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Abstract Consider the motion of a viscous incompressible fluid in a 3D exte-
rior domain D when a rigid body R

3\D moves with prescribed time-dependent
translational and angular velocities. For the linearized non-autonomous system, Lq -
Lr smoothing action near t = s as well as generation of the evolution operator
{T (t, s)}t≥s≥0 was shown by Hansel and Rhandi (J Reine Angew Math 694:1–26,
2014) under reasonable conditions. In this paper we develop the Lq -Lr decay esti-
mates of the evolution operator T (t, s) as (t − s) → ∞ and then apply them to the
Navier–Stokes initial value problem.

Mathematics Subject Classification Primary 35Q30; Secondary 76D05

1 Introduction

Let us consider the 3-dimensional Navier–Stokes flow past an obstacle, which is a
moving rigid bodywith prescribed translational and angular velocities. In the reference
frame attached to the obstacle, the system is reduced to

∂t u + u · ∇u = �u + (η + ω × x) · ∇u − ω × u − ∇ p, div u = 0, (1.1)

in a fixed exterior domain D ⊂ R
3 (see Galdi [20] for details), where u =

(u1(x, t), u2(x, t), u3(x, t))� and p = p(x, t) are unknown velocity and pres-
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sure of a viscous incompressible fluid, while η = (η1(t), η2(t), η3(t))� and ω =
(ω1(t), ω2(t), ω3(t))� stand for the translational and angular velocities, respectively,
of the obstacle. Here and hereafter, (·)� denotes the transpose and all vectors are
column ones. As usual, no-slip condition

u|∂D = η + ω × x (1.2)

is imposed at the boundary ∂D of the obstacle, where the boundary ∂D is assumed to
be of class C1,1, and the fluid is at rest at infinity:

u → 0 as |x | → ∞. (1.3)

The issue we are going to address in this paper is how we analyze the case in which
both η(t) and ω(t) are actually time-dependent. Suppose that they are locally Hölder
continuous on [0,∞). Then the problem (1.1)–(1.3) subject to the initial condition

u(·, 0) = u0 (1.4)

admits a unique solution locally in time provided the initial velocity u0 is taken from
Lq(D) with q ∈ [3,∞) and fulfills the compatibility condition on the normal trace
at the boundary, that is, ν · (u0 − η(0) − ω(0) × x)|∂D = 0, as well as div u0 =
0, where ν denotes the outer unit normal to ∂D. This local existence theorem was
proved by Hansel and Rhandi [30]. Global existence of a unique solution in the non-
autonomous setting has still remained open even if the data are small enough, while
weak solutions (in the sense of Leray-Hopf) were constructed globally in time by
Borchers [2]. The essential contribution of [30] is not only to construct the evolution
operator {T (t, s)}t≥s≥0 on Lq

σ (D), the space of solenoidal Lq -vector fields (1 < q <

∞) with vanishing normal trace at ∂D, which provides a solution operator to the initial
value problem for the linearized system

∂t u = �u + (η + ω × x) · ∇u − ω × u − ∇ p,

div u = 0,

u|∂D = 0,

u → 0 as |x | → ∞,

u(·, s) = f,

(1.5)

in D × [s,∞), where s ≥ 0 is the given initial time, but also to show the Lq -Lr

smoothing action (1 < q ≤ r < ∞) near the initial time, namely,

‖T (t, s) f ‖r ≤ C(t − s)−(3/q−3/r)/2‖ f ‖q , (1.6)

‖∇T (t, s) f ‖r ≤ C(t − s)−(3/q−3/r)/2−1/2‖ f ‖q , (1.7)

for 0 ≤ s < t ≤ T and f ∈ Lq
σ (D) with some constant C = C(T ) > 0, where

T ∈ (0,∞) is arbitrarily fixed and ‖ · ‖q denotes the norm of the space Lq(D). It
should be emphasized that those results are very nontrivial because the semigroup
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Large time behavior of a generalized. . . 917

generated by the corresponding autonomous operator [46,47] is never analytic (unless
ω = 0) so that the Tanabe-Sobolevskii theory of evolution operators of parabolic type
(see for instance [42,45,50]) is no longer applicable. This difficulty stems from the
drift term (ω × x) · ∇u with unbounded coefficient, which brings the spectrum of
the linearized operator to the imaginary axis even at large distance from the origin
in the complex plane [13–16]. In spite of this hyperbolic aspect, one may believe
that the linearized system (1.5) itself is almost parabolic as PDE; in fact, it exhibits a
certain smoothing effect together with the singular behavior near the initial time. For
the autonomous case (in which ω ∈ R

3\{0} is a constant vector), this was observed
first by the present author [31,32] (see also [33] even for the specific non-autonomous
case) within the framework of L2 and, later on, by Geissert, Heck and Hieber [24]
within the one of Lq . Thus the result of Hansel and Rhandi [30] may be regarded as a
desired generalization of [24] to the non-autonomous case. What is remarkable is that
they constructed the evolution operator in their ownway without relying on any theory
of abstract evolution equations although the idea of iteration is somewhat similar to
the one in the Tanabe-Sobolevskii theory mentioned above.

The purpose of the present paper is to deduce the large time behavior of the evolution
operator T (t, s) constructed by Hansel and Rhandi [30], that is, estimate (1.6) for all
t > s ≥ 0 and f ∈ Lq

σ (D) with some constant C > 0 independent of s and t ,
where 1 < q ≤ r < ∞, see Theorem 2.1 in the next section. This plays a crucial
role in studies of large time behavior as well as global existence of small solutions to
the initial value problem (1.1)–(1.4). Our conditions on the translational and angular
velocities are

η, ω ∈ Cθ ([0,∞);R3) ∩ L∞(0,∞;R3) (1.8)

with some θ ∈ (0, 1),which seem tobe reasonable.Generally speaking, it is not an easy
task to investigate the asymptotic behavior of the evolution operator for (t − s) → ∞
especially over unbounded spatial domains with boundaries such as exterior domains.

When (1.5) is autonomous, Lq -Lr decay estimates of the semigroup, not only
(1.6) (including even the case r = ∞) but also (1.7) for 1 < q ≤ r ≤ n, where n
denotes the space dimension and (3/q−3/r)/2 should be replaced by (n/q−n/r)/2,
were established in the following literature (among them, [9,10,35,43] studied more
involved 2D case):

• η = 0, ω = 0 (Stokes semigroup) [3,6,9,10,27,37,43];
• η �= 0, ω = 0 (Oseen semigroup) [11,12,35,39];
• ω �= 0, η = 0 (Stokes semigroup with rotating effect) [36].

One of the effectual methods developed there (especially in [9,11,35–37,39]) is spec-
tral analysis, which is based on the principle that the regularity of the resolvent near
λ = 0 implies the decay of the semigroup for t → ∞, where λ stands for the resolvent
parameter, however, one does not have enough knowledge about such analysis for the
non-autonomous case (except the time-periodic case). We will thus employ rather
elementary approach with some contrivance. In this case several energy estimates for
derivatives of solutions could help us (indeed they are not enough but would clue us
to the end as in [43]), however, those estimates do not seem to be very useful for (1.5)
except the first energy relation, see Remark 2.2. The only fine knowledge would be
the Lq -Lr decay estimate of the solution to the same system in the whole space R3
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918 T. Hishida et al.

(Lemma 3.1). Therefore, it is reasonable to decompose the solution u(t) = T (t, s) f
of (1.5) into a suitable modification of the associated flow in the whole space and
the remaining part v(t). Then our main task is to derive the Lr -boundedness of v(t)
uniformly in time for r ∈ (2,∞) by duality argument with use of the first energy
relation of the backward adjoint system. Once we have that for some r0 ∈ (2,∞),
we are led to the Lr ′

0 -boundedness of the adjoint evolution operator T (t, s)∗, where
1/r ′

0 + 1/r0 = 1, from which with the aid of the energy relation above we obtain the
Lq -Lr estimate of T (t, s)∗ for r ′

0 ≤ q ≤ r ≤ 2 (Lemma 4.1). This argument itself
is similar to the one adopted by Maremonti and Solonnikov [43] for the Stokes semi-
group. But, differently from theirs, we are at the beginning forced to take the exponent
r0 close to 2 because of less information about the evolution operator itself (specifi-
cally, lack of useful information about energy estimates for derivatives as mentioned
above). The idea is to repeat the argument above with better information at hand, that
is, the aforementioned Lq -L2 estimate of T (t, s)∗ although q ∈ (1, 2) must be taken
close to 2. We then deduce the Lr0 -boundedness of v(t) for some r0 ∈ (2,∞) larger
than before. Such a sort of bootstrap argument eventually leads to the Lq -Lr estimate
(1.6) with 2 ≤ q ≤ r < ∞ for all t > s ≥ 0 as well as the estimate of the adjoint

‖T (t, s)∗g‖r ≤ C(t − s)−(3/q−3/r)/2‖g‖q , (1.9)

for all t > s ≥ 0 and g ∈ Lq
σ (D), where 1 < q ≤ r ≤ 2. In this way, estimates (1.6)

and (1.9) are discussed simultaneously throughout the proof. It is also possible to carry
out the same procedure inwhich T (t, s) and its adjoint T (t, s)∗ are replaced each other,
so that we obtain (1.6) with 1 < q ≤ r ≤ 2 as well as (1.9) with 2 ≤ q ≤ r < ∞. As
a consequence, by the semigroup property of the evolution operator, both (1.6) and
(1.9) are proved for all t > s ≥ 0 whenever 1 < q ≤ r < ∞.

The problem under consideration is physically relevant in 2D as well, however, our
approach does not work in this case, see Remark 4.1. Neither does it for deduction of
(1.7) for all t > s ≥ 0 even in 3D, where 1 < q ≤ r ≤ 3; indeed, it turns out that
∇T (t, s) f decays at least at the same rate as (1.6), see Remark 2.1, but of course this
weak decay property is useless. The optimal gradient estimate (1.7) for all t > s ≥ 0
is needed to solve the Navier–Stokes initial value problem (1.1)–(1.4) globally in time
as long as one follows the standard way as in Kato [38]. Nevertheless, in this paper, we
propose another way for construction of a unique global solution without using any
pointwise decay of the gradient of the evolution operator such as (1.7), see Theorem
5.1. This approach seems to be new to the best of our knowledge. In the duality
formulation of the Navier–Stokes system in terms of the adjoint evolution operator
T (t, s)∗ (where this formulation itself is not new, see [4,40,41,51]), our idea is to
combine the energy relation of the backward adjoint system with (1.9) so as to deduce
the large time behavior comparable to the optimal pointwise decay of ∇T (t, s)∗, see
Theorem 2.2 and Lemma 5.1.

