn z
dz = 21−nπ i,

yielding

ζ H
n (s) = 2−n

Γ (n)

1

s − n
+ O(1) as s → n

and concluding the proof of Theorem B.

5 The determinant

We shall use the integral representation formula given by Lemma 1 to obtain the
necessary bounds to control the determinant. We shall begin by estimating ζ H

n (0).
From Lemma 1 we have

ζ H
n (s) = e−π isΓ (1 − s)

2π i
In(s), (9)

with In(s) as in (8). For general complex s the integral over the part of the contour C
encircling the origin no longer necessarily goes to zero as in the proof of Lemma 1,
but we may still write

In(s) = −
ˆ +∞

ρ

xs−1

2n sinhn(x)
dx

+
ˆ +∞

ρ

(
xe2π i

)s−1

2n sinhn(x)
dx +

‰

|z|=ρ

zs−1

2n sinhn(z)
dz

=
(
e2π is − 1

) ˆ +∞

ρ

xs−1

2n sinhn(x)
dx +

‰

|z|=ρ

zs−1

2n sinhn(z)
dz (10)
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1092 P. Freitas

and so (9) with In as above is valid for all complex numbers except at the simple poles
of ζ H

n (s). In particular, it is valid for s in a neighbourhood of zero and we may thus
differentiate (9) with respect to s to obtain

[
ζ H
n (s)

]′ = −π ie−π isΓ (1 − s)

2π i
In(s)

−e−π isΓ ′(1 − s)

2π i
In(s) + e−π isΓ (1 − s)

2π i
I ′
n(s)

= −π iζ H
n (s) − Γ ′(1 − s)

Γ (1 − s)
ζ H
n (s) + e−π isΓ (1 − s)

2π i
I ′
n(s)

= −
[
π i + Γ ′(1 − s)

Γ (1 − s)

]
ζ H
n (s) + e−π isΓ (1 − s)

2π i
I ′
n(s).

In particular, at s equal to zero we have
[
ζ H
n (s)

]′
s=0

= (γ − π i) ζ H
n (0) + 1

2π i
I ′
n(0).

In what follows we will take ρ = π/2. From (9) and (10) we have

ζ H
n (0) = 1

2π i
In(0) = 2−n

2π i

‰

|z|=π/2

1

z sinhn(z)
dz, (11)

while differentiating (10) with respect to s yields

I ′
n(s) = 2π ie2π is

2n

ˆ +∞

π/2

xs−1

sinhn(x)
dx + e2π is − 1

2n

ˆ +∞

π/2

xs−1 log x

sinhn(x)
dx

+ 1
2n

‰

|z|=π/2

zs−1 log(z)
sinhn(z)

dz.

Due to the contour used, the branch of the logarithm which appears in this last integral
has its imaginary part with values on [0, 2π). When s is zero this last expression
simplifies, after division by 2π i , to

1

2π i
I ′
n(0) = 1

2n

ˆ +∞

π/2

1

x sinhn(x)
dx + 1

2n
× 1

2π i

‰

|z|=π/2

log(z)

z sinhn(z)
dz.

Hence

[
ζ H
n (s)

]′
s=0

= 2−n

⎡

⎢⎣
γ − π i

2π i

‰

|z|=π/2

1

z sinhn(z)
dz +

ˆ +∞

π/2

1

x sinhn(x)
dx

+ 1

2π i

‰

|z|=π/2

log(z)

z sinhn(z)
dz

⎤

⎥⎦ . (12)
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The spectral determinant of the harmonic oscillator 1093

5.1 Asymptotics for large dimension

We shall first determine the asymptotic behaviour of each of the three integrals above
which make up

[
ζ H
n (0)

]′
, as n goes to infinity. It is not difficult to see (and we will

make this rigorous below) that the integral on the real line fromπ/2 to+∞ still decays
exponentially with n, while this will no longer be the case for the integrals over the
two complex loops. For these two integrals, one possible appropriate framework to
obtain the correct asymptotic behaviour is by analysing the behaviour at saddle points
along the path |z| = π/2. This will be a fairly standard procedure and we will follow
closely the approach described in Chapter 4, Section 7 in [10].

