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Abstract We consider the area preserving curve shortening flow with Neumann free
boundary conditions outside of a convex domain or at a straight line.We give a criterion
on initial curves that guarantees the appearance of a singularity in finite time.We prove
that the singularity is of type II. Furthermore, if these initial curves are convex, then
an appropriate rescaling at the finite maximal time of existence yields a grim reaper
or half a grim reaper as limit flow. We construct examples of initial curves satisfying
the mentioned criterion.

1 Introduction

The area preserving curve shortening flow (APCSF) for closed plane curves was
introduced by Gage [7]. It is the “steepest descent flow” for the length functional
under the constraint that the enclosed area is constant. For a family of simple closed
curves γ : S1 × [0, T ) → R

2, the evolution equation turns out to be

d

dt
γ =

(
κ −

∫
κds

L

)
ν =

(
κ − 2π

L

)
ν,

where we use the following notation: ν = Jτ is the normal of the curves, where J
is the rotation by +π

2 ; κ is the curvature with respect to ν, L is the length of the
curves and ds denotes integration by arclength. Gage proved in [7] that a strictly
convex simple closed curve remains strictly convex under the APCSF. The curves
converge for t → ∞ smoothly to a circle enclosing the same enclosed area as γ0. Thus,
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1430 E. Mäder-Baumdicker

the flow converges to the solution of the isoperimetric problem in R
2. This problem

consists in finding the shortest closed curve enclosing a fixed area. The analog result
for n-surfaces in R

n+1, n ≥ 2 was proved by G. Huisken [12]: a uniformly convex,
embedded surface moving according to the volume preserving mean curvature flow
stays uniformly convex and exists for all times t ∈ [0,∞). The moving surfaces
converge smoothly to a sphere enclosing the same volume as the initial surface.

We consider the APCSF in a free boundary setting and want to know when and
how singularities develop. But at first we recall what is known about the existence of
singularities in the closed situation.

Escher and Ito considered in [6] immersed closed curves possibly with self-
intersections. Then the evolution equation is d

dt γ = (κ − 2πm
L )ν where m ∈ Z is

the index (or turning number) of the immersed closed curves. The index m is indepen-
dent of time, and by possibly changing the orientation it is non-negative. Escher and
Ito proved that an immersed curve with m ≥ 1 and enclosed area A0 < 0 or m ≥ 2
and L2

0 < 4πm A0 develops a singularity in finite time. The proof is inspired by the
work of Chou on the surface diffusion flow for curves [3].

Wang and Kong also studied immersed closed curves moving according to the
APCSF [19]. They proved that the flow exists for all times and converges smoothly to
an m-fold circle when the initial curve is convex and has so-called “n-fold rotational
symmetry” and index m (n > 2m). On the other hand, “Abresch–Langer type” curves
either converge to a multiple cover of a circle (when A0 > 0) or the curvature blows
up at finite time (when A0 < 0) or the curvature blows up at the maximal time of
existence (when A0 = 0), see [19, Theorem 1.2]. Note that there are examples where
only a slight change is necessary to deform an initial curve with A0 < 0 into one with
A0 = 0 and then into one with A0 > 0.

We now explain the free boundary setting of the APCSF which was studied by the
author in [14,15]. Let� ⊂ R

2 be a convex simple closed curve in the plane and orient
it positively. We call � a support curve. It is not moving in time. An initial curve
γ0 : [a, b] → R

2 is a curve with endpoints γ0(a), γ0(b) ∈ � where we prescribe
the angle to be 90◦. We consider the “outer situation” which means that the curve γ0
goes into the “exterior domain” with respect to � and also comes back to � “from
the outside” at the endpoints. In formulas, this means

τ0(a) = −ν�(γ0(a)), τ0(b) = ν�(γ0(b)), (1)

where τ0 : [a, b] → R
2 is the tangent of γ0 and ν� : � ⊂ R

2 → R
2 is the inner unit

normal to �.1

We now let the curve γ0 flow according to the APCSF such that these conditions
are preserved, i.e. γ : [a, b] × [0, T ) → R

2 satisfies γ (a, t), γ (b, t) ∈ � and (1) for
each time t ∈ [0, T ) and

d

dt
γ =

(
κ −

∫
κds

L

)
ν.

1 As � is a simple closed curve, we define the unit normal (and the tangent) to be defined on the image of
the curve in R

2. Since γ0 can have self-intersections, we use the parametrized version of the tangent.
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Singularities of the area preserving curve... 1431

As the curves are not closed the quantity
∫

κds is not an integer times 2π in general.

It is in fact the first step to find conditions that guarantee a bound of κ̄ :=
∫

κds
L

independent of t . In [15], the author proved that the flow in this setting does not
develop a singularity when the initial curve satisfies four conditions:

(i) γ0 is strictly convex,
(ii) it is embedded,
(iii) it is contained in the exterior domain with respect to � and
(vi) it satisfies L0 < 4

5max |κ� | arcsin(
A0
L2
0
),

where A0 is the enclosed area of the domain enclosed by γ0 and the part of � con-
necting γ0(b) and γ0(a). Furthermore, the curves γ (·, t) subconverge under these
conditions smoothly for t → ∞ to an arc of a circle sitting outside of � and meeting
� perpendicularly.

