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Abstract We prove a limited range, off-diagonal extrapolation theorem that general-
izes a number of results in the theory of Rubio de Francia extrapolation, and use this
to prove a limited range, multilinear extrapolation theorem. We give two applications
of this result to the bilinear Hilbert transform. First, we give sufficient conditions on
a pair of weights w1, w2 for the bilinear Hilbert transform to satisfy weighted norm

Communicated by Loukas Grafakos.

D. Cruz-Uribe: The first author is supported by NSF Grant DMS-1362425 and research funds from the
Dean of the College of Arts & Sciences, University of Alabama. J. M. Martell: The second author
acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the
“Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0554). He also acknowledges
that the research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC agreement no. 615112
HAPDEGMT. The authors would like to thank Francesco di Plinio for suggesting this problem to us and
for helpful discussions about the bilinear Hilbert transform. The authors would also like to thank Sheldy
Ombrosi for suggesting the application to Marcinkiewicz-Zygmund estimates. The authors express their
gratitude to Camil Muscalu and Cristina Benea for helpful discussions about the vector-valued
inequalities for the bilinear Hilbert transform. Finally the first author would like to thank the second
author for his hospitality during two visits to Madrid where much of the work on the project was done.

B José María Martell
chema.martell@icmat.es

David Cruz-Uribe
dcruzuribe@ua.edu

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA

2 Instituto deCienciasMatemáticasCSIC-UAM-UC3M-UCM,Consejo Superior de Investigaciones
Científicas, C/ Nicolás Cabrera, 13-15, 28049 Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-018-1640-9&domain=pdf
http://orcid.org/0000-0001-6788-4769


616 D. Cruz-Uribe, J. M. Martell

inequalities of the form

BH : L p1
(
w

p1
1

)× L p2
(
w

p2
2

) −→ L p(w p),

wherew = w1w2 and 1
p = 1

p1
+ 1

p2
< 3

2 . This improves the recent results of Culiuc et
al. by increasing the families of weights for which this inequality holds and by pushing
the lower bound on p from 1 down to 2

3 , the critical index from the unweighted theory
of the bilinear Hilbert transform. Second, as an easy consequence of our method we
obtain that the bilinear Hilbert transform satisfies some vector-valued inequalities
with Muckenhoupt weights. This reproves and generalizes some of the vector-valued
estimates obtained by Benea and Muscalu in the unweighted case. We also generalize
recent results of Carando, et al. on Marcinkiewicz-Zygmund estimates for multilinear
Calderón-Zygmund operators.

Mathematics Subject Classification 42B25 · 42B30 · 42B35

1 Introduction

The Rubio de Francia theory of extrapolation is a powerful tool in harmonic analysis.
In its most basic form, it shows that if, for a fixed value p0, 1 < p0 < ∞, an operator
T satisfies a weighted norm inequality of the form

‖T f ‖L p0 (w) ≤ C‖ f ‖L p0 (w) (1.1)

for every weight w in the Muckenhoupt class Ap0 , then for every p, 1 < p < ∞,

‖T f ‖L p(w) ≤ C‖ f ‖L p(w) (1.2)

wheneverw ∈ Ap. Since its discovery in the early 1980s, extrapolation has been gener-
alized in a variety of ways, yieldingweak-type inequalities, vector-valued inequalities,
and inequalities in other scales of Banach function spaces. We refer the reader to [10]
for the development of extrapolation; for more recent results we refer the reader
to [8,13,18].

Extrapolation has been also extended to themultilinear setting. In [20] it was shown
that if a given operator T satisfies

‖T ( f1, . . . , fm)‖L p((w1···wm )p) ≤ C
m∏

j=1

‖ f j‖L p j
(
w

p j
j

)

for fixed exponents 1 < p1, . . . , pm < ∞, 1
p =∑m

j=1
1
p j
, and all weightsw

p
j ∈ Apj ,

then the same estimate holds for all possible values of p j . An extension to the scale
of variable Lebesgue spaces was given in [11].
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Limited range multilinear extrapolation. . . 617

In this paper we develop a theory of limited range, multilinear extrapolation. In the
linear case, limited range extrapolationwas developed in [2] byAuscher and the second
author. They proved that if inequality (1.1) holds for a given 0 < p− < p0 < p+ < ∞
and for allw ∈ A p0

p−
∩RH( p+

p0

)′ , then for all p− < p < p+ andw ∈ A p
p−

∩RH( p+
p

)′ ,

(1.2) holds. Conditions like this arise naturally in the study of the Riesz transforms
and other operators associated to elliptic differential operators.

Our first theorem extends limited range extrapolation to the multilinear setting.
To state our results we use the abstract formalism of extrapolation families. Given
m ≥ 1, hereafter F will denote a family of (m + 1)-tuples ( f, f1, . . . , fm) of non-
negative measurable functions. This approach to extrapolation has the advantage that,
for instance, vector-valued inequalities are an immediate consequence of our extrapo-
lation results. We will discuss applying this formalism to prove norm inequalities for
specific operators below. For complete discussion of this approach to extrapolation in
the linear setting, see [10].

Theorem 1.3 Givenm ≥ 1, letF be a family of extrapolation (m+1)-tuples. For each
j , 1 ≤ j ≤ m, suppose we have parameters r−

j and r+
j , and an exponent p j ∈ (0,∞),

0 ≤ r−
j ≤ p j ≤ r+

j ≤ ∞, such that given any collection of weights w1, . . . , wm with

w
p j
j ∈ A p j

r−j
∩ RH( r+j

p j

)′ and w = w1 · · · wm, we have the inequality

‖ f ‖L p(w p) ≤ C
m∏

j=1

‖ f j‖L p j
(
w

p j
j

) (1.4)

for all ( f, f1, . . . , fm) ∈ F such that ‖ f ‖L p(w p) < ∞, where 1
p = ∑m

j=1
1
p j

and C

depends on n, p j , [w j ]A p j
r−j

, [w j ]RH( r+j
p j

)′ . Then for all exponents q j , r
−
j < q j < r+

j ,

all weights w
q j
j ∈ A q j

r−j
∩ RH( r+j

q j

)′ and w = w1 · · · wm,

‖ f ‖Lq (wq ) ≤ C
m∏

j=1

‖ f j‖Lq j
(
w
q j
j

), (1.5)

for all ( f, f1, . . . , fm) ∈ F such that ‖ f ‖Lq (wq ) < ∞, where 1
q = ∑m

j=1
1
q j

and

C depends on n, p j , q j , [w j ]A q j
r−j

, [w j ]RH( r+j
q j

)′ . Moreover, for the same family of

exponents and weights, and for all exponents s j , r
−
j < s j < r+

j ,

∥∥∥∥∥

(∑

k

( f k)s
) 1

s

∥∥∥∥∥
Lq (wq )

≤ C
m∏

j=1

∥∥∥∥∥

(∑

k

( f kj )
s j

) 1
s j

∥∥∥∥∥
Lq j

(
w
q j
j

)
, (1.6)
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618 D. Cruz-Uribe, J. M. Martell

for all
{
( f k, f k1 , . . . , f km)}k ⊂ F such that the left-hand side is finite and where

1
s =∑m

j=1
1
s j

and C depends on n, p j , q j , s j , [w j ]A q j
r−j

, [w j ]RH( r+j
q j

)′ .

Remark 1.7 When r−
j = 1 and r+

j = ∞ in Theorem 1.3 we get a version of the
multilinear extrapolation theorem from [20] for extrapolation families. The original
result was given in terms of operators.

Theorem 1.3 is a consequence of a linear, restricted range, off-diagonal extrap-
olation theorem, which we believe is of interest in its own right. It generalizes the
classical Rubio de Francia extrapolation, the off-diagonal extrapolation theory of Har-
boure, Macías and Segovia [21], and the limited range extrapolation theorem proved
by Auscher and the second author [2].

Theorem 1.8 Given 0 ≤ p− < p+ ≤ ∞ and a family of extrapolation pairs F ,
suppose that for some p0, q0 ∈ (0,∞) such that p− ≤ p0 ≤ p+, 1

q0
− 1

p0
+ 1

p+ ≥ 0,
and all weights w such that w p0 ∈ A p0

p−
∩ RH( p+

p0

)′ ,

(∫

Rn
f q0wq0 dx

) 1
q0 ≤ C

(∫

Rn
g p0w p0 dx

) 1
p0

(1.9)

for all ( f, g) ∈ F such that ‖ f ‖Lq0 (wq0 ) < ∞, and the constant C depends on
n, p0, q0, [w p0 ]A p0

p−
, [w p0 ]RH( p+

p0

)′ . Then for every p, q such that p− < p < p+,

0 < q < ∞and 1
p− 1

q = 1
p0

− 1
q0
, and everyweightw such thatw p ∈ A p

p−
∩RH( p+

p

)′ ,

(∫

Rn
f qwq dx

) 1
q ≤ C

(∫

Rn
g pw p dx

) 1
p

(1.10)

for all ( f, g) ∈ F such that ‖ f ‖Lq (wq ) < ∞, and C depends on n, p, q, [w p]A p
p−

,

[w p]RH( p+
p

)′ .

In Theorems 1.3 and 1.8 we make the a priori assumption that the left-hand sides
of both our hypothesis and conclusion are finite, and this plays a role in the proof.
In certain applications this assumption is reasonable: for instance, when proving
Coifman-Fefferman type inequalities (cf. [10]). However, when using extrapolation
to prove norm inequalities for operators we would like to remove this assumption, as
the point is to conclude that the left-hand side is finite. But in fact, we can do this by
an easy approximation argument. This immediately yields the following corollaries.

Corollary 1.11 Under the same hypotheses as Theorem 1.3, if we assume that (1.4)
holds for all ( f, f1, . . . , fm) ∈ F (whether or not the left-hand side is finite) then
the conclusion (1.5) holds for all ( f, f1, . . . , fm) ∈ F (whether or not the left-hand
side is finite). Analogously, the vector-valued inequality (1.6) holds for all families{
( f k, f k1 , . . . , f km)

}
k ⊂ F (whether or not the left-hand side is finite).
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Limited range multilinear extrapolation. . . 619

Corollary 1.12 Under the same hypotheses as Theorem 1.8, if we assume that (1.9)
holds for all ( f, g) ∈ F (whether or not the left-hand side is finite) then the conclusion
(1.10) holds for all ( f, g) ∈ F (whether or not the left-hand side is finite).

In the statement of Theorem 1.8 there are some restrictions on the allowable expo-
nents p and q. We make these explicit here; these restrictions will play a role in the
proof below.

Remark 1.13 Define q± by

1

q±
− 1

p±
= 1

q0
− 1

p0
. (1.14)

Because of our assumptions that 1
q0

− 1
p0

+ 1
p+ ≥ 0 and 0 ≤ p− ≤ p0 ≤ p+ ≤ ∞ it

follows that 0 ≤ q− ≤ q0 ≤ q+ ≤ ∞. Moreover, the fact that p− < p < p+ yields
that q− < q < q+. Note that if we were to allow that 1

q0
− 1

p0
+ 1

p+ < 0, we could
choose p very close to p+ and the associated q would be negative, which would not
make sense.

Moreover, we have that the following hold:

(i) If q0 = p0, then q± = p± and q = p.
(ii) If p0 > q0, then 0 ≤ q− < p−, q+ < p+ ≤ ∞ and q < p.
(iii) If p0 < q0, then 0 ≤ p− < q−, p+ < q+ ≤ ∞ and p < q.

Remark 1.15 When p0 ≥ q0 we automatically have that 1
q0

− 1
p0

+ 1
p+ ≥ 0. Further,

this implies that all of the weights which appear in both our hypothesis and conclusion
(i.e,w p0 ,wq0 ,w p,wq ) are in A∞. Consequently, they are locally integrable, and so all
the Lebesgue spaces that appear in the statement contain the characteristic functions
of compact sets. In fact, since w p0 ∈ A∞, wq0 ∈ A∞ (see Lemma 2.1 below). The
same is true for w p and wq , since by Remark 1.13, p ≥ q.