We start with the evaluation of the first of these integrals which we write as
‰

|z|=π/2

1

z sinhn(z)
dz =

ˆ
C+

1

z sinhn(z)
dz +

ˆ
C−

1

z sinhn(z)
dz,

where C+ and C− denote the half-circles of radius π/2 on the upper and lower halves
of the complex plane, respectively. Since the integrand takes complex conjugate values
at complex conjugate points, we have

‰

|z|=π/2

1

z sinhn(z)
dz = 2iIm

[ˆ
C+

1

z sinhn(z)
dz

]
(13)

and we may thus restrict our analysis to the integral over C+. Following [10] we now
write

ˆ
C+

1

z sinhn(z)
dz =

ˆ
C+

e−np(z)q(z)dz

where p(z) = log(sinh(z)) and q(z) = 1/z. Since p′(z) = coth(z), the critical points
of p (called saddle points in [10, pages 127ff]) are all simple and located at points of
the form ±π i/2+ 2kπ i (k ∈ Z). Of relevance to us here is π i/2 and it is not difficult
to see that the functions p and q satisfy the necessary conditions for Theorem 7.1 in
[10, Chapter 4, Section 7, page 127] to hold. In particular,

Re
[
p(z) − p(

π

2
i)
]

= Re
[
log (sinh(z)) − log

(
sinh

(π

2
i
))]

= Re
[
log
(
sinh

(π

2
eti
))

− log(i)
]
, (t ∈ (0, π))

= Re
[
log
(
sinh

(π

2
eti
))

− π

2
i
]

= log
∣∣∣sinh

(π

2
eti
)∣∣∣

= 1

2
log
[
sinh2

(π

2
cos t

)
+ sin2

(π

2
sin t

)]
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≥ 1

2
log

[
π2

4
cos2(t) + sin2(t)

]

> 0,

except at the saddle point π i/2. We thus have

ˆ
C+

1

z sinhn(z)
dz = 2e

−n log
[
sinh

(
π
2 i
)] ∞∑

k=0

Γ

(
k + 1

2

)
a2k

nk+1/2

= 2e
−nπ

2 i
[
a0Γ (1/2)

n1/2
+ a2Γ (3/2)

n3/2
+ O

(
n−5/2

)]
,

where formulas for the first two coefficients a0 and a2 are given in [10, equation (7.06)
on page 127] and in this case evaluate to

a0 =
√
2

π
i and a2 = −16 − π2

√
2π3

i.

Replacing this above we obtain

ˆ
C+

1

z sinhn(z)
dz = 2ie

−nπ
2 i

[√
2

π
n−1/2 − 16 − π2

2
√
2π5/2

n−3/2 + O
(
n−5/2

)]

and, for the original integral, it follows from (13) that

‰

|z|=π/2

1

z sinhn(z)
dz = 4i cos

(nπ

2

)[√ 2

π
n−1/2 − 16 − π2

2
√
2π5/2

n−3/2 + O
(
n−5/2

)]

as n becomes large.
For the evaluation of the asymptotic form of the loop integral containing the loga-

rithmic term we will also separate the circle into the two paths C± as above, but we
shall now evaluate each of those integrals separately. The function p is the same as
before – and hence so are the saddle points –, while now q(z) = log(z)/z, with the
branch cut of the logarithm being the half-line [0,+∞).

