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Abstract We study evolution equations associated to time-dependent dissipative non-
selfadjoint quadratic operators. We prove that the solution operators to these non-
autonomous evolution equations are given by Fourier integral operators whose kernels
are Gaussian tempered distributions associated to non-negative complex symplectic
linear transformations, and we derive a generalized Mehler formula for their Weyl
symbols. Some applications to the study of the propagation of Gabor singularities
(characterizing the lack of Schwartz regularity) for the solutions to non-autonomous
quadratic evolution equations are given.

Mathematics Subject Classification 35S05 · 47D06

1 Introduction

1.1 Mehler formula and quadratic Hamiltonians

In his seminal work [20], Ferdinand Gustav Mehler established in 1866 the following
celebrated formula, since then known as Mehler formula

∑

α∈Nn

φα(x)φα(y)ω|α| = 1

π
n
2 (1− ω2)

n
2
exp

(
− 1+ ω2

2(1− ω2)
(x2 + y2)+ 2ω

1− ω2 x · y
)
,
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1336 K. Pravda-Starov

holding for all ω ∈ C, |ω| < 1 and x, y ∈ R
n , where (φα)α∈Nn stands for the Hermite

orthonormal basis, see also e.g. [6, p. 20] (Theorem 1). This formula has played a
major role in mathematical physics and more specifically in quantum mechanics for
the study of Schrödinger equations associated to quadratic Hamiltonians. It allows in
particular to derive explicit formulas for the kernel

Kt (x, y) = 1
(
2π sinh(2t)

) n
2
exp

(
− 1

2 sinh(2t)

(
(x2 + y2) cosh(2t)− 2x · y)

)
,

with (x, y) ∈ R
2n , t > 0, and the Weyl symbol

at (x, ξ) = 1

(cosh(t))n
exp

(− (ξ2 + x2) tanh(t)
)
,

with (x, ξ) ∈ R
2n , t > 0, of the contraction semigroup (e−t H )t≥0 on L2(Rn)generated

by the harmonic oscillator

H = −�x + x2, x ∈ R
n .

There are many works concerning the quantum evolutions generated by quadratic
Hamiltonians and exact formulas, see e.g. [29,30].QuadraticHamiltonians are actually
very important in partial differential equations as they provide non trivial examples of
wave propagation phenomena, and in quantummechanics. They also play a major role
when studying the propagation of coherent states for general classes of real-valued
Hamiltonians including Schrödinger operators with general potentials

−h2�x + V (x),

as this propagation of coherent states can be approximated in the semi-classical limit
by the quantum evolutions generated by time-dependent real-valued quadratic Hamil-
tonians, see e.g. the works by Combescure, Robert, Laptev and Sigal [4,6,18,26].
Indeed, time-dependent real-valued quadratic Hamiltonians naturally appear in these
latter works as the Taylor expansion up to order two of general Hamiltonians1 H

Ĥ2(t) = H(X (t))+ (x − x(t)) · ∂H

∂x
(X (t))+ (Dx − ξ(t)) · ∂H

∂ξ
(X (t))

+ 1

2
(x − x(t), Dx − ξ(t))

(∂2H

∂X2 (X (t))
)
(x − x(t), Dx − ξ(t))T ,

with Dx = i−1∂x , around the classical flows X (t) = (x(t), ξ(t)) given by Hamilton’s
equations

ẋ(t) = ∂H

∂ξ
(x(t), ξ(t)), ξ̇ (t) = −∂H

∂x
(x(t), ξ(t)).

1 Even in the case when Hamiltonians actually do not depend on time.
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Generalized Mehler formula for time-dependent quadratic operators 1337

Among many others, as for instance the understanding of the smoothing properties
of quadratic evolution equations developed as an application in the present work, the
above consideration is one important motivation for studying Schrödinger evolutions
associated to time-dependent quadratic Hamiltonians.

In the self-adjoint case, that is, for Schrödinger equations associated to real-valued
time-dependent quadraticHamiltonians, the propagation of coherent states is now fully
understood thanks to theworks ofCombescure,Robert andHagedorn [3,4,11].Wealso
refer the readers to the recent book by Combescure and Robert [6] for a comprehensive
overview on this topic and others references herein. The properties and the structure of
the Schrödinger solution operators generated by time-dependent real-valued quadratic
Hamiltonians are also now fully understood thanks to the remarkable formula for their
Weyl symbols derived by Mehlig andWilkinson in [21], and proved independently by
different approaches by Combescure and Robert [5], and de Gosson [9]. The Mehlig-
Wilkinson formula is recalled in the next section.

On the other hand, Hörmander studies in the work [17] the Schrödinger solution
operators generated by complex-valued quadratic Hamiltonians giving rise to non-
selfadjoint quadratic operators in the case when Hamiltonians do not depend on the
time variable. In this beautiful work, Hörmander establishes a very general Mehler
formula for the Weyl symbols of these solution operators in the non-selfadjoint case
that will be recalled below. This generalized Mehler formula derived by Hörmander
is now a keystone in numerous problems in mathematics and mathematical physics as
it allows to perform exact computations for many problems.

In the present work, we bridge the gap between these two series of works by extend-
ing the general Mehler formula derived by Hörmander for non-selfadjoint quadratic
operators to the non-autonomous case, when complex-valued quadratic Hamiltonians
are allowed to depend on the time variable. We believe that the generalized Mehler
formula derived in this paper will also become a cornerstone in coming works on non-
autonomous general non-selfadjoint evolution equations as it is already the case in
particular for the study of propagation of coherent states in the selfadjoint case. Some
applications to the study of the propagation of Gabor singularities (characterizing the
lack of Schwartz regularity) for the solutions to non-autonomous quadratic evolution
equations are given in the second part of the article.

1.2 Quadratic operators

We consider quadratic operators. This class of operators stands for pseudodifferential
operators

qw(x, Dx )u(x) = 1

(2π)n

∫

R2n
ei(x−y)·ξq

( x + y

2
, ξ

)
u(y)dydξ, n ≥ 1, (1.1)

defined by the Weyl quantization of complex-valued quadratic symbols

q : R
2n → C,

(x, ξ) �→ q(x, ξ).
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1338 K. Pravda-Starov

These non-selfadjoint operators are only differential operators since the Weyl quanti-
zation of the quadratic symbol xαξβ , with (α, β) ∈ N

2n , |α+ β| = 2, is simply given
by

(xαξβ)w = Opw(xαξβ) = xαDβ
x + Dβ

x xα

2
, (1.2)

with Dx = i−1∂x . The maximal closed realization of a quadratic operator qw(x, Dx )

on L2(Rn), that is, the operator equipped with the domain

D(qw) = {
u ∈ L2(Rn) : qw(x, Dx )u ∈ L2(Rn)

}
, (1.3)

where qw(x, Dx )u is defined in the distribution sense, is known to coincide with the
graph closure of its restriction to the Schwartz space [17] (pp. 425–426),

qw(x, Dx ) : S (Rn) → S (Rn).

When the real part of the symbol is non-positive Re q ≤ 0, the quadratic operator
qw(x, Dx ) equipped with the domain (1.3) is maximal dissipative and generates a
strongly continuous contraction semigroup (etq

w
)t≥0 on L2(Rn) [17] (pp. 425–426).

The classical theory of strongly continuous semigroups [23, Chapter 4] then shows
that the function

u ∈ C0([0,+∞[, L2(Rn)) ∩ C1(]0,+∞[, L2(Rn)),

defined by u(t) = etq
w
u0 when t ≥ 0, with u0 ∈ D(qw), satisfies u(t) ∈ D(qw) for

all t ≥ 0, and is a classical solution to the autonomous Cauchy problem

{ du(t)
dt = qw(x, Dx )u(t), t ≥ 0,

u(0) = u0.
(1.4)

Furthermore, the solution operator etq
w
for t ≥ 0, is shown in [17] (Theorem 5.12)

to be a Fourier integral operator Ke2i t F , whose kernel is a Gaussian tempered distri-
bution Ke2i t F ∈ S ′(R2n) associated to the non-negative complex symplectic linear
transformation

e2i t F : C
2n → C

2n,

where F denotes the Hamilton map of the quadratic form q. This Hamilton map is the
unique matrix F ∈ C

2n×2n satisfying the identity

∀(x, ξ) ∈ R
2n,∀(y, η) ∈ R

2n, q((x, ξ), (y, η)) = σ((x, ξ), F(y, η)), (1.5)

with q(·, ·) the polarized form associated to q, where σ stands for the standard sym-
plectic form
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Generalized Mehler formula for time-dependent quadratic operators 1339

σ((x, ξ), (y, η)) = 〈ξ, y〉 − 〈x, η〉 =
n∑

j=1
(ξ j y j − x jη j ), (1.6)

with x = (x1, . . . , xn), y = (y1, . . . , yn), ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ C
n .

In this work, the notation

〈x, y〉 =
n∑

j=1
x j y j , x = (x1, . . . , xn) ∈ C

n, y = (y1, . . . , yn) ∈ C
n,

denotes the inner product on C
n , which is linear in both variables and not sesquilinear.

We notice that a Hamiltonmap is skew-symmetric with respect to the symplectic form

σ((x, ξ), F(y, η)) = q((x, ξ), (y, η)) = q((y, η), (x, ξ))

= σ((y, η), F(x, ξ)) = −σ(F(x, ξ), (y, η)), (1.7)

by symmetry of the polarized form and skew-symmetry of the symplectic form. The
Hamilton map F is given by

F = σQ, (1.8)

if Q ∈ C
2n×2n denotes the symmetric matrix defining the quadratic form q(X) =

〈QX, X〉, with X = (x, ξ) ∈ R
2n , and

σ =
(
0 In
−In 0

)
∈ R

2n×2n,

with In ∈ R
n×n the identity matrix. The definition and the basic properties of the

class of Fourier integral operators KT , whose kernels KT ∈ S ′(R2n) are Gaussian
tempered distributions associated to non-negative complex symplectic linear transfor-
mations T are given in Sect. 2.

On the other hand, Hörmander shows in [17] (Theorem 4.2) that the solution oper-
ator etq

w
for t ≥ 0, can also be considered as a pseudodifferential operator defined

by the Weyl quantization of a tempered symbol pt ∈ S ′(R2n) explicitly given by the
celebrated general Mehler formula

pt (X) = 1√
det(cos t F)

eσ(X,tan(t F)X) ∈ L∞(R2n), X = (x, ξ) ∈ R
2n, (1.9)

whenever the time variable t ≥ 0 obeys the condition det(cos t F) �= 0. Under the sole
assumption that the real part of the symbol is non-positive Re q ≤ 0, this condition
det(cos t F) �= 0 is not always satisfied. According to [17, p. 427], it is for instance
the case of the solution operator associated to the harmonic Schrödinger operator
(e−i t (D2

x+x2))t∈R, whose Weyl symbol is given by

(x, ξ) �→ 1

cos t
e−i(ξ2+x2) tan t ∈ L∞(R2n),

123



1340 K. Pravda-Starov

when cos t �= 0, whereas when t = π
2 + kπ with k ∈ Z, it is given by the Dirac mass

i(−1)k+1πδ0(x, ξ) ∈ S ′(R2n). (1.10)

The above formula accounts in particular for phenomena of reconstruction of singu-
larities known for the Schrödinger equation [33–35].

In the present work, we unveil how the general Mehler formula (1.9) extends to the
non-autonomous case.

1.3 Statements of the main results

Weconsider time-dependent quadratic operators qw
t (x, Dx )whose symbols have coef-

ficients

qt (x, ξ) =
∑

α,β∈Nn

|α+β|=2

(qt )α,βx
αξβ,

depending continuously on the time variable 0 ≤ t ≤ T , with T > 0, and non-positive
real parts

Re qt ≤ 0, 0 ≤ t ≤ T . (1.11)

We study the non-autonomous Cauchy problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 < t ≤ T,

u(0) = u0.
(1.12)

A continuous function u ∈ C0([0, T ], L2(Rn)) is a classical solution of (1.12) if u is
continuously differentiable in L2(Rn) on ]0, T ], verifies u(t) ∈ D(qw

t ) for all 0 < t ≤
T , and satisfies the Cauchy problem (1.12) in L2(Rn). As mentioned in [23, p. 139],
there are no simple conditions that guarantee the existence of classical solutions for
abstract non-autonomousCauchy problems as (1.12). Following [23,Definition 5.4.1],
we therefore restrict ourselves to the study of a restricted notion of solutions. Setting

B = {u ∈ L2(Rn) : xαDβ
x u ∈ L2(Rn), α, β ∈ N

n, |α + β| ≤ 2}, (1.13)

the Hilbert space equipped with the norm

‖u‖2B =
∑

α,β∈Nn

|α+β|≤2

‖xαDβ
x u‖2L2(Rn)

,

we consider the following notion of B-valued solutions:

Definition 1.1 (B-valued solutions). A continuous function u ∈ C0([0, T ], B)

is a B-valued solution of the non-autonomous Cauchy problem (1.12) if u ∈
C1(]0, T ], L2(Rn)) and (1.12) is satisfied in L2(Rn).

123



Generalized Mehler formula for time-dependent quadratic operators 1341

A B-valued solution differs from a classical solution by satisfying u(t) ∈ B ⊂
D(qw

t ) for all 0 ≤ t ≤ T , rather than only u(t) ∈ D(qw
t ), and by being continuous in

the stronger B-norm rather than merely in the L2(Rn)-norm.
The first result contained in this paper establishes the existence and uniqueness of

B-valued solutions to the non-autonomous Cauchy problem (1.12):

Theorem 1.2 (Existence and uniqueness of B-valued solutions). Let T > 0 and
qt : R

2n → C be a time-dependent complex-valued quadratic formwith a non-positive
real part Re qt ≤ 0 for all 0 ≤ t ≤ T , and whose coefficients depend continuously
on the time variable 0 ≤ t ≤ T , then for every u0 ∈ B, the non-autonomous Cauchy
problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 < t ≤ T,

u(0) = u0,

has a unique B-valued solution. This solution is given by u(t) = U (t, 0)u0 for all
0 ≤ t ≤ T , where (U (t, τ ))0≤τ≤t≤T is a contraction evolution system on L2(Rn),
that is, a two parameters family of bounded linear operators on L2(Rn) satisfying

(i) U (τ, τ ) = IL2(Rn), U (t, r)U (r, τ ) = U (t, τ ) for all 0 ≤ τ ≤ r ≤ t ≤ T
(ii) (t, τ ) �→ U (t, τ ) is strongly continuous on L2(Rn) for all 0 ≤ τ ≤ t ≤ T
(iii) ∀0 ≤ τ ≤ t ≤ T, ‖U (t, τ )‖L(L2) ≤ 1, with ‖ · ‖L(L2) standing for the operator

norm on L2(Rn)

In the autonomous case, we recall from [17] (Theorem 5.12) that the solution oper-
ator etq

w
for t ≥ 0, is a Fourier integral operator whose kernel is a Gaussian tempered

distribution associated to the non-negative complex symplectic linear transformation
e2i t F : C

2n → C
2n, where F denotes the Hamilton map of the quadratic symbol q.