In this paper we answer the following questions that naturally arise when studying
this setting:

• Are there curves that develop a singularity under the APCSF in the free boundary
setting?

• Are there convex initial curves developing a singularity?
• Does the singularity appear in finite time?
• Of what type are the singularities?
• What does a blowup at the singular time look like?

For our main theorem we explain some preliminaries. As� is a smooth convex closed
curve, every x ∈ � has an “antipodal point” x ′ ∈ � which is a point in � with
τ�(x) = −τ�(x ′), where τ� : � ⊂ R

2 → R
2 is the tangent of�. Note that this point

is not unique as the curve is not strictly convex. The minimum width of � is

d� := min{|x − x ′| : x, x ′ ∈ �, x ′ antipodal to x}.

This is the least distance of two parallel lines touching �.
We consider γ0 : [a, b] → R

2, an initial curve with L0 < d� , where L0 is the
length of γ0. By definition of d� the points γ0(a) and γ0(b) can not be antipodal to each
other. We let the curve γ0 flow by the APCSF with Neumann free boundary conditions
as described above. As this flow is the “steepest descent flow” of the length functional
(under a constraint), the length does not increase under the flow. As a consequence we
get that all endpoints of the evolving curves γ (a, t), γ (b, t) are not antipodal to each
other. Note that for each time t ∈ [0, T ) the curve �\{γ (a, t), γ (b, t)} is divided into
two pieces. At one piece the angle of the normal ν� turns more than π . The angle of
the unit normal of the other part, we call it the short piece, turns less than π .

For each t ∈ [0, T ) we append the “short piece” of � to γ (·, t) in order to close
the curve γ (·, t): Define a family σ(t) : [α(t), β(t)] → � by connecting γ (b, t)
and γ (a, t) by following � along the “short piece”. Note that σ(t) is just a point if
γ (a, t) = γ (b, t).We use the notation σ(0)=:σ0. Since the endpoints of our curves are
never antipodal and as the endpoints of γ (·, t) vary continuously in t , the family σ is
continuous in t . We will see that it is actually C1 in t . We denote the assembled closed
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1432 E. Mäder-Baumdicker

curve by γ (·, t) + σ(t). The boundary conditions imply that
∫
γ (·,t) κds /∈ 2πZ for all

t ∈ [0, T ), in particular
∫
γ0

κds 	= 0. The (oriented) enclosed area A(γ (·, t) + σ(t))
is preserved under the APCSF, and we can state our main theorem:

Theorem 1.1 Let γ0 : [a, b] → R
2 be an initial curve satisfying L0 < d� . Choose

the orientation of γ0 such that
∫
γ0

κds > 0. Fix l ∈ N such that (2l −2)π <
∫
γ0

κds <

2lπ . We further assume

(i) either A(γ0 + σ0) > 0 and
L2
0

A(γ0+σ0)
≤ π

(2l−1)2

l ,
(ii) or A(γ0 + σ0) < 0,

where γ0 + σ0 is the extension of γ0 along the “short piece” described above.
In these cases the solution of the area preserving curve shortening flow with Neumann
free boundary conditions outside of � develops a singularity in finite time, i.e. Tmax <

∞. Furthermore, the finite time singularity is of type II in the sense that

max
p∈[a,b] |κ|(p, t) → ∞ (t → Tmax) and

max
p∈[a,b]

(
|κ|2(p, t)(Tmax − t)

)
is unbounded.

If γ0 is convex, we can say what the limit flow looks like after a suitable rescaling
procedure.

Corollary 1.2 Let γ0 : [a, b] → R
2 be an initial curve satisfying the conditions from

Theorem 1.1. Assume further that γ0 is convex, κ0 ≥ 0. Then the “Hamilton blow-up”
at Tmax < ∞ yields either a grim reaper without boundary or half a grim reaper at
a straight line.

Remark (i) The “Hamilton blow-up” was defined in [9]. We will explain it in the
proof of Corollary 1.2.

(ii) There is numerical evidence given by Mayer [16] that there are embedded closed
curves that first get a self-intersection and then develop a singularity under the
APCSF. In the free boundary setting, it seems to be the case that there are initially
embedded curves that stay embedded but develop a singularity in finite time, see
Example Three in Sect. 3. We think that these curves develop a singularity at the
boundary.

We also study the situation at a straight line. The result is as follows.

Theorem 1.3 Let γ0 : [a, b] → R
2 be an initial curve at a straight line �. Let δ0 be

the closed curve obtained by reflecting γ0 at �. Let ind(δ0) =: m be the index of δ0.
Then m is odd. Choose the orientation of δ0 such that m is positive.
Then the area preserving curve shortening flow with Neumann free boundary condi-
tions at the line � develops a singularity in finite time if one of the following conditions
is satisfied:

(i) Either A(δ0) < 0.
(ii) Or m ≥ 3 and L(δ0)

2 < 4πm A(δ0).
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Singularities of the area preserving curve... 1433

The singularity is of type II.