This paper is organized as follows. In the next section we introduce the evolution
operator and study its adjoint. We then provide the main theorems (Theorems 2.1 and
2.2, where the latter is a corollary to the former). In Sect. 3 we give some preparatory
results. The central part of this paper is Sect. 4, which is devoted to the proof of
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Large time behavior of a generalized. . . 919

Theorem 2.1. An application to the Navier–Stokes initial value problem (1.1)–(1.4) is
discussed in the final section.

2 Evolution operator and its adjoint

2.1 Notation

Let us begin with introducing basic notation. Given a domainG ⊂ R
3, q ∈ [1,∞] and

integer k ≥ 0, we denote the standard Lebesgue and Sobolev spaces by Lq(G) and
by Wk,q(G). We abbreviate the norm ‖ · ‖q,G = ‖ · ‖Lq (G) and even ‖ · ‖q = ‖ · ‖q,D ,
where D is the exterior domain under consideration with ∂D ∈ C1,1. Let C∞

0 (G) be

the class of all C∞ functions with compact support in G, then Wk,q
0 (G) stands for

the completion of C∞
0 (G) in Wk,q(G). By 〈·, ·〉G we denote various duality pairings

over the domain G. In what follows we adopt the same symbols for denoting vector
and scalar function spaces as long as there is no confusion. Let X be a Banach space.
Then L(X) denotes the Banach space consisting of all bounded linear operators from
X into itself.

We also introduce the solenoidal function space. LetG ⊂ R
3 be one of the following

domains; the exterior domain D under consideration, a bounded domain with C1,1-
boundary ∂G and the whole space R3. The class C∞

0,σ (G) consists of all divergence-
free vector fields being in C∞

0 (G). Let 1 < q < ∞. The space Lq
σ (G) denotes the

completion of C∞
0,σ (G) in Lq(G). Then it is characterized as

Lq
σ (G) = {u ∈ Lq(G); div u = 0, ν · u|∂G = 0},

where ν stands for the outer unit normal to ∂G and ν · u is understood in the sense of
normal trace on ∂G (this boundary condition is absent when G = R

3). The space of
Lq -vector fields admits the Helmholtz decomposition

Lq(G) = Lq
σ (G) ⊕ {∇ p ∈ Lq(G); p ∈ Lq

loc(G)},

which was proved by Fujiwara and Morimoto [19], Miyakawa [44] and Simader and
Sohr [48]. By PG = PG,q : Lq(G) → Lq

σ (G), we denote the Fujita–Kato projection
associated with the decompostion above. Note the duality relation (PG,q)

∗ = PG,q ′ ,
where 1/q ′ + 1/q = 1. We simply write P = PD for the exterior domain D under
consideration. Finally, we denote several positive constants by C , which may change
from line to line.

2.2 Evolution operator

Suppose that
η, ω ∈ Cθ

loc([0,∞); R3) (2.1)

123



920 T. Hishida et al.

for some θ ∈ (0, 1). We set

|(η, ω)|0,T = sup
0≤t≤T

(|η(t)| + |ω(t)|),

|(η, ω)|θ,T = sup
0≤s<t≤T

|η(t) − η(s)| + |ω(t) − ω(s)|
(t − s)θ

,

for T ∈ (0,∞). Let 1 < q < ∞, then the linear operator L±(t) relating to the exterior
problem (1.5) is defined by

Dq(L±(t)) = {u ∈ Lq
σ (D) ∩ W 1,q

0 (D) ∩ W 2,q(D); (ω(t) × x) · ∇u ∈ Lq(D)},
L±(t)u = −P[�u ± (η(t) + ω(t) × x) · ∇u ∓ ω(t) × u].

(2.2)
Indeed, (1.5) is reduced to the initial value problem

∂t u(t) + L+(t)u(t) = 0, t ∈ [s,∞); u(s) = f, (2.3)

in Lq
σ (D). Since the domain Dq(L±(t)) is dependent of t , the space

Yq(D) := {u ∈ Lq
σ (D) ∩ W 1,q

0 (D) ∩ W 2,q(D); |x |∇u ∈ Lq(D)}, (2.4)

which is contained in Dq(L±(t)) for every t , plays a role, see [30], in which Hansel
and Rhandi proved the following proposition.

Proposition 2.1 Suppose that η and ω fulfill (2.1) for some θ ∈ (0, 1). Let 1 < q <

∞. The operator family {L+(t)}t≥0 generates an evolution operator {T (t, s)}t≥s≥0
on Lq

σ (D) such that T (t, s) is a bounded linear operator from Lq
σ (D) into itself with

the semigroup property

T (t, τ )T (τ, s) = T (t, s) (t ≥ τ ≥ s ≥ 0); T (s, s) = I, (2.5)

in L(Lq
σ (D)) and that the map

{t ≥ s ≥ 0} � (t, s) �→ T (t, s) f ∈ Lq
σ (D)

is continuous for every f ∈ Lq
σ (D). Furthermore, we have the following properties.

1. Let q ≤ r < ∞. For each T ∈ (0,∞) and m ∈ (0,∞), there is a constant
C = C(T ,m, q, r, θ, D) > 0 such that (1.6) and (1.7) hold for all (t, s) with
0 ≤ s < t ≤ T and f ∈ Lq

σ (D) whenever

|(η, ω)|0,T + |(η, ω)|θ,T ≤ m.

Furthermore, we have

lim
t→s

(t − s)(3/q−3/r)/2+ j/2‖∇ j T (t, s) f ‖r = 0 (2.6)
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for all f ∈ Lq
σ (D) and j = 0, 1, except when j = 0, r = q.

2. Fix s ≥ 0. For every f ∈ Yq(D) and t ∈ [s,∞), we have T (t, s) f ∈ Yq(D) and

T (·, s) f ∈ C1([s,∞); Lq
σ (D)) (2.7)

with
∂t T (t, s) f + L+(t)T (t, s) f = 0, t ∈ [s,∞), (2.8)

in Lq
σ (D).

3. Fix t ≥ 0. For every f ∈ Yq(D), we have

T (t, ·) f ∈ C1([0, t]; Lq
σ (D)) (2.9)

with
∂sT (t, s) f = T (t, s)L+(s) f, s ∈ [0, t], (2.10)

in Lq
σ (D).

We take R0 > 0 satisfying

R
3\D ⊂ BR0 := {x ∈ R

3; |x | < R0} (2.11)

and fix ζ ∈ C∞([0,∞)) such that ζ(ρ) = 1 for ρ ≤ 1 and ζ(ρ) = 0 for ρ ≥ 2.
We set φR(x) = ζ(|x |/R) for R ∈ [R0,∞), then ∇φR(x) = ζ ′(|x |/R) x/(R|x |). Let
f ∈ Dq(L±(t)) and g ∈ Dq ′(L∓(t)), where 1/q ′ + 1/q = 1, then we have

∫

D
[{(η + ω × x) · ∇ f } · g + f · {(η + ω × x) · ∇g}] φR dx

= −
∫

R<|x |<2R
( f · g)(η + ω × x) · ∇φR dx .

Since (ω × x) · ∇φR = 0 and since f · g ∈ L1(D), passing to the limit as R → ∞
yields

〈(η + ω × x) · ∇ f, g〉D + 〈 f, (η + ω × x) · ∇g〉D = 0,

which means that the non-autonomous terms of L±(t) are skew-symmetric. We thus
obtain

〈L±(t) f, g〉D = 〈 f, L∓(t)g〉D (2.12)

for all f ∈ Dq(L±(t)) and g ∈ Dq ′(L∓(t)). If in particular q = 2, then we find

〈L±(t) f, f 〉D = ‖∇ f ‖22 (2.13)

for all f ∈ D2(L±(t)), which together with (2.8) implies the energy equality

1

2
∂t‖T (t, s) f ‖22 + ‖∇T (t, s) f ‖22 = 0 (2.14)
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and its integral form

1

2
‖T (t, s) f ‖22 +

∫ t

τ

‖∇T (σ, s) f ‖22 dσ = 1

2
‖T (τ, s) f ‖22 (2.15)

for all f ∈ Y2(D) and t ≥ τ ≥ s ≥ 0.

2.3 Adjoint evolution operator

Let us fix t ≥ 0. The adjoint evolution operator must be related to the backward system
subject to the final condition at t , that is,

− ∂sv(s) + L−(s)v(s) = 0, s ∈ [0, t]; v(t) = g, (2.16)

in Lq
σ (D), as we will explain. It follows from the argument of [30] that the operator

family {L−(t − τ)}τ∈[0,t] also generates an evolution operator on Lq
σ (D), which we

denote by {T̃ (τ, s; t)}0≤s≤τ≤t , with the same properties as in Proposition 2.1 for
T (t, s). In particular, for every g ∈ Yq(D), we see that w(τ) := T̃ (τ, 0; t)g solves
the initial value problem

∂τw(τ) + L−(t − τ)w(τ) = 0, τ ∈ [0, t]; w(0) = g, (2.17)

in Lq
σ (D). We set

S(t, s) := T̃ (t − s, 0; t) (t ≥ s ≥ 0), (2.18)

then, for every g ∈ Yq(D) and s ∈ [0, t], we have S(t, s)g ∈ Yq(D) and

S(t, ·)g ∈ C1([0, t]; Lq
σ (D)) (2.19)

with
∂s S(t, s)g = L−(s)S(t, s)g, s ∈ [0, t], (2.20)

in Lq
σ (D). Namely, given g ∈ Yq(D),

v(s) := S(t, s)g = w(t − s) (2.21)

provides a solution to (2.16). Furthermore, S(t, s) enjoys the same Lq -Lr smoothing
action (1 < q ≤ r < ∞) near the final time as in (1.6)–(1.7) for 0 ≤ s < t ≤ T
with some constant C = C(T ) > 0, where T ∈ (0,∞) is arbitrary. As for the energy
relation to (2.16), one uses (2.13) to get

1

2
∂s‖S(t, s)g‖22 = ‖∇S(t, s)g‖22 (2.22)

and its integral form

1

2
‖S(t, s)g‖22 +

∫ τ

s
‖∇S(t, σ )g‖22 dσ = 1

2
‖S(t, τ )g‖22 (2.23)
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for all g ∈ Y2(D) and t ≥ τ ≥ s ≥ 0.
We will show the following lemma.