The following result extends this description to the non-autonomous case, and shows
that the evolution operators U (t, τ ), with 0 ≤ τ ≤ t ≤ T , given by Theorem 1.2 are
also Fourier integral operators whose kernels are anew Gaussian tempered distribu-
tions associated to non-negative complex symplectic linear transformations:

Theorem 1.3 (Evolution operators as Fourier integral operators). Under the assump-
tions of Theorem 1.2, the evolution operator

U (t, τ ) = KR(t,τ ) : L2(Rn) → L2(Rn), 0 ≤ τ ≤ t ≤ T,

is a Fourier integral operator whose kernel KR(t,τ ) ∈ S ′(R2n) is the Gaussian tem-
pered distribution defined in the sense of Proposition 2.1 (Sect. 2) associated to the
non-negative complex symplectic linear transformation R(t, τ ) given by the resolvent

{
d
dt R(t, τ ) = 2i Ft R(t, τ ), 0 ≤ t ≤ T,

R(τ, τ ) = I2n,
(1.14)

with 0 ≤ τ ≤ T , where Ft denotes the Hamilton map of qt and I2n stands for the
2n × 2n identity matrix. On the other hand, the adjoint of the evolution operator

U (t, τ )∗ = K
R(t,τ )

−1 : L2(Rn) → L2(Rn), 0 ≤ τ ≤ t ≤ T,
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1342 K. Pravda-Starov

is the Fourier integral operator whose kernel K
R(t,τ )

−1 ∈ S ′(R2n) is the Gaussian

tempered distribution associated to the non-negative complex symplectic linear trans-

formation R(t, τ )
−1

. Furthermore, the evolution operator

U (t, τ ) = KR(t,τ ) : S (Rn) → S (Rn), 0 ≤ τ ≤ t ≤ T,

defines a continuous mapping on the Schwartz space which can be extended by duality
as a continuous mapping on the space of tempered distributions

U (t, τ ) : S ′(Rn) → S ′(Rn), 0 ≤ τ ≤ t ≤ T,

defined as

∀u ∈ S ′(Rn),∀v ∈ S (Rn),

〈U (t, τ )u, v〉S ′(Rn),S (Rn) = 〈u,U (t, τ )∗v〉S ′(Rn),S (Rn).

This description of the evolution operators as Fourier integral operators plays a
major role below for studying the propagation of Gabor singularities for B-valued
solutions to non-autonomous Cauchy problems (1.12). Before studying this problem
of propagation of singularities, we establish that the celebrated Mehler formula (1.9)
can also be extended to the non-autonomous case:

Theorem 1.4 (Generalized Mehler formula for time-dependent quadratic Hamiltoni-
ans). Under the assumptions of Theorem 1.2, there exists a positive constant δ > 0
such that for all 0 ≤ τ ≤ t ≤ T and 0 ≤ t − τ < δ, the evolution operator

U (t, τ ) = pw
t,τ (x, Dx ) : L2(Rn) → L2(Rn),

is a pseudodifferential operator whose Weyl symbol pt,τ is a L∞(R2n)-function given
by

pt,τ (X)= 2n√
det

(
R(t, τ )+ I2n

) exp
(− iσ(X,

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
X

))
,

with X = (x, ξ) ∈ R
2n, where R(t, τ ) denotes the resolvent defined in (1.14),

√
z =

e
1
2 log z with log the principal determination of the complex logarithm on C\R−, and

where the quadratic form

X = (x, ξ) ∈ R
2n �→ −iσ(X,

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
X

) ∈ C,

has a non-positive real part for all 0 ≤ τ ≤ t ≤ T , 0 ≤ t − τ < δ.

In the autonomous case, that is, when Ft = F for all 0 ≤ t ≤ T , Theorem 1.4
allows to recover the classical Mehler formula (1.9). In this case, the resolvent R(t, 0)
is indeed equal to e2i t F , and we observe that
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Generalized Mehler formula for time-dependent quadratic operators 1343

−i(R(t, 0)− I2n
)(
R(t, 0)+ I2n

)−1 = − i(e2i t F − I2n)(e
2i t F + I2n)

−1

= sin(t F) cos(t F)−1 = tan(t F)

and

2−2ndet
(
R(t, 0)+ I2n

) = 2−2ndet(e2i t F + I2n) = 2−2ndet(2 cos(t F)eit F )

= det(cos(t F))eitTrF = det(cos(t F)),

since by (1.8), the trace of a Hamilton map F = σQ is zero Tr(F) = 0, because

Tr(F) = Tr(FT ) = Tr(σQ) = Tr(QT σ T ) = −Tr(Qσ) = −Tr(σQ), (1.15)

by symmetry and skew-symmetry of the matrices Q = QT and σ T = −σ . As in the
autonomous case (1.9), notice that the Weyl symbol of the evolution operatorU (t, τ )

is not necessarily a L∞(R2n)-function for all 0 ≤ τ ≤ t ≤ T . It accounts for the
condition 0 ≤ t − τ < δ appearing in the statement of Theorem 1.4 to ensure that the
determinant det(R(t, τ )+ I2n) �= 0 is non-zero and its square root well-defined.

Let us now explain how the result of Theorem 1.4 relates to the remarkable formula
derived by Mehlig and Wilkinson in [21], and proved independently by different
approaches by Combescure and Robert [5], and de Gosson [9]. TheMehlig-Wilkinson
formula provides the following explicit formula for the Weyl symbol

RG(X) = 2neiπν

√| det(G + I2n)| exp
(− iσ(X, (G − I2n)(G + I2n)

−1X
))

,

with X = (x, ξ) ∈ R
2n , of ametaplectic operator R̂(G) associated to a real symplectic

linear transformation G : R
2n → R

2n satisfying det(G + I2n) �= 0, where the
parameter ν ∈ Z is an integer if det(G + I2n) > 0, or an half-integer ν ∈ Z + 1

2 if
det(G + I2n) < 0. The integer or half-integer ν is explicitly computed by de Gosson
in [9], and depends in particular in a non-trivial manner on the Maslov index of the
metaplectic operator R̂(G).

Under the assumptions of Theorem 1.2, we consider the case when the quadratic
symbol qt has a zero real part

∀0 ≤ t ≤ T, Re qt = 0,

that is, when it writes as qt = i q̃t , with q̃t a real-valued quadratic form whose coef-
ficients depend continuously on the time variable 0 ≤ t ≤ T . The resolvent defined
in (1.14) is in this case a real symplectic linear transformation R(t, τ ) : R

2n → R
2n ,

and the evolution operatorU (t, τ ) = KR(t,τ ) given by the associated Fourier integral
operator is then known to be [17, pp. 447–448] a metaplectic operator associated to
the real symplectic linear transformation R(t, τ ). This accounts for the fact that in this
specific case, the generalized Mehler formula derived in Theorem 1.4 reduces to the
Mehlig-Wilkinson formula for G = R(t, τ ), where the parameter ν is here equal to
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1344 K. Pravda-Starov

zero due to continuity properties of the symbol and the smallness condition imposed
on the parameter 0 ≤ t − τ < δ in the statement of Theorem 1.4.

1.4 Propagation of Gabor singularities

By using the above description of the evolution operators as Fourier integral operators,
we aim next at studying the possible (or lack of) Schwartz regularity for the B-valued
solutions to non-autonomous Cauchy problems (1.12).

The lack of Schwartz regularity of a tempered distribution is characterized by its
Gabor wave front set whose definition and basic properties are recalled in appendix
(Sect. 5). The Gabor wave front set (or Gabor singularities) was introduced by Hör-
mander [16] and measures the directions in the phase space in which a tempered
distribution does not behave like a Schwartz function. It is hence empty if and only if
a distribution that is a priori tempered is in fact a Schwartz function. The Gabor wave
front set thus measures global regularity in the sense of both smoothness and decay at
infinity.

1.4.1 General case

In the autonomous case, this question of propagation of Gabor singularities for the
solutions to evolution equations

{ du(t)
dt = qw(x, Dx )u(t), t ≥ 0,

u(0) = u0 ∈ L2(Rn),
(1.16)

associated to any dissipative quadratic operator was adressed by Rodino, Wahlberg
and the author in the recent work [25]. In this work, it is pointed out that only Gabor
singularities of the initial datum u0 ∈ L2(Rn) contained in the singular space S of the
quadratic symbol q, can propagate for positive times along the curves given by the
flow (e−t HImq )t∈R of the Hamilton vector field

HImq = ∂Im q

∂ξ
· ∂

∂x
− ∂Im q

∂x
· ∂

∂ξ

,

associated to the opposite of the imaginary part of the symbol. On the other hand, the
Gabor singularities of the initial datum outside the singular space are all smoothed out
for any positive time. More specifically, the following microlocal inclusion of Gabor
wave front sets is established in [25] (Theorem 6.2),

∀u0 ∈ L2(Rn),∀t > 0, WF(etq
w

u0) ⊂ e−t HImq
(
WF(u0) ∩ S

) ⊂ S. (1.17)

The notion of singular space was introduced by Hitrik and the author in [12] by
pointing out the existence of a particular vector subspace in the phase space R

2n ,
which is intrinsically associated to a quadratic symbol q, and defined as the following
finite intersection of kernels
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Generalized Mehler formula for time-dependent quadratic operators 1345

S =
( 2n−1⋂

j=0
Ker

[
Re F(Im F) j

]) ∩ R
2n ⊂ R

2n, (1.18)

where Re F and Im F stand for the real and imaginary parts of the Hamilton map F
associated to q,

Re F = 1

2
(F + F), Im F = 1

2i
(F − F),

which are respectively the Hamilton maps of the quadratic forms Re q and Im q. As
pointed out in [12,22,24,32], the singular space is playing a basic role in understanding
the spectral and hypoelliptic properties of non-elliptic quadratic operators, as well as
the spectral and pseudospectral properties of certain classes of degenerate doubly
characteristic pseudodifferential operators [13,14,31]. In the case when the singular
space is zero S = {0}, the microlocal inclusion (1.17) implies that the semigroup
(etq

w
)t≥0 enjoys regularizing properties of Schwartz type

∀u0 ∈ L2(Rn),∀t > 0, etq
w

u0 ∈ S (Rn),

for any positive time. It holds for instance for some non-selfadjoint non-elliptic kinetic
operators as the Kramers-Fokker-Planck operator

K = −�v + v2

4
+ v · ∂x − ∇V (x) · ∂v, (x, v) ∈ R

2,

with a quadratic potential V (x) = ax2, a ∈ R\{0}, some operators appearing in mod-
els of finite-dimensional Markovian approximation of the general Langevin equation,
or in chains of oscillators coupled to heat baths [22, Sect. 4].

In order to derive a microlocal inclusion for the propagation of Gabor singularities
in the non-autonomous case, we need to generalize this notion of singular space to the
time-dependent case. We consider the following definition:

Definition 1.5 Let t1 ≤ t2 and qt : R
2n → C be a time-dependent complex-valued

quadratic form whose coefficients depend continuously on the time variable t1 ≤ t ≤
t2. The time-dependent singular space associated to the family of quadratic forms
(qt )t1≤t≤t2 is defined as

St1,t2 =
( ⋂

t1≤τ≤t2
Ker

(
Im R(τ, t2)

)) ∩ R
2n, (1.19)

where Im R(t, τ ) = 1
2i (R(t, τ )− R(t, τ )) denotes the imaginary part of the resolvent

R(t, τ ) defined in (1.14) and associated to the Hamilton map Ft of qt .

When qt : R
2n → C is a time-dependent complex-valued quadratic form with a

non-positive real part Re qt ≤ 0 for all t1 ≤ t ≤ t2, with t1 < t2, this definition truly
extends the one given in the autonomous case. Indeed, when the quadratic form does
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1346 K. Pravda-Starov

not depend on time, that is, when qt = q for all t1 ≤ t ≤ t2, with t1 < t2, we first
observe from (1.19) that the time-dependent singular space reduces to

St1,t2 =
( ⋂

t1≤τ≤t2
Ker

(
Im e−2i(t2−τ)F)) ∩ R

2n,

if F denotes the Hamilton map of q, and recall from the proof of Theorem 6.2 in [25,
formula (6.11)] that we have

S =
( 2n−1⋂

j=0
Ker

[
Re F(Im F) j

]) ∩ R
2n =

( ⋂

t1≤τ≤t2
Ker

(
Im e−2i(t2−τ)F)) ∩ R

2n .

On the other hand, we also recall from the proof of Theorem 6.2 in [25, formula (6.18)]
that

∀t ∈ R, e−t HImq S = e−2tIm F S = S.

The microlocal inclusion (1.17) can therefore be rephrased as

∀u0 ∈ L2(Rn),∀t > 0, WF(etq
w

u0) ⊂ e−t HImq
(
WF(u0)

) ∩ S. (1.20)

This microlocal inclusion of Gabor wave front sets can be extended to the non-
autonomous case as follows:

Theorem 1.6 Under the assumptions of Theorem 1.2, the Gabor wave front set of the
unique B-valued solution u(t) = U (t, 0)u0 to the non-autonomous Cauchy problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 < t ≤ T,

u(0) = u0,

with u0 ∈ B, satisfies the microlocal inclusion

∀0 ≤ t ≤ T, WF(u(t)) ⊂ (
Re R(t, 0)

)(
WF(u0)

) ∩ S0,t , (1.21)

where S0,t is the time-dependent singular space associated to the family of quadratic
forms (qτ )0≤τ≤t and where Re R(t, 0) = 1

2 (R(t, 0)+ R(t, 0)) is the real part of the
resolvent defined in (1.14).

As a direct consequence of Theorem 1.6, we observe that if there exists a positive
time 0 < t0 ≤ T such that the time-dependent singular space is zero

S0,t0 =
( ⋂

0≤τ≤t0
Ker

(
Im R(τ, t0)

)) ∩ R
2n = {0},
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Generalized Mehler formula for time-dependent quadratic operators 1347

then the non-autonomous Cauchy problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 < t ≤ T,

u(0) = u0,

enjoys regularizing properties of Schwartz type for all time t0 ≤ t ≤ T ,

∀u0 ∈ B,∀t0 ≤ t ≤ T, u(t) = U (t, 0)u0 ∈ S (Rn).

Indeed, we first deduce from (1.21) and (5.2) that u(t0) = U (t0, 0)u0 ∈ S (Rn),
since WF(u(t0)) ⊂ R

2n\{0}. By noticing from Theorem 1.3 that the operator

U (t, t0) = KR(t,t0) : S (Rn) → S (Rn),

is continuous, we finally obtain from Theorem 1.2 that

∀u0 ∈ B,∀t0 ≤ t ≤ T, u(t) = U (t, t0)U (t0, 0)u0︸ ︷︷ ︸
u(t0)∈S (Rn)

∈ S (Rn).

The result of Theorem 1.6 points out that no matter is the initial datum u0 ∈ B, the
possible Gabor singularities of u(t) the solution at time 0 ≤ t ≤ T are all localized
in the time-dependent singular space S0,t . Furthermore, the possible Gabor singular-
ities of the solution at time t can only come from Gabor singularities of the initial
datum which have propagated by the mapping given by the real part of the resolvent
Re R(t, 0).

1.4.2 Metaplectic case

The general result of Theorem 1.6 can be readily sharpened in the case when the
quadratic symbol qt has a zero real part

∀0 ≤ t ≤ T, Re qt = 0.

As mentioned above, the evolution operator U (t, 0) = KR(t,0) is then a metaplectic
operator associated to the real symplectic linear transformation

R(t, 0) = Re R(t, 0) : R
2n → R

2n .