The structure of this paper is as follows. In Sect. 2 we recall some results from
[14,15] that we use in the proof of Theorem 1.1. We explain again how strongly the
condition L0 < d� influences the behavior of

∫
γ (·,t) κds along the flow. A bound

on |κ̄| independent of Tmax is a consequence. If Tmax = ∞, then the bound on |κ̄|
together with [15] imply subconvergence to a part of a circle that is possibly (partly)
multicovered. We study the geometry of the limiting arc and get a contradiction to
the assumptions. We refine results from [15] to show that the singularity is of type II.
If the initial curve is convex we showed in [15] that the “Hamilton blowup” yields a
grim reaper or half a grim reaper at a straight line.

In Sect. 3, we give examples of curves that do satisfy the conditions of Theorem 1.1
and Corollary 1.2.

Section 4 contains the proof of Theorem 1.3. We reflect the curves at the line �

and apply the results from [6]. We combine this with results from [15] to show that
the singularity is of type II.

2 Singularities of type II in finite time

Notations Let γ : [a, b] → R
2 be a piecewise smooth, regular curve and let h :

[a, b] → R
n , n ∈ {1, 2}, be a C1-map, h = h(p). We denote by ∂sh := 1

|∂pγ |∂ph
the derivative with respect to arclength of h. We define ds := |∂pγ |dp. We recall the
formula for the curvature of γ

κ(p) = 〈∂2s γ (p), ν(p)〉,

where ν = Jτ = J∂sγ is the normal of the curve γ , J is the rotation by +π
2 in the

plane.

Definition 2.1 We call a smooth, regular, convex, simple and smoothly closed curve
f : S1 → R

2 a support curve. We assume f to be parametrized by arclength. We
orient f positively so that κ� ≥ 0. We use the notation

� := f (S1).

The curve � separates R2 into a bounded and an unbounded domain. The bounded
domain is enclosed by � and is denoted by G� .

We define d� := min{|x − y| : x, y ∈ �, τ�(x) = −τ�(y)}, the smallest distance
between two parallel lines in R2 that touch G� (the minimum width).

Definition 2.2 A planar, smooth, regular curve γ0 : [a, b] → R
2 is called initial

curve if it satisfies the conditions

γ0(a), γ0(b) ∈ �

τ0(a) = −ν�(γ0(a)), τ0(b) = ν�(γ0(b)),
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1434 E. Mäder-Baumdicker

where τ0 = ∂sγ0 is the tangent of γ0 and ν� = J ∂s f ◦ f −1 : � → R
2 is the inner

unit normal of � (defined on the image � = f (S1)).

Definition 2.3 Let γ0 : [a, b] → R
2 be an initial curve. A smooth family of smooth,

regular curves γ : [a, b] × [0, T ) → R
2 that satisfies

∂γ

∂t
(p, t) = (κ(p, t) − κ̄(t))ν(p, t) ∀(p, t) ∈ [a, b] × [0, T ),

γ (p, 0) = γ0(p) ∀p ∈ [a, b],
γ (a, t), γ (b, t) ∈ � ∀t ∈ [0, T ),

τ (a, t) = −ν�(γ (a, t)), τ (b, t) = ν�(γ (b, t)), ∀t ∈ [0, T ),

(2)

is called a solution of the area preserving curve shortening problem with Neumann
free boundary conditions. Here, κ̄ denotes the average of the curvature,

κ̄(t) :=
∫

κ(p, t)ds∫
ds

=
∫

κ(p, t)ds

L(γ (·, t))
,

and ν� is the inner unit normal of �. In the rest of the article, we use the notation
γt := γ (·, t).

Remark For a smooth initial curve, existence and uniqueness of the solution of (2) is
standard. One gets short time existence on a short time interval [0, T0]. The solution
can be extended up to a maximal time of existence Tmax ≤ ∞. By regularity theory
for parabolic Neumann problems the curves satisfy

γ ∈C2+α,1+ α
2

(
[a, b] × [0, Tmax ),R

2
)

∩ C∞ (
[a, b] × (0, Tmax ),R

2
)

, α ∈ (0, 1),

where C2+α,1+ α
2 denotes the usual parabolic Hölder space. If Tmax < ∞ then

max[a,b] |κ|(·, t) → ∞ (t → Tmax ). A source for the existence for closed curves
moving by a geometric flow with a constraint is for example [4]. The technique how
to transform the free boundary problem into a standard Neumann boundary prob-
lem can be found in [17,18]. For our specific situation a sketch of the existence and
regularity result is in [15, Proposition 2.4].

Definition 2.4 Let � be a support curve and let γ : [a, b] → R
2 be a curve with

γ (a), γ (b) ∈ �. Then we call a curve σ : [ã, b̃] → � ⊂ R
2 with σ(ã) = γ (b) and

σ(b̃) = γ (a) a boundary curve on � with respect to γ .