Lemma 2.1 Let 1 < q < ∞. Under the same conditions as in Proposition 2.1, we
have the duality relation

T (t, s)∗ = S(t, s), S(t, s)∗ = T (t, s),

in L(Lq
σ (D)) for t ≥ s ≥ 0.

Proof Wefix s and t as above. Let f ∈ Yq ′(D) and g ∈ Yq(D), where 1/q ′+1/q = 1.
By virtue of (2.8), (2.12) and (2.20) we observe

∂τ 〈T (τ, s) f, S(t, τ )g〉D
= 〈−L+(τ )T (τ, s) f, S(t, τ )g〉D + 〈T (τ, s) f, L−(τ )S(t, τ )g〉D = 0

for τ ∈ [s, t]. This implies that

〈T (t, s) f, g〉D = 〈 f, S(t, s)g〉D
for f ∈ Yq ′(D) and g ∈ Yq(D); by continuity, we have the same relation for all f ∈
Lq ′

σ (D) and g ∈ Lq
σ (D) since Yq(D) is dense in Lq

σ (D). This concludes T (t, s)∗ =
S(t, s) in L(Lq

σ (D)) and S(t, s)∗ = T (t, s) in L(Lq ′
σ (D)). ��

Lemma 2.1 leads to the following corollary.

Corollary 2.1 Let 1 < q < ∞ and 1/q ′ + 1/q = 1. Under the same conditions as
in Proposition 2.1, we have the following.

1. The backward semigroup property

S(τ, s)S(t, τ ) = S(t, s) (t ≥ τ ≥ s ≥ 0); S(t, t) = I, (2.24)

holds in L(Lq
σ (D)).

2. Fix s ≥ 0. For every f ∈ Yq ′(D) and g ∈ Yq(D) the map

[s,∞) � t �→ 〈 f, S(t, s)g〉D
is differentiable and

∂t 〈 f, S(t, s)g〉D + 〈 f, S(t, s)L−(t)g〉D = 0, t ∈ [s,∞). (2.25)

Proof The first assertion follows from (2.5) and Lemma 2.1. Let f ∈ Yq ′(D) and
g ∈ Yq(D). Lemma 2.1 together with (2.12) then implies

〈
f,

S(t + h, s)g − S(t, s)g

h
+ S(t, s)L−(t)g

〉

D

=
〈
T (t + h, s) f − T (t, s) f

h
+ L+(t)T (t, s) f, g

〉

D
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for t, t + h ∈ [s,∞). Passing to the limit as h → 0 leads to the second assertion on
account of (2.7)–(2.8). ��

2.4 Main results

We are in a position to give our main results on decay properties of both T (t, s)
and T (t, s)∗ when further conditions (1.8) for some θ ∈ (0, 1) are imposed on the
translational and angular velocities. Set

|(η, ω)|0 = sup
t≥0

(|η(t)| + |ω(t)|),

|(η, ω)|θ = sup
t>s≥0

|η(t) − η(s)| + |ω(t) − ω(s)|
(t − s)θ

.

Theorem 2.1 Suppose that η and ω fulfill (1.8) for some θ ∈ (0, 1). Let 1 < q ≤ r <

∞. For each m ∈ (0,∞), there is a constant C = C(m, q, r, θ, D) > 0 such that
both (1.6) and (1.9) hold for all t > s ≥ 0 and f, g ∈ Lq

σ (D) whenever

|(η, ω)|0 + |(η, ω)|θ ≤ m. (2.26)

Theorem 2.1 combined with (2.15) or (2.23) at once yields the following estimates
(2.27) for f, g ∈ Y2(D) ∩ Lq

σ (D) with q ∈ (1, 2] and, therefore, for those in Lq
σ (D)

by an approximation procedure.

Theorem 2.2 Let q ∈ (1, 2]. Under the same conditions as in Theorem 2.1, there is
a constant C = C(m, q, θ, D) > 0 such that

∫ ∞

t
‖∇T (σ, s) f ‖22 dσ ≤ C(t − s)−3/q+3/2‖ f ‖2q ,

∫ s

0
‖∇T (t, σ )∗g‖22 dσ ≤ C(t − s)−3/q+3/2‖g‖2q ,

(2.27)

for all t > s ≥ 0 and f, g ∈ Lq
σ (D) whenever (2.26) is satisfied.

Remark 2.1 Let 1 < q ≤ r < ∞. Combining Theorem 2.1 with Proposition 3.1
below gives the pointwise decay property with slow rate such as

‖∇T (t, s) f ‖r ≤ C‖T (t − 1, s) f ‖r ≤ C(t − s)−(3/q−3/r)/2‖ f ‖q

for t − s > 2, however, the sharp one (t − s)−α still remains open, where α =
min{(3/q − 3/r)/2 + 1/2, 3/2q} in view of the result on the Stokes semigroup, see
[8,34,43]. It should be noted that estimates (2.27) of the integral form are comparable
to the sharp pointwise decay property with r = 2 and thus can be a substitution. In this
paper we employ (2.27) as well as Theorem 2.1 to solve the Navier–Stokes system.
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Large time behavior of a generalized. . . 925

Remark 2.2 It does not seem to be easy to deduce usuful higher energy estimates. For
instance, we have the second energy relation of the form

∂t‖∇T (t, s) f ‖22 + ‖P�T (t, s) f ‖22 ≤ C
(|ω(t)| + |ω(t)|2 + |η(t)|2)‖∇T (t, s) f ‖22

which is essentially due to Galdi and Silvestre [22], however, this is not enough to find
decay estimates under (1.8). Even for theOseen semigroupwehadnot known the decay
estimate ‖∇u(t)‖2 ≤ C(t − s)−1/2‖ f ‖2 soley by the energy method until Kobayashi
and Shibata [39] succeeded in spectral analysis to obtain Lq -estimate ‖∇u(t)‖q ≤
C(t − s)−1/2‖ f ‖q for every q ∈ (1, 3], where u(t) denotes the solution to (1.5)
with constant η �= 0 and ω = 0. Toward analysis of the non-autonomous system
under consideration, it would be worth while trying to provide another proof of the
gradient estimate above without relying on spectral analysis, and one could start with
the autonomous Oseen system in the half-spaceR3+, in which the tangential derivative
∂xk u(t) for k = 1, 2 possesses the same dissipative structure as in the first energy.

3 Preliminaries

3.1 Uniform estimate in t − s

We assume that the translational and angular velocities satisfy (1.8). We then deduce
more about the constant C > 0 in (1.6) near t = s than shown by Hansel and Rhandi
[30]. They took a constant C = C(T ) uniformly in (t, s) with 0 ≤ s < t ≤ T , but it
is not clear whether it can be taken uniformly in the difference t − s. For the proof of
Theorem 2.1 we need this information, which is the issue of the following proposition.

Proposition 3.1 Suppose that η and ω fulfill (1.8) for some θ ∈ (0, 1). Let 1 <

q ≤ r < ∞. For each τ∗ ∈ (0,∞) and m ∈ (0,∞), there is a constant C =
C(τ∗,m, q, r, θ, D) > 0 such that (1.6) and (1.7) hold for all (t, s) with

t − s ≤ τ∗ as well as 0 ≤ s < t

and f ∈ Lq
σ (D) whenever (2.26) is satisfied. So does the same thing concerning

estimate (1.9) for T (t, s)∗ = S(t, s).

The latter assertion for the adjoint follows from Lemma 2.1 and the former one,
which it suffices to show. To this end, we have to enter into the details to some extent
about the construction of the evolution operator due to [30]. Basically the idea is to
make full use of the associated evolution operator in the whole space R3 and the one
in a bounded domain near the boundary ∂D. Both are then combined well by a cut-off
technique with the aid of Lemma 3.3 below. This approach wasmore or less adopted in
almost all literature on the exterior problemwithmoving obstacles although difficulties
in each context were overcome in his/her own device of each author. The idea of [30]
by Hansel and Rhandi is to employ a lemma ([29, Lemma 3.3], [30, Lemma 5.2], see
also [24, Lemma 4.6]) on estimate of iterated convolution. From its proof one can see
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926 T. Hishida et al.

how the constant of this estimate is determined. It then turns out that Proposition 3.1
follows from (3.7) and Lemma 3.2 below for the evolution operator in the whole space
and the one in a bounded domain near ∂D, respectively.

3.2 Whole space problem

Let us begin with the non-autonomous system

∂t u = �u + (η(t) + ω(t) × x) · ∇u − ω(t) × u − ∇ p,

div u = 0,
(3.1)

in R3 × [s,∞) subject to

u → 0 as |x | → ∞, u(·, s) = f, (3.2)

where f ∈ Lq
σ (R3). This waswell studied first by Chen andMiyakawa [7] in a specific

situation and, later on, byGeissert andHansel [23,28] in a very general situation. Since

div [(η + ω × x) · ∇u − ω × u] = (η + ω × x) · ∇div u = 0, (3.3)

onemay conclude∇ p = 0within the class∇ p ∈ Lq(R3). Hence, the solution formula
is obtained from the heat semigroup

et� f = (4π t)−3/2e−|·|2/4t ∗ f

simply by transformation of variables as follows, where ∗ stands for convolution in
spatial variable. For every y ∈ R

3, a unique solution to the initial value problem

d

dt
ϕ(t) = −ω(t) × ϕ(t), ϕ(0) = y,

is given by ϕ(t) = Q(t)y in terms of an orthogonal matrix Q(t) with Q(0) = I (3×3
identity matrix). Set �(t, s) = Q(t)Q(s)�, which is the evolution operator for the
ordinary differential equation above. Under a suitable condition on f , the solution to
(3.1) is then explicitly described as

u(x, t) = (
U (t, s) f

)
(x)

:= �(t, s)
(
e(t−s)� f

) (
�(t, s)�

(
x +

∫ t

s
�(t, τ )η(τ )dτ

))

=
∫

R3
�(x, y; t, s) f (y) dy,

(3.4)
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where the kernel matrix is given by

�(x, y; t, s)

= (
4π(t − s)

)−3/2 exp

⎛

⎜
⎝

−
∣∣∣�(t, s)�

(
x + ∫ t

s �(t, τ )η(τ )dτ
)

− y
∣∣∣
2

4(t − s)

⎞

⎟
⎠�(t, s).