According to Definition 1.5, the time-dependent singular space S0,t = R
2n is then

equal to the whole phase space since

∀0 ≤ τ ≤ t, Im R(τ, t) = 0,

and the symplectic invariance of the Gabor wave front set (5.5) directly implies that
the solution satisfies

∀0 ≤ t ≤ T, WF(u(t)) = (
Re R(t, 0)

)(
WF(u0)

)
.
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1348 K. Pravda-Starov

This sharpens the result of Theorem 1.6 and extends the one obtained in [25] in the
autonomous case.

1.4.3 Outline of the article

The article is organized in the following manner. Section 2 is devoted to recall the
definition and the basic properties of Fourier integral operators associated to non-
negative complex symplectic linear transformations. Section 3 provides the proof of
the main results contained in this work (Theorems 1.2, 1.3 and 1.4), whereas Sect. 4 is
devoted to the proof of the result of propagation of Gabor singularities (Theorem 1.6).
Section 5 is an appendix recalling the definition and basic properties of the Gabor
wave front set of a tempered distribution.

2 Fourier integral operators associated to non-negative complex
symplectic linear transformations

This section is devoted to recall the definition and the basic properties of Fourier inte-
gral operators associated to non-negative complex symplectic linear transformations.

This class of operators is used in [17] by Hörmander to describe the properties of
strongly continuous contraction semigroups (etq

w
)t≥0 generated by maximal dissi-

pative quadratic operators qw(x, Dx ). Theorem 1.3 points out that it also allows to
describe the properties of evolution operators U (t, τ ) solving the non-autonomous
Cauchy problems (1.12).

In order to recall the definition of these operators, we closely follow the introduction
to Gaussian calculus given in [17] (Sect. 5). Let 0 �= u ∈ D ′(Rn) and set

Lu =
{
L(x, ξ) =

n∑

j=1
a jξ j +

n∑

j=1
b j x j : Lw(x, Dx )u = 0

}
.

We recall that a distribution u is said to be Gaussian if every distribution v ∈ D ′(Rn)

satisfying Lw(x, Dx )v = 0 for all L ∈ Lu , is necessarily a multiple of u.
Let T : C

2n → C
2n be a non-negative complex symplectic linear transformation,

that is, an isomorphism of C
2n satisfying

∀X,Y ∈ C
2n, σ (T X, T Y ) = σ(X,Y );

∀X ∈ C
2n, i

(
σ(T X , T X)− σ(X , X)

) ≥ 0.

Associated to this non-negative symplectic linear transformation is its twisted graph

λT = {(T X, X ′) : X ∈ C
2n} ⊂ C

2n × C
2n, (2.1)

where X ′ = (x,−ξ) ∈ C
2n , if X = (x, ξ) ∈ C

2n , which defines a non-negative
Lagrangian plane of C

2n × C
2n equipped with the symplectic form

σ1((z1, z2), (ζ1, ζ2)) = σ(z1, ζ1)+ σ(z2, ζ2), (z1, z2), (ζ1, ζ2) ∈ C
2n × C

2n,
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Generalized Mehler formula for time-dependent quadratic operators 1349

with σ the canonical symplectic form on C
2n defined in (1.6). The set

λ̃T = {(z1, z2, ζ1, ζ2) ∈ C
4n : (z1, ζ1, z2, ζ2) ∈ λT } ⊂ C

4n, (2.2)

is then a non-negative Lagrangian plane of C
4n equipped with the symplectic form

σ((z, ζ ), (z̃, ζ̃ )) = 〈ζ, z̃〉 − 〈z, ζ̃ 〉 =
2n∑

j=1
(ζ j z̃ j − z j ζ̃ j ),

with z = (z1, . . . , z2n), z̃ = (z̃1, . . . ., z̃2n), ζ = (ζ1, . . . , ζ2n), ζ̃ = (ζ̃1, . . . , ζ̃2n) ∈
C
2n . According to [17] (Proposition 5.1 and Proposition 5.5), there exists a complex-

valued quadratic form

p(x, y, θ) = 〈(x, y, θ), P(x, y, θ)〉, (x, y) ∈ R
2n, θ ∈ R

N , (2.3)

where

P =
(
Px,y;x,y Px,y;θ
Pθ;x,y Pθ;θ

)
∈ C

(2n+N )×(2n+N ), (2.4)

is a symmetric matrix satisfying the conditions:

(i) Im P ≥ 0;
(i i) The row vectors of the submatrix

(
Pθ;x,y Pθ;θ

) ∈ C
N×(2n+N ),

are linearly independent over C,

parametrizing the non-negative Lagrangian plane

λ̃T =
{(

x, y,
∂p

∂x
(x, y, θ),

∂p

∂y
(x, y, θ)

)
: ∂p

∂θ
(x, y, θ) = 0

}
.

By using some integrations by parts as in [17, p. 442] (see also Proposition 4.2 in [25]),
this quadratic form p allows to define the tempered distribution

KT (x, y) = 1

(2π)
n+N
2

√

det

(−i p′′θ,θ p′′θ,y
p′′x,θ i p′′x,y

) ∫

RN
eip(x,y,θ) dθ ∈ S ′(R2n), (2.5)

as an oscillatory integral. Notice here that we do not prescribe the sign of the square
root so the tempered distribution KT is only determined up to its sign. Apart from this
sign uncertainty, it is checked in [17, p. 444] that this definition only depends on the
non-negative complex symplectic linear transformation T , and not on the choice of
the parametrization of the non-negative Lagrangian plane λ̃T by the quadratic form
p.
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1350 K. Pravda-Starov

Associated to the non-negative complex symplectic linear transformationT is there-
fore the Fourier integral operator

KT : S (Rn) → S ′(Rn),

defined by the kernel KT ∈ S ′(R2n) as

∀u, v ∈ S (Rn), 〈KT u, v〉S ′(Rn),S (Rn) = 〈KT , u ⊗ v〉S ′(R2n),S (R2n).

It is proved in [17, p. 446] that the adjoint operator

K ∗
T : S (Rn) → S ′(Rn),

defined as

∀u, v ∈ S (Rn), 〈K ∗
T u, v〉S ′(Rn),S (Rn) = 〈KT v, u〉S ′(Rn),S (Rn),

is the Fourier integral operator KT −1 associated to the non-negative complex sym-
plectic linear transformation

T −1 : C
2n → C

2n .

Furthermore, the operator KT satisfies the Egorov formula proved in [17, p. 445],

∀u ∈ S (Rn),
(〈x0, Dx 〉 − 〈ξ0, x〉

)
KT u = KT

(〈y0, Dx 〉 − 〈η0, x〉
)
u, (2.6)

with (x0, ξ0) = T (y0, η0). Thanks to this Egorov formula, it is proved in [17] (Propo-
sition 5.8) that the operator KT is actually a continuous linear map on the Schwartz
space S (Rn),

KT : S (Rn) → S (Rn).

The mapping is then extended by duality for all u ∈ S ′(Rn), v ∈ S (Rn),

〈KT u, v〉S ′(Rn),S (Rn) = 〈u,K ∗
T v〉S ′(Rn),S (Rn) = 〈u,KT −1v〉S ′(Rn),S (Rn),

(2.7)
as a continuous linear map on the space of tempered distributions S ′(Rn),

KT : S ′(Rn) → S ′(Rn).

With this definition, the Egorov formula (2.6) extends by duality for tempered distri-
butions

∀u ∈ S ′(Rn),
(〈x0, Dx 〉 − 〈ξ0, x〉

)
KT u = KT

(〈y0, Dx 〉 − 〈η0, x〉
)
u, (2.8)
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Generalized Mehler formula for time-dependent quadratic operators 1351

with (x0, ξ0) = T (y0, η0). Indeed, with (x̃0, ξ̃0) = T −1
(x0, ξ0), we deduce from (2.6)

and (2.7) that for all u ∈ S ′(Rn), v ∈ S (Rn),

〈
(〈x0, Dx 〉 − 〈ξ0, x〉)KT u, v

〉
S ′,S = 〈

KT u, (〈x0, Dx 〉 − 〈ξ0, x〉)v
〉
S ′,S

= 〈u,KT −1(〈x0, Dx 〉 − 〈ξ0, x〉)v〉S ′,S = 〈u, (〈x̃0, Dx 〉 − 〈ξ̃0, x〉)KT −1v〉S ′,S

= 〈(〈x̃0, Dx 〉 − 〈ξ̃0, x〉)u,KT −1v〉S ′,S = 〈
KT (〈x̃0, Dx 〉 − 〈ξ̃0, x〉)u, v

〉
S ′,S ,

that is,

∀u ∈ S ′(Rn),
(〈x0, Dx 〉 − 〈ξ0, x〉

)
KT u = KT

(〈y0, Dx 〉 − 〈η0, x〉
)
u, (2.9)

with (x0, ξ0) = T (y0, η0). On the other hand, we recall from [17] that

KT : L2(Rn) → L2(Rn),

defines a bounded operator on L2(Rn) whose operator norm satisfies

‖KT ‖L(L2(Rn)) ≤ 1.

Indeed, it is proved in [17] (Proposition 5.12) that the operator KT is equal to a
finite product of strongly continuous contraction semigroups on L2(Rn) at time t = 1
generated by maximally dissipative quadratic operators i Qw

j (x, Dx ),

KT = eiQ
w
1 (x,Dx ) . . . eiQ

w
k (x,Dx ),

where Q j are quadratic forms whose imaginary parts are non-negative Im Q j ≥ 0. It
is also shown in [17] (Proposition 5.12) that the operator KT : L2(Rn) → L2(Rn),

is invertible if and only if T is a real symplectic linear transformation. In this case,
the operator KT is a metaplectic operator associated to the real symplectic linear
transformation T and the operator

KT : L2(Rn) → L2(Rn),

defines a bijective isometry on L2(Rn).
The properties of this class of Fourier integral operators is summarized in the

following proposition:

Proposition 2.1 Associated to any non-negative complex symplectic linear transfor-
mation T is a Fourier integral operator

KT : S (Rn) → S ′(Rn),
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1352 K. Pravda-Starov

whose kernel 2 is the tempered distribution KT ∈ S ′(R2n) defined in (2.5), and whose
adjoint

K ∗
T = KT −1 : S (Rn) → S ′(Rn),

is the Fourier integral operator associated to the non-negative complex symplectic

linear transformation T −1
. The Fourier integral operator KT defines a continuous

mapping on the Schwartz space

KT : S (Rn) → S (Rn),

which extends by duality as a continuous linear map on the space of tempered distri-
butions

KT : S ′(Rn) → S ′(Rn),

satisfying the Egorov formula

∀(y0, η0) ∈ C
2n,∀u ∈ S ′(Rn),

(〈x0, Dx 〉 − 〈ξ0, x〉)KT u = KT (〈y0, Dx 〉 − 〈η0, x〉)u,

with (x0, ξ0) = T (y0, η0). Furthermore, the Fourier integral operator

KT : L2(Rn) → L2(Rn),

is a bounded operator on L2(Rn) whose operator norm satisfies ‖KT ‖L(L2) ≤ 1.

Remark 1 The kernel KT ∈ S ′(R2n) of the Fourier integral operatorKT appearing
in the statement of Proposition 2.1 is only determined up to its sign. In many cases as
for the study of propagation of Gabor singularites in this work, this sign uncertainty
is not an issue.

3 Proofs of the main results

This section is devoted to the proofs of Theorems 1.2, 1.3 and 1.4. We begin by estab-
lishing the existence and uniqueness of evolution systems appearing in the statement
of Theorem 1.2.

3.1 Existence and uniqueness of evolution systems

Let T > 0 and qt : R
2n → C be a time-dependent complex-valued quadratic form

qt (x, ξ) =
∑

α,β∈Nn

|α+β|=2

(qt )α,βx
αξβ,

2 Determined up to its sign.
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Generalized Mehler formula for time-dependent quadratic operators 1353

with a non-positive real part

∀0 ≤ t ≤ T, Re qt ≤ 0, (3.1)

and whose coefficients (qt )α,β depend continuously on the time variable 0 ≤ t ≤ T .
This section is devoted to the proof of existence and uniqueness of an evolution

system for the non-autonomous Cauchy problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 ≤ τ < t ≤ T,

u(τ ) = v.

We follow the theory of non-autonomous evolution systems developed in [23] (Chap-
ter 5).

According to [17, pp. 425–426], the assumption (3.1) implies that (qw
t (x, Dx ))0≤t≤T

is a family of infinitesimal generators of strongly continuous contraction semigroups
on L2(Rn). This family (qw

t (x, Dx ))0≤t≤T is therefore stable [23, p. 131] in the sense
of Definition 5.2.1 in [23]. Let B be the Hilbert space defined in (1.13). The space
B contains the Schwartz space S (Rn). This Hilbert space is therefore densely and
continuously imbedded in L2(Rn),

∀u ∈ B, ‖u‖L2(Rn) ≤ ‖u‖B .

It follows from (1.3) that

∀t ≥ 0, B ⊂ D(qw
t ).

We observe that the quadratic operator

qw
t (x, Dx ) =

∑

α,β∈Nn

|α+β|=2

(qt )α,β

xαDβ
x + Dβ

x xα

2
, (3.2)

satisfies for all u ∈ B,

‖qw
t (x, Dx )u‖L2(Rn) ≤

∑

α,β∈Nn

|α+β|=2

|(qt )α,β |
(
‖xαDβ

x u‖L2(Rn) +
1

2
‖[Dβ

x , xα]u‖L2(Rn)

)

≤ 3

2

( ∑

α,β∈Nn

|α+β|=2

|(qt )α,β |
)
‖u‖B .

This implies that qw
t (x, Dx ) defines a bounded operator from B to L2(Rn),

‖qw
t (x, Dx )‖L(B,L2) ≤

3

2

∑

α,β∈Nn

|α+β|=2

|(qt )α,β |,
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1354 K. Pravda-Starov

so that the mapping

t ∈ [0, T ] �→ qw
t (x, Dx ) ∈

(
L(B, L2), ‖ · ‖L(B,L2)

)
,

is continuous.
We nowcheck that B is qw

t -admissible for all 0 ≤ t ≤ T .We recall from [23, p. 122]
(Definition 4.5.3) that while denoting (eτqw

t )τ≥0 the strongly continuous contraction
semigroup generated by the quadratic operator qw

t (x, Dx ), it means that

∀0 ≤ t ≤ T,∀τ ≥ 0, eτqw
t (B) ⊂ B (3.3)

and that for all 0 ≤ t ≤ T , the restriction of (eτqw
t )τ≥0 to B is a strongly continuous

semigroup in B, that is, strongly continuous in the B-norm. Let 0 ≤ t ≤ T . We know
from [17] (Theorem 5.12) that the strongly continuous contraction semigroup eτqw

t at
time τ ≥ 0 is equal to the Fourier integral operator

eτqw
t = Ke2iτ Ft , (3.4)

associated to the non-negative complex symplectic linear transformation

e2iτ Ft : C
2n → C

2n .

We deduce from Propositions 2.1 and (3.4) that for all (x1, ξ1) ∈ R
2n , (x2, ξ2) ∈ R

2n ,
0 ≤ t ≤ T , τ ≥ 0, u ∈ S ′(Rn),

〈(−ξ1, x1), (x, Dx )〉eτqw
t u = eτqw

t 〈(−σ)e−2iτ Ft (x1, ξ1), (x, Dx )〉u (3.5)

and

〈(−ξ1, x1), (x, Dx )〉〈(−ξ2, x2), (x, Dx )〉eτqw
t u

= eτqw
t 〈σe−2iτ Ft (x1, ξ1), (x, Dx )〉〈σe−2iτ Ft (x2, ξ2), (x, Dx )〉u, (3.6)

with σ =
(
0 In
−In 0

)
. With ‖ · ‖ the Euclidean norm on C

n , we notice that

‖〈(a, b), (x, Dx )〉u‖L2 ≤ ‖(a, b)‖
n∑

j=1

(‖x j u‖L2 + ‖Dx j u‖L2
) ≤ 2n‖(a, b)‖‖u‖B .