After some calculations we obtain
‰

|z|=π/2

log(z)

z sinhn(z)
dz =

‰

C+

log(z)

z sinhn(z)
dz +

‰

C−

log(z)

z sinhn(z)
dz

= e
−nπ

2 i

{√
2π

[
−1 + 2

π
i log

(π

2

)]
n−1/2

+ 1√
2π3/2

[
8 − π2

2
+ 2i

π

(
12
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−
(
8 − π2

2

)
log
(π

2

))]
n−3/2

}

+ e
nπ
2 i
{√

2π

[
−3 + 2

π
i log

(π

2

)]
n−1/2

+ 1√
2π3/2

[
3

(
8 − π2

2

)
+ 2i

π
(12

−
(
8 − π2

2

)
log
(π

2

))]
n−3/2

}

+O
(
n−5/2

)

= 2
√
2π

{
2

[
−1 + i

π
log
(π

2

)]
cos

(nπ

2

)

− i sin
(nπ

2

)}
n−1/2

+
√
2

π3/2

{
2

[
8 − π2

2
+ i

π

(
12

−
(
8 − π2

2

)
log
(π

2

))]
cos

(nπ

2

)

+ i

(
8 − π2

2

)
sin
(nπ

2

)}
n−3/2

+O
(
n−5/2

)

Regarding the remaining integral on the real line, we see from Lemma 3 below that
it still decreases exponentially and has thus a much smaller contribution to the overall
value of

[
ζ H
n (s)

]′
s=0.

We now collect the terms obtained for the two loop integrals and, plugging them
back into (12), obtain, after some lengthy calculations,

[
ζ H
n (s)

]′
s=0

= 2−n

{ √
2

π3/2

[
2
(
γ + log

(π

2

))
cos

(nπ

2

)
− π sin

(nπ

2

)]
n−1/2

+ 1

2
√
2π7/2

[
2
((

π2 − 16
)

γ + π2 log
(π

2

)

+ 8
(
3 − 2 log

(π

2

)))
cos

(nπ

2

)

+π
(
16 − π2

)
sin
(nπ

2

)]
n−3/2

+ O
(
n−5/2

)}
(14)
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for largen, providing the asymptotic part inTheoremC.Further terms in the asymptotic
expansion may be determined in a similar way.

5.2 Estimates for all n

To estimate the absolute value of the closed loop integrals in (12) it is convenient to
consider the two integrals together. We thus want to estimate

∣∣∣∣∣∣∣

1

2π i

‰

|z|=π/2

γ − π i + log(z)

z sinhn(z)
dz

∣∣∣∣∣∣∣
.

Letting z = π
2 e

θ i with θ in [0, 2π) we have

∣∣∣∣∣∣∣
1

2π i

‰

|z|=π/2

γ − π i + log(z)
z sinhn(z)

dz

∣∣∣∣∣∣∣
= 1

2π

∣∣∣∣∣∣∣

ˆ 2π

0

γ + log
(π

2

)
+ (θ − π) i

sinhn
(π

2
eθ i
) dθ

∣∣∣∣∣∣∣

≤ 1
2π

ˆ 2π

0

∣∣∣∣∣∣∣

γ + log
(π

2

)
+ (θ − π) i

sinhn
(π

2
eθ i
)

∣∣∣∣∣∣∣
dθ

= 1
2π

ˆ 2π

0

∣∣∣∣∣∣∣∣

√(
γ + log

(π

2

))2 + (θ − π)2

sinhn
(π

2
eθ i
)

∣∣∣∣∣∣∣∣
dθ

≤

√(
γ +log

(π

2

))2+π2

2π

ˆ 2π

0

1∣∣∣sinhn
(π

2
eθ i
)∣∣∣
dθ.

We will now proceed to estimate this last integral, for which we have

ˆ 2π

0

1∣∣∣sinhn
(π

2
eθ i
)∣∣∣
dθ =

ˆ 2π

0

1
[
sinh2

(π

2
cos θ

)
+ sin2

(π

2
sin θ

)]n/2 dθ

=
ˆ 2π

0

1
[
sinh2

(π

2
sin θ

)
+ sin2

(π

2
cos θ

)]n/2 dθ

= 4
ˆ π/2

0

1
[
sinh2

(π

2
sin θ

)
+ sin2

(π

2
cos θ

)]n/2 dθ.