See [7,23,28] for details, but the representation above is related to the transformation
(see [20]), by which one obtains (1.1) in the frame attached to the obstacle from the
system in the inertial frame. Note that div

(
U (t, s) f

) = 0 as long as f fulfills the
compatibility condition div f = 0. We also consider the adjoint operator of U (t, s),
which is of the form

(
U (t, s)∗g

)
(y) =

∫

R3
�(x, y; t, s)�g(x) dx .

Given t ≥ 0 and a suitable solenoidal vector field g, the function v(s) := U (t, s)∗g
together with the trivial pressure gradient ∇ p = 0 formally solves the backward
system

−∂sv = �v − (η(s) + ω(s) × x) · ∇v + ω(s) × v + ∇ p,

div v = 0,
(3.5)

in R3 × [0, t] subject to

v → 0 as |x | → ∞, v(·, t) = g. (3.6)

Due to [7,23,28–30], we have the following lemma. Lq -Lr estimates (3.7) follow
from those of the heat semigroup. The regularity (3.9) of the adjoint is verified in the
same way as in (2.19); indeed, the third statament below corresponds to (2.19)–(2.20)
for the exterior problem.

Lemma 3.1 Suppose that η and ω fulfill (2.1) for some θ ∈ (0, 1). Let 1 < q <

∞. Then {U (t, s)}t≥s≥0 defines an evolution operator on Lq(R3) and on Lq
σ (R3).

Similarly, {U (t, s)∗}t≥s≥0 defines a backward evolution operator (see (2.24)) on those
spaces for every q ∈ (1,∞). Furthermore, we have the following properties.

1. Let q ≤ r ≤ ∞. For every integer j ≥ 0, there is a constant C j = C j (q, r) > 0,
independent of η and ω, such that

‖∇ jU (t, s) f ‖r,R3 ≤ C j (t − s)−(3/q−3/r)/2− j/2‖ f ‖q,R3,

‖∇ jU (t, s)∗g‖r,R3 ≤ C j (t − s)−(3/q−3/r)/2− j/2‖g‖q,R3,
(3.7)

for all t > s ≥ 0 and f, g ∈ Lq(R3).
2. Set

Yq(R
3) = {u ∈ Lq

σ (R3) ∩ W 2,q(R3); |x |∇u ∈ Lq(R3)}.
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928 T. Hishida et al.

We fix s ≥ 0. For every f ∈ Yq(R3) and t ∈ [s,∞), we have U (t, s) f ∈ Yq(R3)

and
u := U (·, s) f ∈ C1([s,∞); Lq

σ (R3)), (3.8)

which satisfies (3.1)–(3.2) in Lq
σ (R3).

3. Fix t ≥ 0. For every g ∈ Yq(R3) and s ∈ [0, t], we have U (t, s)∗g ∈ Yq(R3) and

v := U (t, ·)∗g ∈ C1([0, t]; Lq
σ (R3)), (3.9)

which satisfies (3.5)–(3.6) in Lq
σ (R3).

3.3 Interior problem

We fix R ∈ [R0,∞), where R0 is as in (2.11), and proceed to the non-autonomous
system

∂t u = �u + (η + ω × x) · ∇u − ω × u − ∇ p,

div u = 0,
(3.10)

in DR × [s,∞) subject to

u|∂DR = 0, u(·, s) = f. (3.11)

Using the Fujita–Kato projection PDR associated with the Helmholtz decomposition,
we define the Stokes operator

Dq(A) = Lq
σ (DR) ∩ W 1,q

0 (DR) ∩ W 2,q(DR), Au = −PDR�u,

and the operator

Dq(LR(t)) = Dq(A), LR(t) = A + B(t),

where the non-autonomous term

B(t)u := −PDR [(η(t) + ω(t) × x) · ∇u − ω(t) × u]
= −(η(t) + ω(t) × x) · ∇u + ω(t) × u (3.12)

is nothing but lower order perturbation from the Stokes operator for the interior prob-
lem unlike the exterior problem. The latter equality in (3.12) holds for u ∈ Dq(A) as
shown in the proof of Lemma 3.2 below. For each t ≥ 0, the operator LR(t) generates
an analytic semigroup on Lq

σ (DR), see the resolvent estimate (3.15) below. Under the
condition (2.1) for some θ ∈ (0, 1), it is not difficult to apply the Tanabe-Sobolevskii
theory to the operator family {LR(t)}t≥0. It then turns out that this family generates the
evolution operator {V (t, s)}t≥s≥0 of parabolic type on Lq

σ (DR); indeed, this was the
observation by [30] (see also [33]). In the present paper, further consideration under
the condition (1.8) is needed.
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Lemma 3.2 Suppose that η and ω fulfill (1.8) for some θ ∈ (0, 1). Let 1 < q ≤
r < ∞. For each τ∗ ∈ (0,∞), m ∈ (0,∞) and j = 0, 1, there are constants
C j = C j (τ∗,m, q, r, θ, DR) > 0 and C2 = C2(τ∗,m, q, θ, DR) > 0 such that

‖∇ j V (t, s) f ‖r,DR ≤ C j (t − s)−(3/q−3/r)/2− j/2‖ f ‖q,DR , (3.13)

‖p(t)‖q,DR ≤ C2(t − s)−(1+1/q)/2‖ f ‖q,DR (3.14)

for all (t, s) with t − s ≤ τ∗ as well as 0 ≤ s < t and f ∈ Lq
σ (DR) whenever (2.26)

is satisfied. Here, p(t) denotes the pressure to (3.10) associated with u(t) = V (t, s) f
and it is singled out subject to the side condition

∫
DR

p(x, t)dx = 0.

Proof Set� = {λ ∈ C; | arg λ| ≤ 3π/4}∪{0}.We know [17,26,49] that� ⊂ ρ(−A)

with

‖∇ j (λ + A)−1‖ ≤ C(1 + |λ|)−(2− j)/2

for all λ ∈ � and j = 0, 1, where we fix q ∈ (1,∞) and abbreviate ‖ · ‖ =
‖ · ‖L(Lq

σ (DR)). Let k > 0, then by |λ + k| ≥ k/21/2 we have the following uniform
boundedness in λ ∈ � and t ≥ 0:

‖B(t)(λ + k + A)−1‖ ≤ C |(η, ω)|0
1∑

j=0

‖∇ j (λ + k + A)−1‖

≤ Cm
1∑

j=0

(1 + k)−(2− j)/2.

We are thus able to take k = k(m) > 0 large enough to obtain

‖B(t)(λ + k + A)−1‖ ≤ 1

2

for all λ ∈ � and t ≥ 0, which yields the existence of the bounded inverse

(λ + k + LR(t))−1 = (λ + k + A)−1[1 + B(t)(λ + k + A)−1]−1

together with

‖∇ j (λ + k + LR(t))−1‖ ≤ C(1 + |λ + k|)−(2− j)/2 ≤ c∗(1 + |λ|)−(2− j)/2 (3.15)
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for all λ ∈ �, t ≥ 0 and j = 0, 1, where the constant c∗ = c∗(m) depends on m via
k = k(m). This implies that

‖(k + LR(t))(k + LR(τ ))−1 − (k + LR(s))(k + LR(τ ))−1‖
= ‖(B(t) − B(s))(k + LR(τ ))−1‖

≤ C |(η, ω)|θ |t − s|θ
1∑

j=0

‖∇ j (k + LR(τ ))−1‖

≤ Cc∗m |t − s|θ (3.16)

for all t, s, τ ≥ 0 and that
∥
∥∥∇ j e−(t−s)(k+LR(s))

∥
∥∥ ≤ Cc∗(t − s)− j/2 (3.17)

for all t > s ≥ 0 and j = 0, 1. Set

G1(t, s) = −{(k + LR(t)) − (k + LR(s))}e−(t−s)(k+LR(s)), (3.18)

then (3.17) leads to

‖G1(t, s)‖ =
∥
∥∥(B(t) − B(s))e−(t−s)(k+LR(s))

∥
∥∥

≤ Cc∗m
(
1 + τ

1/2∗
)
(t − s)θ−1/2 (3.19)

for all t > s ≥ 0 with t − s ≤ τ∗. By (3.15) and (3.16) one can provide a parametrix
of the evolution operator V (t, s) along the procedure due to Tanabe, in which the
remainder part

W (t, s) := e−k(t−s)V (t, s) − e−(t−s)(k+LR(s))

is constructed in the form

W (t, s) =
∫ t

s
e−(t−τ)(k+LR(τ ))G(τ, s) dτ

by means of iteration

G(t, s) =
∞∑

j=1

G j (t, s), G j (t, s) =
∫ t

s
G1(t, τ )G j−1(τ, s) dτ ( j ≥ 2)

starting from G1(t, s) given by (3.18), see [50, Chapter 5, Section 2] for details. It
follows from (3.17) and (3.19) (togetherwith theHölder estimate ofG1(t, s)−G1(τ, s)
for t > τ > s ≥ 0) that

∥∥∥e−k(t−s)V (t, s)
∥∥∥ + (t − s)

∥∥∥∂t
{
e−k(t−s)V (t, s)

}∥∥∥ ≤ c0
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with some constant c0 = c0(τ∗,m, q, θ, DR) > 0 and thereby

‖V (t, s)‖ + (t − s)‖∂t V (t, s)‖ ≤ c0(1 + kτ∗)ekτ∗ (3.20)

for all t > s ≥ 0 with t − s ≤ τ∗. Since

‖B(t)u‖q,DR ≤ 1

2
‖Au‖q,DR + C(m + m2)‖u‖q,DR ,

we have

‖u‖W 2,q (DR) ≤ C‖Au‖q,DR ≤ C‖LR(t)u‖q,DR + C(m + m2)‖u‖q,DR

for t ≥ 0 and u ∈ Dq(A), in which we set u = V (t, s) f and use (3.20) to obtain

‖V (t, s) f ‖W 2,q (DR) ≤ C(t − s)−1‖ f ‖q,DR (3.21)

with some constant C = C(τ∗,m, q, θ, DR) > 0 for all t > s ≥ 0 with t − s ≤ τ∗.
The Gagliardo-Nirenberg inequality and the semigroup property thus imply (3.13).