(3.7)
On the other hand, we deduce from the estimates (3.7) that

‖〈(a1, b1), (x, Dx )〉〈(a2, b2), (x, Dx )〉u‖L2

≤ ‖(a1, b1)‖
n∑

j=1

(‖x j 〈(a2, b2), (x, Dx )〉u‖L2 + ‖Dx j 〈(a2, b2), (x, Dx )〉u‖L2
)

≤ ‖(a1, b1)‖
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×
n∑

j=1

(‖〈(a2, b2), (x, Dx )〉x j u‖L2 + 2‖(a2, b2)‖‖u‖L2 + ‖〈(a2, b2), (x, Dx )〉Dx j u‖L2
)

≤ ‖(a1, b1)‖‖(a2, b2)‖
×

( ∑

1≤ j,k≤n

(‖xk x j u‖L2 + ‖Dxk x j u‖L2 + ‖D2
xk ,x j u‖L2 + ‖xk Dx j u‖L2 )+ 2n‖u‖L2

)
.

(3.8)

We obtain from (3.8) that there exists a positive constant Cn > 0 such that

‖〈(a1, b1), (x, Dx )〉〈(a2, b2), (x, Dx )〉u‖L2

≤ ‖(a1, b1)‖‖(a2, b2)‖
×

( ∑

1≤ j,k≤n

(‖xkx j u‖L2 + ‖D2
xk ,x j u‖L2 + 2‖xk Dx j u‖L2)+ 3n‖u‖L2

)

≤ (4n + 3)n‖(a1, b1)‖‖(a2, b2)‖‖u‖B . (3.9)

It follows from (3.5), (3.6), (3.7) and (3.9) that the inclusion (3.3) holds and there
exists a positive constant C > 0 such that

∀0 ≤ t ≤ T,∀τ ≥ 0,∀u ∈ B, ‖eτqw
t u‖B ≤ Ce4τ‖Ft‖‖u‖B, (3.10)

since (eτqw
t )τ≥0 is a strongly continuous contraction semigroup on L2(Rn). The oper-

ator eτqw
t is therefore bounded on B for all 0 ≤ t ≤ T , τ ≥ 0. It remains to check that

for all 0 ≤ t ≤ T and u ∈ B, the mapping τ ∈ [0,+∞[�→ eτqw
t u ∈ B is continuous.

It is sufficient to prove that for all 0 ≤ t ≤ T , (x1, ξ1) ∈ R
2n , (x2, ξ2) ∈ R

2n and
u ∈ B, the mappings

τ ∈ [0,+∞[�→ 〈(−ξ1, x1), (x, Dx )〉eτqw
t u ∈ L2(Rn) (3.11)

and

τ ∈ [0,+∞[�→ 〈(−ξ1, x1), (x, Dx )〉〈(−ξ2, x2), (x, Dx )〉eτqw
t u ∈ L2(Rn), (3.12)

are continuous. For all τ, τ0 ≥ 0, we deduce from (3.5) that

‖〈(−ξ1, x1), (x, Dx )〉eτqw
t u − 〈(−ξ1, x1), (x, Dx )〉eτ0qw

t u‖L2

= ‖eτqw
t 〈σe−2iτ Ft (x1, ξ1), (x, Dx )〉u − eτ0qw

t 〈σe−2iτ0Ft (x1, ξ1), (x, Dx )〉u‖L2

≤ ‖eτqw
t 〈σ(e−2iτ Ft − e−2iτ0Ft )(x1, ξ1), (x, Dx )〉u‖L2

+ ‖(eτqw
t − eτ0qw

t )〈σe−2iτ0Ft (x1, ξ1), (x, Dx )〉u‖L2 . (3.13)

By using that (eτqw
t )τ≥0 is a strongly continuous contraction semigroup on L2(Rn),

we obtain from (3.7) that there exists a positive constantC > 0 such that for all u ∈ B,
τ, τ0 ≥ 0, 0 ≤ t ≤ T ,
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1356 K. Pravda-Starov

‖〈(−ξ1, x1), (x, Dx )〉eτqw
t u − 〈(−ξ1, x1), (x, Dx )〉eτ0qw

t u‖L2

≤ ‖〈σ(e−2iτ Ft − e−2iτ0Ft )(x1, ξ1), (x, Dx )〉u‖L2

+ ‖(eτqw
t − eτ0qw

t )〈σe−2iτ0Ft (x1, ξ1), (x, Dx )〉u‖L2

≤ C‖e−2iτ Ft − e−2iτ0Ft ‖‖u‖B
+ ‖(eτqw

t − eτ0qw
t ) 〈σe−2iτ0Ft (x1, ξ1), (x, Dx )〉u︸ ︷︷ ︸

∈L2(Rn)

‖L2 . (3.14)

Then, the continuity of the mapping (3.11) follows from the continuity of the mapping
τ ∈ [0,+∞[�→ eτqw

t v ∈ L2(Rn) for v ∈ L2(Rn). The very same arguments allow to
prove the continuity of the mapping (3.12). It proves that B is qw

t -admissible for all
0 ≤ t ≤ T . It follows from [23] (Definition 1.10.3 and Theorem 4.5.5) that the part
of the operator qw

t (x, Dx ) in B, that is, the operator

˜qw
t (x, Dx ) : {u ∈ B ∩ D(qw

t ) : qw
t u ∈ B} → B

u �→ qw
t (x, Dx )u,

is the infinitesimal generator of a strongly continuous semigroup on B. Furthermore,
this strongly continuous semigroup on B is given by the restriction of L2-semigroup
(eτqw

t )τ≥0 to B,

∀0 ≤ t ≤ T,∀τ ≥ 0,∀u ∈ B, eτ q̃w
t u = eτqw

t u. (3.15)

Wededuce from (3.10) that the strongly continuous semigroup (eτ ˜qw
t )τ≥0 on B satisfies

∀0 ≤ t ≤ T,∀τ ≥ 0, ‖eτ q̃w
t ‖L(B) ≤ Ce4τ‖Ft‖. (3.16)

It follows from [23] (Theorem 1.5.3) that the resolvent set of the operator ˜qw
t (x, Dx )

contains the ray
]4‖Ft‖,+∞[. (3.17)

Recalling the continuity of the mapping t ∈ [0, T ] �→ Ft = σQt ∈ M2n(C), we set

0 ≤ ω = sup
0≤t≤T

‖Ft‖ < +∞. (3.18)

Let k ≥ 1 and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T and τ1, . . . , τk ≥ 0. We deduce from (3.5)
and (3.15) that for all (x1, ξ1) ∈ R

2n , (x2, ξ2) ∈ R
2n , 0 ≤ t ≤ T , τ ≥ 0, u ∈ B,

〈(x1, ξ1), (x, Dx )〉eτ1q̃w
t1 . . . eτk q̃w

tk u

= (−1)keτ1q̃w
t1 . . . eτk q̃w

tk 〈σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x1, ξ1), (x, Dx )〉u (3.19)
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Generalized Mehler formula for time-dependent quadratic operators 1357

and

〈(x1, ξ1), (x, Dx )〉〈(x2, ξ2), (x, Dx )〉eτ1q̃w
t1 . . . eτk q̃w

tk u

= eτ1q̃w
t1 . . . eτk q̃w

tk 〈σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x1, ξ1), (x, Dx )〉
〈σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x2, ξ2), (x, Dx )〉u, (3.20)

with

σ =
(
0 In
−In 0

)
.

We observe from (3.18) that

‖σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x j , ξ j )‖ ≤ e2(τk‖Ftk ‖+···+τ1‖Ft1‖)‖(x j , ξ j )‖
≤ e2(τ1+···+τk )ω‖(x j , ξ j )‖, (3.21)

since ‖σ‖ = 1. Recalling that ‖eτ j qw
t j ‖L(L2) ≤ 1, we deduce from (3.7), (3.9), (3.19),

(3.20) and (3.21) that

‖〈(x1, ξ1), (x, Dx )〉eτ1q̃w
t1 . . . eτk q̃w

tk u‖L2

≤ ‖〈σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x1, ξ1), (x, Dx )〉u‖L2

≤ 2ne2(τ1+···+τk )ω‖(x1, ξ1)‖‖u‖B (3.22)

and

‖〈(x1, ξ1), (x, Dx )〉〈(x2, ξ2), (x, Dx )〉eτ1q̃w
t1 . . . eτk q̃w

tk u‖L2

≤ ‖〈σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x1, ξ1), (x, Dx )〉
〈σe−2iτk Ftk σ . . . σe−2iτ1Ft1σ(x2, ξ2), (x, Dx )〉u‖L2

≤ (4n + 3)ne4(τ1+···+τk )ω‖(x1, ξ1)‖‖(x2, ξ2)‖‖u‖B . (3.23)

We deduce from (3.22) and (3.23) that there exists a positive constant M ≥ 1 such
that for all k ≥ 1, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T and τ1, . . . , τk ≥ 0,

‖eτ1q̃w
t1 . . . eτk q̃w

tk ‖L(B) ≤ Me4(τ1+···+τk )ω.

According to (3.17) and (3.18), it follows from [23, p. 131] (Theorem 5.2.2)
that the family of generators (q̃w

t )0≤t≤T is stable in B. The family of operators
(qw

t (x, Dx ))0≤t≤T satisfies the assumptions of Theorem 5.3.1 in [23, p. 135]. We
deduce from this result that there exists a unique evolution system (U (t, τ ))0≤τ≤t≤T
in L2(Rn) satisfying

∀0 ≤ τ ≤ t ≤ T, ‖U (t, τ )‖ ≤ 1, (3.24)
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∀0 ≤ τ ≤ T,∀v ∈ B,
∂+

∂t
U (t, τ )v|t=τ = qw

τ (x, Dx )v, (3.25)

∀0 ≤ τ ≤ t ≤ T,∀v ∈ B,
∂

∂τ
U (t, τ )v = −U (t, τ )qw

τ (x, Dx )v, (3.26)

where the derivative from the right in (3.25) and the derivative in (3.26) are in the
strong sense in L2(Rn).

3.2 Existence and uniqueness of B-valued solutions

We consider the notion of B-valued solutions given in Definition 1.1. The existence
of the evolution system given in the previous section is actually not sufficient to prove
the existence of B-valued solutions to the non-autonomous Cauchy problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 ≤ τ < t ≤ T,

u(τ ) = v.
(3.27)

However, we already know from [23] (Theorem 5.4.2) that if the non-autonomous
Cauchy problem (3.27) has a B-valued solution u then this solution is unique and
given by the following formula

u(t) = U (t, τ )v, 0 ≤ τ ≤ t ≤ T . (3.28)

Indeed, the existence of the evolution system (U (t, τ ))0≤τ≤t≤T only ensures the
uniqueness of B-valued solutions but not the existence of B-valued solutions as the
function

u(t) = U (t, τ )v,

is not in general a B-valued solution. In fact, the subspace B does not need to be
an invariant subspace for U (t, τ ), and even if it is such an invariant subspace, the
mapping t �→ U (t, τ )v for v ∈ B does not need to be continuous in the B-norm.

We now study the existence of B-valued solutions for the non-autonomous Cauchy
problem (3.27). Setting

H = −�x + x2,

this harmonic oscillator defines an isomorphism from B onto L2(Rn). Furthermore,
we observe that its Weyl symbol belongs to the following Shubin class

ξ2 + x2 ∈ S(〈(x, ξ)〉2, 〈(x, ξ)〉−2(dx2 + dξ2)).

The Hörmander notation

S(〈(x, ξ)〉m, 〈(x, ξ)〉−2(dx2 + dξ2)), m ∈ R,
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Generalized Mehler formula for time-dependent quadratic operators 1359

refers to the class of smooth complex-valued symbols satisfying the estimates

∀α, β ∈ N
n, ∃Cα,β > 0,∀(x, ξ) ∈ R

2n, |∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β〈(x, ξ)〉m−|α|−|β|.

We recall from [28] (Theorem 25.4) (see also [2]) that the inverse of the harmonic
oscillatorH −1 writes as a pseudodifferential operator with a symbol belonging to the
Shubin class

S(〈(x, ξ)〉−2, 〈(x, ξ)〉−2(dx2 + dξ2)).

On the other hand, we notice from (3.2) that

H qw
t (x, Dx )H

−1 =
∑

α,β∈Nn

|α+β|=2

(qt )α,βH
xαDβ

x + Dβ
x xα

2
H −1

= qw
t (x, Dx )+

∑

α,β∈Nn |α+β|=2
(qt )α,β

[
H ,

xαDβ
x + Dβ

x xα

2

]
H −1

= qw
t (x, Dx )+ 1

i

∑

α,β∈Nn |α+β|=2
(qt )α,βOp

w
({ξ2 + x2, xαξβ})H −1, (3.29)

where Opw
({ξ2 + x2, xαξβ}) denotes the Weyl quantization of the Poisson bracket

{
ξ2 + x2, xαξβ

} =
n∑

j=1

( ∂

∂ξ j
(ξ2 + x2)

∂

∂x j
(xαξβ)− ∂

∂x j
(ξ2 + x2)

∂

∂ξ j
(xαξβ)

)
.

We observe that this symbol belongs to the Shubin class

S(〈(x, ξ)〉2, 〈(x, ξ)〉−2(dx2 + dξ2)).

By composition, we obtain that the Weyl symbol of the time-independent operator

Opw
({ξ2 + x2, xαξβ})H −1,

belongs to the Shubin class

S(1, 〈(x, ξ)〉−2(dx2 + dξ2)).

We therefore deduce from the Calderón-Vaillancourt theorem that

t ∈ [0, T ] �→
∑

α,β∈Nn

|α+β|=2

(qt )α,βOp
w
({ξ2 + x2, xαξβ})H −1,
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is a L2-norm continuous (and thus also strongly continuous) family of bounded oper-
ator on L2(Rn). We can therefore apply [23] (Theorem 5.4.6) to obtain that the unique
evolution system (U (t, τ ))0≤τ≤t≤T on L2(Rn) satisfying (3.24), (3.25) and (3.26)
also verifies

∀0 ≤ τ ≤ t ≤ T, U (t, τ )(B) ⊂ B (3.30)

and for all v ∈ B, the mapping U (t, τ )v is continuous in B for 0 ≤ τ ≤ t ≤ T . We
finally deduce from [23] (Theorem 5.4.3) that for all v ∈ B, U (t, τ )v is the unique
B-valued solution of the non-autonomous Cauchy problem (3.27). This ends the proof
of Theorem 1.2.

3.3 Some computations in the Weyl quantization

This section is devoted to derive a formula for the Weyl symbol of the evolution
operators. We begin with some symbolic computations in the Weyl quantization.

Let T > 0 and qt : R
2n → C be a time-dependent complex-valued quadratic form

qt (x, ξ) =
∑

α,β∈Nn

|α+β|=2

(qt )α,βx
αξβ, (3.31)

with a non-positive real part

∀0 ≤ t ≤ T, Re qt ≤ 0,

and whose coefficients (qt )α,β depend continuously on the time variable 0 ≤ t ≤ T .
Let Qt ∈ C

2n×2n be the symmetric matrix defining the time-dependent quadratic
form

qt (X) = 〈Qt X, X〉, 0 ≤ t ≤ T, X = (x, ξ) ∈ R
2n .