When p0 < q0, the condition 1
q0

− 1
p0

+ 1
p+ ≥ 0 imposes an upper bound for q0:

q0 ≤ p0(p+/p0)′. A similar bound holds for q. Thus (by Lemma 2.1)wq0 , wq ∈ A∞
and so again all the weights involved are in A∞ and thus locally integrable.

Theorem 1.8 and Corollary 1.12 generalize several known extrapolation results.

(i) The classical Rubio de Francia extrapolation theorem (see e.g. [10, Theo-
rems 1.4 and 3.9] for the precise formulation) corresponds to the case p− = 1,
p+ = ∞, q0 = p0.
(i i) The A∞ extrapolation theorem in [9] (see also [10, Corollary 3.15]) corre-
sponds to the case p− = 0, p+ = ∞, and q0 = p0.
(i i i) The extrapolation theorem for weights in the reverse Hölder classes [29,
Lemma 3.3, (b)] corresponds to the case p− = 0, p+ = 1, and q0 = p0.
(iv) The limited range extrapolation theorem in [2, Theorem 4.9] (see also [10,
Theorems 3.31]), corresponds to the case 0 < p− < p+ ≤ ∞, q0 = p0.
(v) The off-diagonal extrapolation theorem in [21] (see also [10, Theorem 3.23])
corresponds to the case p− = 1, p0 < q0, p+ = ( 1

p0
− 1

q0

)−1. To see this, we
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620 D. Cruz-Uribe, J. M. Martell

recall the well-known fact that w ∈ Ap0,q0 , that is,

sup
Q

(
−
∫

Q
wq0 dx

) 1
q0
(

−
∫

Q
w−p′

0 dx

) 1
p′0

< ∞,

if and only if w p0 ∈ Ap0 ∩ RHq0
p0

= A p0
p−

∩ RH( p+
p0

)′ . Note that in this case

1
q0

− 1
p0

+ 1
p+ = 0.

Our generalization of off-diagonal extrapolation involves weighted norm inequal-
ities that have already appeared in the literature in the context of fractional powers of
second divergence form elliptic operators with complex bounded measurable coeffi-
cients. More precisely, in [3] it was shown that for a certain operator Tα , there exist
1 ≤ r− < 2 < r+ ≤ ∞ such that Tα : Lr (wr ) → Ls(ws) for every r− < r < s < r+
and for every w ∈ A1+ 1

r− − 1
r

∩ RH
s
(
r+
s

)′ . By applying Theorem 1.8 we could prove

the same result via extrapolation if we could show that there exist r− < r0 < s0 < r+
such that Tα : Lr0(wr0) → Ls0(ws0) for every w ∈ A1+ 1

r− − 1
r0

∩ RHs0(
r+
s0

)′ . Note

that the latter condition can be written as wr0 ∈ A r0
p−

∩ RH(
p+
r0

)′ with p− = r− and
1
p+ = 1

r0
− 1

s0
+ 1

r+ , and in this case 1
s0

− 1
r0

+ 1
p+ = 1

r+ ≥ 0, so the hypotheses of

Theorem 1.8 hold.
A restricted range, off-diagonal extrapolation theorem has previously appeared in

the literature. Duoandikoetxea [18, Theorem 5.1] proved that if for some 1 ≤ p0 < ∞
and 0 < q0, r0 < ∞, and all weights w ∈ Ap0,r0 (note that unlike in the classical
definition of this class he does not require p0 ≤ q0), if (1.9) holds, then for all
1 < p < ∞ and 0 < q, r < ∞ such that 1

p0
− 1

p = 1
q0

− 1
q = 1

r0
− 1

r , and all weights
w ∈ Ap,r , (1.10) holds.

This result is contained inTheorem1.8 in the particular casewhen r0 ≥ max{p0, q0}
if we take p− = 1 and p+ = ( 1

p0
− 1

r0

)−1. In this case, (because r0 ≥ p0) w ∈ Ap0,r0

if and only if w p0 ∈ Ap0 ∩ RH r0
p0

= A p0
p−

∩ RH( p+
p0

)′ . Moreover, in this scenario

1
q0

− 1
p0

+ 1
p+ ≥ 0 since r0 ≥ q0.

Despite this overlap, our results are different.We eliminate the restriction p0, p > 1
as we can take 0 ≤ p− < 1. On the other hand, we cannot recapture his result for
values of r0 < max{p0, q0}.

Finally, in light of Remark 1.15, we note that [18, Theorem 5.1] allows for weights
wq0 or w p0 that may not be locally integrable unless one assumes r0 ≥ max{p0, q0}.
For example, if we fix 0 < r0 < max{p0, q0} and let w(x) = |x |− n

max{p0,q0} , then
it is easy to see that wr0 ∈ A1 and so w ∈ Ap0,r0 , but either w p0 or wq0 is not
locally integrable (and so the characteristic function of the unit ball centered at 0 does
not belong to L p0(w p0) or to Lq0(wq0)). In light of this, we believe the condition
r0 ≥ min{p0, q0} is not unduly restrictive.

Remark added in Proof: After this paper was submitted, we discovered that Theo-
rem 1.8 is indeed equivalent to [18, Theorem 5.1] in the case r0 ≥ {p0, q0}. This can
be shown using some complicated rescaling argument along the lines of the one in the
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Limited range multilinear extrapolation. . . 621

forthcoming paper [24]. We would like to emphasize that the formulations and proofs
are however different, as in ours the goal is to obtain ranges where the estimates hold.

1.1 Applications

To demonstrate the power of our multilinear extrapolation theorem, we use The-
orem 1.3 to prove results for the bilinear Hilbert transform and for multilinear
Calderón-Zygmund operators. We first consider the bilinear Hilbert transform, which
is defined by

BH( f1, f2)(x) = p.v.
∫

R

f1(x − t)g(x + t)
dt

t
.

The problem of finding bilinear L p estimates for this operator was first raised by
Calderón in connection with the Cauchy integral problem (though it was apparently
not published until [23]). Lacey and Thiele [26,27] showed that for 1 < p1, p2 ≤ ∞,
1
p = 1

p1
+ 1

p2
< 3

2 ,

‖BH( f1, f2)‖L p ≤ C‖ f1‖L p1 ‖ f2‖L p2 .

The problem of weighted norm inequalities for the bilinear Hilbert transform has
been raised by a number of authors: see [15,16,20,30]. The first such results were
recently obtained by Culiuc, di Plinio and Ou [14].

Theorem 1.16 Given 1 < p1, p2 < ∞, define p by 1
p = 1

p1
+ 1

p2
and assume that

p > 1. For i = 1, 2, let wi be such that w2pi
i ∈ Api , and define w = w1w2. Then

‖BH( f1, f2)‖L p(w p) ≤ C‖ f1‖L p1
(
w

p1
1

)‖ f2‖L p2
(
w

p2
2

), (1.17)

where C = C(pi , [w2pi
i ]Api

).

If we apply Theorem 1.3, we can extend Theorem 1.16 to a larger collection of
weights and exponents. In particular, we can remove the restriction that p > 1, replac-
ing it with p > 2

3 , the same threshold that appears in the unweighted theory.

Theorem 1.18 Given arbitrary 1 < p1, p2 < ∞, define 1
p = 1

p1
+ 1

p2
and assume

that p > 1. For every i = 1, 2, let r−
i = 2pi

1+pi
< qi < 2pi = r+

i . Then, for all

w
qi
i ∈ A qi

r−i
∩ RH( r+i

qi

)′ —or, equivalently, w
2ri
i ∈ Ari for ri = ( 2

qi
− 1

pi

)−1
— if we

write w = w1w2 and
1
q = 1

q1
+ 1

q2
, we have that

‖BH( f1, f2)‖Lq (wq ) ≤ C‖ f1‖Lq1
(
w
q1
1

)‖ f2‖Lq2
(
w
q2
2

). (1.19)

In particular, given arbitrary 1 < q1, q2 < ∞ so that q > 2
3 where 1

q = 1
q1

+ 1
q2
,

there exist values 1 < p1, p2 < ∞ such that 1
p = 1

p1
+ 1

p2
< 1, in such a way
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622 D. Cruz-Uribe, J. M. Martell

that if we set r−
i = 2pi

1+pi
, r+

i = 2pi then r−
i < qi < r+

i , and for all weights wi

with w
qi
i ∈ A qi

r−i
∩ RH( r+i

qi

)′ (or, equivalently, w
2ri
i ∈ Ari for ri = ( 2

qi
− 1

pi

)−1
) and

w = w1w2,

‖BH( f1, f2)‖Lq (wq ) ≤ C‖ f1‖Lq1
(
w
q1
1

)‖ f2‖Lq2
(
w
q2
2

). (1.20)

Remark 1.21 We can state Theorem 1.18 in a different but equivalent form. For
instance, in the second part of that result, if we let vi = w

qi
i , then our hypothesis

becomes vi ∈ A qi
r−i

∩ RH( r+i
qi

)′ , and the conclusion is that

BH : Lq1(v1) × Lq2(v2) −→ Lq
(

v

q
q1
1 v

q
q2
w

)
.

In [14], for instance, Theorem 1.16 is stated in this form. We chose the form that we
did because it seems more natural when working with off-diagonal inequalities.

Remark 1.22 In [14] the authors actually proved Theorem 1.16 for a more general
family of bilinear multiplier operators introduced by Muscalu, Tao and Thiele [31].
Theorem 1.18 immediately extends to these operators. We refer the interested reader
to these papers for precise definitions. This extension actually shows that that the
bound p > 1 in Theorem 1.16 and the bound p > 2

3 in Theorem 1.18 are natural
and in some sense the best possible. In [25, Theorem 2.14], Lacey gave an example
of an operator which does not satisfy a bilinear estimate when p < 2/3; in [14,
Remark 1.2] the authors show that Theorem 1.16 applies to this operator. Hence, if
Theorem 1.16 could be extended to include the case p < 1, we would get weighted
estimates for this operator. But by extrapolation, these would yield inequalities below
the threshold q = 2

3 . Indeed, we could apply the first part of Theorem 1.18 with those
fixed exponents 1

p = 1
p1

+ 1
p2

> 1 and w1 = w2 ≡ 1 to obtain that this operator

maps Lq1 × Lq2 into Lq for every r−
i = 2pi

1+pi
< qi < 2pi = r+

i and 1
q = 1

q1
+ 1

q2
. If

we fix 0 < ε < min{ 12 ( 1p − 1), 1
p′
i
} and let 1

qi
:= 1

2 (
1
pi

+ 1 − ε), we would have that

r−
i < qi < r+

i and

1

q
= 1

q1
+ 1

q2
= 1

2p
+ 1 − ε >

3

2
.

Given q1, q2, as part of the proof of Theorem 1.18 we construct the parameters
r−
i , r+

i needed to define the weight classes. Thus, while we show that such weights
exist, it is not clear from the statement of the theorem what weights are possible. To
illustrate the different kinds of weight conditions we get, we give some special classes
of weights, and in particular we give a family of power weights.

Corollary 1.23 Given 1 < q1, q2 < ∞, define q by 1
q = 1

q1
+ 1

q2
, and assume further

that q > 2
3 . Then,

‖BH( f1, f2)‖Lq (wq ) ≤ C‖ f1‖Lq1
(
w
q1
1

)‖ f2‖Lq2
(
w
q2
2

) (1.24)
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holds for all wqi
i ∈ Amax{1, qi2 } ∩ RHmax{1, 2

qi
} and w = w1w2. In particular,

BH : Lq1(|x |−a) × Lq2(|x |−a) −→ Lq(|x |−a), (1.25)

if a = 0 or if

1 − min
{
max

{
1,

q1
2

}
,max

{
1,

q2
2

}}
< a < min

{
1,

q1
2

,
q2
2

}
. (1.26)

As a result, (1.25) holds for all 0 ≤ a < 1
2 .

Remark 1.27 By Corollary 1.23 we get weighted estimates for the bilinear Hilbert
transform in exactly the same range where the unweighted estimates are known to
hold. (Note that when a = 0 we recover the unweighted case.) Rather than taking
equal weights in (1.25), we can also give this inequality for more general power
weights of the form wi = |x |−ai /qi ; details are left to the interested reader.