Let us consider the estimate of the associated pressure by following the idea of [36,
Section 3], [30, Section 4]. To this end, we first verify the latter equality of (3.12) for
u ∈ Dq(A). On account of (3.3), it suffices to show that the normal trace ν · (∂i u)

vanishes on the boundary ∂DR for each i ∈ {1, 2, 3}, where ν stands for the outer unit
normal to ∂DR . Because C∞

0,σ (DR) is dense in the space {u ∈ W 1,q
0 (DR); div u = 0},

we take φk ∈ C∞
0,σ (DR) (k = 1, 2, ...) satisfying ‖φk − u‖W 1,q (DR) → 0 as k → ∞.

Since ∂iφk ∈ C∞
0,σ (DR), we conclude that ∂i u ∈ Lq

σ (DR) and, hence,

ν · (∂i u)|∂DR = 0, (i = 1, 2, 3) (3.22)

for every u ∈ Dq(A). Let ϕ ∈ C∞
0 (DR) and let ψ be a solution to the Neumann

problem

�ψ = ϕ − 1

|DR |
∫

DR

ϕ(y)dy in DR, ∂νψ |∂DR = 0.

By (3.10), (3.11) and (3.22) we observe

〈∇ p,∇ψ〉DR = 〈�u,∇ψ〉DR , (3.23)

where u = V (t, s) f . Since p is chosen so that
∫
DR

p(x, t)dx = 0, we deduce from
(3.23) that

〈p, ϕ〉DR = 〈p,�ψ〉DR = −〈�u,∇ψ〉DR

= 〈∇u,∇2ψ〉DR −
∫

∂DR

(∂νu) · ∇ψ dσ

123



932 T. Hishida et al.

for all ϕ ∈ C∞
0 (DR). Wemake use of the trace estimate together with ‖ψ‖W 2,q′

(DR)
≤

C‖ϕ‖q ′,DR , where 1/q
′ + 1/q = 1, to get

‖p(t)‖q,DR ≤ C‖∇2u(t)‖1/qq,DR
‖∇u(t)‖1−1/q

q,DR
+ C‖∇u(t)‖q,DR ,

which leads to (3.14) by virtue of (3.13) and (3.21). The proof is complete. ��

3.4 Bogovskii operator

LetG ⊂ R
n (n ≥ 2) be a bounded domain with Lipschitz boundary ∂G. The boundary

value problem

div w = f in G, w|∂G = 0,

admits a lot of solutions as long as f possesses an appropriate regularity and satisfies
the compatibility condition

∫
G f (x)dx = 0. Among them a particular solution found

byBogovskii [1] is convenient to recover the solenoidal condition in cut-off procedures
because of several fine properties of his solution. To be precise, we have the following
lemma, see [1, Theorem 1], [5, Theorem 2.4 (a)–(c)], [21, Theorem III.3.3], [25,
Theorem 2.5] and the references therein.

Lemma 3.3 Let G ⊂ R
n, n ≥ 2, be a bounded domainwith Lipschitz boundary. There

exists a linear operator BG : C∞
0 (G) → C∞

0 (G)n with the following properties: For
every q ∈ (1,∞) and integer k ≥ 0, there is a constant C = C(q, k,G) > 0 such
that

‖∇k+1
BG f ‖q,G ≤ C‖∇k f ‖q,G (3.24)

and that

div (BG f ) = f if
∫

G
f (x) dx = 0, (3.25)

where the constant C is invariant under dilation of the domain G. The operator BG

extends uniquely to a bounded operator from Wk,q
0 (G) to Wk+1,q

0 (G)n so that (3.24)
and (3.25) still hold true. Furthermore, for every q ∈ (1,∞), it also extends uniquely
to a bounded operator from W 1,q ′

(G)∗ to Lq(G)n, namely,

‖BG f ‖q,G ≤ C‖ f ‖W 1,q′
(G)∗ (3.26)

with some constant C = C(q,G) > 0, where 1/q ′ + 1/q = 1.

3.5 A useful lemma

We conclude this section with the following lemma that is useful for both the proof of
Theorem 2.1 and analysis of the Navier–Stokes flow. It is not related to the evolution
operator and might be of independent interest. The issue is how to obtain the optimal
growth rate of the integral, see (3.28) below, for t → ∞ from estimate of the square
integral.
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Lemma 3.4 Fix s ∈ R and let α < 1. Suppose that z = z(τ ) is a real-valued function
being in L2

loc((s,∞)) and that

∫ s+2t

s+t
z(τ )2 dτ ≤ Mt−α (3.27)

for all t > 0 with some constant M > 0. Then we have z ∈ L1
loc([s,∞)) with

∫ s+t

s
|z(τ )| dτ ≤ CM1/2 t (1−α)/2 (3.28)

for all t > 0 with some constant C = C(α) > 0.

Proof Although the proof is quite simple, we give it for readers’ convenience (since
I do not find it in literature). By (3.27) and the Schwarz inequality we have

∫ s+2t

s+t
|z(τ )| dτ ≤ M1/2 t (1−α)/2

for all t > 0. We split the interval (s, s + t) dyadically and then utilize the estimate
above to find

∫ s+t

s
|z(τ )| dτ =

∞∑

j=0

∫ s+t/2 j

s+t/2 j+1
|z(τ )| dτ ≤ M1/2 t (1−α)/2

∞∑

j=0

(
2(α−1)/2

) j+1

for all t > 0, which yields (3.28) on account of α < 1. ��

4 Proof of Theorem 2.1

In this section we will prove Theorem 2.1. Let us fix m > 0 and assume (2.26). We
first consider (1.6) for 2 ≤ q ≤ r < ∞ simultaneously with (1.9) for 1 < q ≤ r ≤ 2.
We fix a cut-off function φ ∈ C∞

0 (B3R0) such that φ = 1 on B2R0 , where R0 is fixed as
in (2.11). Given f ∈ C∞

0,σ (D) ⊂ C∞
0,σ (R3), we take the solution U (t, s) f , see (3.4),

to the whole space problem (3.1) with the initial velocity f at the initial time s ≥ 0.
We may regard the solution T (t, s) f for the exterior problem (1.5) as a perturbation
from a modification of U (t, s) f ; to be precise, let us describe T (t, s) f in the form

T (t, s) f = (1 − φ)U (t, s) f + B
[(
U (t, s) f

) · ∇φ
] + v(t), (4.1)

where the perturbation is denoted by v(t) = v(t; s) and B := BAR0
is the Bogovskii

operator on the domain AR0 := B3R0\BR0 given by Lemma 3.3. It is easily seen that
v(t) together with the pressure p(t) associated with T (t, s) f obeys

∂tv = �v + (η(t) + ω(t) × x) · ∇v − ω(t) × v − ∇ p + F,

div v = 0,
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in D × [s,∞) subject to

v|∂D = 0,

v → 0 as |x | → ∞,

v(·, s) = f̃ := φ f − B[ f · ∇φ],
where the forcing term F is given by

F(x, t) = − 2∇φ · ∇U (t, s) f − [�φ + (η(t) + ω(t) × x) · ∇φ]U (t, s) f

− B
[
∂t

(
U (t, s) f

) · ∇φ
] + �B

[(
U (t, s) f

) · ∇φ
]

+ (η(t) + ω(t) × x) · ∇B
[(
U (t, s) f

) · ∇φ
]

− ω(t) × B
[(
U (t, s) f

) · ∇φ
]
,

which behaves like

‖F(t)‖q ≤
{
C(m + 1)(t − s)−1/2‖ f ‖q , 0 < t − s < 1,
C(m + 1)(t − s)−3/2q‖ f ‖q , t − s ≥ 1,

(4.2)

for 1 < q < ∞. One can verify (4.2) by virtue of (3.7) and (3.24)–(3.26) together
with the first equation (with ∇ p = 0) of (3.1). In fact, the only term in which one
needs (3.26) is

∥∥B
[
∂t

(
U (t, s) f

) · ∇φ
]∥∥

q,AR0
≤ C‖∂t

(
U (t, s) f

) · ∇φ‖W 1,q′
(AR0 )∗

≤ C‖∇U (t, s) f ‖q,AR0
+ Cm‖U (t, s) f ‖q,AR0

and the other terms are harmless by using solely (3.24).
In view of (4.1) together with (2.7), (3.8) and Lemma 3.3, we deduce from f ∈

C∞
0,σ (D) that

v ∈ C1([s,∞); Lq
σ (D))

as well as v(t) ∈ Yq(D) for every q ∈ (1,∞). We can thus employ (2.10) to compute
∂τ {T (t, τ )v(τ )}, so that we are led to the Duhamel formula

v(t) = T (t, s) f̃ +
∫ t

s
T (t, τ )PF(τ ) dτ

in Lq
σ (D). It is convenient to consider the duality formulation

〈v(t), ψ〉D = 〈 f̃ , T (t, s)∗ψ〉D +
∫ t

s
〈F(τ ), T (t, τ )∗ψ〉D dτ (4.3)

for ψ ∈ C∞
0,σ (D).

Let r ∈ (2,∞). We intend to prove the boundedness uniformly in large t − s, that
is,
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‖v(t)‖r ≤ C‖ f ‖r for t − s > 3, (4.4)

with some constant C = C(m, r, θ, D) > 0 independent of such (t, s), where m is as
in (2.26). Once we have that, we can conclude the following decay properties.

Lemma 4.1 In addition to the conditions in Theorem 2.1, suppose that, with some
r0 ∈ (2,∞), estimate (4.4) holds for all f ∈ C∞

0,σ (D).

1. Let 2 ≤ q ≤ r ≤ r0. Then there is a constant C = C(m, q, r, r0, θ, D) > 0 such
that (1.6) holds for all t > s ≥ 0 and f ∈ Lq

σ (D).
2. Let r ′

0 ≤ q ≤ r ≤ 2, where 1/r ′
0 + 1/r0 = 1. Then there is a constant C =

C(m, q, r, r0, θ, D) > 0 such that (1.9) holds for all t > s ≥ 0 and g ∈ Lq
σ (D).