By assumption, Re Qt ≤ 0 is a negative semidefinite symmetric matrix and the map-
ping t ∈ [0, T ] �→ Qt ∈ C

2n×2n is a C0 function on [0, T ]. Our ansatz is to find out
a function

gt,τ (X) = 〈Gt,τ X, X〉 + h(t, τ ), X = (x, ξ) ∈ R
2n, (3.32)

with Gt,τ ∈ C
2n×2n a symmetric matrix depending continuously differentiably on

(t, τ ) ∈ [0, T ]2 and h(t, τ ) a continuously differentiable complex-valued function,
satisfying the equations

d

dt

(
egt,τ

) = qt#
wegt,τ ,

d

dτ

(
egt,τ

) = −egt,τ #wqτ , (3.33)

where a#wb denotes the Moyal product, that is, the symbol obtained by composition
in the Weyl quantization

(a#wb)(x, ξ) =
[
e

i
2 σ(Dx ,Dξ ;Dy ,Dη)

(
a(x, ξ)b(y, η)

)]∣∣∣
(x,ξ)=(y,η)

. (3.34)
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By using that qt is a quadratic symbol, we deduce from (3.33) and (3.34) that

∂gt,τ
∂t

(X)egt,τ (X) =
[
qt (X)egt,τ (Y ) + i

2
σ(DX ; DY )

(
qt (X)egt,τ (Y )

)

+ 1

2!
( i

2

)2
σ(DX ; DY )2

(
qt (X)egt,τ (Y )

)]∣∣∣
X=Y (3.35)

and

∂gt,τ
∂τ

(X)egt,τ (X) = −
[
egt,τ (X)qτ (Y )+ i

2
σ(DX ; DY )

(
egt,τ (X)qτ (Y )

)

+ 1

2!
( i

2

)2
σ(DX ; DY )2

(
egt,τ (X)qτ (Y )

)]∣∣∣
X=Y , (3.36)

with X = (x, ξ) ∈ R
2n and Y = (y, η) ∈ R

2n . Some direct computations provide
that

σ(DX ; DY )
(
qt (X)egt,τ (Y )

) = −〈σ∇X ,∇Y 〉
(
qt (X)egt,τ (Y )

)

= −〈σ∇Xqt (X),∇Y gt,τ (Y )〉egt,τ (Y ) = −4〈σQt X,Gt,τY 〉egt,τ (Y )

= −4〈Gt,τ σQt X,Y 〉egt,τ (Y ) (3.37)

and

σ(DX ; DY )2
(
qt (X)egt,τ (Y )

)

= 4
∑

1≤ j,k≤2n
(σ∇X ) j (∇Y ) j

(
(Gt,τ σQt X)kYke

gt,τ (Y )
)

= 4
∑

1≤ j≤2n
(σ∇X ) j

(
(Gt,τ σQt X) j

)
egt,τ (Y )

+ 8
∑

1≤ j,k≤2n
(σ∇X ) j

(
(Gt,τ σQt X)k

)
Yk(Gt,τY ) j e

gt,τ (Y ). (3.38)

While separating terms by homogeneity degree, we obtain from (3.35), (3.36), (3.37)
and (3.38) the following equations

〈∂tGt,τ X, X〉 = qt (X)− 2i〈Gt,τ σQt X, X〉
−

∑

1≤ j,k≤2n
(σ∇X ) j

(
(Gt,τ σQt X)k

)
Xk(Gt,τ X) j , (3.39)

〈∂τGt,τ X, X〉 = −qτ (X)− 2i〈Gt,τ σQτ X, X〉
+

∑

1≤ j,k≤2n
(σ∇X ) j

(
(Gt,τ σQτ X)k

)
Xk(Gt,τ X) j , (3.40)

∂t h(t, τ ) = −1

2

∑

1≤ j≤2n
(σ∇X ) j

(
(Gt,τ σQt X) j

)
, (3.41)
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∂τh(t, τ ) = 1

2

∑

1≤ j≤2n
(σ∇X ) j

(
(Gt,τ σQτ X) j

)
. (3.42)

We notice that

∑

1≤ j,k≤2n
(σ∇X ) j

(
(Gt,τ σQt X)k

)
Xk(Gt,τ X) j

=
∑

1≤ j≤n
1≤k≤2n

∂ξ j

(
(Gt,τ σQt X)k

)
Xk(Gt,τ X) j

−
∑

1≤ j≤n
1≤k≤2n

∂x j

(
(Gt,τ σQt X)k

)
Xk(Gt,τ X) j+n

=
∑

1≤ j≤n
1≤k≤2n

(Gt,τ σQt )k, j+n Xk(Gt,τ X) j −
∑

1≤ j≤n
1≤k≤2n

(Gt,τ σQt )k, j Xk(Gt,τ X) j+n

= −〈Gt,τ σQtσGt,τ X, X〉.

On the other hand, we observe that

∑

1≤ j≤2n
(σ∇X ) j

(
(Gt,τ σQt X) j

)
=

∑

1≤ j≤n
∂ξ j

(
(Gt,τ σQt X) j

)

−
∑

1≤ j≤n
∂x j

(
(Gt,τ σQt X) j+n

)

=
∑

1≤ j≤n
(Gt,τ σQt ) j, j+n −

∑

1≤ j≤n
(Gt,τ σQt ) j+n, j = −Tr(σGt,τ σQt ).

By using that the matrices Qt and Gt,τ are symmetric and σ is skew-symmetric, the
equations (3.39), (3.40), (3.41) and (3.42) reduce to

∂tGt,τ = Qt − i
(
Gt,τ σQt + (Gt,τ σQt )

T )

+1

2

(
Gt,τ σQtσGt,τ + (Gt,τ σQtσGt,τ )

T )

= Qt − i(Gt,τ σQt − QtσGt,τ )+ Gt,τ σQtσGt,τ , (3.43)

∂τGt,τ = −Qτ − i
(
Gt,τ σQτ + (Gt,τ σQτ )

T )

−1

2

(
Gt,τ σQτ σGt,τ + (Gt,τ σQτ σGt,τ )

T )

= −Qτ − i(Gt,τ σQτ − Qτ σGt,τ )− Gt,τ σQτ σGt,τ , (3.44)

∂t h(t, τ ) = 1

2
Tr(σGt,τ σQt ), (3.45)

∂τh(t, τ ) = −1

2
Tr(σGt,τ σQτ ), (3.46)
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where AT denotes the transpose matrix of A. By denoting S̃t,τ = σGt,τ the Hamilton
map of the quadratic form X �→ 〈Gt,τ X, X〉 and Ft = σQt the Hamilton map of the
quadratic form qt (X) = 〈Qt X, X〉, we deduce from (3.43), (3.44), (3.45) and (3.46)
that

∂t S̃t,τ = Ft − i(S̃t,τ Ft − Ft S̃t,τ )+ S̃t,τ Ft S̃t,τ , (3.47)

∂τ S̃t,τ = − Fτ − i(S̃t,τ Fτ − Fτ S̃t,τ )− S̃t,τ Fτ S̃t,τ , (3.48)

∂t h(t, τ ) = 1

2
Tr(S̃t,τ Ft ), (3.49)

∂τh(t, τ ) = − 1

2
Tr(S̃t,τ Fτ ). (3.50)

We observe that the Hamilton map S̃t,τ satisfies a matrix Ricatti differential equation.
In order to solve this differential equation, we follow [1] (Chapter 2) and consider the
first order linear differential equation

Y ′(t) = M(t)Y (t), Y (t) =
(
Y1(t)
Y2(t)

)
∈ C

4n×2n, (3.51)

with

M(t) =
(
i Ft −Ft
Ft i Ft

)
∈ C

4n×4n . (3.52)

We observe that

d

dt

(
Y1(t)− iY2(t)

) = 0,
d

dt

(
Y1(t)+ iY2(t)

) = 2i Ft
(
Y1(t)+ iY2(t)

)
. (3.53)

With R the resolvent

{
∂t R(t, τ ) = 2i Ft R(t, τ ), 0 ≤ t ≤ T,

R(τ, τ ) = I2n,
(3.54)

with 0 ≤ τ ≤ T , we have

∀0 ≤ t ≤ T, Y1(t)− iY2(t) = Y1(τ )− iY2(τ ),

Y1(t)+ iY2(t) = R(t, τ )(Y1(τ )+ iY2(τ )).

It follows that

∀t ∈ [0, T ], Y1(t) = 1

2

(
R(t, τ )+ I2n

)
Y1(τ )+ i

2

(
R(t, τ )− I2n

)
Y2(τ ),

∀t ∈ [0, T ], Y2(t) = 1

2i

(
R(t, τ )− I2n

)
Y1(τ )+ 1

2

(
R(t, τ )+ I2n

)
Y2(τ ).
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With the initial conditions Y1(τ ) = 0 and Y2(τ ) = I2n , this leads to consider the
function

S(t, τ ) = −Y1(t)Y2(t)−1 = −i(R(t, τ )− I2n
)(
R(t, τ )+ I2n

)−1
, (3.55)

which is well-defined when |t − τ | � 1 is sufficiently small, since R(τ, τ ) = I2n . By
differentiating the identity

I2n =
(
R(t, τ )+ I2n

)−1(
R(t, τ )+ I2n

)
,

we obtain that

d

dt

(
R(t, τ )+ I2n

)−1 = −2i(R(t, τ )+ I2n
)−1

Ft R(t, τ )
(
R(t, τ )+ I2n

)−1
, (3.56)

when |t − τ | � 1. It follows from (3.55) and (3.56) that

∂t S(t, τ ) = 2Ft R(t, τ )
(
R(t, τ )+ I2n

)−1

− 2
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Ft R(t, τ )

(
R(t, τ )+ I2n

)−1

= 4
(
R(t, τ )+ I2n

)−1
Ft R(t, τ )

(
R(t, τ )+ I2n

)−1

= 4
(
R(t, τ )+ I2n

)−1
Ft − 4

(
R(t, τ )+ I2n

)−1
Ft

(
R(t, τ )+ I2n

)−1
,

when |t − τ | � 1. On the other hand, we deduce from (3.55) that

Ft − i
(
S(t, τ )Ft − Ft S(t, τ )

)+ S(t, τ )Ft S(t, τ )

= Ft −
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Ft + Ft

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1

− (
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Ft

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
,

when |t − τ | � 1. A direct computation provides

Ft − i
(
S(t, τ )Ft − Ft S(t, τ )

)+ S(t, τ )Ft S(t, τ )

= 2
(
R(t, τ )+ I2n

)−1
Ft + Ft − 2Ft

(
R(t, τ )+ I2n

)−1

− Ft
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1

+ 2
(
R(t, τ )+ I2n

)−1
Ft

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
,

implying that

Ft − i
(
S(t, τ )Ft − Ft S(t, τ )

)+ S(t, τ )Ft S(t, τ )

= 2
(
R(t, τ )+ I2n

)−1
Ft + 2

(
R(t, τ )+ I2n

)−1
Ft

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1

= 4
(
R(t, τ )+ I2n

)−1
Ft − 4

(
R(t, τ )+ I2n

)−1
Ft

(
R(t, τ )+ I2n

)−1
,
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when |t − τ | � 1. We therefore notice that the function t �→ S(t, τ ) defined in (3.55)
satisfies the differential equation (3.47). On the other hand, we recall for instance
from [7] (Proposition 1.5) that the resolvent satisfies

∂τ R(t, τ ) = −2i R(t, τ )Fτ . (3.57)

By differentiating the identity

I2n =
(
R(t, τ )+ I2n

)−1(
R(t, τ )+ I2n

)
,

we obtain that

d

dτ

(
R(t, τ )+ I2n

)−1 = 2i
(
R(t, τ )+ I2n

)−1
R(t, τ )Fτ

(
R(t, τ )+ I2n

)−1
, (3.58)

when |t − τ | � 1. It follows from (3.55) and (3.58) that

∂τ S(t, τ ) =− 2R(t, τ )Fτ

(
R(t, τ )+ I2n

)−1

+ 2
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
R(t, τ )Fτ

(
R(t, τ )+ I2n

)−1

=− 4
(
R(t, τ )+ I2n

)−1
R(t, τ )Fτ

(
R(t, τ )+ I2n

)−1

=− 4Fτ

(
R(t, τ )+ I2n

)−1 + 4
(
R(t, τ )+ I2n

)−1
Fτ

(
R(t, τ )+ I2n

)−1
,

when |t − τ | � 1. On the other hand, we deduce from (3.55) that

− Fτ − i
(
S(t, τ )Fτ − Fτ S(t, τ )

)− S(t, τ )Fτ S(t, τ )

= −Fτ −
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Fτ + Fτ

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1

+ (
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Fτ

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
,

when |t − τ | � 1. A direct computation provides

− Fτ − i
(
S(t, τ )Fτ − Fτ S(t, τ )

)− S(t, τ )Fτ S(t, τ )

= 2
(
R(t, τ )+ I2n

)−1
Fτ − 2Fτ

(
R(t, τ )+ I2n

)−1

+ (
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Fτ

− Fτ − 2
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Fτ

(
R(t, τ )+ I2n

)−1
,

implying that

− Fτ − i
(
S(t, τ )Fτ − Fτ S(t, τ )

)− S(t, τ )Fτ S(t, τ )

= −2Fτ

(
R(t, τ )+ I2n

)−1 − 2
(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
Fτ

(
R(t, τ )+ I2n

)−1

= −4Fτ

(
R(t, τ )+ I2n

)−1 + 4
(
R(t, τ )+ I2n

)−1
Fτ

(
R(t, τ )+ I2n

)−1
,
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when |t− τ | � 1. We therefore notice that the function τ �→ S(t, τ ) defined in (3.55)
satisfies the differential equation (3.48). Let Log z be the principal determination of
the complex logarithm on C\R−. We consider the function

h(t, τ ) = −1

2
Log

(
2−2ndet

(
R(t, τ )+ I2n

))
, (3.59)

which is well-defined when |t − τ | � 1, since R(τ, τ ) = I2n . With Com(A) denoting
the adjugate matrix of A, that is, the transpose of the cofactor matrix of A, we indeed
notice from (3.55) that it satisfies

∂t h(t, τ ) = −1

2

(
det

(
R(t, τ )+ I2n

))−1Tr
([
Com

(
R(t, τ )+ I2n

)]T
(2i)Ft R(t, τ )

)

= −iTr((R(t, τ )+ I2n
)−1

Ft R(t, τ )
) = 1

2
Tr

(
Ft S(t, τ )

)− i

2
Tr

(
Ft )

= 1

2
Tr

(
S(t, τ )Ft

)
,

when |t−τ | � 1, since from (1.15), we have Tr(Ft ) = 0. It proves the formula (3.49).
On the other hand, we deduce from (3.57) that

∂τh(t, τ ) = 1

2

(
det

(
R(t, τ )+ I2n

))−1Tr
([
Com

(
R(t, τ )+ I2n

)]T
(2i)R(t, τ )Fτ

)

= iTr
((
R(t, τ )+ I2n

)−1
R(t, τ )Fτ

)

= i

2
Tr(Fτ )+ i

2
Tr

((
R(t, τ )+ I2n

)−1(
R(t, τ )− I2n

)
Fτ

)
,

when |t − τ | � 1. We notice

S(t, τ ) = −i(R(t, τ )− I2n
)(
R(t, τ )+ I2n

)−1

= i
I2n − R(t, τ )

2

(
I2n − I2n − R(t, τ )

2

)−1 = i
+∞∑

k=0

1

2k+1
(
I2n − R(t, τ )

)k+1

= i
(
I2n − I2n − R(t, τ )

2

)−1 I2n − R(t, τ )

2

= −i(R(t, τ )+ I2n
)−1(

R(t, τ )− I2n
)
, (3.60)

when |t − τ | � 1, since R(τ, τ ) = I2n . It follows from (3.60) that

∂τh(t, τ ) = −1

2
Tr

(
S(t, τ )Fτ

)
,

since Tr(Fτ ) = 0. It proves the formula (3.50). We need the following instrumental
lemma:
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Lemma 3.1 Let R(t, τ ) be the resolvent

{
d
dt R(t, τ ) = 2i Ft R(t, τ ), 0 ≤ t ≤ T,

R(τ, τ ) = I2n,

with 0 ≤ τ ≤ T . Then, the mapping R(t, τ ) : C
2n → C

2n is a non-negative complex
symplectic linear transformation satisfying

∀t, τ ∈ [0, T ], R(t, τ )−1 = R(τ, t),

∀t, τ ∈ [0, T ],∀X,Y ∈ C
2n, σ (R(t, τ )X, R(t, τ )Y ) = σ(X,Y ),

∀0 ≤ τ ≤ t ≤ T,∀X ∈ C
2n, i

(
σ(R(t, τ )X , R(t, τ )X)− σ(X , X)

) ≥ 0.