Remark 1.28 As a consequence of Corollary 1.23 we see that even in the range of
exponents covered by Theorem 1.16 from [14], we get a larger class of weights. Fix
1 < q1, q2 < ∞ and assume that 1

q = 1
q1

+ 1
q2

< 1 . First, it is easy to show (see

Lemma 2.1 below) that w
2qi
i ∈ Aqi if an only if w

qi
i ∈ A 1+qi

2
∩ RH2. Hence, if we

further assume thatwqi
i ∈ A1 this condition becomesw

qi
i ∈ A1∩RH2 or, equivalently,

(see Lemma 2.1 below) w
2qi
i ∈ A1. Hence, as a corollary of Theorem 1.16 we get that

BH : Lq1(w
q2
1 ) × Lq2(w

q2
2 ) −→ Lq(wq) for all w

2qi
i ∈ A1. But by Corollary 1.23,

again assuming thatwqi
i ∈ A1, we can allowwqi ∈ A1∩ RHmax{1, 2

qi
}, or equivalently,

w
max{2,qi }
i ∈ A1 which is weaker than w

2qi
i ∈ A1 since max{2, qi } < 2qi .

Further, when 1 < qi ≤ 2, Corollary 1.23 gives the class of weights w
qi
i ∈ A1 ∩

RH 2
qi
. To compare this with Theorem 1.16 from [14] note that their condition is,

as explained above, w
qi
i ∈ A 1+qi

2
∩ RH2 and hence we can weaken wqi ∈ RH2 to

wqi ∈ RH 2
qi

at the cost of assuming that wqi ∈ A1 . Alternatively, if qi ≥ 2, our

condition becomes wqi ∈ A qi
2
, which removes any reverse Hölder condition for wqi

at the cost of assuming that wqi ∈ A qi
2

⊂ A 1+qi
2
.

We can also prove vector-valued inequalities for the bilinear Hilbert transform for
the sameweighted Lebesgue spaces as in the scalar inequality. Even in the unweighted
case, vector-valued inequalities were an open question until recently. Benea and Mus-
calu [4,5] (see also [22,32] for earlier results) proved that given 1 < s1, s2 ≤ ∞ and
s such that 1

s = 1
s1

+ 1
s2

and s > 2
3 , then there exist q1, q2, q such that

∥∥∥∥

(∑

k

|BH( fk, gk)|s
) 1

s
∥∥∥∥
q

≤ C

∥∥∥∥

(∑

k

| fk |s1
) 1

s1
∥∥∥∥
q1

∥∥∥∥

(∑

k

|gk |s2
) 1

s2
∥∥∥∥
q2
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624 D. Cruz-Uribe, J. M. Martell

where 1 < q1, q2 ≤ ∞, 1
q = 1

q1
+ 1

q2
, and, depending on the values of the si , there

are additional restrictions on the possible values of the qi . (See [5, Theorem 5] for a
precise statement or (5.4) below.) An alternative proof of these estimates when s > 1
is given in [14].

By using the formalism of extrapolation pairs, vector-valued inequalities are an
immediate consequence of extrapolation. Hence, as a consequence of Theorem 1.18
we get the following generalization of the results in [4,5,14]. We note that for some
triples s1, s2, s our method does not let us recover the full range of spaces gotten
in [4,5] but we do get weighted estimates in our range.

Theorem 1.29 Given arbitrary 1 < p1, p2 < ∞, define 1
p = 1

p1
+ 1

p2
and assume

that p > 1. For every i = 1, 2, let r−
i = 2pi

1+pi
< qi , si < 2pi = r+

i . Then, for all

w
qi
i ∈ A qi

r−i
∩ RH( r+i

qi

)′ —or, equivalently, w
2ri
i ∈ Ari for ri = ( 2

qi
− 1

pi

)−1
— if we

write w = w1w2,
1
q = 1

q1
+ 1

q2
and 1

s = 1
s1

+ 1
s2
, there holds

∥∥∥∥

(∑

k

|BH( fk, gk)|s
) 1

s
∥∥∥∥
Lq (wq )

≤ C

∥∥∥∥

(∑

k

| fk |s1
) 1

s1
∥∥∥∥
Lq1
(
w
q1
1

)

∥∥∥∥

(∑

k

|gk |s2
) 1

s2
∥∥∥∥
Lq2
(
w
q2
2

). (1.30)

In particular, for every 1 < s1, s2 < ∞ such that 1
s = 1

s1
+ 1

s2
< 3

2 , and for every

1 < q1, q2 < ∞ such that 1
q = 1

q1
+ 1

q2
< 3

2 , if

∣∣
∣∣
1

s1
− 1

q1

∣∣
∣∣ <

1

2
,

∣∣
∣∣
1

s2
− 1

q2

∣∣
∣∣ <

1

2
, and

2∑

i=1

max

{
1

qi
,
1

si

}
<

3

2
, (1.31)

there are values 1 < p1, p2 < ∞ such that 1
p = 1

p1
+ 1

p2
< 1, in such a way that

if we set r−
i = 2pi

1+pi
, r+

i = 2pi then r−
i < qi , si < r+

i , and hence (1.30) holds

for all weights wi with w
qi
i ∈ A qi

r−i
∩ RH( r+i

qi

)′ (or, equivalently, w
2ri
i ∈ Ari for

ri = ( 2qi − 1
pi

)−1
) and w = w1w2.

Remark 1.32 Theorem 1.29 contains the vector-valued inequalities that follow imme-
diately fromour extrapolation result applied to theweighted norm inequalities obtained
in [14] (cf. Therorem 1.16). However, more general weighted estimates for the bilinear
Hilbert transform are implicit in the arguments of [14]. These in turn produce vector-
valued inequalities in a wider range of exponents. We shall elaborate on this in Sect. 5
below.
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Remark 1.33 In [4, Proposition 10] the authors also prove iterated vector-valued
inequalities of the form

∥∥∥∥

(∑

j

(∑

k

|BH( f jk, g jk)|s
) t

s
) 1

t
∥∥∥∥
p

≤
∥∥∥∥

(∑

j

(∑

k

| f jk |s1
) t1

s1
) 1

t1
∥∥∥∥
p1

∥∥∥∥

(∑

j

(∑

k

|g jk |s2
) t2

s2
) 1

t2
∥∥∥∥
p2

,

again with restrictions on the possible values of the pi depending on the si and ti . We
can easily prove some of these inequalities by extrapolation; moreover, we can also
prove prove weighted versions. After the proof of Theorem 1.29 we sketch how this
is done. Here we note in passing that iterated vector-valued inequalities have recently
appeared in another setting: see [1].

As we did with the scalar inequalities we give some specific examples of classes
of weights for which the bilinear Hilbert transform satisfies weighted vector-valued
inequalities.

Corollary 1.34 Given 1 < s1, s2 < ∞ such that 1
s = 1

s1
+ 1

s2
< 3

2 , and 1 < q1, q2 <

∞ such that 1
q = 1

q1
+ 1

q2
< 3

2 , if

∣∣∣∣
1

s1
− 1

q1

∣∣∣∣ <
1

2
,

∣∣∣∣
1

s2
− 1

q2

∣∣∣∣ <
1

2
, and

2∑

i=1

max

{
1

qi
,
1

si

}
<

3

2
, (1.35)

then (1.30) holds for all wqi
i ∈ Amax{1, qi2 ,

qi
si

} ∩ RHmax{1, 2
qi

,[1−qi (
1
si

− 1
2 )]−1}. In particu-

lar,

∥∥∥∥

(∑

k

|BH( fk, gk)|s
) 1

s
∥∥∥∥
Lq (|x |−a)

≤ C

∥
∥∥∥

(∑

k

| fk |s1
) 1

s1
∥
∥∥∥
Lq1 (|x |−a)

∥
∥∥∥

(∑

k

|gk |s2
) 1

s2
∥
∥∥∥
Lq2 (|x |−a)

. (1.36)

holds if a ∈ {0} ∪ (a−, a+) where

a− = 1 − min

{
max

{
1,

q1
2

,
q1
s1

}
,max

{
1,

q2
2

,
q2
s2

}}

a+ = min

{
1,

q1
2

,
q2
2

, 1 − q1

(
1

s1
− 1

2

)
, 1 − q2

(
1

s2
− 1

2

)}
(1.37)

Remark 1.38 The conditions in (1.35) guarantee that a− ≤ 0 < a+, hence the set
{0} ∪ (a−, a+) defines a non-empty interval. On the other hand, this interval can be
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626 D. Cruz-Uribe, J. M. Martell

arbitrarily small. For instance, take q1 = s1 = 2, q2 = 2, s2 = t with 1 < t < 2. Then
(1.35) is satisfied and we have that a− = 0 and a+ = 2(1− 1

t ). Thus, {0}∪(a−, a+) =
[0, a+) and a+ → 0 as t → 1+: that is, in the limit we just get the Lebesgue measure.
Notice, however, that in the context of the first part of Corollary 1.34, as t → 1+, the
conditions on the weights become w2

1 ∈ A1 and w2
2 ∈ A2 ∩ RH∞. Hence, we can

take w1(x) = |x |−
a1
q1 and w2(x) = |x |−

a2
q2 with 0 ≤ a1 < 1 and −1 < a2 ≤ 0. (Of

course if a1 = a2 = a, then a = 0 as observed above.)

As a final application we use extrapolation to prove Marcinkiewicz-Zygmund
inequalities for multilinear Calderón-Zygmund operators. Weighted norm inequali-
ties for these operators have been considered by several authors: we refer the reader
to [20,28] for precise definitions of these operators and weighted norm inequalities
for them. Very recently, Carando, Mazzitelli and Ombrosi [6] proved the following
weighted Marcinkiewicz-Zygmund inequalities.

Theorem 1.39 For m ≥ 1, let T be an m-linear Calderón-Zygmund operator. Given
1 < q1, . . . , qm < ∞, q such that 1

q =∑ 1
qi
, and weights wi such that wqi

i ∈ Aqi ,

∥
∥∥∥

( ∑

k1,...,km

∣
∣∣∣T
(
f 1k1 , . . . , f mkm

)∣∣∣∣

2) 1
2
∥
∥∥∥
Lq (wq )

≤ C
m∏

i=1

∥
∥∥∥

(∑

ki

∣∣ f iki
∣∣2
) 1

2 ∥∥
Lqi
(
w
qi
i

),

(1.40)

where w = w1 . . . wm. If 1 < r < 2 and if we further assume 1 < qi < r , then again
for all weights wi such that wqi

i ∈ Aqi ,

∥∥∥∥

( ∑

k1,...,km

∣∣∣∣T
(
f 1k1 , . . . , f mkm

)∣∣∣∣

r) 1
r
∥∥∥∥
Lq (wq )

≤ C
m∏

i=1

∥∥∥∥

(∑

ki

∣∣ f iki
∣∣r
) 1

r ∥∥
Lqi
(
w
qi
i

),

(1.41)

where w = w1 . . . wm.

By using extrapolation we can prove that inequality (1.41) holds for 1 < r < 2
with the same family of exponents as in (1.40) for r = 2.

Theorem 1.42 For m ≥ 1, let T be an m-linear Calderón-Zygmund operator. Given
1 < r < 2, 1 < q1, . . . , qm < ∞, q such that 1

q = ∑ 1
qi
, and weights wi such that

w
qi
i ∈ Aqi , then inequality (1.41) holds.

Remark 1.43 In [6] the authors actually prove that Theorem 1.39 holds for weights in
the larger class Ap introduced in [28]. However, it is not known whether multilinear
extrapolation holds for these weights. We also do not know if Theorem 1.42 can be
extended to this larger family of weights.

The remainder of this paper is organized as follows. In Sect. 2 we gather some
definitions and basic results about weights. In Sect. 3 we prove all of our extrapolation
results. In Sect. 4 we give the proofs of all of the applications. Finally, in Sect. 5 we
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discuss some results that are implicit in [14] and that can be used to get more general
vector-valued inequalities for the bilinear Hilbert transform.

Throughout this paper n will denote the dimension of the underlying space, Rn . A
constantC may depend on the dimension n, the underlying parameters p−, p+, p, . . .,
and the Ap and RHs constants of the associated weights. It will not depend on the
specific weight. The value of a constant C may change from line to line. Throughout
we will use the conventions that 1

∞ = 0, 1
0 = ∞, and 1′ = ∞ and ∞′ = 1.