Definition 2.5 Let γ : [a, b]×[0, T ) → R
2 be a solution of (2). Consider aC1-family

of smooth curves σ : [ã, b̃] × [0, T ) → � with σ(ã, t) = γ (b, t) and σ(b̃, t) =
γ (a, t) for all t ∈ [0, T ), i.e. σt := σ(·, t) is a boundary curve on � with respect to
γt = γ (·, t). Then for each t ∈ [0, T ), we call the following expression the oriented
area enclosed by γt and �:

A(γt + σt ) := 1

2

∫
γt

p1dp2 − p2dp1 + 1

2

∫
σt

p1dp2 − p2dp1. (3)
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Remark Our curves γt are regular. But it can happen that a curve σt is not regular.
For our situation, this will only happen if γt (a) = γt (b). Then σt will be just the
point σt ≡ γt (a) = γt (b). This is not important for the definition of the enclosed area
because in such a situation γt is already closed and the second integral in (3) vanishes.

We recall some basic properties proved in [15].

Lemma 2.6 (Lemma 2.6, Lemma 2.11 and Corollary 2.14 [15]) Let γ0 : [a, b] → R
2

be a smooth initial curve. Then we have the following properties: the area preserving
curve shortening flow is curve shortening and area preserving, i.e. d

dt L(γt ) ≤ 0 and
d
dt A(γt , σt ) = 0 on [0, T ), where γ : [a, b] × [0, T ) → R

2 is a solution of (2) and

σ : [ã, b̃] × [0, T ) → � is a C1-family of boundary curve on � with respect to γ . As
the domain G� is convex and as γ0 goes into R

2\G� at γ0(a) and comes back to �

from R
2\G� at γ0(b) the flow improves convexity to strict convexity.2 This is, κ0 ≥ 0

for the initial curve implies κ > 0 on [a, b] × (0, T ).

Remark (i) If γ0 is a smooth initial curve then a C1-family of boundary curves σ

on � with respect to γ exists. This was proved in [15, Lemma 2.9]. Under the
condition L0 < d� we will explain the construction of such a family below.

(ii) We emphasize that it is allowed that one of the boundary curves σt consists only
of one point (namely of the endpoints γt (a) = γt (b)). Important in the proof of
Lemma 2.6 is only that one has to find a family of boundary curves where the
enclosed area is continuous in t .

Lemma 2.7 (Construction of the boundary curves) Let γ0 : [a, b] → R
2 be a smooth

initial curve with L0 < d� . Then the solution of (2) has the following property: the
endpoints γt (a), γt (b) divide � into two pieces for each t ∈ [0, T ). The angle of the
unit normal of one component of �\{γt (a), γt (b)} turns more than π (and less or
equal than 2π). The unit normal of other component—we will call it the short piece—
turns an angle of less than π . Note that the (degenerate) case where the short piece
is just a point is possible. This only happens if γt (a) = γt (b). We denote by σ(t) the
curve from γt (b) to γt (a) along the short piece of �. After reparametrizations we get
a C1-family of boundary curves σ : [ã, b̃] × [0, T ) → � with respect to γ , where σt

are regular smooth curves except in the degenerate case where σt ≡ γt (a) = γt (b).
As a consequence, the enclosed area A(γt + σt ) is constant along the flow.

Remark The “short piece” is not the piece with the shorter length. It is the piece where
the image of the unit normal on S1 is shorter.

Proof The construction of the boundary curve is quite explicit. The only thing that
we have to show is that σt is C1 (and in particular continuous) with respect to t . The
continuity follows from that fact that L(γt ) ≤ L0 < d� . By this property the short
piece cannot jump from time to time, i.e. the short piece of � varies continuously
in t . Since γ is in fact C1 in t and as � is smooth, σ is a C1 family of boundary
curves. ��
2 The author emphasizes that convexity is probably not preserved if one allows the curve to meet �

perpendicularly from inside G� at the endpoints.
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1436 E. Mäder-Baumdicker

The following result comes from analyzing the geometric properties of a convex
curve that satisfy the Neumann free boundary conditions outside a convex domain at
the endpoints.

Proposition 2.8 Let � ⊂ R
2 be a positively oriented convex smooth Jordan curve

and let γ : [a, b] → R
2 be a C2-curve with κ > 0 and

γ (a), γ (b) ∈ �,

τ(a) = −ν�(γ (a)), τ (b) = ν�(γ (b)),

where ν� is the inner unit normal of �. Then we have that
∫

κds ≥ π .

Proof In [15, Proposition 3.1], it was shown that the geometric situation of the curves
imply

∫
κds ≥ π . The statement there was formulated for a solution of (2). But the

only properties of the curves that are used in the proof are strict convexity and the
boundary conditions. ��

In order to be able to use results from [15] we need to show that κ̄(t) is bounded in
L∞. As we want to show results about flows with infinite lifespan, we want the bound
to be independent of the maximal time of existence Tmax .