Proof Standard results about resolvents show that the mapping R(t, τ ) : C
2n → C

2n

defines an isomorphism whose inverse is R(t, τ )−1 = R(τ, t). On the other hand, we
notice from (1.7) and (3.54) that for all 0 ≤ t, τ ≤ T ,

d

dt

(
σ(R(t, τ )X, R(t, τ )Y )

)

= σ(2i Ft R(t, τ )X, R(t, τ )Y )+ σ(R(t, τ )X, 2i Ft R(t, τ )Y )

= 2iσ(Ft R(t, τ )X, R(t, τ )Y )− 2iσ(Ft R(t, τ )X, R(t, τ )Y ) = 0.

By using that σ(R(τ, τ )X, R(τ, τ )Y ) = σ(X,Y ), since R(τ, τ ) = I2n , we obtain
that

∀0 ≤ t, τ ≤ T,∀X,Y ∈ C
2n, σ (R(t, τ )X, R(t, τ )Y ) = σ(X,Y ).

Setting

fτ (t) = i
(
σ(R(t, τ )X , R(t, τ )X)− σ(X , X)

)
, 0 ≤ t ≤ T, X ∈ C

2n,

with 0 ≤ τ ≤ T , we observe that fτ (τ ) = 0, since R(τ, τ ) = I2n . On the other hand,
it follows from (1.7) and (3.54) that for all 0 ≤ t ≤ T ,

f ′τ (t) = iσ(2i Ft R(t, τ )X , R(t, τ )X)+ iσ(R(t, τ )X , 2i Ft R(t, τ )X)

= − 2σ(R(t, τ )X , (Ft + Ft )R(t, τ )X) = −4σ(R(t, τ )X ,Re Ft R(t, τ )X)

= − 4(Re qt )(R(t, τ )X , R(t, τ )X) = −4〈Re Qt R(t, τ )X , R(t, τ )X〉
= − 4〈Re QtRe(R(t, τ )X),Re(R(t, τ )X)〉
− 4〈Re Qt Im(R(t, τ )X), Im(R(t, τ )X)〉 ≥ 0,

since Re Qt ≤ 0. We deduce that

∀0 ≤ τ ≤ t ≤ T, fτ (t) = i
(
σ(R(t, τ )X , R(t, τ )X)− σ(X , X)

) ≥ 0.

This ends the proof of Lemma 3.1. ��
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1368 K. Pravda-Starov

The following lemma shows that the matrix

S(t, τ ) = −i(R(t, τ )− I2n
)(
R(t, τ )+ I2n

)−1
,

defined in (3.55) is a Hamilton map:

Lemma 3.2 The matrix

S(t, τ ) = −i(R(t, τ )− I2n
)(
R(t, τ )+ I2n

)−1
,

defined for all 0 ≤ τ ≤ t ≤ T and 0 ≤ t − τ ≤ δ, with 0 < δ � 1, is the Hamilton
map associated to the quadratic form

X ∈ R
2n �→ 〈Gt,τ X, X〉 = σ(X, S(t, τ )X

) ∈ C,

whose real part is non-positive

∀0 ≤ τ ≤ t ≤ T,∀X ∈ R
2n, Re(〈Gt,τ X, X〉) ≤ 0.

Proof It follows from Lemma 3.1 that

∀0 ≤ t, τ ≤ T,∀X,Y ∈ C
2n, σ (R(t, τ )X,Y ) = σ(X, R(τ, t)Y ). (3.61)

We deduce from (3.60) and (3.61) that

∀X,Y ∈ C
2n, σ (S(t, τ )X,Y ) = σ(X, S(τ, t)Y ), (3.62)

when |t − τ | � 1, since

S(t, τ ) = i
+∞∑

k=0

1

2k+1
(
I2n − R(t, τ )

)k+1
.

Wewant to prove that thematrix S(t, τ ) is theHamiltonmap associated to the quadratic
form

X �→ σ
(
X, S(t, τ )X

)
.

According to (1.5), (1.7) and (3.62), it is sufficient to establish that S(t, τ ) = −S(τ, t),
when |t − τ | � 1. By using (3.60), this is equivalent to the following identity

−(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1 = (
R(τ, t)+ I2n

)−1(
R(τ, t)− I2n

)
,

that is

−(
R(τ, t)+ I2n

)(
R(t, τ )− I2n

) = (
R(τ, t)− I2n

)(
R(t, τ )+ I2n

)
,
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which holds true since

−(
R(τ, t)+ I2n

)(
R(t, τ )− I2n

) = R(τ, t)− R(t, τ )

= (
R(τ, t)− I2n

)(
R(t, τ )+ I2n

)
,

since R(t1, t2)R(t2, t3) = R(t1, t3) when 0 ≤ t1, t2, t3 ≤ T . On the other hand, we
deduce from Lemma 3.1 that for all X ∈ C

2n , 0 ≤ τ ≤ t ≤ T ,

Re
(
iσ

((
R(t, τ )+ I2n

)
X ,

(
R(t, τ )− I2n

)
X

))

= Re
(
i
[
σ
(
R(t, τ )X , R(t, τ )X

)− σ
(
X , X

)])

+ Re
(
i
[
σ
(
X , R(t, τ )X

)− σ
(
R(t, τ )X , X

)])

= i
[
σ
(
R(t, τ )X , R(t, τ )X

)− σ
(
X , X

)]

+ Re
(
i
[
σ
(
X , R(t, τ )X

)+ σ
(
X , R(t, τ )X

)])

= i
[
σ
(
R(t, τ )X , R(t, τ )X

)− σ
(
X , X

)] ≥ 0.

We deduce from the above estimate that

∀X ∈ C
2n, Re

(
iσ

(
X ,

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
X

)) ≥ 0, (3.63)

when 0 ≤ τ ≤ t ≤ T and |t − τ | � 1. We obtain in particular from (3.63) that

∀X ∈ R
2n, Re

(
σ
(
X, S(t, τ )X

))

= Re
(− iσ

(
X,

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
X

)) ≤ 0,

when 0 ≤ τ ≤ t ≤ T and |t − τ | � 1. This ends the proof of Lemma 3.2. ��
We consider the Weyl symbol

pt,τ (X) = 2n√
det

(
R(t, τ )+ I2n

) exp
(− iσ(X,

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
X

))
,

(3.64)
with X = (x, ξ) ∈ R

2n , for all 0 ≤ t, τ ≤ T , |t − τ | ≤ δ, where the positive constant
δ > 0 is chosen sufficiently small for the determinant det

(
R(t, τ ) + I2n

) �= 0 to be
non-zero and its square root well-defined when using the principal determination of
the complex logarithm. This is possible as R(t, t) = I2n when 0 ≤ t ≤ T . We notice
from (3.32), (3.33), (3.59) and Lemma 3.2 that it is equal to the symbol

pt,τ (X) = egt,τ (X) = exp
(〈Gt,τ X, X〉 + h(t, τ )

)
,

and therefore satisfies the equations

d

dt
pt,τ = qt#

w pt,τ ,
d

dτ
pt,τ = −pt,τ#

wqτ , pτ,τ = 1, (3.65)
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1370 K. Pravda-Starov

when 0 ≤ t, τ ≤ T , |t − τ | ≤ δ. On the other hand, notice that Lemma 3.2 implies
that

∀0 ≤ τ ≤ t ≤ T, 0 ≤ t − τ ≤ δ,∀X ∈ R
2n,

| exp(〈Gt,τ X, X〉)| = ∣∣ exp
(− iσ(X,

(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
X

))∣∣ ≤ 1.

(3.66)

The symbol pt,τ is therefore a L∞(R2n
X )-functionwhen 0 ≤ τ ≤ t ≤ T , 0 ≤ t−τ ≤ δ.

We consider the pseudodifferential operator pw
t,τ (x, Dx ) defined by theWeyl quan-

tization of the symbol pt,τ . We aim at proving that this pseudodifferential operator is
equal to the Fourier integral operator

KR(τ,t) : S (Rn) → S ′(Rn),

associated to the non-negative complex symplectic linear transformation R(t, τ ). Set-
ting

S̃(t, τ ) = −(
R(t, τ )− I2n

)(
R(t, τ )+ I2n

)−1
,

the following identities

I2n+ S̃(t, τ ) = 2
(
R(t, τ )+ I2n

)−1 and I2n− S̃(t, τ ) = 2R(t, τ )
(
R(t, τ )+ I2n

)−1
,

(3.67)
imply that (

I2n − S̃(t, τ )
)(
I2n + S̃(t, τ )

)−1 = R(t, τ ), (3.68)

when 0 ≤ τ ≤ t ≤ T , 0 ≤ t−τ ≤ δ.Weobserve that S̃(τ, τ ) = 0, since R(τ, τ ) = I2n
for 0 ≤ τ ≤ T . By possibly decreasing the value of the positive constant δ > 0, it
follows that ±1 are not eigenvalues of the matrix S̃(t, τ ) for all 0 ≤ τ ≤ t ≤ T , 0 ≤
t−τ ≤ δ. We can therefore deduce from the link between pseudodifferential operators
and Fourier integral operators established by Hörmander in [17] (Proposition 5.11),
Lemma 3.2, (3.64), (3.67) and (3.68) that for all 0 ≤ τ ≤ t ≤ T , 0 ≤ t − τ ≤ δ,

KR(τ,t) =
√

22ndet
(
R(t, τ )

)

det
(
R(t, τ )+ I2n

)
(
e−iσ(X,(R(t,τ )−I2n)(R(t,τ )+I2n)−1X)

)w

= 2n√
det

(
R(t, τ )+ I2n

)
(
e−iσ(X,(R(t,τ )−I2n)(R(t,τ )+I2n)−1X)

)w = pw
t,τ (x, Dx ),

(3.69)

since det
(
R(t, τ )

) = 1, because R(t, τ ) : C
2n → C

2n is a non-negative complex
symplectic linear transformation and therefore belongs to the special linear group
SL2n(C). Indeed, the real symplectic linear group is included in the real special linear
group SL2n(R), see e.g. [19] (Proposition 4.4.4). On the other hand,we know from [17]
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(Proposition 5.10) that any non-negative complex symplectic linear transformation
T : C

2n → C
2n can be factored as T = T1T2T3, where T1 and T3 are real symplectic

linear transformations and T2(x, ξ) = (x ′, ξ ′) where for all 1 ≤ j ≤ n, either

(x ′j , ξ ′j ) = (x j cosh τ j − iξ j sinh τ j , i x j sinh τ j + ξ j cosh τ j ),

with τ j ≥ 0, or

(x ′j , ξ ′j ) = (x j , i x j + ξ j ).

We consider

χε(x, ξ) = χ(εx, εξ),

whereχ ∈ C∞0 (R2n, R) is equal to 1 in a neighborhood of 0. ByCalderón-Vaillancourt
Theorem, the pseudodifferential operator χw

ε (x, Dx ) defines a bounded selfadjoint
operator on L2(Rn), whose operator norm is uniformly bounded with respect to the
parameter 0 < ε ≤ 1,

∃C > 0,∀0 < ε ≤ 1, ‖χw
ε (x, Dx )‖L(L2) ≤ C. (3.70)

Furthermore, it is also a continuous mapping from L2(Rn) to S (Rn) since χε ∈
S (R2n). We observe that the symbol (χε)0<ε≤1 is bounded in the Fréchet space
C∞b (R2n) and that (χε)0<ε≤1 converges in C∞(R2n) to the constant function 1, when
ε tends to 0. It follows from [19] (Lemma 1.1.3) that the sequence (χw

ε (x, Dx )u)0<ε≤1
converges to u in S (Rn), if u ∈ S (Rn). On the other hand, it follows from (3.70)
that for all u ∈ L2(Rn) and v ∈ S (Rn),

lim sup
ε→0

‖u − χw
ε (x, Dx )u‖L2(Rn)

≤ lim sup
ε→0

‖v − χw
ε (x, Dx )v‖L2(Rn) + (C + 1)‖u − v‖L2(Rn)

≤ (C + 1)‖u − v‖L2(Rn). (3.71)

By density of the Schwartz space in L2(Rn), we obtain that when u ∈ L2(Rn), the
sequence (χw

ε (x, Dx )u)0<ε≤1 converges to u in L2(Rn) when ε tends to 0,

∀u ∈ L2(Rn), lim
ε→0

‖χw
ε (x, Dx )u − u‖L2(Rn) = 0. (3.72)

Let u, v ∈ S (Rn). We deduce from Proposition 2.1 and (3.69) that the function
pw
t,τ (x, Dx )u belongs to the Schwartz space for all 0 ≤ τ ≤ t ≤ T , 0 ≤ t − τ ≤ δ.

The theorem of regularity of integrals with parameters allows to obtain that for all
0 ≤ τ ≤ t ≤ T , 0 ≤ t − τ ≤ δ,
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d

dτ
(pw

t,τ (x, Dx )u, v)L2(Rn) =
d

dτ
〈pw

t,τ (x, Dx )u, v〉S ′(Rn),S (Rn)

= d

dτ

∫

R2n
pt,τ (x, ξ)H(u, v)(x, ξ)dxdξ =

∫

R2n

d

dτ
pt,τ (x, ξ)H(u, v)(x, ξ)dxdξ,

(3.73)

where H(u, v) denotes the Wigner function which defines a continuous mapping

(u, v) ∈ S (Rn)×S (Rn) �→ H(u, v) ∈ S (R2n), (3.74)

between the Schwartz spaces, see e.g. [19] (Chapter 2). The differentiation under the
integral sign in (3.73) is then justified as we notice from (3.64) and (3.66) that

∃C0 > 0,∀0 ≤ τ ≤ t ≤ T, 0 ≤ t − τ ≤ δ,∀(x, ξ) ∈ R
2n,

∣∣∣
d

dτ
pt,τ (x, ξ)

∣∣∣ ≤ C0(1+ |x |2 + |ξ |2). (3.75)

For u, v ∈ S (Rn), we define the function

fε(τ ) = (
pw
t0,τ (x, Dx )χ

w
ε (x, Dx )U (τ, τ0)u, v

)
L2(Rn)

, (3.76)

when τ0 ≤ τ ≤ t0, with 0 ≤ τ0 < t0 ≤ T , 0 < t0 − τ0 ≤ δ, where (U (t, τ ))0≤τ≤t≤T
stands for the contraction evolution system given by Theorem 1.2. This function is
well-defined since U (τ, τ0)u ∈ L2(Rn) implies that

χw
ε (x, Dx )U (τ, τ0)u ∈ S (Rn), (3.77)

and, as Proposition 2.1 and (3.69) provide that

∀τ0 ≤ τ ≤ t0, pw
t0,τ (x, Dx )χ

w
ε (x, Dx )U (τ, τ0)u ∈ S (Rn).