Proof In view of (4.1), we see from (4.4) and (3.7) with the aid of Lemma 3.3 that

‖T (t, s) f ‖r0 ≤ C‖ f ‖r0
for t − s > 3 and, therefore, for all t > s ≥ 0 and f ∈ Lr0

σ (D) with some constant
C = C(m, r0, θ, D) > 0 since we know the estimate for t − s ≤ 3 by Proposition
3.1. By duality we have

‖T (t, s)∗g‖q ≤ C‖g‖q (4.5)

for all t > s ≥ 0 and g ∈ Lq
σ (D) with q = r ′

0 ∈ (1, 2) and, thereby, with q ∈ [r ′
0, 2]

on account of contraction property (2.23) in L2. Hence, by embedding relation we
obtain

‖T (t, s)∗g‖2 ≤ ‖T (t, s)∗g‖μ
6 ‖T (t, s)∗g‖1−μ

q ≤ C‖∇T (t, s)∗g‖μ
2 ‖g‖1−μ

q

for g ∈ Lq
σ (D), where q ∈ [r ′

0, 2) and 1/2 = μ/6 + (1 − μ)/q. We fix t > 0, then
the last inequality together with the energy relation (2.22) implies that

∂s‖T (t, s)∗g‖22 ≥ C‖g‖−2(1/μ−1)
q ‖T (t, s)∗g‖2/μ2

for all s ∈ [0, t] and g ∈ C∞
0,σ (D)\{0}. By solving this differential inequality (as in

[43, Section 5]) we conclude (1.9) when r = 2. Combining this with (4.5) leads to
(1.9) for r ′

0 ≤ q ≤ r ≤ 2. The other estimate (1.6) follows from (1.9) by duality. ��
Let us derive (4.4) when r > 2. As we will see, our main task is to estimate the

integral over the interval (s + 1, t − 1) of the RHS of (4.3); in fact, the other terms
are easily treated as follows. By the energy relation (2.23) (with τ = t − 1) and by
Proposition 3.1 (with τ∗ = 1) for T (t, s)∗ we obtain

|〈 f̃ , T (t, s)∗ψ〉D| ≤ ‖ f̃ ‖2,D3R0
‖T (t, s)∗ψ‖2

≤ C‖ f ‖r‖T (t, t − 1)∗ψ‖2
≤ C‖ f ‖r‖ψ‖r ′ (4.6)

for t − s > 3 and every r ∈ (2,∞), where 1/r ′ + 1/r = 1 and D3R0 = D ∩ B3R0

since f̃ = 0 outside D3R0 . From (4.2) in addition to the same reasoning as above it
follows that
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∣∣∣
∣

(∫ s+1

s
+

∫ t

t−1

)
〈F(τ ), T (t, τ )∗ψ〉D dτ

∣∣∣
∣

≤
(∫ s+1

s
+

∫ t

t−1

)
‖F(τ )‖2,AR0

‖T (t, τ )∗ψ‖2 dτ

≤ C‖T (t, t − 1)∗ψ‖2
∫ s+1

s
‖F(τ )‖r dτ

+ C‖ψ‖r ′
∫ t

t−1
‖F(τ )‖r (t − τ)−(3/r ′−3/2)/2 dτ

≤ C(m + 1)‖ f ‖r‖ψ‖r ′
( ∫ s+1

s
(τ − s)−1/2 dτ

+
∫ t

t−1
(τ − s)−3/2r (t − τ)−(3/r ′−3/2)/2 dτ

)
,

which yields

∣∣∣∣

∫ s+1

s
+

∫ t

t−1

∣∣∣∣ ≤ C‖ f ‖r‖ψ‖r ′
{
1 + (t − s − 1)−3/2r} (4.7)

for t − s > 3 and every r ∈ (2,∞) with some constant C = C(m, r, θ, D) > 0.
We turn to the integral

J :=
∫ t−1

s+1
〈F(τ ), T (t, τ )∗ψ〉D dτ

for which three steps are needed. The details are given as follows.
Since T (t, τ )∗ψ = S(t, τ )ψ ∈ Y2(D) vanishes at the boundary ∂D, see (2.4), and

thereby satisfies the Poincaré inequality in the bounded domain D3R0 , we have

|J | ≤
∫ t−1

s+1
‖F(τ )‖2,AR0

‖T (t, τ )∗ψ‖2,D3R0
dτ

≤ C(m + 1)‖ f ‖r
∫ t−1

s+1
(τ − s)−3/2r‖∇T (t, τ )∗ψ‖2 dτ (4.8)

by (4.2) when r > 2. We use the energy relation (2.23) to find

|J | ≤ C(m + 1)‖ f ‖r
(∫ t−1

s+1
(τ − s)−3/r dτ

)1/2 (∫ t−1

s+1
‖∇T (t, τ )∗ψ‖22 dτ

)1/2

≤ C(m + 1)‖ f ‖r‖T (t, t − 1)∗ψ‖2
(∫ t−1

s+1
(τ − s)−3/r dτ

)1/2

.

(4.9)
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By Proposition 3.1 (with τ∗ = 1) there exists a constant C = C(m, r, θ, D) > 0 such
that

|J | ≤ C‖ f ‖r‖ψ‖r ′

for t − s > 3 provided 2 < r < 3, which combined with (4.7) as well as (4.6) yields
(4.4) for such r .

Let us proceed to the next step. By virtue of Lemma 4.1 we have (1.9) with 3/2 <

q ≤ r ≤ 2 for all t > s ≥ 0 as a consequence of the result above. Let r ∈ (3,∞).
Given ε > 0 arbitrarily small, we choose q ∈ (3/2, 2) (close to 3/2) to get

‖T (t, s)∗ψ‖2 ≤ Cε(t − s − 1)−1/4+ε‖T (t, t − 1)∗ψ‖q
≤ Cε(t − s − 1)−1/4+ε‖ψ‖r ′ (4.10)

for t−s > 1 on account of Proposition 3.1 as well as the backward semigroup property
(2.24). We split the integral in (4.8) into

∫ t−1

s+1
(τ − s)−3/2r‖∇T (t, τ )∗ψ‖2 dτ =

∫ (s+t)/2

s+1
+

∫ t−1

(s+t)/2
(4.11)

for t − s > 3. By use of (4.10) together with (2.23) we obtain

∫ (s+t)/2

s+1
‖∇T (t, τ )∗ψ‖22 dτ ≤ 1

2
‖T (t, (s + t)/2)∗ψ‖22

≤ Cε(t − s − 2)−1/2+2ε‖ψ‖2r ′ (4.12)

for t−s > 2when r > 3. Following the notation (2.21), we setw(t−τ) = T (t, τ )∗ψ ;
then (4.12) is rewritten as

∫ t−s−1

(t−s)/2
‖∇w(τ)‖22 dτ ≤ Cε(t − s − 2)−1/2+2ε‖ψ‖2r ′

for t − s > 2. We then apply Lemma 3.4 to find the growth estimate

∫ t−1

(s+t)/2
‖∇T (t, τ )∗ψ‖2 dτ =

∫ (t−s)/2

1
‖∇w(τ)‖2 dτ ≤ Cε(t − s − 2)1/4+ε‖ψ‖r ′

(4.13)
for t − s > 2, from which the second integral of (4.11) is estimated as

∫ t−1

(s+t)/2
≤ C(t − s)−3/2r

∫ t−1

(s+t)/2
‖∇T (t, τ )∗ψ‖2 dτ

≤ Cε(t − s)−3/2r+1/4+ε‖ψ‖r ′
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for t − s > 3, while the first one of (4.11) is discussed by use of (4.12) in the similar
way to the previous step as

∫ (s+t)/2

s+1
≤ C(t − s)(1−3/r)/2

(∫ (s+t)/2

s+1
‖∇T (t, τ )∗ψ‖22 dτ

)1/2

≤ Cε(t − s)−3/2r+1/4+ε‖ψ‖r ′

for t − s > 3. In view of (4.8) with (4.11) we deduce from both estimates above that

|J | ≤ C‖ f ‖r‖ψ‖r ′

for t − s > 3 with some constant C = C(m, r, θ, D) > 0 provided 3 < r < 6. This
together with (4.7) as well as (4.6) gives (4.4) for such r (there is no need to fill in
the case r = 3 although one can do that by interpolation). We thus obtain (1.9) with
6/5 < q ≤ r ≤ 2 for all t > s ≥ 0 by Lemma 4.1.

Suppose 6 ≤ r < ∞. Then (4.10) can be improved as

‖T (t, τ )∗ψ‖2 ≤ Cε(t − s − 1)−1/2+ε‖ψ‖r ′ (4.14)

for t − s > 1, where ε > 0 is arbitrary. With (4.14) in hand, estimates (4.12) and
(4.13) can be respectively replaced by

∫ (s+t)/2

s+1
‖∇T (t, τ )∗ψ‖22 dτ ≤ Cε(t − s − 2)−1+2ε‖ψ‖2r ′

and by

∫ t−1

(s+t)/2
‖∇T (t, τ )∗ψ‖2 dτ ≤ Cε(t − s − 2)ε‖ψ‖r ′

for t − s > 2, where the latter follows from the former owing to Lemma 3.4. Then the
same argument with use of splitting (4.11) as in the second step leads to

|J | ≤ Cε(t − s)−3/2r+ε‖ f ‖r‖ψ‖r ′ ≤ C‖ f ‖r‖ψ‖r ′

for t−s > 3with someconstantC = C(m, r, θ, D) > 0when choosing an appropriate
ε > 0 for given r ∈ [6,∞). We collect (4.6), (4.7) and the last estimate to furnish
(4.4) for every r ∈ [6,∞). Hence Lemma 4.1 concludes (1.6) with 2 ≤ q ≤ r < ∞
as well as (1.9) with 1 < q ≤ r ≤ 2 for all t > s ≥ 0.