2 Preliminaries

In this section we give the basic properties of weights that we will need below. For
proofs and further information, see [17,19]. By a weight we mean a non-negative
function v such that 0 < v(x) < ∞ a.e. For 1 < p < ∞, we say v ∈ Ap if

[v]Ap = sup
Q

−
∫

Q
v dx

(
−
∫

Q
v1−p′

dx

)p−1

< ∞,

where the supremum is taken over all cubes Q ⊂ R
n with sides parallel to the coordi-

nate axes and −
∫
Q v dx = |Q|−1

∫
Q v dx . The quantity [v]Ap is called the Ap constant

of v. Note that it follows at once from this definition that if v ∈ Ap, then v1−p′ ∈ Ap′ .
When p = 1 we say v ∈ A1 if

[v]A1 = sup
Q

−
∫

Q
v(y) dy ess sup

x∈Q
v(x)−1 < ∞.

The Ap classes are properly nested: for 1 < p < q, A1 � Ap � Aq . We denote the
union of all the Ap classes, 1 ≤ p < ∞, by A∞.

Given 1 < s < ∞, we say that a weight v satisfies the reverse Hölder inequality
with exponent s, denoted w ∈ RHs if

[v]RHs = sup
Q

(
−
∫

Q
vs dx

) 1
s
(

−
∫

Q
v dx

)−1

< ∞.

When s = ∞ we say v ∈ RH∞ if

[v]RH∞ = sup
Q

ess sup
x∈Q

v(x)

(
−
∫

Q
v dx

)−1

< ∞.

The reverse Hölder classes are also properly nested: if s < t < ∞, then RH∞ �

RHt � RHs . Define RH1 to be the union of all the RHs classes, 1 < s ≤ ∞. We
have that RH1 = A∞. A given v is in RHs for some s > 1 if and only if there exists
p > 1 such that v ∈ Ap. Equivalently, if v ∈ A∞, there exists 1 ≤ p < ∞ and
1 < s ≤ ∞ such that v ∈ Ap ∩ RHs .

The Ap and RHs classes satisfy openness properties: given v ∈ Ap, 1 < p < ∞,
then there exists ε > 0 depending only on [v]Ap , p and n, such that v ∈ Ap−ε ; also
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628 D. Cruz-Uribe, J. M. Martell

given v ∈ RHs , 1 < s < ∞, then there exists ε > 0 depending only on [v]RHs , s,
and n, such that v ∈ RHs+ε .

The condition v ∈ Ap ∩ RHs can be restated using the following result. The first
part is from [12, Theorem 2.2]; the second is just gotten by the duality of Ap weights.

Lemma 2.1 Given 1 ≤ p < ∞, 1 ≤ s < ∞, the weight v ∈ Ap ∩ RHs if and only if
vs ∈ Aq, where q = s(p − 1) + 1, that is,

sup
Q

(
−
∫

Q
vs dx

) 1
s
(

−
∫

Q
v1−p′

dx

)p−1

< ∞. (2.2)

In this case also have that v1−p′ ∈ Aq ′ .

We can also easily construct weights v ∈ Ap ∩ RHs . The next result can be proved
directly from the definitions of the weight classes; essentially the same argument is
used to prove the easier half of the Jones factorization theorem. See [12, Theorem 5.1]
or [7, Theorem 4.4].

Lemma 2.3 Given weights v1, v2 ∈ A1, then for all 1 ≤ p < ∞, 1 < s ≤ ∞,

v = v
1
s
1 v

1−p
2 ∈ Ap ∩ RHs .

3 Proofs of extrapolation results

Our proof is similar in spirit to the proofs of off-diagonal and limited range extrapo-
lation in [10, Theorems 3.23 and 3.31]. To better understand the heuristic argument
that underlies our proof, we refer the reader to the discussion in [13, Section 4]. We
have split the proof split into four cases.

3.1 Proof of Theorem 1.8. Case I: p− > 0 and p− < p0 < p+

Fix p− < p < p+ and w such that w p ∈ A p
p−

∩ RH( p+
p

)′ . Fix an extrapolation pair

( f, g) ∈ F ;wemayassume that 0 < ‖ f ‖Lq (wq ), ‖g‖L p(w p) < ∞. For if‖ f ‖Lq (wq ) =
0 or if ‖g‖L p(w p) = ∞, then (1.10) is trivially true. And if ‖g‖L p(w p) = 0, then (1.9)
implies that ‖ f ‖Lq0 (wq0 ) = 0, and so f = 0 a.e. and thus ‖ f ‖Lq (wq ) = 0, which
again gives us (1.10).

We now fix some exponents based on our weight w. By Lemma 2.1 we have that

w
p
(
p+
p

)′
∈ Aτ , where

τ =
(
p+
p

)′ ( p

p−
− 1

)
+ 1 =

1
p− − 1

p
1
p − 1

p+
+ 1 =

1
p− − 1

p+
1
p − 1

p+
. (3.1)
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For future reference we note that

τ ′ =
1
p− − 1

p+
1
p− − 1

p

. (3.2)

From Remark 1.13 we have that

1

q+
− 1

p+
= 1

q0
− 1

p0
= 1

q
− 1

p
. (3.3)

Define the number s by

s = q0 − q0
p0

q

τ

(
p0
p−

− 1

)
= q0q

(
1

q
− 1

τ

(
1

p−
− 1

p0

))
; (3.4)

wewill explain our choice of s below. For later use, we prove that 0 < s < min(q, q0).
First, we have that s > 0: by (3.1), the fact that p0 < p+ and (3.3) we obtain

1

q
− 1

τ

(
1

p−
− 1

p0

)
= 1

q
−

1
p − 1

p+
1
p− − 1

p+

(
1

p−
− 1

p0

)
>

1

q
− 1

p
+ 1

p+
= 1

q+
≥ 0.

To show that s < min(q, q0), we claim

s = q − qq0
p0

1

τ ′
1

( p+
p0

)′ = q0q

(
1

q0
−
(
1 − 1

τ

)(
1

p0
− 1

p+

))
. (3.5)

To see that this holds, we use the fact that 1
q − 1

p = 1
q0

− 1
p0
:

1

q
− 1

τ

(
1

p−
− 1

p0

)
= 1

q
− 1

τ

(
1

p−
− 1

p+

)
− 1

τ

(
1

p+
− 1

p0

)

= 1

q
− 1

p
+ 1

p+
− 1

τ

(
1

p+
− 1

p0

)

= 1

q0
− 1

p0
+ 1

p+
− 1

τ

(
1

p+
− 1

p0

)

= 1

q0
−
(
1 − 1

τ

)(
1

p0
− 1

p+

)
.

It follows at once from (3.4) and (3.5) that s < min(q, q0).
We now prove our main estimate. By rescaling and duality, we have that

‖ f ‖sLq (wq ) = ‖ f s‖
L
q
s (wq )

=
∫

Rn
f sh2w

q dx,
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where h2 is a non-negative function in L(
q
s )′(wq) with ‖h2‖L(

q
s )′ (wq )

= 1. Now let H1

and H2 be non-negative functions such that 0 < H1 < ∞ a.e., and h2 ≤ H2; we will
determine their exact values below. Fix α = s(

q0
s

)′ . Then by Hölder’s inequality,

∫

Rn
f sh2w

q dx ≤
∫

Rn
f s H−α

1 Hα
1 H2w

q dx

≤
(∫

Rn
f q0H

−α
q0
s

1 H2w
q dx

) s
q 0
(∫

Rn
H

α
( q0

s

)′

1 H2w
q dx

)1/
(
q0
s

)′

= I
s
q 0
1 × I

1/
(
q0
s

)′

2 . (3.6)

We first estimate I2. Assume that H1 ∈ Lq(wq) with ‖H1‖Lq (wq ) ≤ C1 < ∞,

and that H2 ∈ L
(
q
s

)′
(wq) with ‖H2‖

L

(
q
s

)′
(wq )

≤ C2 < ∞. Then again by Hölder’s

inequality,

I2 ≤
(∫

Rn
H

α
( q0

s

)′ q
s

1 wq dx

) s
q
(∫

Rn
H

(
q
s

)′

2 wq dx

)1/
(
q
s

)′

≤ C2

(∫

Rn
Hq
1 wq dx

) s
q ≤ Cs

1C2.

To estimate I1 we want to apply (1.9); to do so we need to show that I1 < ∞.
Assume that f ≤ H1‖ f ‖Lq (wq ); then we have that

I1 ≤ ‖ f ‖q0Lq (wq )

∫

Rn
Hq0
1 H

−α
q0
s

1 H2w
q dx

= ‖ f ‖q0Lq (wq )

∫

Rn
Hs
1 H2w

q dx = ‖ f ‖q0Lq (wq ) × I2 < ∞.

Define ϕ = ( qs
)′ q0

p0
. Then ϕ > 1: by (3.5) we have that

s

q

p0
q0

= p0
q0

− 1

τ ′
1

( p+
p0

)′ ,

and so

1

ϕ
= p0

q0

1
( q
s

)′ = p0
q0

(
1 − s

q

)
= 1

τ ′
1

( p+
p0

)′ < 1.
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Now let Wq0 = H
−α

q0
s

1 H2w
q and assume that W p0 ∈ A p0

p−
∩ RH( p+

p0

)′ . Since I1 is

finite, f ∈ Lq0(Wq0). Thus, by (1.9) and Hölder’s inequality,

I1 =
∫

Rn
f q0Wq0 dx

≤ C

(∫

Rn
g p0W p0 dx

) q0
p0

= C

(∫

Rn
g p0H

−α
p0
s

1 H
p0
q0
2 w

q
p0
q0 w−qwq dx

) q0
p0

≤
(∫

Rn
g p0ϕ′

H
−α

p0
s ϕ′

1 w
q
(

p0
q0

−1
)
ϕ′

wq dx

) q0
ϕ′ p0

(∫

Rn
H

(
q
s

)′

2 wq dx

) q0
ϕp0

.

The second integral on the last line is bounded by C
q0
ϕp0

(
q
s

)′

2 = C2, so it remains to
show that the first integral is bounded by ‖g‖q0L p(w p). If we have that

gp0ϕ′
H

−α
p0
s ϕ′

1 w
q
(

p0
q0

−1
)
ϕ′ ≤ Hq

1 ‖g‖p0ϕ′
L p(w p),

then the first integral would be bounded by ‖H1‖
q0q
ϕ′ p0
Lq (wq )‖g‖q0L p(w p) ≤ C

q0q
ϕ′ p0
1 ‖g‖q0L p(w p).

This, combinedwith inequality (3.6)would yield inequality (1.10) and the proofwould
be complete.

Therefore, to complete the proofweneed to show thatwe can construct non-negative
functions H1 and H2 such that

‖H1‖Lq (wq ) ≤ C1, (3.7)

gp0ϕ′
H

−α
p0
s ϕ′

1 w
q
(

p0
q0

−1
)
ϕ′ ≤ Hq

1 ‖g‖p0ϕ′
L p(w p), (3.8)

0 < H1 < ∞, f ≤ H1‖ f ‖Lq (wq ), (3.9)

‖H2‖
L(

q
s )

′
(wq )

≤ C2, (3.10)

h2 ≤ H2; (3.11)

and such that the weight W = H
− α

s
1 H

1
q0
2 w

q
q0 satisfies

W p0 = H
− αp0

s
1 H

p0
q0
2 w

qp0
q0 ∈ A p0

p−
∩ RH( p+

p0

)′ . (3.12)

We will first prove that (3.7), (3.8) and (3.9) hold. Since α
p0
s = p0

q0
(q0 − s), one

can see that (3.8) is equivalent to

gp0w
q
(

p0
q0

−1
)

≤ H
q
ϕ′ + p0

q0
(q0−s)

1 ‖g‖p0
L p(w p). (3.13)
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Using the fact that 1
p − 1

q = 1
p0

− 1
q0
, we have that

q

ϕ′ + p0
q0

(q0 − s) = q − p0
q0

q
( q
s

)′ + p0
q0

(q0 − s) = q − p0
q0

(q − s) + p0
q0

(q0 − s)

= q − p0
q0

(q − q0) = q

(
1 − p0

(
1

q0
− 1

q

))

= q

(
1 − p0

(
1

p0
− 1

p

))
= q

p0
p

.