We observe from (3.64), (3.66), (3.76) and (3.77) that the mapping

fε(τ ) = (
pw
t0,τ (x, Dx )χ

w
ε (x, Dx )U (τ, τ0)u, v

)
L2(Rn)

=
∫

R2n
pt0,τ (x, ξ)H(χw

ε (x, Dx )U (τ, τ0)u, v)(x, ξ)dxdξ, (3.78)

is continuouson [τ0, t0]. Indeed,wenotice from(3.74) thatH(χw
ε (x, Dx )U (τ, τ0)u, v)

∈ S (R2n) since χw
ε (x, Dx )U (τ, τ0)u ∈ S (Rn) and v ∈ S (Rn). Furthermore, we

deduce anew from (3.74) that the continuity of themapping τ �→ U (τ, τ0)u ∈ L2(Rn)

successively implies the continuity of the mappings τ �→ χw
ε (x, Dx )U (τ, τ0)u ∈

S (Rn) and τ �→ H(χw
ε (x, Dx )U (τ, τ0)u, v) ∈ S (R2n). The domination condition

then easily follows from the fact that any Schwartz seminorm of the Wigner function
can be bounded as
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sup
x,ξ∈Rn ,

|α1|+|α2|+|β1|+|β2|≤N1

|xα1ξα2∂β1
x ∂

β2
ξ H(χw

ε (x, Dx )U (τ, τ0)u, v)(x, ξ)|

≤ c‖U (τ, τ0)u‖L2(Rn)

(
sup
x∈Rn ,

|α|+|β|≤N2

|xα∂β
x v(x)|

)

≤ c‖u‖L2(Rn)

(
sup
x∈Rn ,

|α|+|β|≤N2

|xα∂β
x v(x)|

)
,

since ‖U (τ, τ0)‖L(L2) ≤ 1. On the other hand, we have for all τ0 < τ < t0 and
0 �= |h| ≤ inf(t0 − τ, τ − τ0),

fε(τ + h)− fε(τ )

h

=
( pw

t0,τ+h(x, Dx )− pw
t0,τ (x, Dx )

h
χw

ε (x, Dx )U (τ + h, τ0)u, v
)

L2(Rn)

+
(
pw
t0,τ (x, Dx )χ

w
ε (x, Dx )

U (τ + h, τ0)−U (τ, τ0)

h
u, v

)

L2(Rn)
. (3.79)

By using anew that the mappings χw
ε (x, Dx ) : L2(Rn) → S (Rn) and pw

t0,τ (x, Dx ) :
S (Rn) → S (Rn) are continuous thanks to Proposition 2.1 and (3.69), we deduce
from Definition 1.1 and Theorem 1.2 that

lim
h→0

(
pw
t0,τ (x, Dx )χ

w
ε (x, Dx )

U (τ + h, τ0)−U (τ, τ0)

h
u, v

)

L2(Rn)

= (
pw
t0,τ (x, Dx )χ

w
ε (x, Dx )q

w
τ (x, Dx )U (τ, τ0)u, v

)
L2(Rn)

, (3.80)

since τ �→ U (τ, τ0)u ∈ C1(]τ0, t0], L2(Rn)). On the other hand, it follows from
(3.74) and (3.77) that

( pw
t0,τ+h(x, Dx )− pw

t0,τ (x, Dx )

h
χw

ε (x, Dx )U (τ + h, τ0)u, v
)

L2(Rn)

= 1

h

∫

R2n

(
pt0,τ+h(x, ξ)− pt0,τ (x, ξ)

)
H

(
χw

ε (x, Dx )U (τ + h, τ0)u, v
)
(x, ξ)dxdξ,

since pt,τ is a L∞(R2n)-function when 0 ≤ τ ≤ t ≤ T , 0 ≤ t − τ ≤ δ. The
above integral is well-defined as theWigner functionH

(
χw

ε (x, Dx )U (τ+h, τ0)u, v
)

belongs to the Schwartz space S (R2n) since χw
ε (x, Dx )U (τ + h, τ0)u ∈ S (Rn)

and v ∈ S (Rn). The continuity of the mapping h �→ U (τ + h, τ0)u ∈ L2(Rn)

successively implies the continuity of the mappings h �→ χw
ε (x, Dx )U (τ+h, τ0)u ∈

S (Rn) and h �→ H
(
χw

ε (x, Dx )U (τ + h, τ0)u, v
) ∈ S (R2n). We therefore deduce

from (3.65) and (3.75) that
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1374 K. Pravda-Starov

lim
h→0

( pw
t0,τ+h(x, Dx )− pw

t0,τ (x, Dx )

h
χw

ε (x, Dx )U (τ + h, τ0)u, v
)

L2(Rn)

= −
∫

R2n

(
pt0,τ#

wqτ )(x, ξ)H
(
χw

ε (x, Dx )U (τ, τ0)u, v
)
(x, ξ)dxdξ

= −(
pw
t0,τ (x, Dx )q

w
τ (x, Dx )χ

w
ε (x, Dx )U (τ, τ0)u, v

)
L2(Rn)

, (3.81)

since the domination condition follows as above from the fact that any Schwartz
seminorm of the Wigner function can be bounded as

sup
x,ξ∈Rn ,

|α1|+|α2|+|β1|+|β2|≤N1

|xα1ξα2∂β1
x ∂

β2
ξ H(χw

ε (x, Dx )U (τ + h, τ0)u, v)(x, ξ)|

≤ c‖U (τ + h, τ0)u‖L2(Rn)

(
sup
x∈Rn ,

|α|+|β|≤N2

|xα∂β
x v(x)|

)

≤ c‖u‖L2(Rn)

(
sup
x∈Rn ,

|α|+|β|≤N2

|xα∂β
x v(x)|

)
,

since ‖U (τ + h, τ0)‖L(L2) ≤ 1. It follows from (3.79), (3.80) and (3.81) that for all
τ0 < τ < t0,

f ′ε(τ ) = (
pw
t0,τ (x, Dx )[χw

ε (x, Dx ), q
w
τ (x, Dx )]U (τ, τ0)u, v

)
L2(Rn)

. (3.82)

We deduce from (3.65), (3.76) and (3.82) that

(
χw

ε (x, Dx )U (t0, τ0)u, v
)
L2(Rn)

− (
pw
t0,τ0(x, Dx )χ

w
ε (x, Dx )u, v

)
L2(Rn)

=
∫ t0

τ0

(
pw
t0,τ (x, Dx )[χw

ε (x, Dx ), q
w
τ (x, Dx )]U (τ, τ0)u, v

)
L2(Rn)

dτ, (3.83)

since U (τ0, τ0) = IL2(Rn). By passing to the limit when ε tends to 0, it follows from
Proposition 2.1, (3.69) and (3.72) that

((
U (t0, τ0)− pw

t0,τ0(x, Dx )
)
u, v

)
L2(Rn)

= lim
ε→0

∫ t0

τ0

(
pw
t0,τ (x, Dx )[χw

ε (x, Dx ), q
w
τ (x, Dx )]U (τ, τ0)u, v

)
L2(Rn)

dτ, (3.84)

sinceU (t0, τ0) and pw
t0,τ0(x, Dx ) are bounded operators on L2(Rn). By using that the

Weyl symbol of the operator qw
τ (x, Dx ) is quadratic and (3.31), standard results of

symbolic calculus show that the commutator [χw
ε (x, Dx ), qw

τ (x, Dx )] is equal to
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Generalized Mehler formula for time-dependent quadratic operators 1375

[χw
ε (x, Dx ), q

w
τ (x, Dx )] =

∑

α,β∈Nn

|α+β|=2

(qτ )α,β [χw
ε (x, Dx ), (x

αξβ)w]

= 1

i

∑

α,β∈Nn

|α+β|=2

(qτ )α,βOp
w
({χε, x

αξβ}). (3.85)

We notice that the symbol

{χε, x
αξβ}(x, ξ) = ε

n∑

j=1

( ∂χ

∂ξ j
(εx, εξ) · ∂(xαξβ)

∂x j
− ∂χ

∂x j
(εx, εξ) · ∂(xαξβ)

∂ξ j

)
,

writes as �ε(x, ξ) = �(εx, εξ), with � ∈ C∞0 (R2n, C). It is therefore uniformly
bounded in the Fréchet space C∞b (R2n) with respect to 0 < ε ≤ 1. On the other hand,
this symbol vanishes on any compact set when 0 < ε � 1. It therefore converges
in the Fréchet space C∞(R2n) to zero when ε tends to 0. By using the very same
arguments as in (3.71), we obtain that

∀w ∈ L2(Rn), lim
ε→0

‖Opw
({χε, x

αξβ})w‖L2(Rn) = 0. (3.86)

Furthermore, the Calderón-Vaillancourt Theorem together with the continuity of the
coefficients τ ∈ [0, T ] �→ (qτ )α,β ∈ C imply that there exists a positive constant
C1 > 0 such that

∀τ0 ≤ τ ≤ t0,∀0 < ε ≤ 1, ‖[χw
ε (x, Dx ), q

w
τ (x, Dx )]‖L(L2(Rn)) ≤ C1. (3.87)

Recalling fromProposition 2.1 and (3.69) that pw
t0,τ (x, Dx ) defines a bounded operator

on L2(Rn), we deduce from (3.85) and (3.86) that for all τ0 ≤ τ ≤ t0,

lim
ε→0

(
pw
t0,τ (x, Dx )[χw

ε (x, Dx ), q
w
τ (x, Dx )]U (τ, τ0)u, v

)
L2(Rn)

= 0. (3.88)

On the other hand, it follows from (3.87) that for all τ0 ≤ τ ≤ t0,

∣∣(pw
t0,τ (x, Dx )[χw

ε (x, Dx ), q
w
τ (x, Dx )]U (τ, τ0)u, v

)
L2(Rn)

∣∣
≤ C1‖u‖L2(Rn)‖v‖L2(Rn), (3.89)

since from Theorem 1.2, Proposition 2.1 and (3.69), we have ‖pw
t0,τ (x, Dx )‖L(L2) ≤ 1

and ‖U (τ, τ0)‖L(L2) ≤ 1. By Lebesgue’s theorem, we deduce from (3.84), (3.88) and
(3.89) that

∀u, v ∈ S (Rn),
((
U (t0, τ0)− pw

t0,τ0(x, Dx )
)
u, v

)
L2(Rn)

= 0. (3.90)
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By density of the Schwartz space in L2(Rn) and the continuity of the operators on
L2(Rn), we finally conclude that

∀u ∈ L2(Rn), U (t0, τ0)u = pw
t0,τ0(x, Dx )u, (3.91)

that is, U (t0, τ0) = pw
t0,τ0(x, Dx ). This ends the proof of Theorem 1.4.

On the other hand, let 0 ≤ τ ≤ t ≤ T . We choose a finite sequence (s j )1≤ j≤N ,
with N ≥ 2 satisfying

s1 = τ < s2 < · · · < sN−1 < sN = t, 0 < s j+1 − s j < δ, 1 ≤ j ≤ N − 1,

where δ > 0 is the positive constant given by Theorem 1.4. We deduce from (3.69),
Theorems 1.2 and 1.4 that

U (t, τ ) = U (sN , s1) = U (sN , sN−1) . . .U (s2, s1)

= pw
sN ,sN−1(x, Dx ) . . . pw

s2,s1(x, Dx ) = KR(sN ,sN−1) . . .KR(s2,s1).

(3.92)

It is shown in [17] (Proposition 5.9) that if T1 and T2 are non-negative complex
symplectic linear transformations then T1T2 is also a non-negative complex symplectic
linear transformation and the associated Fourier integral operators satisfy either

KT1T2 = KT1KT2

or

KT1T2 = −KT1KT2 .

Recalling from Proposition 2.1 that the kernels of the Fourier integral operators are
only determined up to their signs,wemay therefore consider that the following formula
holds true

KT1T2 = KT1KT2 , (3.93)

whenever T1 and T2 are non-negative complex symplectic linear transformations. We
therefore deduce from (3.92) and (3.93) that

U (t, τ ) = KR(sN ,sN−1) . . .KR(s2,s1) = KR(sN ,s1) = KR(t,τ ).

Theorem 1.3 then directly follows from Proposition 2.1.

4 Propagation of Gabor singularities

This section is devoted to give the proof of Theorem 1.6. Let T > 0 and qt : R
2n → C

be a time-dependent complex-valued quadratic form with a non-positive real part
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Generalized Mehler formula for time-dependent quadratic operators 1377

Re qt ≤ 0 for all 0 ≤ t ≤ T , and whose coefficients depend continuously on the time
variable 0 ≤ t ≤ T .

We aim at studying the possible (or lack of) Schwartz regularity for the B-valued
solutions u(t) = U (t, 0)u0 at time 0 ≤ t ≤ T to the non-autonomous Cauchy
problem

{ du(t)
dt = qw

t (x, Dx )u(t), 0 < t ≤ T,

u(0) = u0,

given byTheorem1.2,whereu0 ∈ B is an arbitrary initial datum.To that end,wederive
a microlocal inclusion for the Gabor wave front set of the solution u(t) = U (t, 0)u0
in terms of the Hamilton maps (Fτ )0≤τ≤t of the quadratic symbols (qτ )0≤τ≤t and the
Gabor wave front set of the initial datum WF(u0). Thanks to Theorem 1.3, the proof
of Theorem 1.6 is an adaptation of the analysis led in [25] in the autonomous case.
The keystone in [25] (Theorem 4.6) is the proof of the microlocal inclusion

WF(KT ) ⊂ (λ̃T ∩ R
4n)\{0}, (4.1)

for the Gabor wave front set of KT ∈ S ′(R2n) the kernel of the Fourier integral
operator KT defined in Proposition 2.1 and associated to a non-negative complex
symplectic linear transformation T , where λ̃T denotes the non-negative Lagrangian
plane (2.2). It follows from (2.2) and (4.1) that

WF(KT )

⊂ {
(x, y, ξ,−η) ∈ R

4n\{0} : (x, ξ) = T (y, η), (y, η) ∈ Ker(Im T ) ∩ R
2n},
(4.2)

with Im T = 1
2i (T − T ). We notice from (4.2) that the Gabor wave front set of

the kernel KT ∈ S ′(R2n) does not contain any point of the form (0, y, 0,−η) for
(y, η) ∈ R

2n\{0}, nor points of the form (x, 0, ξ, 0) for (x, ξ) ∈ R
2n\{0}, since

T : C
2n → C

2n is invertible. We can therefore deduce from [16] (Proposition 2.11)
the microlocal inclusion

∀u ∈ S ′(Rn), WF(KT u) ⊂ WF ′(KT ) ◦WF(u), (4.3)

that is,

∀u ∈ S ′(Rn), WF(KT u)

⊂ {
(x, ξ) ∈ R

2n\{0} : ∃(y, η) ∈ WF(u), (x, y, ξ,−η) ∈ WF(KT )
}
.