Remark 4.1 In 2D case the argument above does not work even in the first step. In fact,
the decay rate (t − s)−3/2q of ‖F(t)‖q must be replaced by the slower one (t − s)−1/q

in (4.2) and, thereby, the last integral of (4.9) becomes
∫ t−1
s+1 (τ − s)−2/r dτ which

cannot be bounded because r > 2. Thus we do not know (4.4) even if r ∈ (2,∞)

is close to 2. The difficulty of 2D case is described in [35] (even for the autonomous
Oseen system) from the viewpoint of spectral analysis.
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It remains to show the opposite case, that is, (1.6) with 1 < q ≤ r ≤ 2 and (1.9)
with 2 ≤ q ≤ r < ∞. We fix t > 3. Given g ∈ C∞

0,σ (D), we describe the solution
T (t, s)∗g to the backward system (2.16) in the form

T (t, s)∗g = (1 − φ)U (t, s)∗g + B
[(
U (t, s)∗g

) · ∇φ
] + u(s), (4.15)

and intend to estimate the perturbation u(s) = u(s; t). Here, φ is the same cut-
off function as in (4.1) and B denotes the same Bogovskii operator there. Recall that
U (t, s)∗g is the solution to the whole space problem (3.5)–(3.6) with the final velocity
g at the final time t . Then the function u(s) obeys

−∂su = �u − (η(s) + ω(s) × x) · ∇u + ω(s) × u + ∇ p + G,

div u = 0,

in D × [0, t] subject to

u|∂D = 0,

u → 0 as |x | → ∞,

u(·, t) = g̃ := φg − B[g · ∇φ],

where p(s) stands for the pressure associated with T (t, s)∗g and

G(x, s) = − 2∇φ · ∇U (t, s)∗g − [�φ − (η(s) + ω(s) × x) · ∇φ]U (t, s)∗g
+ B

[
∂s

(
U (t, s)∗g

) · ∇φ
] + �B

[(
U (t, s)∗g

) · ∇φ
]

− (η(s) + ω(s) × x) · ∇B
[(
U (t, s)∗g

) · ∇φ
]

+ ω(s) × B
[(
U (t, s)∗g

) · ∇φ
]
,

which satisfies

‖G(s)‖q ≤
{
C(m + 1)(t − s)−1/2‖g‖q , 0 < t − s < 1,
C(m + 1)(t − s)−3/2q‖g‖q , t − s ≥ 1,

(4.16)

for 1 < q < ∞. On account of (2.19), (3.9) and Lemma 3.3 we have

u ∈ C1([0, t]; Lq
σ (D))

as well as u(s) ∈ Yq(D) for every q ∈ (1,∞). Let ψ ∈ C∞
0,σ (D), then we see from

(2.8) and (2.12) that

∂τ 〈ψ, T (τ, s)∗u(τ )〉D = ∂τ 〈T (τ, s)ψ, u(τ )〉D
= 〈T (τ, s)ψ, ∂τu(τ )〉D + 〈−L+(τ )T (τ, s)ψ, u(τ )〉D
= 〈T (τ, s)ψ, ∂τu(τ ) − L−(τ )u(τ )〉D
= −〈T (τ, s)ψ,G(τ )〉D,

123



940 T. Hishida et al.

which leads to the Duhamel formula in the weak form

〈ψ, u(s)〉D = 〈T (t, s)ψ, g̃〉D +
∫ t

s
〈T (τ, s)ψ,G(τ )〉D dτ. (4.17)

Let r ∈ (2,∞), then our task is to derive

‖u(s)‖r ≤ C‖g‖r for t − s > 3, (4.18)

as in (4.4). The corresponding claim to Lemma 4.1 is the following, whose proof is
essentially the same.

Lemma 4.2 In addition to the conditions in Theorem 2.1, suppose that, with some
r0 ∈ (2,∞), estimate (4.18) holds for all g ∈ C∞

0,σ (D).

1. Let r ′
0 ≤ q ≤ r ≤ 2, where 1/r ′

0 + 1/r0 = 1. Then there is a constant C =
C(m, q, r, r0, θ, D) > 0 such that (1.6) holds for all t > s ≥ 0 and f ∈ Lq

σ (D).
2. Let 2 ≤ q ≤ r ≤ r0. Then there is a constant C = C(m, q, r, r0, θ, D) > 0 such

that (1.9) holds for all t > s ≥ 0 and g ∈ Lq
σ (D).

As in (4.6) and (4.7), we use (2.15), (4.16) and Proposition 3.1 to obtain

|〈T (t, s)ψ, g̃〉D| +
∣∣
∣∣

(∫ s+1

s
+

∫ t

t−1

)
〈T (τ, s)ψ,G(τ )〉D dτ

∣∣
∣∣ ≤ C‖g‖r‖ψ‖r ′

for t − s > 3 and every r ∈ (2,∞), where 1/r ′ + 1/r = 1. If 2 < r < 3, then we
observe

∣∣
∣∣

∫ t−1

s+1
〈T (τ, s)ψ,G(τ )〉D dτ

∣∣
∣∣ ≤ C‖g‖r‖ψ‖r ′

for t − s > 3 by the same way as in the treatment of (4.8). In view of (4.17) we obtain
(4.18) for r ∈ (2, 3), which gives (1.6) with 3/2 < q ≤ r ≤ 2 for all t > s ≥ 0 by
Lemma 4.2.

We next proceed to the case r ∈ (3, 6) by splitting the integral over (s + 1, t − 1)
as in (4.11), where estimates (4.12) and (4.13) are replaced by

∫ (s+t)/2

s+1
‖∇T (τ, s)ψ‖2 dτ ≤ Cε(t − s − 2)1/4+ε‖ψ‖r ′

and ∫ t−1

(s+t)/2
‖∇T (τ, s)ψ‖22 dτ ≤ 1

2
‖T ((s + t)/2, s)ψ‖22

≤ Cε(t − s − 2)−1/2+2ε‖ψ‖2r ′

for t − s > 2, where ε > 0 is arbitrarily small; in fact, the latter implies the former
by Lemma 3.4. Then the same argument as before yields (4.18) for r ∈ (3, 6) and,
therefore, (1.6) with 6/5 < q ≤ r ≤ 2.
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Repeating this argument once more by use of (1.6) with such (q, r), we find (1.9)
with 2 ≤ q ≤ r < ∞ as well as (1.6) with 1 < q ≤ r ≤ 2 for all t > s ≥ 0. Finally,
the remaining case q < 2 < r for both estimates is obvious on account of semigroup
properties (2.5), (2.24). The proof of Theorem 2.1 is complete. �

5 Application to the Navier–Stokes problem

5.1 How to construct the Navier–Stokes flow

Let us apply the decay estimates of the evolution operator obtained inTheorems 2.1 and
2.2 to the Navier–Stokes initial value problem (1.1)–(1.4). Concerning the behavior of
the translational and angular velocities η, ω, we could consider several situations, for
instance, the one in which they converge to some constant vectors as t → ∞, the one
in which they oscillate, and so on. The only claim we are going to show is the stability
of the rest state u = 0 in the simplest situation in which the motion of the rigid body
becomes slow as time goes on, that is, its velocity η + ω × x tends to zero as t → ∞.
The stability of nontrivial states is of course more involved as well as interesting and
will be discussed elsewhere. The emphasis is how to treat the nonlinearity u · ∇u
(toward analysis of stability of such states) rather than the result (stability of the rest
state) itself. This is by no means obvious because of lack of pointwise decay estimate
(1.7) for the gradient of the evolution operator as (t − s) → ∞. In order to make the
idea clearer, first of all, it would be better to consider the problem (1.1)–(1.4) in which
the no-slip boundary condition (1.2) is replaced by the homogeneous one u|∂D = 0
although this modification only on ∂D is not physically relevant. We will then discuss
the right problem (1.1)–(1.4) in the next subsection.

The problem (1.1), (1.3), (1.4) subject to u|∂D = 0 is formulated as the initial value
problem

∂t u + L+(t)u + P(u · ∇u) = 0, t ∈ (0,∞); u(0) = u0,

in Lq
σ (D), which is formally converted to the integral equation

u(t) = T (t, 0)u0 −
∫ t

0
T (t, τ )P(u · ∇u)(τ ) dτ (5.1)

and even to its weak form (see [4,40,41,51])

〈u(t), ψ〉D = 〈T (t, 0)u0, ψ〉D +
∫ t

0
〈(u ⊗ u)(τ ),∇T (t, τ )∗ψ〉D dτ,

∀ψ ∈ C∞
0,σ (D), (5.2)

by using the divergence structure u · ∇u = div (u ⊗ u).
We intend to solve (5.2) globally in time for u0 ∈ L3

σ (D) with small ‖u0‖3. Let
r ∈ (3,∞). Under the same conditions on (η, ω) as in Theorem 2.1, there is a constant
cr = cr (m, θ, D) > 0 such that
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‖T (t, 0)u0‖r ≤ cr t
−1/2+3/2r‖u0‖3 (5.3)

for all t > 0, in view of which it is reasonable to seek a solution of class

Er := {
u ∈ Cw((0,∞); Lr

σ (D)); t1/2−3/2r u ∈L∞(0,∞; Lr
σ (D)),

lim
t→0

‖u‖Er (t) = 0
}
,

(5.4)

which is a Banach space endowed with norm

‖ · ‖Er := sup
t>0

‖ · ‖Er (t),

where

‖u‖Er (t) = sup
0<τ≤t

τ 1/2−3/2r‖u(τ )‖r , t > 0.

Especially, the case r = 4 plays a role because we know (2.27). In fact, given u, v ∈
E4, we have

∣
∣∣∣

∫ t

0
〈(u ⊗ v)(τ ),∇T (t, τ )∗ψ〉D dτ

∣
∣∣∣

≤ ‖u‖E4(t)‖v‖E4(t)

∫ t

0
τ−1/4‖∇T (t, τ )∗ψ‖2 dτ (5.5)

for all t > 0. The key observation is the following.

Lemma 5.1 Let q ∈ (6/5, 2]. Under the same conditions as in Theorem 2.1, there is
a constant C = C(m, q, θ, D) > 0 such that

∫ t

0
τ−1/4‖∇T (t, τ )∗ψ‖2 dτ ≤ Ct−3/2q+1‖ψ‖q (5.6)

for all t > 0 and ψ ∈ Lq
σ (D) whenever (2.26) is satisfied.

Proof We fixψ ∈ Lq
σ (D) as well as t > 0 and setw(t−τ) = T (t, τ )∗ψ by following

the notation (2.21). We split the integral into

∫ t

0
τ−1/4‖∇T (t, τ )∗ψ‖2 dτ

=
(∫ t/2

0
+

∫ t

t/2

)
(t − τ)−1/4‖∇w(τ)‖2 dτ =: I1 + I2.