(15)

In order to continue, we will need the following
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Lemma 2 For θ in [0, π/2] we have

1

sinh2
(π

2
sin θ

)
+ sin2

(π

2
cos θ

) ≤ cos4
(

θ

2

)
.

Proof The denominator on the left-hand side of the above inequality satisfies

sinh2
(
π
2 sin θ

)
+ sin2

(
π
2 cos θ

)
≥
(
π
2 sin θ

)2 + 1
3

(
π
2 sin θ

)4 + cos2 θ

= π2

4
(
1 − cos2 θ

)+ π4

48
(
1 − cos2 θ

)2 + cos2 θ,

where we used the inequalities

sinh2 t ≥ t2 + 1

3
t4 and sin t ≥ 2

π
t
(
0 ≤ t ≤ π

2

)
.

Noting that

cos4
(

θ

2

)
=
(
1 + cos θ

2

)2

,

and writing y = cos θ , we want to prove that

4 ≤ (1 + y)2
[

π2

4
(1 − y2) + π4

48
(1 − y2)2 + y2

]

for all y on [0, 1). We have thus reduced the problem to that of finding the zeros of
the sixth order polynomial

g(y) = (1 + y)2
[

π2

4
(1 − y2) + π4

48
(1 − y2)2 + y2

]
− 4

on a bounded interval. The roots of the polynomial g are found to be all outside this
interval, except for one at y = 1. We thus have that g(y) is positive on [0, 1), yielding
the desired result. ��

Using this inequality in (15) yields

ˆ 2π

0

1∣∣∣sinhn
(π

2
eθ i
)∣∣∣
dθ ≤ 4

ˆ π/2

0
cos2n

(
θ

2

)
dθ

≤ 4
ˆ π

0
cos2n

(
θ

2

)
dθ

= 4
√

π
Γ (n + 1/2)
Γ (n + 1) ,
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where the integral with the cosine may be computed by transforming it to the beta
function B(n+1/2, 1/2) bymeans of the change of variable θ = 2 arccos(r). Note that
it would also be possible to write the integral on (0, π/2) in terms of the incomplete
beta function B1/2(n + 1/2, 1/2) but, as we stated, our aim here was to get a simple
explicit expression.

We have thus shown that

∣∣∣∣∣∣∣

1

2π i

‰

|z|=π/2

γ − π i + log(z)

z sinhn(z)
dz

∣∣∣∣∣∣∣
≤ 2Γ (n + 1/2)√

πΓ (n + 1)

√(
γ + log

(π

2

))2 + π2 (16)

For the case of the real integral on [π/2,+∞) it is not difficult to obtain the leading
term in the expansion for large n by using Laplace’s method [10, Chapter 3, Section
7], for instance, and see that it behaves as

ˆ +∞

π/2

1

x sinhn(x)
dx = 2

π coth
(π

2

) 1

n sinhn
(π

2

) + · · · as n → +∞.

In fact, in this case it is possible to show that the integral is always smaller than or
equal to this first term in its asymptotic expansion for large n and we have the sharp
bound given by the following lemma.

Lemma 3 For all positive integers n we have

ˆ +∞

π/2

1

x sinhn(x)
dx ≤ 2

π coth
(π

2

) 1

n sinhn
(π

2

) .

Proof Writing sinh(x) = t we have

x = log
(
t +

√
1 + t2

)
and

dx

dt
= 1√

1 + t2
.