(4.4)

It follows from (4.2) and (4.4) that

∀u ∈ S ′(Rn), WF(KT u) ⊂ {
(x, ξ) ∈ R

2n\{0} :
∃(y, η) ∈ WF(u) ∩ Ker(Im T ) ∩ R

2n, (x, ξ) = T (y, η)
}
,
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1378 K. Pravda-Starov

that is

∀u ∈ S ′(Rn), WF(KT u) ⊂ T
(
WF(u) ∩ Ker(Im T ) ∩ R

2n). (4.5)

By noticing that

T
(
WF(u) ∩ Ker(Im T ) ∩ R

2n) = T
(
WF(u)

) ∩ Ker(Im T −1) ∩ R
2n, (4.6)

it follows from (4.5) and (4.6) that

∀u ∈ S ′(Rn), WF(KT u) ⊂ T
(
WF(u)

) ∩ Ker(Im T −1) ∩ R
2n . (4.7)

On the other hand, we deduce from (4.7), Theorems 1.2 and 1.3 that for all u0 ∈ B
and 0 ≤ τ ≤ t ≤ T ,

WF(U (t, 0)u0) = WF(U (t, τ )U (τ, 0)u0)

⊂ R(t, τ )
[
WF(U (τ, 0)u0)

] ∩ Ker
(
Im R(τ, t)

) ∩ R
2n

⊂ R(t, τ )
[
R(τ, 0)

(
WF(u0)

) ∩ Ker
(
Im R(0, τ )

) ∩ R
2n

]
∩ Ker(Im R(τ, t)) ∩ R

2n

⊂ R(t, 0)
(
WF(u0)

) ∩ Ker(Im R(τ, t)) ∩ R
2n . (4.8)

Then, it follows from (4.8) that for all 0 ≤ t ≤ T ,

WF(U (t, 0)u0) ⊂ R(t, 0)
(
WF(u0)

) ∩ S0,t . (4.9)

where S0,t is the time-dependent singular space

S0,t =
( ⋂

0≤τ≤t
Ker(Im R(τ, t))

)
∩ R

2n, (4.10)

defined in Definition 1.5. With

Re R(t, 0) = 1

2
(R(t, 0)+ R(t, 0)),

we finally obtain that for all 0 ≤ t ≤ T and u0 ∈ B,

WF(u(t)) = WF(U (t, 0)u0) ⊂
(
Re R(t, 0)

)(
WF(u0)

) ∩ S0,t , (4.11)

since WF(u0) ⊂ R
2n\{0} and S0,t ⊂ R

2n . This ends the proof of Theorem 1.6.
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5 Appendix: Gabor wave front set

This appendix is devoted to recall the definition and basic properties of the Gabor
wave front set of a tempered distribution. This wave front set is defined as a subset
of the phase space characterizing the lack of Schwartz regularity of the tempered
distribution.

For all x, y, ξ ∈ R
n , we denote

Tx f (y) = f (y − x), Mξ f (y) = eiy·ξ f (y), �(x, ξ) = MξTx ,

the translation, modulation and phase space translation operators. Given a window
function ϕ ∈ S (Rn)\{0}, the short-time Fourier transform of the tempered distribu-
tion f ∈ S ′(Rn) is defined in [10] as

(Vϕ f )(x, ξ) = 〈 f,�(x, ξ)ϕ〉S ′(Rn),S (Rn), (x, ξ) ∈ R
2n .

The function (x, ξ) ∈ R
2n �→ (Vϕ f )(x, ξ) ∈ C is smooth and its modulus is bounded

by C〈(x, ξ)〉k for all (x, ξ) ∈ R
2n for some constants C, k ≥ 0. If ϕ ∈ S (Rn),

‖ϕ‖L2(Rn) = 1 and f ∈ S ′(Rn), the short-time Fourier transform inversion for-
mula [10, Corollary 11.2.7] reads as

∀g ∈ S (Rn), 〈 f, g〉S ′(Rn),S (Rn)

= 1

(2π)n

∫

R2n
(Vϕ f )(x, ξ)〈�(x, ξ)ϕ, g〉S ′(Rn),S (Rn)dxdξ.

On the other hand, we recall that the Shubin symbol class Gm , with m ∈ R, is defined
as the space of all a ∈ C∞(R2n, C) satisfying

∀α, β ∈ N
n, ∃Cα,β > 0,∀(x, ξ) ∈ R

2n, |∂α
x ∂

β
ξ a(x, ξ)| ≤ Cα,β〈(x, ξ)〉m−|α|−|β|.

(5.1)
The space Gm equipped with the semi-norms

sup
(x,ξ)∈R2n

〈(x, ξ)〉−m+|α|+|β||∂α
x ∂

β
ξ a(x, ξ)|, α, β ∈ N

n,

is a Fréchet space. Given a Shubin symbol a ∈ Gm , a non-zero point in the phase
space (x0, ξ0) ∈ R

2n\{(0, 0)} is said to be non-characteristic for the symbol a with
respect to the class Gm provided there exist some positive constants A, ε > 0 and an
open conic3 set � ⊆ R

2n\{(0, 0)} such that

(x0, ξ0) ∈ �, ∀(x, ξ) ∈ �,∀|(x, ξ)| ≥ A, |a(x, ξ)| ≥ ε〈(x, ξ)〉m .

Otherwise, the non-zero point (x0, ξ0) ∈ R
2n\{(0, 0)} is said to be characteristic. We

denote by Char(a) ⊂ R
2n\{(0, 0)} the set of all characteristic points.

3 A set invariant under multiplication with positive reals.
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1380 K. Pravda-Starov

The notion of Gabor wave front set is defined as follows by Hörmander [16] to
measure the directions in the phase space in which a tempered distribution does not
behave like a Schwartz function:

Definition 5.1 Let u ∈ S ′(Rn) be a tempered distribution. Its Gabor wave front
set WF(u) is defined as the set of all non-zero points in the phase space (x, ξ) ∈
R
2n\{(0, 0)} such that for all a ∈ Gm , with m ∈ R,

aw(x, Dx )u ∈ S (Rn) �⇒ (x, ξ) ∈ Char(a).

According to [16, Proposition 6.8] and [27, Corollary 4.3], the Gabor wave front
set can be microlocally characterized by the short-time Fourier transform. Indeed, if
u ∈ S ′(Rn) and ϕ ∈ S (Rn)\{0}, then (x0, ξ0) ∈ R

2n\{(0, 0)} satisfies (x0, ξ0) /∈
WF(u) if and only if there exists an open conic set �x0,ξ0 ⊆ R

2n\{(0, 0)} containing
(x0, ξ0) such that

∀N ≥ 0, sup
(x,ξ)∈�x0,ξ0

〈(x, ξ)〉N |(Vϕu)(x, ξ)| < +∞.

The Gabor wave front set satisfies the following basic properties:

(i) If u ∈ S ′(Rn), then [16, Proposition 2.4]

WF(u) = ∅ ⇐⇒ u ∈ S (Rn) (5.2)

(i i) If u ∈ S ′(Rn) and a ∈ Gm , then

WF(aw(x, Dx )u) ⊂ WF(u) ∩ conesupp(a) ⊂ WF(aw(x, Dx )u) ∪ Char(a),

where the conic support conesupp(a) of a ∈ Gm is the set of all (x, ξ) ∈ R
2n\{0}

such that any conic open set �x,ξ ⊆ R
2n\{0} containing (x, ξ) verifies

supp(a) ∩ �x,ξ is not compact in R
2n

The Gabor wave front set also enjoys some symplectic invariant features thanks to
the symplectic invariance of the Weyl quantization. We recall that the real symplectic
group Sp(n, R) consists of all matrices χ ∈ GL(2n, R) preserving the symplectic
form

σ
(
χ(X), χ(X ′)

) = σ(X, X ′), (5.3)

for all X, X ′ ∈ R
2n , whereas the complex symplectic group Sp(n, C) consists of all

matrices χ ∈ GL(2n, C) satisfying (5.3) for all X, X ′ ∈ C
2n . To each real symplec-

tic matrix χ ∈ Sp(n, R) is associated [8,15] a unitary operator μ(χ) on L2(Rn),
determined up to a complex factor of modulus one, satisfying

∀a ∈ S ′(R2n), μ(χ)−1aw(x, Dx )μ(χ) = (a ◦ χ)w(x, Dx ). (5.4)
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The operator μ(χ) is an homeomorphism on S (Rn) and on S ′(Rn). The mapping
Sp(n, R) " χ �→ μ(χ) is called the metaplectic representation [8]. It is in fact a
representation of the so called 2-fold covering group of Sp(n, R), which is called the
metaplectic group and denoted Mp(n, R). The metaplectic representation satisfies the
homomorphism relation only modulo a change of sign

μ(χχ ′) = ±μ(χ)μ(χ ′), χ, χ ′ ∈ Sp(n, R).

According to [16, Proposition 2.2], theGaborwave front set is symplectically invariant,
that is, for all u ∈ S ′(Rn), χ ∈ Sp(n, R),

(x, ξ) ∈ WF(u) ⇐⇒ χ(x, ξ) ∈ WF(μ(χ)u),

that is,
WF(μ(χ)u) = χWF(u), χ ∈ Sp(n, R), u ∈ S ′(Rn). (5.5)

References

1. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations. In Control and Systems
Theory, Systems and Control: Foundations and Applications. Birkhäuser Verlag, Basel (2003)

2. Cappiello, M., Rodino, L., Toft, J.: On the inverse to the harmonic oscillator. Commun. Part. Differ.
Equ. 40(6), 1096–1118 (2015)

3. Combescure, M.: The squeezed state approach of the semiclassical limit of the time-dependent
Schrödinger equation. J. Math. Phys. 33(11), 3870–3880 (1992)

4. Combescure, M., Robert, D.: Semiclassical spreading of quantum wavepackets and applications near
unstable fixed points of the classical flow. Asymptot. Anal. 14(4), 377–404 (1997)

5. Combescure, M., Robert, D.: Quadratic quantum Hamiltonians revisited. Cubo 8(1), 61–86 (2006)
6. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics, Theoretical

and Mathematical Physics. Springer, Dordrecht (2012)
7. Coron, J.-M.: Control and Nonlinearity, Mathematical Surveys and Monographs 136, AMS, Provi-

dence, RI (2007)
8. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton University Press, Princeton (1989)
9. de Gosson, M.: On theWeyl representation of metaplectic operators. Lett. Math. Phys. 72(2), 129–142

(2005)
10. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)
11. Hagedorn, G.A.: Raising and lowering operators for semiclassical wave packets. Ann. Phys. 269(1),

77–104 (1998)
12. Hitrik, M., Pravda-Starov, K.: Spectra and semigroup smoothing for non-elliptic quadratic operators.

Math. Ann. 344, 801–846 (2009)
13. Hitrik, M., Pravda-Starov, K.: Semiclassical hypoelliptic estimates for non-selfadjoint operators with

double characteristics. Commun. Part. Differ. Equ. 35(6), 988–1028 (2010)
14. Hitrik, M., Pravda-Starov, K.: Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical

operators with double characteristics. Ann. Inst. Fourier 63(3), 985–1032 (2013)
15. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer, Berlin (1983)
16. Hörmander, L.: Quadratic hyperbolic operators, Microlocal Analysis and Applications, Lecture Notes

in Math. 1495, (eds.) L. Cattabriga, L. Rodino, pp. 118–160. Springer (1991)
17. Hörmander, L.: Symplectic classification of quadratic forms and general Mehler formulas. Math. Z.

219(3), 413–449 (1995)
18. Laptev, A., Sigal, I.M.: Global Fourier integral operators and semiclassical asymptotics. Rev. Math.

Phys. 12(5), 749–766 (2000)
19. Lerner, N.: Metrics on the Phase Space and Non-selfadjoint Pseudo-differential Operators, Pseudo-

Differential Operators, Theory and Applications, Vol. 3, Birkhäuser (2010)

123



1382 K. Pravda-Starov

20. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen
Functionen höherer Ordnung. J. Reine Angew. Math. 66, 161–176 (1866)

21. Mehlig, B., Wilkinson, M.: Semiclassical trace formulae using coherent states. Ann. Phys. 10(6–7),
541–559 (2001)

22. Ottobre, M., Pavliotis, G.A., Pravda-Starov, K.: Exponential return to equilibrium for hypoelliptic
quadratic systems. J. Funct. Anal. 262(9), 4000–4039 (2012)

23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied
Mathematical Sciences, vol. 44. Springer, New York (1983)

24. Pravda-Starov, K.: Subelliptic estimates for quadratic differential operators. Am. J. Math. 133(1),
39–89 (2011)

25. Pravda-Starov, K., Rodino, L., Wahlberg, P.: Propagation of Gabor singularities for Schrödinger equa-
tions with quadratic Hamiltonians, to appear in Mathematische Nachrichten (2017)

26. Robert, D.: Remarks on asymptotic solutions for time-dependent Schrödinger equations, Optimal
control and partial differential equations, 188–197. IOS, Amsterdam (2001)

27. Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014)
28. Shubin, M.A.: Pseudodifferential operators and spectral theory, Translated from the 1978 Russian

original by Stig I. Andersson, 2nd edn. Springer, Berlin (2001)
29. Unterberger, A.: Oscillateur harmonique et opérateurs pseudo-différentiels. Ann. Inst. Fourier 29(3),

201–221 (1979)
30. Unterberger, A.: Les opérateurs métaplectiques. Complex analysis, microlocal calculus and relativistic

quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), pp. 205-241, Lecture Notes
in Phys. 126, Springer, Berlin-New York (1980)

31. Viola, J.: Non-elliptic quadratic forms and semiclassical estimates for non-selfadjoint operators. Int.
Math. Res. Not. 20, 4615–4671 (2013)

32. Viola, J.: Spectral projections and resolvent bounds for partially elliptic quadratic differential operators.
J. Pseudo Differ. Oper. Appl. 4, 145–221 (2013)

33. Weinstein, A.: A symbol class for some Schrödinger equations on R
n . Am. J. Math. 107(1), 1–21

(1985)
34. Weinstein, A., Zelditch, S.: Singularities of solutions of some Schrödinger equations on R

n . Bull. Am.
Math. Soc. (N.S.) 6(3), 449–452 (1982)

35. Zelditch, S.: Reconstruction of singularities for solutions of Schrödinger’s equation. Commun. Math.
Phys. 90(1), 1–26 (1983)

123


	Generalized Mehler formula for time-dependent non-selfadjoint quadratic operators and propagation  of singularities
	Abstract
	1 Introduction
	1.1 Mehler formula and quadratic Hamiltonians
	1.2 Quadratic operators
	1.3 Statements of the main results
	1.4 Propagation of Gabor singularities
	1.4.1 General case
	1.4.2 Metaplectic case
	1.4.3 Outline of the article


	2 Fourier integral operators associated to non-negative complex symplectic linear transformations
	3 Proofs of the main results
	3.1 Existence and uniqueness of evolution systems
	3.2 Existence and uniqueness of B-valued solutions
	3.3 Some computations in the Weyl quantization

	4 Propagation of Gabor singularities
	5 Appendix: Gabor wave front set
	References