Proposition 2.9 Let γ0 : [a, b] → R
2 be an initial curve (not necessarily convex)

with L0 < d� . Consider the solution of the APCSF (2) on the maximal time interval
of existence [0, Tmax ). Choose l ∈ Z such that (2l − 2)π <

∫
γ0

κds < 2lπ . Then we
have that

(2l − 2)π <

∫
γt

κds < 2lπ for all t ∈ [0, Tmax ).

Proof By definition of d� and by the curve shortening property the points γt (a) and
γt (b) are never “antipodal points”. This means that τ�(γt (a)) 	= −τ�(γt (b)) for each
t ∈ [0, T ). Taking into account the boundary conditions ν�(γt (a)) = −τ(a, t) and
ν�(γt (b)) = τ(b, t) for the inner unit normal ν� = Jτ� we get that

τ(a, t) 	= τ(b, t)

for each t ∈ [0, T ). This particularly implies that
∫
γt

κds /∈ 2πZ for each t ∈ [0, T ).

The continuity of
∫
γt

κds with respect to t implies the result. ��
Proposition 2.10 Let γ : [a, b] × [0, Tmax) → R

2 be the solution of (2) where the
initial curve γ0 : [a, b] → R

2 satisfies L0 < d� . Furthermore, we assume that γ0
satisfies

A(γ0 + σ0) 	= 0,

where γ0+σ0 is the extension of γ0 via the “short piece” along � defined in Lemma 2.7.
Then there is a constant δ > 0 such that L(γt ) ≥ δ for all t ∈ [0, Tmax).
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Singularities of the area preserving curve... 1437

Proof We assume that there is a sequence t j → Tmax with L(γt j ) → 0 ( j → ∞).
Since� is compact we get x0 ∈ � and (after passing to a subsequence) γ (a, t j ) → x0,
γ (b, t j ) → x0. This means that the curves γt j close up as j → ∞. The boundary
curves σ(t j ) are the curves connecting the endpoints γt j (b) and γt j (a) along the part
of � where

∫
σt j

κ�ds� is smaller. This implies that L(σt j ) → 0 as j → ∞. As a

consequence, we also have that A(γt j + σt j ) → 0 as j → ∞. Due to the fact that
A(γ0 + σ0) = A(γt j + σt j ) for all j ∈ N we get a contradiction to our assumption. ��

Theorem 2.11 Letγ : [a, b]×[0,∞) → R
2 be a solution of (2) (without singularities

in finite time) where the initial curve γ0 : [a, b] → R
2 satisfies L0 < d� and

A(γ0 + σ0) 	= 0.

Here, γ0 + σ0 is the extension of γ0 along the “short piece” of � coming from
Lemma 2.7. Choose l ∈ Z such that (2l − 2)π <

∫
γ0

κds < 2lπ .
Then γt (t → ∞) subconverges (after reparametrization) smoothly to a (possibly

multicovered) arc of circle γ∞ sitting outside of � at the endpoints. Note that the
arc can be positively or negatively oriented. Each of the two contact angles at the
endpoints of γ∞ is a 90◦ angle. Furthermore, the limit curve satisfies

∫
κds∞ ∈ [(2l − 1)π, 2lπ) if l ≥ 1, (4)

∫
κds∞ ∈ ((2l − 2)π, (2l − 1)π ] if l ≤ 0. (5)

Proof In [15, Theorem 7.15], subconvergence is proved under the conditions L(γt ) ≥
c1 > 0 and κ̄(t) ∈ [c̄, c2] for all t ∈ [0,∞) for constants c1, c̄, c2 > 0. But the proof
in fact also works if we do not assume the lower bound κ̄ ≥ c̄ > 0. We only need
|κ̄| ≤ c2 and L(γt ) ≥ c1 > 0. We sketch this proof for the convenience of the reader:
for any sequence τl → ∞ we reparametrize the original curves γ̃ (·, τl) by constant
speed and get a solution γl : [0, 1] × [0,∞) → R

2 of (2) with |γ ′
l | = L(γ̃τl ) at the

time τl . Using Gagliardo–Nirenberg interpolation inequalities and integral estimates
we proved in Corollary 7.14 from [15] a bound

sup
(p,t)∈[0,1]×[1,∞)

|κl(p, t)| ≤ C,

where C does not depend on l. Using the graph representation of the curves, the
lower bound on the length and the flow equation we get estimates |∂ i

t ∂
m
s κ| ≤ c on

[0, 1] × [τl , τl + δ] for any δ > 0. We split the derivatives ∂pγl into its tangential and
normal part and use an induction argument together with the bound on |∂m

s κ|. This
yields |∂m

p γl | ≤ c on [0, 1] × [τl , τl + δ], where c depends on m, �, C, L0 and δ.
Choose τl → ∞ and δ > 0 such that

⋃
l∈N[τl , τl + δ) = [1,∞) then we have proved

|∂m
p γl | ≤ c on [0, 1] × [1,∞).
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1438 E. Mäder-Baumdicker

The proof of these estimates can be found in [15, Proof of Proposition 4.7] or in [14,
Section 5.3].