Similarly, we have that

q

(
p0
q0

− 1

)
= qp0

(
1

q0
− 1

p0

)
= qp0

(
1

q
− 1

p

)
= p0

(
1 − q

p

)
.

Therefore, (3.13) (and hence (3.8)) is equivalent to

g
p
q w

p
q −1 ≤ H1‖g‖

p
q

L p(w p). (3.14)

To construct a function H1 that satisfies (3.7), (3.9), and (3.14), we use the Rubio

de Francia iteration algorithm. As we noted above, w
p
(
p+
p

)′
∈ Aτ , so the maximal

operator is bounded on Lτ (w
p
(
p+
p

)′
). Hence, for non-negative G ∈ Lτ (w

p(
p+
p )′

) we
can define the iteration algorithm

R1G =
∞∑

k=0

MkG

2k‖M‖k
Lτ

(

w
p
( p+

p

)′)
.

Then we have that that G ≤ R1G, R1G ∈ A1, and ‖R1G‖
Lτ (w

p(
p+
p )′

)
≤

2‖G‖
Lτ (w

p(
p+
p )′

)
(cf. [10, Proof of Theorem 3.9]). Now define δ and ε by

δτ = q, ετ = q − p

(
p+
p

)′
,

and let

H1 = R1(h
δ
1w

ε)
1
δ w− ε

δ , h1 = f

‖ f ‖Lq (wq )

+ g
p
q w

p
q −1

‖g‖
p
q

L p(w p)

.
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Then

max

⎛

⎜
⎝

f

‖ f ‖Lq (wq )

,
g

p
q w

p
q −1

‖g‖
p
q

L p(w p)

⎞

⎟
⎠ ≤ h1 ≤ H1,

and so both (3.9) and (3.14) hold. Moreover,

‖h1‖Lq (wq ) ≤ 21−
1
q

(∫

Rn

f qwq

‖ f ‖qLq (wq )

+ gpw p

‖g‖p
L p(w p)

dx

) 1
q

= 2,

and so

‖H1‖Lq (wq ) = ‖R1
(
hδ
1w

ε
) ‖

1
δ

Lτ

(

w
p
( p+

p

)′)

≤ 2
1
δ ‖hδ

1w
ε‖

1
δ

Lτ

(

w
p
( p+

p

)′) = 2
1
δ ‖h1‖Lq (wq ) ≤ 21+

1
δ = C1.

This gives us (3.7).
The construction of H2 and the proof of (3.10) and (3.11) are similar to the argument

for H1. By Lemma 2.1, if we set

σ = p

((
p

p−

)′
− 1

)
,

then w−σ ∈ Aτ ′ and so the maximal operator is bounded on Lτ ′
(w−σ ). Hence, if we

define the Rubio de Francia iteration algorithm for non-negative F ∈ Lτ ′
(w−σ ) by

R2F =
∞∑

k=0

MkF

2k‖M‖k
Lτ ′

(w−σ )

,

then we have that F ≤ R2F , R2F ∈ A1, and ‖R2F‖Lτ ′
(w−σ )

≤ 2‖F‖Lτ ′
(w−σ )

.
Define β and γ by

βτ ′ =
(
q

s

)′
, γ τ ′ = σ + q.

If we now let

H2 = R2

(
hβ
2wγ

) 1
β

w
− γ

β ,
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then we immediately get (3.11). Moreover, we have that

‖H2‖
L(

q
s )

′
(wq )

=
∥∥∥R2

(
hβ
2wγ

)∥∥∥
1
β

Lτ ′
(w−σ )

≤ 2
1
β

∥
∥∥hβ

2wγ
∥
∥∥

1
β

Lτ ′
(w−σ )

= 2
1
β ‖h2‖

L(
q
s )

′
(wq )

= 2
1
β = C2.

This gives us (3.10).
Finally, we will show that (3.12) holds. By Lemma 2.3, (3.12) holds if there exist

μ1, μ2 ∈ A1 such that

H
− αp0

s
1 H

p0
q0
2 w

qp0
q0 = W p0 = μ

1( p+
p0

)′

2 μ
1− p0

p−
1 .

By the A1 property of the Rubio de Francia iteration algorithms, we have that

μ1 = H
q
τ

1 w
q
τ
− p

τ

(
p+
p

)′
= R1(h

δ
1w

ε) ∈ A1,

μ2 = H
1
τ ′
(
q
s

)′

2 w
σ
τ ′ + q

τ ′ = R2(h
βwγ ) ∈ A1.

If we substitute these expressions into the above formula and equate exponents, we
see that equality holds if

αp0
s

= q

τ

(
p0
p−

− 1

)
, (3.15)

p0
q0

= 1

τ ′

(
q

s

)′ 1
( p+
p0

)′ , (3.16)

qp0
q0

=
(

σ

τ ′ + q

τ ′

)
1

( p+
p0

)′ +
(
q

τ
− p

τ

(
p+
p

)′)(
1 − p0

p−

)
. (3.17)

If we use our choice of α on the left-hand side of (3.15) and (3.4) on the right-hand
side, it is straightforward to see that (3.15) holds. Additionally, if we use (3.5) on the
right-hand side of (3.16), we see that the latter also holds. (It was the necessity of these
two identities for the proof that is the reason for our original choice of s.) To show
that (3.17) holds, note that by (3.2) and our choice of σ we have that

σ

τ ′ = p
p
p− − 1

1
p− − 1

p
1
p− − 1

p+
= 1

1
p− − 1

p+
.

Given this we can expand the right-hand side of (3.17):

(
σ

τ ′ + q

τ ′

)
1

( p+
p0

)′ +
(
q

τ
− p

τ

(
p+
p

)′)(
1 − p0

p−

)
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=
(

1
1
p− − 1

p+
+ q

1
p− − 1

p
1
p− − 1

p+

)
p0

(
1

p0
− 1

p+

)

+
(
q

1
p − 1

p+
1
p− − 1

p+
− 1

1
p− − 1

p+

)
p0

(
1

p0
− 1

p−

)

= p0
1
p− − 1

p+

[
1

p−
− 1

p+
+ q

p

(
1

p+
− 1

p−

)
+ q

p0

(
1

p−
− 1

p+

)]

= qp0

[
1

q
− 1

p
+ 1

p0

]

= qp0
q0

.

This completes the proof of Case I. 
�

3.2 Proof of Theorem 1.8. Case II: p0 = p−

Fix p− < p < p+ and w such that w p ∈ A p
p−

∩ RH( p+
p

)′ and note that in this case

p− = p0 > 0 and q− = q0 by (1.14). The proof is similar to the proof of Case I
and we indicate the main changes. First, in this case (3.4) gives s = q0 > 0. Thus,
s = q0 = q− < q by (1.14) and the fact that p− < p. Furthermore (3.5) holds in this
case.

We now argue as before, but in this case we do not need to introduce H1. Since
s < q, by rescaling and duality we have that

‖ f ‖sLq (wq ) = ‖ f s‖
L
q
s (wq )

=
∫

Rn
f sh2w

q dx ≤
∫

Rn
f s H2w

q dx,

where h2 is a non-negative function in L(
q
s )′(wq) with ‖h2‖L(

q
s )′ (wq )

= 1 and H2 is

such that h2 ≤ H2; we will determine the exact value below. If we assume further that
‖H2‖

L

(
q
s

)′
(wq )

≤ C2 < ∞, it follows by assumption that

∫

Rn
f s H2w

q dx ≤ ‖ f s‖
L
q
s (wq )

‖H2‖
L

(
q
s

)′
(wq )

≤ C2‖ f ‖sLq (wq ) < ∞.

Define ϕ = ( qs
)′ q0

p0
= ( qq0

)′ q0
p0
; then we have that

1

ϕ
= p0

q0

1
( q0
s

)′ = p0
q0

(
1 − q0

q

)
= p0

(
1

q0
− 1

q

)
= p0

(
1

p0
− 1

p

)
= 1 − p0

p
< 1,
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which implies that ϕ′ = p
p0
. Now let Wq0 = H2w

q and assume that W p0 ∈ A p0
p−

∩

RH( p+
p0

)′ = A1 ∩ RH( p+
p−
)′ , or equivalently (by Lemma 2.1), W

p0
(
p+
p−
)′

∈ A1. Then

by our hypothesis (1.9) we get

‖ f ‖sLq (wq ) =
∫

Rn
f q0Wq0 dx

≤ C

(∫

Rn
g p0W p0 dx

) q0
p0

= C

(∫

Rn
g p0H

p0
q0
2 w

q
p0
q0 w−qwq dx

) q0
p0

≤
(∫

Rn
g p0ϕ′

w
q
(

p0
q0

−1
)
ϕ′

wq dx

) q0
ϕ′ p0

(∫

Rn
H

(
q
s

)′

2 wq dx

) q0
ϕp0

.

≤ C2

(∫

Rn
g p0ϕ′

w
q
(

p0
q0

−1
)
ϕ′

wq dx

) q0
ϕ′ p0

= C2

(∫

Rn
g pw p dx

) q0
p0

,

where in the last equality we have used that

q
( p0
q0

− 1
)
ϕ′ + q = q

( p0
q0

− 1
) p

p0
+ q = qp

( 1

q0
− 1

p0

)
+ q

= qp
( 1
q

− 1

p

)
+ q = p.

Therefore, to complete the proof we need to show that we can construct a non-
negative function H2 such that

‖H2‖
L(

q
s )

′
(wq )

≤ C2, (3.18)

h2 ≤ H2; (3.19)

and such that the weight W = H
1
q0
2 w

q
q0 satisfies

W
p0
(
p+
p−
)′

= H
p0
q0

(
p+
p−
)′

2 w
qp0
q0

(
p+
p−
)′

∈ A1. (3.20)

We construct H2 exactly as in the proof of Case I, and as before we have (3.18) and
(3.19). It remains to show (3.20). By (3.5),

1

β

p0
q0

( p+
p−

)′ = τ ′
( q
s

)′
p0
q0

( p+
p0

)′ = 1
( q
s

)′
q − s

s
= 1.
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On the other hand, recalling that p0 = p− and s = q0 we obtain

q − γ

β
= q − σ + q

( q
s

)′ = q0 − p
( q
s

)′( p
p− − 1

) = q0 − q0

1
q0

− 1
q

1
p0

− 1
p

= 0.

Thus,

W
p0
(
p+
p−
)′

= H
p0
q0

(
p+
p−
)′

2 w
qp0
q0

(
p+
p−
)′

= R2(h
β
2wγ )

1
β

p0
q0

(
p+
p−
)′
w

p0
q0

(
p+
p−
)′(

q− γ
β

)
= R2(h

β
2wγ ) ∈ A1,

which concludes the proof of Case II. 
�

3.3 Proof of Theorem 1.8. Case III: p0 = p+ and p− > 0

Fix p− < p < p+ and w such that w p ∈ A p
p−

∩ RH( p+
p

)′ and note that in this case

p+ = p0 < ∞ and q+ = q0 by (1.14). We again follow the proof of Case I and we
indicate the main changes. First, if we define s as in (3.4) and since (3.5) is also valid
in this context, then 0 < s = q < q+ = q0 by (1.14) and the fact that p < p+.