Replacing this in the integral we obtain

ˆ +∞

π/2

1

x sinhn(x)
dx =

ˆ +∞

sinh(π/2)

1

log
(
t +

√
1 + t2

) × 1√
t2 + 1

× 1

tn
dt

We claim that

1

log
(
t +

√
1 + t2

) × 1√
t2 + 1

≤ 2

π coth
(π

2

)
t
. (17)
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Indeed,

d

dt

⎡

⎣ t

log
(
t +

√
1 + t2

) × 1√
1 + t2

⎤

⎦ =
−t
√
1 + t2 + log

(
t +

√
1 + t2

)

log2
(
t +

√
1 + t2

) (
1 + t2

)3/2

where the numerator in the fraction on the right-hand side takes the value zero at zero
and its derivative with respect to t is again negative. This shows that this expression
is decreasing in t and so, on the interval [sinh(π/2),+∞), it is smaller than or equal
to the value it takes at sinh(π/2), showing (17). We thus have

ˆ +∞

π/2

1

x sinhn(x)
dx ≤ 2

π coth
(π

2

)
ˆ +∞

sinh(π/2)

1

tn+1 dt

= 2
π coth

(π

2

) 1
n sinhn

(π

2

)
(18)

as desired. ��

Combining the two estimates (16) and (18) finally yields the estimate in TheoremD.

6 The Dirac operator on spheres

Following [3] – see also the references therein – the determinant of the Dirac operator
on Sn is given by

det(DSn ) = exp
(
i
π

2
ζ D2

n (0)
)
exp

(
−1

2

[
ζ D2

n (s)
]′
s=0

)
,

where ζ D2

n (s) denotes the zeta function for the operator D2 on Sn , defined in the usual
way referred to above. The above expression involves a phase term, namely

φD
n = π

2
ζ D2

n (0),

whichwill essentially behave as ζ D2

n (0) – this is due to the symmetry of the spectrumof
the Dirac operator on Sn , for otherwise an extra term will be present [9]. The spectrum
of the Dirac operator on Sn is given by

λ±
k = ± (k + n/2) ,

where each eigenvalue λ±
k has multiplicity 2	n/2
mk , with mk given by (4) [2]. We

then have that the spectrum of D2 is given by the squares of the above values (with
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twice the multiplicity), yielding the following zeta function

ζ D2

n (s) = 2	n/2
+1
∞∑

k=0

mk
(n
2

+ k
)2s .

This is easily seen to equal 2	n/2
+2s+1ζ H
n (2s), from which it follows that

ζ D2

n (0) = 2	n/2
+1ζ H
n (0)

and

[
ζ D2

n (s)
]′
s=0

= 2	n/2
+2
[
log(2) ζ H

n (0) +
[
ζ H
n (s)

]′
s=0

]
.

Because of this connection between the two operators, the asymptotic behaviour
and the estimates obtained for ζ H

n (0) and
[
ζ H
n (s)

]′
s=0 above may be used to derive

the corresponding asymptotic behaviour and estimates for the Dirac operator, as the
asymptotic expression is affected only by the term 2	n/2
.

Using (11), (12) and (14) we then have

[
ζ D2

n (s)
]′
s=0

= 2	n/2
−n+2

⎧
⎪⎨

⎪⎩
log(2) + γ − π i

2π i

‰

|z|=π/2

1

z sinhn(z)
dz

+
ˆ +∞

π/2

1

x sinhn(x)
dx + 1

2π i

‰

|z|=π/2

log(z)

z sinhn(z)
dz

⎫
⎪⎬

⎪⎭

= 2	n/2
−n+2

{ √
2

π3/2

[
2 (γ + log (π)) cos

(nπ

2

)
− π sin

(nπ

2

)]
n−1/2

+ 1

2
√
2π7/2

[
2
((

π2 − 16
)

(γ + log(π)) + 24
)
cos

(nπ

2

)

+π
(
16 − π2

)
sin
(nπ

2

)]
n−3/2 + O

(
n−5/2

)}
,

yielding the expression in Corollary E.
Likewise, for the phase we have

φD
n = π

2 ζ D2

n (0) = π
2 2

	n/2
+1ζ H
n (0) = 1

2i 2
	n/2
−n

‰

|z|=π/2

1
z sinhn(z)

dz

= 2	n/2
−n+1 cos
(
nπ
2

) [√
2
π n−1/2 − 16 − π2

2
√
2π5/2 n

−3/2 + O
(
n−5/2

)]
.
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