For any tl → ∞ we consider αl := γl(·, tl). Using the theorem of Arzela–Ascoli
the curves subconverge to a smooth curve γ∞ : [0, 1] → R

2 in every Cm on [0, 1],
m ∈ N0. This implies

lim
l ′→∞

κ̄(tl ′) = lim
l ′→∞

∫
αl′

κds∫
αl′

ds
= κ̄(γ∞) ∈ [−c2, c2].

As a consequence we get that

lim
l ′→∞

∫
αl′

(κ − κ̄(γ∞))2ds = lim
l ′→∞

∫
γ (·,tl′ )

(κ − κ̄)2ds = 0,

where we used limt→∞
∫
γt

(κ − κ̄)2ds = 0, which was shown in Corollary 7.5 in [15].
Thus, the limit curve γ∞ satisfies κ∞ ≡ κ̄(γ∞) ∈ [−c2, c2]. By compactness of� and
by continuitywe get that the endpoints of γ∞ lie in�, the curve goes into the “exterior”
domain and comes back from the “exterior” domain at the endpoints. Is not possible
that γ∞ is a part of a straight line by these geometric properties, which implies that
κ̄(γ∞) 	= 0. So we get that the limit curve γ∞ is a (possibly partly multicovered) arc
of a circle. By reversing the orientation we can assume that γ∞ is positively oriented,
thus κ∞ ≡ κ̄(γ∞) > 0. Proposition 2.9 yields

∫
κds∞ ∈ [(2l − 2)π, 2lπ ] .

We showed in Proposition 2.8 that for a strictly convex curve “outside” of � at the
endpoints we always have

∫
κds ≥ π . Using this for the “last” open part of the arc

γ∞ we get that
∫

κds∞ ∈ [(2l − 1)π, 2lπ ]. The situation
∫

κds∞ = 2πl is excluded
by the geometric situation as well. If the arc was negatively oriented, estimate (5) is
obtained by using (4) for the limiting arc with reversed orientation.

It remains to mention that the bounds L(γt ) ≥ c1 > 0 and |κ̄| ≤ c2 are satisfied
under the assumptions of the theorem. This follows from Propositions 2.9 and 2.10.

��
We restate our result about the existence of finite time singularities.

Theorem 2.12 Let γ0 : [a, b] → R
2 be an initial curve with L0 < d� . Choose

the orientation of γ0 such that
∫
γ0

κds > 0. Consider l ∈ N such that
∫
γ0

κds ∈
((2l − 2)π, 2lπ). We further assume

(i) either A(γ0 + σ0) > 0 and
L2
0

A(γ0+σ0)
≤ π

(2l−1)2

l ,
(ii) or A(γ0 + σ0) < 0.

Here, γ0+σ0 is the extension of γ0 along the “short piece” of � defined in Lemma 2.7.
In both cases the solution of (2) develops a singularity in finite time, i.e. Tmax < ∞.
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Proof Theorem2.11 implies thatγt subconverges to an arc of a circleγ∞ sittingoutside
of� at the endpoints. Property l > 0 implies (4), which is

∫
κds∞ ∈ [(2l − 1)π, 2lπ).

This also gives us the information that the arc γ∞ is positively oriented. In particular,
the enclosed area in the limit is positive, A(γ∞+σ∞) > 0,which yields a contradiction
in case (ii) because the flow is area preserving. We consider case (i): the quantities in
the isoperimetric quotient satisfy

L(γ∞) = 2(l − 1)πr∞ + α∞r∞ ≥ (2l − 1)πr∞ for some α∞ ∈ [π, 2π) and
(6)

A(γ0 + σ0) = A(γ∞ + σ∞) = (l − 1)πr2∞ + Ã∞ < lπr2∞, (7)

where r∞ is the radius of the arc γ∞ and 0 < Ã∞ < πr2∞ is the area of the domain
inside one full circulation of γ∞ without the positive area of G� . We compute

L2
0

A(γ0 + σ0)
≥ L(γt j )

2

A(γ0 + σ0)
→ L(γ∞)2

A(γ0 + σ0)
as t j → ∞. (8)

We use (6) and (7) and the fact that the enclosed area is preserved and get

L2
0

A(γ0 + σ0)
>

(2l − 1)2π2r2∞
lπr2∞

= π
(2l − 1)2

l
,

which contradicts our assumptions. ��
Remark The result of the previous theorem can be improved by analyzing the geomet-
ric situation in the limit more carefully. Instead of using the estimate Ã∞ < πr2∞ we

can prove Ã∞ < πr2∞(1 − 7
20π ). If A(γ0 + σ0) > 0 we get that

L2
0

A(γ0+σ0)
< π

(2l−1)2

l− 7
20π

implies a singularity in finite time. This is again not sharp because we estimated some
geometric constants.