We now argue as before, but in this case we do not need to use duality or introduce
H2. Since s = q, if we fix α = s(

q0
s

)′ , then by Hölder’s inequality,

‖ f ‖q0Lq (wq ) =
(∫

Rn
f s H−α

1 Hα
1 wq dx

) q0
q

≤
(∫

Rn
f q0H

−α
q0
s

1 wq dx

)(∫

Rn
H

α
( q0

s

)′

1 wq dx

) q0

q
(
q0
s

)′

≤ C
q0/
(
q0
s

)′

1

∫

Rn
f q0H

−α
q0
s

1 wq dx,

where 0 < H1 < ∞ is in Lq(wq) with ‖H1‖Lq (wq ) ≤ C1 < ∞. We will determine
the exact value below. If we also assume that f ≤ H1‖ f ‖Lq (wq ), then

∫

Rn
f q0H

−α
q0
s

1 wq dx ≤ ‖ f ‖q0Lq (wq )

∫

Rn
Hq0
1 H

−α
q0
s

1 wq dx

= ‖ f ‖q0Lq (wq )

∫

Rn
Hs
1wq dx ≤ Cq

1 ‖ f ‖q0Lq (wq ) < ∞.
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Thus, we can apply (1.9) if we let Wq0 = H
−α

q0
s

1 wq and assume that W p0 ∈ A p0
p−

∩
RH( p+

p0

)′ = A p+
p−

∩ RH∞:

‖ f ‖q0Lq (wq ) ≤ C
q0/
(
q0
s

)′

1

∫

Rn
f q0Wq0 dx

≤ C

(∫

Rn
g p0W p0 dx

) q0
p0

= C

(∫

Rn
g p0H

−α
p0
s

1 w
q

p0
q0 w−qwq dx

) q0
p0

≤ C‖g‖q0L p(w p)

(∫

Rn
Hq
1 wq dx

) q0
p0 ≤ CC

q0q
p0

1 ‖g‖q0L p(w p),

provided H1 satisfies

gp0H
−α

p0
s

1 w
q
(

p0
q0

−1
)

≤ Hq
1 ‖g‖p0

L p(w p).

To complete the proof we need to show that we can construct H1 such that

‖H1‖Lq (wq ) ≤ C1, (3.21)

gp0H
−α

p0
s

1 w
q
(

p0
q0

−1
)

≤ Hq
1 ‖g‖p0

L p(w p), (3.22)

0 < H1 < ∞, f ≤ H1‖ f ‖Lq (wq ), (3.23)

and such that the weight W = H
− α

s
1 w

q
q0 satisfies

W p0 = H
− αp0

s
1 w

qp0
q0 ∈ A p0

p−
∩ RH∞. (3.24)

Since α
p0
s = p0

q0
(q0 − s), (3.22) is equivalent to

gp0w
q
(

p0
q0

−1
)

≤ H
q+ p0

q0
(q0−s)

1 ‖g‖p0
L p(w p). (3.25)

Using the fact that 1
p − 1

q = 1
p0

− 1
q0
, and that s = q we have that

q + p0
q0

(q0 − s) = q + p0q

(
1

q
− 1

q0

)
= q + p0q

(
1

p
− 1

p0

)
= q

p0
p

.

Similarly, we have that

q

(
p0
q0

− 1

)
= qp0

(
1

q0
− 1

p0

)
= qp0

(
1

q
− 1

p

)
= p0

(
1 − q

p

)
.
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Therefore, (3.25) (and hence (3.22)) is equivalent to

g
p
q w

p
q −1 ≤ H1‖g‖

p
q

L p(w p). (3.26)

We now construct H1 exactly as in the proof of Case I, and we obtain as before (3.23),
(3.26), and (3.21). It remains to show (3.24). By (3.4)

αp0
δs

= τp0

q
( q0
s

)′ = 1
( q0
s

)′
p0
p− − 1
q0−s
q0

= p0
p−

− 1,

and also, since p0 = p+,

εαp0
δs

=
(

p0
p−

− 1

)
ε =

(
p0
p−

− 1

)(
q

τ
− p

( p+
p )′

τ

)

= p0

(
1

p−
− 1

p0

)(
q

1
p − 1

p+
1
p− − 1

p+
− 1

1
p− − 1

p+

)
= qp0

(
1

p
− 1

p0
− 1

q

)

= −qp0
q0

.

Together, these imply that

W p0 = H
− αp0

s
1 w

qp0
q0 = R1(h

δ
1w

ε)
1− p0

p− ∈ A p0
p−

∩ RH∞;

the inclusion follows from Lemma 2.3 and the fact that R1(hδ
1w

ε) ∈ A1. This com-
pletes the proof of Case III. 
�

3.4 Proof of Theorem 1.8. Case IV: p− = 0 and p− < p0 ≤ p+

In this case we adapt ideas from [29, Section 3.1]. Fix p, q such that 0 = p− <

p < p+, 0 < q < ∞ and 1
p − 1

q = 1
p0

− 1
q0
, and let v be such that v p ∈ A p

p−
∩

RH( p+
p

)′ = RH( p+
p

)′ . Since RH1 = A∞, there exists 0 < ε < min{p0, p} such

that v p ∈ A p
ε
. Set p̃− = ε > 0; then p̃− < p0 ≤ p+ and (1.9) holds for all

w p0 ∈ A p0
p̃−

∩ RH( p+
p0

)′ ⊂ RH( p+
p0

)′ = A p0
p−

∩ RH( p+
p0

)′ . Thus, we can use Cases I

and III with p̃− > 0 in place of p− to conclude that (1.10) holds for every p̃, q̃ such
that p̃− < p̃ < p+, 0 < q̃ < ∞ and 1

p̃ − 1
q̃ = 1

p0
− 1

q0
, and every weight w such

that w p̃ ∈ A p̃
p̃−

∩ RH( p+
p̃

)′ . If we take p̃ = p, q̃ = q and w = v, our choice of ε

guarantees that p̃− = ε < p < p+, 0 < q < ∞ and 1
p − 1

q = 1
p0

− 1
q0
. Moreover,

v p ∈ A p
ε

∩ RH( p+
p

)′ = A p̃
p̃−

∩ RH( p+
p̃

)′ . Thus, (1.10) holds and the proof of Case

IV is complete. 
�
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3.5 Proof of Theorem 1.3

Our proof of Theorem 1.3 is a modification of the proof of multilinear extrapolation
in [18, Theorem 6.1]. We include the details so that we can explain the use of families
of extrapolation pairs. The essential idea is to reduce the problem to a linear one by
acting on one function at a time.

For 2 ≤ j ≤ m, fix weights w j such that w
p j
j ∈ A p j

r−j
∩ RH( r+j

p j

)′ . Fix functions

f j , 2 ≤ j ≤ m, such that there exists functions f and g with ( f, g, f2, . . . , fm) ∈ F .
Assume that for each j , 0 < ‖ f j‖L p j (w

p j
j )

< ∞. (We will remove this restriction

below.) Define the new family of extrapolation pairs

F1 =
⎧
⎨

⎩
(F, g) =

⎛

⎝ f
m∏

j=2

w j‖ f j‖−1

L p j
(
w

p j
j

), g

⎞

⎠ : ( f, g, f2, . . . , fm) ∈ F
⎫
⎬

⎭
.

If f ∈ L p(w p), then F ∈ L p(w
p
1 ), so by our hypothesis (1.4),

‖F‖L p(w
p
1 ) ≤ C‖g‖

L p1
(
w

p1
1

) (3.27)

for allw p1
1 ∈ A p1

r−1
∩RH( r+1

p1

)′ . Note that p < p1 and so 1
p − 1

p1
+ 1

r+
1

> 0. Therefore, by

Theorem1.8, for all pairs (F, g) ∈ F1 with ‖F‖Lq (w
q
1 ) < ∞, and for all r−

1 < q1 < r+
1

and all wq1
1 ∈ A q1

r−1
∩ RH( r+1

q1

)′ ,

‖F‖Lq
(
w
q
1

) ≤ C‖g‖
Lq1
(
w
q1
1

),

where 1
q − 1

q1
= 1

p − 1
p1

and so 1
q = 1

q1
+∑m

j=2
1
p j
. Therefore, by our definition of

F , ‖ f ‖Lq (wq ) < ∞ and we can rewrite this as

‖ f ‖Lq (wq ) ≤ C‖g‖
Lq1
(
w
q1
1

)
m∏

j=2

‖ f j‖L p j
(
w

p j
1

).

This inequality still holds even if we remove the restriction 0 < ‖ f j‖L p j (w
p j
j )

< ∞.

If for some j , ‖ f j‖L p j (w
p j
j )

= ∞, this inequality clearly holds; if ‖ f j‖L p j (w
p j
j )

= 0,

then (1.4) implies that f = F = 0, and this inequality again holds.
We can repeat this argument for any such collection of f j , 2 ≤ j ≤ m. Therefore,

we have shown that for all ( f1, . . . , fm) ∈ F with f ∈ Lq(wq),

‖ f ‖Lq (wq ) ≤ C‖ f1‖Lq1
(
w
q1
1

)
m∏

j=2

‖ f j‖L p j
(
w

p j
1

).
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To complete the proof, fix f1, f3, . . . fm , and repeat the above argument in the
second coordinate, etc. Then by induction we get the desired conclusion.

We now prove the vector-valued inequalities (1.6). The extension of scalar inequal-
ities to vector-valued inequalities via extrapolation is well-known in the linear case:
see [10, Corollary 3.12]. The argument is nearly the same in the multilinear setting.
Fix s j , r

−
j < s j < r+

j , for 1 ≤ j ≤ m and set 1
s =∑m

j=1
1
s j
. Define a new family

F̃ =
{
(F, F1, . . . , Fm) =

((∑

k

( f k)s
) 1

s

,

(∑

k

( f k1 )s1
) 1

s1
, . . . ,

(∑

k

( f km)sm
) 1

sm
)

: {( f k, f k1 , . . . , f km
)}

k ⊂ F
}
.

Without loss of generality wemay assume that all of the sums in the definition of F̃ are
finite; the conclusion for infinite sums follows by the monotone convergence theorem.
Then, given any collection of weights w1, . . . , wm with w

s j
j ∈ A s j

r−j
∩ RH( r+j

s j

)′ and

w = w1 · · · wm , if ‖F‖Ls (ws ) < ∞, then by (1.5) we have that

‖F‖Ls (ws ) =
(
∑

k

‖ f k‖sLs (ws )

) 1
s

≤ C

⎛

⎝
∑

k

m∏

j=1

‖ f kj ‖sLs j (w
s j
j )

⎞

⎠

1
s

≤ C
m∏

j=1

(
∑

k

‖ f kj ‖s jLs j (w
s j
j )

) 1
s j

= C
m∏

j=1

‖Fj‖Ls j (w
s j
j )

, (3.28)

where in the second estimate we used Hölder’s inequality with respect to sums. We
can now apply the first part of Theorem 1.3 to F̃ , where we use (3.28) for the initial
estimate in place of (1.4). We thus get

‖F‖Lq (wq ) ≤ C
m∏

j=1

‖Fj‖Lq j
(
w
q j
j

). (3.29)

for all exponents q j , r
−
j < q j < r+

j , all weights w
q j
j ∈ A q j

r−j
∩ RH( r+j

q j

)′ , w =

w1 · · · wm , and 1
q = ∑m

j=1
1
q j
. Inequality (3.29) holds for all (F, F1, . . . , Fm) ∈ F̃

for which ‖F‖Lq (wq ) < ∞. But this is exactly (1.6) and the proof is complete. 
�

3.6 Proof of Corollaries 1.11 and 1.12

We will prove Corollary 1.12; the proof of Corollary 1.11 is identical. The proof
follows as in [29, Section 3.1]. Given a family of extrapolation pairs F as in the
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statement and any N > 0, define the new family

FN := {( fN , g) : ( f, g) ∈ F , fN := f χ{x∈B(0,N ): f (x)≤N }
}
.

Note that for all 0 < r < ∞ and wr ∈ A∞,

‖ fN‖rLr (wr ) ≤ Nrwr (B(0, N )) < ∞. (3.30)

Since fN ≤ f , by our hypothesis we get that (1.9) holds for every pair in FN (with
a constant independent of N ) with a left-hand side that is always finite by (3.30) and
Remark 1.15. Therefore, we can apply Theorem 1.8 to FN to conclude that (1.10)
holds for every pair ( fN , g) ∈ FN (with a constant that is again independent of N ),
since again the left-hand side is always finite. The desired inequality follows at once
if we let N → ∞ and apply the monotone convergence theorem. 
�

4 Proofs of the applications

We now prove Theorems 1.18, 1.29, and 1.39, and Corollary 1.23. We also sketch the
ideas needed to prove the result in Remark 1.33.