By (2.27) we have

∫ t

t/2
‖∇w(τ)‖22 dτ =

∫ t/2

0
‖∇T (t, τ )∗ψ‖22 dτ ≤ Ct−3/q+3/2‖ψ‖2q (5.7)
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for 1 < q ≤ 2. As in the proof of (4.13), we apply Lemma 3.4 to obtain the growth
estimate ∫ t/2

0
‖∇w(τ)‖2 dτ ≤ Ct5/4−3/2q‖ψ‖q (5.8)

as long as 6/5 < q ≤ 2 so that 3/q − 3/2 < 1. It thus follows from (5.7) and (5.8)
that

I1 ≤ Ct−1/4
∫ t/2

0
‖∇w(τ)‖2 dτ ≤ Ct−3/2q+1‖ψ‖q

and that

I2 ≤ Ct1/4
(∫ t

t/2
‖∇w(τ)‖22 dτ

)1/2

≤ Ct−3/2q+1‖ψ‖q .

The proof is complete. ��
Given u ∈ E4 and t > 0, let us define (Hu)(t) by

〈(Hu)(t), ψ〉D = the RHS of (5.2), ∀ψ ∈ C∞
0,σ (D),

and regard (5.2) as the equation u = Hu. By (5.5) with (5.6) and by (5.3) we find
from (2.6) that

t1/2−3/2r‖(Hu)(t)‖r ≤ t1/2−3/2r‖T (t, 0)u0‖r + kr‖u‖2E4(t) → 0 (t → 0),

‖(Hu)(t) − u0‖3 ≤ ‖T (t, 0)u0 − u0‖3 + k3‖u‖2E4(t) → 0 (t → 0), (5.9)

for r ∈ (3, 6) and that

sup
t>0

t1/2−3/2r‖(Hu)(t)‖r ≤ cr‖u0‖3 + kr‖u‖2E4
, (5.10)

for r ∈ [3, 6) with some constant kr = kr (m, θ, D) > 0.
Let us show the weak-continuity of Hu with respect to t ∈ (0,∞) with values

in L4
σ (D). We fix T ∈ (0,∞) arbitrarily. Let t ∈ (0, T ) and t + h ∈ (t/2, T ). On

account of T (t/2, 0)u0 ∈ L4
σ (D), it is obvious that

‖T (t + h, 0)u0 − T (t, 0)u0‖4 = ‖{T (t + h, t/2) − T (t, t/2)}T (t/2, 0)u0‖4 → 0

as h → 0. When t < t + h < T , the second part of 〈(Hu)(t + h) − (Hu)(t), ψ〉 is
splitted into

I + J :=
∫ t

0
〈(u ⊗ u)(τ ),∇{T (t + h, τ )∗ − T (t, τ )∗}ψ〉 dτ

+
∫ t+h

t
〈(u ⊗ u)(τ ),∇T (t + h, τ )∗ψ〉 dτ. (5.11)

123



944 T. Hishida et al.

Since we know the Lq -Lr estimate of ∇T (t, τ )∗ for 0 ≤ τ < t < T , we find that

|I | ≤ C‖u‖2E4
t−1/8‖T (t + h, t)∗ψ − ψ‖4/3

and that

|J | ≤ C‖u‖2E4
t−1/4h1/8‖ψ‖4/3

with some constant C = C(T ) > 0. The other case t/2 < t + h < t < T , in which
(5.11) should be replaced by

I + J :=
∫ t+h

0
〈(u ⊗ u)(τ ),∇{T (t + h, τ )∗ − T (t, τ )∗}ψ〉 dτ

−
∫ t

t+h
〈(u ⊗ u)(τ ),∇T (t, τ )∗ψ〉 dτ,

is discussed similarly to obtain

|I | ≤ C‖u‖2E4
(t/2)−1/8‖T (t, t + h)∗ψ − ψ‖4/3

and

|J | ≤ C‖u‖2E4
(t/2)−1/4(−h)1/8‖ψ‖4/3.

We are thus led to Hu ∈ Cw((0,∞); L4
σ (D)), namely, it is weakly continuous with

values in L4
σ (D) (although the estimates above for I tell us that the strong-continuity

would not be clear, where the difficulty stems from the fact that the corresponding
autonomous operator is not a generator of analytic semigroups unless ω = 0).

As a consequence, we obtain Hu ∈ E4 with

‖Hu‖E4 ≤ c4‖u0‖3 + k4‖u‖2E4
.

Moreover, for u, v ∈ E4, we have

‖Hu − Hv‖E4 ≤ k4
(‖u‖E4 + ‖v‖E4

) ‖u − v‖E4 .

In this way, we get a unique solution u ∈ E4 to (5.2) with

‖u‖E4 ≤ 1 − √
1 − 4c4k4‖u0‖3

2k4
< 2c4‖u0‖3

provided that ‖u0‖3 < 1/(4c4k4). The initial condition limt→0 ‖u(t) − u0‖3 = 0
follows from (5.9). Besides the L4 decay, we obtain the Lr decay of the solution with
rate t−1/2+3/2r on account of (5.10) as long as 3 < r < 6.
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5.2 A global existence theorem

Finally, we will provide a global existence theorem for the initial value problem (1.1)–
(1.4). Let φ be the same cut-off function as taken at the beginning of Section 4 and
set

b(x, t) = 1

2
rot

{
φ(x)

(
η(t) × x − |x |2ω(t)

)}
,

which fulfills

div b = 0, b|∂D = η + ω × x, b(t) ∈ C∞
0 (B3R0),

where R0 is fixed as in (2.11). Let us look for a solution of the form

u(x, t) = b(x, t) + v(x, t) (5.12)

to (1.1)–(1.4). Then, instead of (5.2), v(t) should obey

〈v(t), ψ〉D = 〈T (t, 0)v0, ψ〉D +
∫ t

0
〈T (t, τ )F(τ ), ψ〉D dτ

+
∫ t

0
〈(v ⊗ v + v ⊗ b + b ⊗ v)(τ ),∇T (t, τ )∗ψ〉D dτ,

∀ψ ∈ C∞
0,σ (D), (5.13)

where

v0 := u0 − b(·, 0) ∈ L3
σ (D),

see (5.15) below, and

F := �b + (η + ω × x) · ∇b − ω × b − ∂t b − b · ∇b.

Theorem 5.1 Suppose that there is a constant γ ∈ [1/8, 1) satisfying

η, ω ∈ C1([0,∞);R3),

M := sup
t≥0

(1 + t)γ
(|η(t)| + |η′(t)| + |ω(t)| + |ω′(t)|) < ∞,

(5.14)

and that

u0 ∈ L3(D), div u0 = 0, ν · (u0 − η(0) − ω(0) × x)|∂D = 0. (5.15)

Then there is a constant δ = δ(D) > 0 such that if

‖u0‖3 + M ≤ δ,
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problem (5.13) admits a unique global solution v ∈ E4 which enjoys

‖v(t)‖r = O(t−μ) as t → ∞ (5.16)

for every r ∈ [3, 6) with μ := min{1/2 − 3/2r, γ }, where E4 is given by (5.4).

Proof As in the previous subsection the only point is to employ Lemma 5.1 and so
the proof may be almost obvious for most of readers, nevertheless it will be presented
in order to clarify why γ ≥ 1/8. We may assume M ≤ 1 at the beginning, then we
have (2.26) with m = 3 (and θ = 1); in what follows, we use Theorems 2.1 and 2.2
for such m. By (5.14) we obtain

‖b(t)‖q + ‖F(t)‖q ≤ CM(1 + t)−γ (5.17)

for all t ≥ 0 and q ∈ (1,∞] with some constant C = C(q) > 0, which implies that

∫ t

0
‖T (t, τ )F(τ )‖r dτ ≤ αr (t) :=

{
CMt (1 + t)−1−γ , r ∈ (3,∞),

CεMt (1 + t)−1−γ+ε, r = 3,
(5.18)

for all t > 0 with some constantsC = C(r) > 0 andCε > 0, where ε > 0 is arbitrary.
This decay estimate for t > 2 is easily verified by splitting the integral into three parts

∫ t

0
=

∫ t/2

0
+

∫ t−1

t/2
+

∫ t

t−1

and by using (5.17) with q ∈ (1, r) satisfying (3/q − 3/r)/2 > 1 (which is possible
as long as r > 3) except for the last integral over (t − 1, t). Given v ∈ E4 and t > 0,
this time, we define (Hv)(t) by

〈(Hv)(t), ψ〉D = the RHS of (5.13), ∀ψ ∈ C∞
0,σ (D).

Then we have (Hv)(t) ∈ Lr
σ (D) for all r ∈ [3, 6); further, (5.9) and (5.10) are

respectively replaced by

t1/2−3/2r‖(Hv)(t)‖r ≤ t1/2−3/2r‖T (t, 0)v0‖r + βr (t) → 0 (t → 0),

‖(Hv)(t) − v0‖3 ≤ ‖T (t, 0)v0 − v0‖3 + β3(t) → 0 (t → 0),

(the former holds for r ∈ (3, 6)) with

βr (t) := t1/2−3/2rαr (t) + kr
(
CM + ‖v‖E4(t)

) ‖v‖E4(t)

and by
‖(Hv)(t)‖r ≤ cr (‖u0‖3 + CM) t−1/2+3/2r + αr (t)

+ kr
(
CM + ‖v‖E4

) ‖v‖E4 t
−1/2+3/2r
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for all t > 0, where αr (t) is given by (5.18). One can also verify Hv ∈
Cw((0,∞); L4

σ (D)) along the same way as in the previous subsection, so that
Hv ∈ E4. Consequently, we see that

‖Hv‖E4 ≤ C(‖u0‖3 + M) + k4
(
CM + ‖v‖E4

) ‖v‖E4 ,

‖Hv − Hw‖E4 ≤ k4
(
CM + ‖v‖E4 + ‖w‖E4

) ‖v − w‖E4 ,

for v, w ∈ E4, which completes the proof. ��
In view of (5.12), (5.16) and (5.17), we conclude

‖u(t)‖r = O(t−μ) as t → ∞

for every r ∈ [3, 6) with the same μ as in (5.16).
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