Corollary 2.13 Let γ0 : [a, b] → R
2 be an initial curve satisfying the conditions

from Theorem 2.12. Then the finite time singularity is of type II in the sense that

max
p∈[a,b] |κ|(p, t) → ∞ (t → Tmax) and

max
p∈[a,b]

(
|κ|2(p, t)(Tmax − t)

)
is unbounded.

The proof of this corollary is based on the following lemma:

Lemma 2.14 Let γ : [a, b]× [0, T ) → R
2 be a solution of (2) with T < ∞ is a time

such that {max[a,b] κ2(·, t) : t ∈ [0, T )} is unbounded. Then we have that

κ2
max (t) := max[a,b] κ2(·, t) ≥ 1

4(T − t)
∀t ∈ (0, T ).
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1440 E. Mäder-Baumdicker

Proof A bound max[a,b] κ2(·, t) ≥ 1
2(T −t) was proved in [15, Proposition 4.1] for a

convex initial curve. We refine this proof for a general initial curve: We compute the
evolution equation of κ2 and estimate

∂tκ
2 = ∂2s κ2 − 2(∂sκ)2 + 2κ4 − 2κ3κ̄

≤ ∂2s κ2 + 2κ4 + 2

(
max[a,b] |κ|(·, t)

)3

|κ̄|

≤ ∂2s κ2 + 4

(
max[a,b] |κ|(·, t)

)4

,

where we used −max[a,b] |κ| ≤ κ̄ ≤ max[a,b] |κ| in the last step. As κ2 is C2 the
function t �→ κ2

max (t) is Lipschitz and hence differentiable almost everywhere. At a

point of differentiability we can compute the time derivative as d
dt κ

2
max (t) = ∂κ2(p,t)

∂t ,
where p ∈ [a, b] is a pointwhere themaximum is attained. This approach is sometimes
called “Hamilton’s trick”. It goes back to [11]. We get that

d

dt
κ2

max (t) ≤ ∂2s κ2(p, t) + 4
(
κ2

max (t)
)2

, (9)

where p ∈ [a, b] is a point where the maximum of κ2(·, t) is attained. We now prove
that

∂2s κ2(p, t) ≤ 0 (10)

holds for such a point p ∈ [a, b]. If p ∈ (a, b), we simply have a maximum in the
inner part of [a, b]. Thus, inequality (10) is clear. So we assume that p = a. Case (i):
κ(a, t) > 0: Then κ(a, t) = max[a,b] κ(·, t). So we have the inequality ∂sκ(a, t) ≤
0. In [15, Lemma 2.12] we proved by differentiating the boundary conditions that
∂sκ(a, t) = (κ(a, t) − κ̄(t)) κ�(γ (a, t)) for all t ∈ (0, T ). In our specific situation
we get that

0 ≥ ∂sκ(a, t) = (κ(a, t) − κ̄(t)) κ�(γ (a, t)) ≥ 0,

where we used κ̄(t) ≤ max[a,b] κ(·, t) = κ(a, t) in the last inequality. We hence get
that ∂sκ(a, t) = 0 and therefore ∂sκ

2(a, t) = 2κ(a, t)∂sκ(a, t) = 0. A positive sign
of the second derivative ∂2s κ2(a, t) > 0 would now imply a strict local minimum of
κ2(·, t) in a, which is a contradiction. As a consequence we get that (10) is satisfied.
Case (ii): κ(a, t) < 0: In this case we know that κ(a, t) = min[a,b] κ(·, t). So we get
that ∂sκ(a, t) ≥ 0 and

0 ≤ ∂sκ(a, t) = (κ(a, t) − κ̄(t)) κ�(γ (a, t)) ≤ 0

because of κ̄(t) ≥ min[a,b] κ(·, t) = κ(a, t). Thus, we also have ∂sκ
2(a, t) = 0. As in

the first case, we get that ∂2s κ2(a, t) ≤ 0. Case (iii): κ(a, t) = 0: Here, we immediately
get that ∂sκ

2(a, t) = 2κ(a, t)∂sκ(a, t) = 0. As in the other two cases, this implies
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∂2s κ2(a, t) ≤ 0 because a is a maximum point of κ2(·, t). If p = b, (10) follows
analogously as ∂sκ(b, t) = − (κ(b, t) − κ̄(t)) κ�(γ (b, t)) [15, Lemma 2.12].

We now use (9) and (10) and get

− d

dt

(
1

κ2
max (t)

)
≤ 4

at all times t ∈ (0, T )where κ2
max is differentiable. Integrating and using the existence

of a sequence t j → T such that κ2
max (t j ) → ∞ yields the result. ��

Definition 2.15 We keep the notation of a type I singularity as in the (classical) curve
shortening flow: A singular time T < ∞ is of type I if there is a constant c > 0 such
that

max[a,b] κ2(·, t) ≤ c

T − t
∀t ∈ [0, T ).

Otherwise, the singularity is of type II.