4.1 Proof of Theorem 1.18

We start with the first part of the theorem. Let p1, p2 ∈ (1,∞) be such that 1
p =

1
p1

+ 1
p2

< 1, fixw
2p1
1 ∈ Ap1 ,w

2p2
2 ∈ Ap2 , and letw = w1w2. Then by Theorem 1.16,

BH : L p1(w
p1
1 ) × L p2(w

p2
2 ) → L p(w p). By Lemma 2.1, w2pi

i ∈ Api if and only if

w pi ∈ A pi+1
2

∩ RH2. Thus, if we set r
−
i = 2pi

pi+1 and r+
i = 2pi , then 1 < r−

i < pi <

r+
i < ∞ and w

pi
i ∈ A pi

r−i
∩ RH( r+i

pi

)′ . We can then apply Corollary 1.11 to the family

F = {(|BH( f, g)|, | f |, |g|) : f, g ∈ L∞
c

}

to conclude that for all r−
i < qi < r+

i and w
qi
i ∈ A qi

r−i
∩ RH( r+i

qi

)′ , the bilinear Hilbert

transform BH is bounded from Lq1(w
q1
1 )×Lq2(w

q2
2 ) into Lq(wq)where 1

q = 1
q1

+ 1
q2

and w = w1w2. (Here we use the fact that L∞
c is dense any space Lr (wr ) if wr is

locally integrable, and the fact that BH is bilinear to extend the inequality on triples in
F that we get from Theorem 1.3 to all of Lq1(w

q1
1 )×Lq2(w

q2
2 ).) Again by Lemma 2.1,

the conditions on the weights are equivalent to w
2ri
i ∈ Ari , where ri = ( 2

qi
− 1

pi

)−1.

Note that 1 < ri < ∞ since r−
i < qi < r+

i . This completes the proof of the first part
of Theorem 1.18.

To prove the second part of the theorem, fix 1 < q1, q2 < ∞ such that 1
q =

1
q1

+ 1
q2

< 3
2 . We want to use the previous argument: therefore, we need to find
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p1, p2 ∈ (1,∞) such that 1
p = 1

p1
+ 1

p2
< 1 and r−

i < qi < r+
i , where

1

r+
i

= 1

2pi
<

1

qi
<

1

r−
i

= 1

2pi
+ 1

2
. (4.1)

Since 1 < p1, p2 < ∞, this can be rewritten as

0 ≤ 2

(
max

{
1

2
,
1

qi

}
− 1

2

)
<

1

pi
< 2min

{
1

2
,
1

qi

}
≤ 1. (4.2)

Before choosing p1, p2 we claim that

2∑

i=1

max

{
1

2
,
1

qi

}
<

3

2
. (4.3)

To see that this holds, note that

2∑

i=1

max

{
1

2
,
1

qi

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if max
{

1
q1

, 1
q2

}
≤ 1

2 ,

1
2 + max

{
1
q1

, 1
q2

}
if min

{
1
q1

, 1
q 2

}
≤ 1

2 ≤ max
{

1
q1

, 1
q2

}
,

1
q1

+ 1
q2

if min
{

1
q1

, 1
q2

}
> 1

2 .

and in every case this is strictly smaller than 3
2 since q1, q2 > 1 and 1

q = 1
q1

+ 1
q2

< 3
2 .

Now define

1

pi
:= 2

(
max

{
1

2
,
1

qi

}
− 1

2
+ ηi

)
, i = 1, 2, (4.4)

where we fix η1, η2 > 0 so that

η1 + η2 <
3

2
−

2∑

i=1

max

{
1

2
,
1

qi

}
and 0 < ηi < min

{
1

qi
,
1

q ′
i

}
, i = 1, 2.

(4.5)

That we can find such η1, η2 follows from (4.3). (As will be clear from the proof,
we can choose ηi as close to 0 as we want; we will use this fact in the proof of
Corollary 1.23 below.)

With this choice we claim that (4.2) holds and also that 1
p = 1

p1
+ 1

p2
< 1. We first

prove the latter inequality: by the first condition in (4.5),

1

p
= 1

p1
+ 1

p2
= −2 + 2

2∑

i=1

max

{
1

2
,
1

qi

}
+ 2

2∑

i=1

ηi < 1.
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To prove (4.2) we first observe that since ηi > 0,

2

(
max

{
1

2
,
1

qi

}
− 1

2

)
< 2

(
max

{
1

2
,
1

qi

}
− 1

2
+ ηi

)
= 1

pi
.

To obtain the other half of (4.2) we consider two cases. If max{ 12 , 1
qi

} = 1
2 , then

1

pi
= 2ηi <

2

qi
= 2min

{
1

2
,
1

qi

}
.

On the other hand, if max{ 12 , 1
qi

} = 1
qi
, then

1

pi
= 2

qi
− 1 + 2ηi <

2

qi
− 1 + 2

q ′
i

= 1 = 2min

{
1

2
,
1

qi

}
.

This completes the proof of (4.2) and hence the proof of Theorem 1.18. 
�

4.2 Proof of Corollary 1.23

This result follows by considering more carefully the proof of Theorem 1.18. Fix
1 < q1, q2 < ∞ such that 1

q = 1
q1

+ 1
q2

< 3
2 and w

qi
i ∈ Amax{1, qi2 } ∩ RHmax{1, 2

qi
}.

We now choose pi as in (4.4) and (4.5), though below we will take ηi much smaller.
As we showed above, 1 < p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

< 1, and (4.2) holds. Hence,
(4.1) holds and so by the first part of Theorem 1.18, we get that the bilinear Hilbert
transform is bounded from Lq1(uq11 ) × Lq2(uq22 ) into Lq(uq) where 1

q = 1
q1

+ 1
q2

and

u = u1u2, for all u
qi
i ∈ A qi

r−i
∩ RH( r+i

qi

)′ with

qi
r−
i

= qi

(
1

2pi
+ 1

2

)
= qi

(
max

{
1

2
,
1

qi

}
+ ηi

)
= max

{
1,

qi
2

}
+ qiηi ,

and

1
( r+

i
qi

)′ = 1 − qi
r+
i

= 1 − qi
2pi

= 1 − qi

(
max

{
1

2
,
1

qi

}
− 1

2
+ ηi

)

= min
{
1,

qi
2

}
− qiηi .

Note that w
qi
i ∈ Amax{1, qi2 } immediately implies that w

qi
i ∈ A qi

r−i
. On the other hand,

since w
qi
i ∈ RHmax{1, 2

qi
}, by the openness of the reverse Hölder classes we can find

0 < θ < 1 close to 1 such that wqi
i ∈ RH 1

θ
max{1, 2

qi
}. Therefore, in choosing the ηi we
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assume that (4.5) holds and that 0 < ηi < (1 − θ)min
{
1, qi

2

}
. But then

1
( r+

i
qi

)′ = min
{
1,

qi
2

}
− qiηi > min

{
1,

qi
2

}
− qi (1 − θ)min

{
1

2
,
1

qi

}

= θ min
{
1,

qi
2

}
.

Hence
( r+

i
qi

)′
< 1

θ
max{1, 2

qi
} which gives that w

qi
i ∈ RH( r+i

qi

)′ . We have thus shown

thatwqi ∈ A qi
r−i

∩RH( r+i
qi

)′ which implies that the bilinearHilbert transform is bounded

from Lq1(w
q1
1 ) × Lq2(w

q2
2 ) into Lq(wq). This completes the proof of (1.24).

Finally, let wi (x) = |x |− a
qi so that w(x) = w1(x)w2(x) = |x |− a

q . Then, using the
well known properties of power weights, we have thatwqi

i ∈ Amax{1, qi2 } ∩ RHmax{1, 2
qi

}
if and only if

1 − max
{
1,

qi
2

}
< a < 1 and − ∞ < a <

1

max
{
1, 2

qi

} = min
{
1,

qi
2

}
,

and when max{1, qi
2 } = 1 we can also allow a = 0 in the first condition. From all

these we easily see that (1.25) holds provided either a = 0 or a satisfies (1.26). This
completes the proof. 
�

4.3 Proof of Theorem 1.29

The proof of the first part of Theorem 1.29 is now straightforward given Theorem 1.3
and Corollary 1.11. Indeed, Theorem 1.18 provides the initial weighted norm inequal-
ities for the family

F = {(|BH( f, g)|, | f |, |g|) : f, g ∈ L∞
c .}

(see the proof of Theorem 1.18). Thus, Corollary 1.11 applies and (1.6) yields (1.30)
for functions fk, gk ∈ L∞

c . By a standard approximation argument we get the desired
inequality for fk ∈ Lq1(w

q1
1 ) and gk ∈ Lq2(w

q2
2 ).

To prove the second part of Theorem 1.29 we modify the argument in the second
part of the proof of Theorem 1.18. Fix qi , si as in the statement; then by the first part
of Theorem 1.29 we need to find 1 < p1, p2 < ∞ such that 1

p = 1
p1

+ 1
p2

< 1 and

r−
i < qi < r+

i with

1

r+
i

= 1

2pi
<

1

qi
,
1

si
<

1

r−
i

= 1

2pi
+ 1

2
. (4.6)
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Since 1 < p1, p2 < ∞, (4.6) can be rewritten as

0 ≤ 2

(
max

{
1

2
,
1

qi
,
1

si

}
− 1

2

)
<

1

pi
< 2min

{
1

2
,
1

qi
,
1

si

}
≤ 1. (4.7)

Before choosing p1, p2, we first claim that

2∑

i=1

max

{
1

2
,
1

qi
,
1

si

}
<

3

2
. (4.8)

To show this we argue as we did to prove (4.3): if at least one of the maxima is 1
2 , then

since the other maxima is strictly smaller than 1 we get the desired estimate. If none
of the maxima is 1

2 , then by the last condition in (1.31),

2∑

i=1

max

{
1

2
,
1

qi
,
1

si

}
=

2∑

i=1

max

{
1

qi
,
1

si

}
<

3

2
.

We now choose pi : fix ηi > 0 and let

1

pi
:= 2

(
max

{
1

2
,
1

qi
,
1

si

}
− 1

2
+ ηi

)
, i = 1, 2, (4.9)

where we choose the ηi sufficiently small so that

η1 + η2 <
3

2
−

2∑

i=1

max

{
1

2
,
1

qi
,
1

si

}
(4.10)

and

0 < ηi < min

{
1

qi
,
1

q ′
i
,
1

si
,
1

s′
i
,
1

2
−
∣
∣∣∣
1

si
− 1

qi

∣
∣∣∣

}
. (4.11)

Such a choice of η1, η2 is possible by (4.8) and (1.31). By (4.10) we have that

1

p
= 1

p1
+ 1

p2
= −2 + 2

2∑

i=1

max

{
1

2
,
1

qi
,
1

si

}
+ 2

2∑

i=1

ηi < 1.

To prove (4.7) we first observe that since ηi > 0,

2

(
max

{
1

2
,
1

qi
,
1

si

}
− 1

2

)
< 2

(
max

{
1

2
,
1

qi
,
1

si

}
− 1

2
+ ηi

)
= 1

pi
.
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To get the second estimate in (4.7) we consider two cases. If max{ 12 , 1
qi

, 1
si

} = 1
2 , then

1

pi
= 2ηi < 2min

{
1

qi
,
1

si

}
= 2min

{
1

2
,
1

qi
,
1

si

}
.

On the other hand, if max{ 12 , 1
qi

, 1
si

} = max{ 1
qi

, 1
si

} and we write 1
αi

= max{ 1
qi

, 1
si

}
and 1

βi
= max{ 1

qi
, 1
si

}, we obtain

1

pi
= 2max

{
1

qi
,
1

si

}
− 1 + 2ηi

< 2max

{
1

qi
,
1

si

}
− 1 + 2min

{
1

q ′
i
,
1

s′
i
,
1

2
−
∣∣
∣∣
1

si
− 1

qi

∣∣
∣∣

}

= 2

αi
− 1 + 2min

{
1

α′
i
,
1

2
−
(
1

αi
− 1

βi

)}

= 2min

{
1

2
,
1

βi

}

= 2min

{
1

2
,
1

qi
,
1

si

}
.

This completes the proof of (4.7) and hence that of Theorem 1.29. 
�

4.4 Proof of Remark 1.33

To prove the iterated vector-valued inequality in Remark 1.33, we simply repeat the
argument used to prove the first part of Theorem 1.29. For our starting estimate we
form the new family

F ′ =
{
(h, f, g)

=
((∑

k

|BH( fk, gk)|s
) 1

s

,

(∑

k

| fk |s1
) 1

s1
,

(∑

k

|gk |s2
) 1

s2
)

: fk, gk ∈ L∞
c

}
;

then (1.30) gives us the starting estimate

‖h‖Lq (wq ) ≤ C‖ f ‖
Lq1
(
w
q1
1

)‖g‖
Lq2
(
w
q2
2

).

We then again apply vector-valued extrapolation using the family

F ′′ =
{
(H, F,G)
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=
((∑

j

htj

) 1
t

,

(∑

j

f t1j

) 1
t1

,

(∑

j

gt2j

) 1
t2
)

: (h j , f j , g j ) ∈ F ′
}

to get iterated vector-valued inequalities. Details are left to the interested reader. 
�

4.5 Proof of Corollary 1.34

Similar to our approach in the proof of Corollary 1.23, here we take a closer look at
the proof of Theorem 1.29. Fix 1 < q1, q2, s1, s2 < ∞ and w

qi
i as in the statement.

We choose pi as in (4.9), (4.10) and (4.11), but again we will choose ηi much smaller.
Then as we proved above, 1 < p1, p2 < ∞, 1

p = 1
p1

+ 1
p2

< 1, and (4.7) holds.
Note that the latter implies (4.6) and hence, by the first part of Theorem 1.29, we
obtain that the bilinear Hilbert transform satisfies (1.30), provided we show thatwqi

i ∈
A qi

r−i
∩ RH( r+i

qi

)′ , where

qi
r−
i

= qi

(
1

2pi
+ 1

2

)
= qi

(
max

{
1

2
,
1

qi
,
1

si

}
+ ηi

)
= max

{
1,

qi
2

,
qi
si

}
+ qiηi

and

1
( r+

i
qi

)′ = 1 − qi
r+
i

= 1 − qi
2pi

= 1 − qi

(
max

{
1

2
,
1

qi
,
1

si
,

}
− 1

2
+ ηi

)

= min

{
1,

qi
2

, 1 − qi

(
1

s1
− 1

2

)}
− qiηi .

Note thatwqi
i ∈ Amax{1, qi2 ,

qi
si

} immediately gives us thatwqi
i ∈ A qi

r−i
. On the other hand,

since w
qi
i ∈ RHmax{1, 2

qi
,[1−qi (

1
si

− 1
2 )]−1}, by the openness of the reverse Hölder classes

we can find 0 < θ < 1 close to 1 such that w
qi
i ∈ RH 1

θ
max{1, 2

qi
,[1−qi (

1
si

− 1
2 )]−1}. We

therefore assume, in addition to (4.10), (4.11), that 0 < ηi < (1− θ)min
{ 1
2 ,

1
qi

, 1
qi

−
1
si

+ 1
2

}
; this choice is possible because of the first two conditions in (1.35). But then

1
( r+

i
qi

)′ = min

{
1,

qi
2

, 1 − qi

(
1

s1
− 1

2

)}
− qiηi

> min

{
1,

qi
2

, 1 − qi

(
1

s1
− 1

2

)}
− qi (1 − θ)min

{
1

2
,
1

qi
,
1

qi
− 1

si
+ 1

2

}

= θ min

{
1,

qi
2

, 1 − qi

(
1

si
− 1

2

)}
.
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Hence
( r+

i
qi

)′
< 1

θ
max{1, 2

qi
, [1 − qi (

1
si

− 1
2 )]−1}, so w

qi
i ∈ RH( r+i

qi

)′ . We have thus

shown that wqi ∈ A qi
r−i

∩ RH( r+i
qi

)′ which yields (1.30).

To complete our proof we need to establish (1.36). Let wi (x) = |x |− a
qi so that

w(x) = w1(x)w2(x) = |x |− a
q . Then, using the well known properties of power

weights, we have that wqi
i ∈ Amax{1, qi2 ,

qi
si

} ∩ RHmax{1, 2
qi

,[1−qi (
1
si

− 1
2 )]−1} if and only if

1 − max

{
1,

qi
2

,
qi
si

}
< a < 1;

when max{1, qi
2 } = 1 we can also allow a = 0, and

−∞ < a <
1

max

{
1, 2

qi
,
[
1 − qi

(
1
si

− 1
2

)]−1
} = min

{
1,

qi
2

, 1 − qi

(
1

si
− 1

2

)}
.

From all these estimates we see that (1.36) holds provided a ∈ {0} ∪ (a−, a+) with
a± defined in (1.37). This completes the proof. 
�

4.6 Proof of Theorem 1.42

The desired result follows directly from extrapolation. Fix 1 < r < 2 and define the
family of (m + 1)-tuples

F =
{
(F, F1, . . . , Fm)

=
(( ∑

k1,...,km

∣
∣∣∣T
(
f 1k1 , . . . , f mkm

)∣∣∣∣

r) 1
r

,

(∑

k1

∣
∣∣∣ f

1
k1

∣
∣∣∣

r) 1
r

, . . . ,

(∑

km

∣∣∣∣ f
m
km

∣∣∣∣

r) 1
r
)

: f j
k j

∈ L∞
c

}
.

Now fix 1 < q1, . . . , qm < r < 2 and let 1
q = ∑ 1

q j
. Then by Theorem 1.39, for all

weights w j such that weights w
qi
j ∈ Aq j , and (F, F1, . . . , Fm) ∈ F ,

‖F‖Lq (wq ) ≤ C
m∏

j=1

‖Fj‖Lq j
(
w
q j
j

). (4.12)

Therefore, by Corollary 1.11 applied with r−
j = 1, r+

j = ∞, 1 ≤ j ≤ m, we

immediately conclude that for any 1 < q1, . . . , qm < ∞ and weights w
qi
j ∈ Aq j ,
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inequality (4.12) holds, which yields (1.41) for functions in L∞
c . The desired inequality

then follows for f j
k j

∈ Lq j (w
q j
j ) by a standard approximation argument. 
�

5 More general vector-valued inequalities

In this section we explain how to obtain, via extrapolation, vector-valued inequalities
in a larger range than we proved in Theorem 1.29. The starting point is implicit in the
proof of [14, Corollary 4]: from it one can show that (1.17) holds provided

w
pi
i ∈ A1+(1−θi )(pi−1) ∩ RH 1

1−θ3
, (5.1)

where 1 < p1, p2, p < ∞ with 1
p 1

+ 1
p 2

= 1
p , and where θ1, θ2, θ3 ∈ (0, 1) are

arbitrary parameters satisfying

θ1

p′
1

≤ 1

2
,

θ2

p′
2

≤ 1

2
,

θ3

p
≤ 1

2
,

θ1

p′
1

+ θ2

p′
2

+ θ3

p
= 1. (5.2)

In [14] the authors chose θ1 = θ2 = θ3 = 1
2 , which then gives Theorem 1.16.

If we now fix the parameters θ1, θ2, θ3 ∈ (0, 1), we can rewrite (5.1) as

w
pi
i ∈ A pi

r−i
∩ RH( r+i

pi

)′ , where
1

r−
i

= 1 − θi

p′
i

and
1

r+
i

= θ3

pi
. (5.3)

Given this, we can apply our extrapolation result to obtain vector-valued inequalities
by varying p1, p2, p and θ1, θ2, θ3. We claim that, as a result, (1.30) holds (taking
w1 = w2 ≡ 1 for simplicity, but of course some natural weighted norm inequalities are
also possible) whenever 1 < s1, s2, q1, q2 < ∞, 1

s = 1
s1

+ 1
s2

< 3
2 ,

1
q = 1

q1
+ 1

q2
< 3

2
and if there exist 0 ≤ γ1, γ2, γ3 < 1 with γ1 + γ2 + γ3 = 1 such that

max

{
1

s1
,
1

q1

}
<

1 + γ1

2
, max

{
1

s2
,
1

q2

}
<

1 + γ2

2
, max

{
1

s′ ,
1

p′

}
<

1 + γ3

2
,

(5.4)

and, additionally,

min

{
1

s1
,
1

q1

}
+ min

{
1

s2
,
1

q2

}
>

1 − γ3

2
. (5.5)

Note that in (5.4) it could be that p ≤ 1 (or analogously s ≤ 1), in which case
1
p′ = 1− 1

p ≤ 0. If we compare our conditions with those in [5, Theorem 5] (see also
[14, Appendix A]), we see that ours impose the extra restrictions (5.5) and si , qi < ∞.
Also, note that the last condition in (5.4) is implied by (5.5); nevertheless we make it
explicit in order to compare our conditions with those of [5, Theorem 5].

123



Limited range multilinear extrapolation. . . 651

We now sketch how to prove our claim. Define

m1 = min

{
1

s1
,
1

q1

}
, m2 = min

{
1

s2
,
1

q2

}
, m̃1 = 2

1 − γ3
m1, m̃2 = 2

1 − γ3
m2.

With this notation, (5.5) becomes m̃1 + m̃2 > 1. The first step is to show that there
exist 0 < η1, η2 < 1 such that

η1 + η2 = 1, η1 < m̃1, η2 < m̃2. (5.6)

To prove this we consider two cases. If |m̃1 − m̃2| < 1, we just need to pick η1 :=
1
2 + m̃1−m̃2

2 , η2 := 1
2 + m̃2−m̃1

2 . On the other hand, if |m̃1− m̃2| ≥ 1 then either m̃1 ≥ 1
or m̃2 ≥ 1. If m̃1 ≥ 1, let η1 = 1 − ε, η2 = ε with 0 < ε � 1; if m̃2 ≥ 1, let η1 = ε,
η2 = 1 − ε with 0 < ε � 1.

Once η1, η2 are chosen we consider two cases. When 0 < η1 ≤ η2 < 1, we take

2η2
η1

< p1 <
2

(1 − γ3)η1
, p2 = p1

η1

η2
, p = p1η1 = p2η2.

Then we have that p1, p2 > 2 and

1 = η1 + η2 ≤ 2η2 < p1η1 = p <
2

1 − γ3
. (5.7)

When 0 < η2 < η1 < 1, we choose

2η1
η2

< p2 <
2

(1 − γ3)η2
, p1 = p2

η2

η1
, p = p1η1 = p2η2.

Again we have p1, p2 > 2 and

1 = η1 + η2 < 2η1 < p2η2 = p <
2

1 − γ3
. (5.8)

In both cases we have 1
p1

+ 1
p2

= 1
p (η1 + η2) = 1

p < 1. Now let

θ1 = p′
1
1 − γ1

2
, θ2 = p′

2
1 − γ2

2
, θ3 = p

1 − γ3

2
.

Then θ1, θ2, θ3 > 0 since γ1, γ2, γ3 < 1. From (5.7) or (5.8) we have that θ3 < 1,
and, since p1, p2 > 2, it follows that θi < 1 − γi ≤ 1 for i = 1, 2. We also have that
θ1
p′
1

≤ 1
2 ,

θ2
p′
2

≤ 1
2 , and

θ3
p ≤ 1

2 since γ1, γ2, γ3 ≥ 0. Finally, since we assumed that

γ1 + γ2 + γ3 = 1, we get

θ1

p′
1

+ θ2

p′
2

+ θ3

p
= 1 − γ1

2
+ 1 − γ2

2
+ 1 − γ3

2
= 1.
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Therefore, (5.2) holds and, as observed above, it follows that (5.1) yields (1.17).
By extrapolation (arguing as we did in the proof of Theorem 1.29) and using (5.3),

we get that (1.30) holds provided

θ3

pi
= 1

r+
i

. <
1

si
,
1

qi
<

1

r−
i

= 1 − θi

p′
i
, i = 1, 2. (5.9)

Hence, we need to show that (5.4) and (5.5) imply that (5.9) holds. First, from (5.4)
we get that

max

{
1

si
,
1

qi

}
<

1 + γi

2
= 1 − θi

p′
i

= 1

r−
i

, i = 1, 2.

Second, (5.6) yields

1

r+
i

= θ3

pi
= p

pi

1 − γ3

2
= ηi < m̃i

1 − γ3

2
= mi = min

{
1

si
,
1

qi

}
.

Hence, (5.9) holds, and this completes our sketch of the proof.
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