Proof (ofCorollary 2.13). In [15, Theorem4.16], the author proved that a convex initial
curve cannot develop a type I singularity in finite time if |κ̄| ≤ c2 and L(γt ) ≥ c1 > 0.
We are able to generalize this result for general initial curves under the same bounds
on the total curvature and on the length. Almost all steps of the proof of Theorem 4.16
in [15] are already formulated for the general case, see Section 4 in [15]. We sketch
the most important steps: Assume that the flow develops a singularity of type I in finite
time. We do a parabolic rescaling

γ̃ j (p, τ ) := Q j

(
γ

(
p, τ

Q2
j
+ T

)
− x0

)
for (p, τ ) ∈ [a, b] × [−Q2

j T, 0),

where x0 ∈ R
2 is a “blowup point” of the flow, which means t j → T , p j → p0 ∈

[a, b], Q j = |κ|(p j , t j ) = max[a,b] |κ|(p, t j )| → ∞, γ (p j , t j ) → x0. Using the
gradient estimates from Stahl [17,18] we adapted the convergence procedure from
[5, Remark 4.22 (2)] to the area preserving flow. This is similar to the procedure in
Theorem2.11 (but it is not necessary to use integral estimates because T < ∞).We get
smooth subconvergence (after reparametrization) to a limit flow γ∞ : I ×(−∞, 0) →
R
2, where I is an interval containing 0. Because of the L∞ bound on κ̄(t) the term

κ̄ j (t) is scaled away in the limit. Thus, the limit flow satisfies ∂tγ∞ = κ∞ν∞, it
is an ancient solution of the curve shortening flow. The lower bound on the length
implies that each curve γ∞(·, t) has infinite length. If the singularity develops at the
boundary then the curve γ∞(·, t)meets a straight line perpendicularly at the endpoint.
We reflect it and can consider a complete, unbounded solution of the curve shortening
flow. A monotonicity formula for the free boundary situation yields the key properties
of the limit flow: Each curve γ∞(·, t) is proper and γ∞ is self-similarly shrinking,
i.e. κ∞(p, τ ) = 〈γ∞(p,τ ),ν∞(p,τ )〉

2τ . For plane curves, all the self-similarly shrinking
solutions are classified. It turns out that the curvature of these solutions does not
change sign, see [8]. We get that γ∞ is one of the following:
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1442 E. Mäder-Baumdicker

(i) The line R × {0},
(ii) the shrinking sphere S1√−2τ

, where the curves can also be negatively oriented,
(iii) one of the closed “Abresch–Langer curves” [1], positively or negatively oriented,
(iv) a curves whose image is dense in an annulus of R2.

The solutions (i), (ii) and (iii) are excluded because of the unbounded length and the
properness of the curves. It remains to exclude i): We rescaled at points of maximal
curvature which implies for τ j := − Q2

j (T − t j )

κγ̃ j (p j , τ j ) = 1

Q j
κ

(
p j ,

−Q2
j (T −t j )

Q2
j

+ T

)
= 1

Q j
κ(p j , t j ) = 1 ∀ j ∈ N.

We reparametrize in the spatial component such that κ̃ j (0, τ j ) = 1 for all j ∈ N. By
the type I property we get that

τ j = −κ2(p j , t j )(T − t j ) ≥ − c

T − t j
(T − t j ) = −c > −∞.

The blowup rate from Lemma 2.14 yields

τ j = −κ2(p j , t j )(T − t j ) ≤ − 1

4
< 0.

Thus, there is a time τ ∈ [−c,− 1
4 ] such that κ∞(0, τ ) = 1. This excludes the line as

a limit flow. ��
Corollary 2.16 Let γ0 : [a, b] → R

2 be a convex initial curve satisfying the condi-
tions from Theorem 2.12. Then the “Hamilton blow-up” at Tmax yields either a grim
reaper (we call this situation an “inner singularity”) or half a grim reaper at a plane
(a “boundary singularity”).

Proof The situation of a finite type II singularity was treated in [15, Section 6]. We
repeat the important steps for the sake of completeness.We recall the “Hamilton blow-
up” [9]: define T := Tmax . For j ∈ N choose t j ∈ [0, T − 1

j ] and p j ∈ [a, b] such
that

|κ|2(p j , t j )
(

T − 1
j − t j

)
= max

{(
|κ|2(p, t)

(
T − 1

j − t
))

: t ∈
[
0, T − 1

j

]
, p ∈ [a, b]

}
.

Then define Q j :=|κ|(p j , t j ) and

γ̃ j (·, τ ) := Q j

(
γ

(
·, τ

Q2
j
+ t j

)
− γ (p j , t j )

)
for τ ∈

[
−Q2

j t j , Q2
j

(
T − t j − 1

j

)]
on [a, b].

As the singularity is of type II, one can show certain properties of the rescaled flow.
The most important ones are κ̃ j (p j , 0) = 0 ∀ j , |κ̃ j |(·, τ ) ≤ 1 ∀ j and

∀ε > 0 ∀τ̄ > 0 ∃ j0(ε, τ̄ ) ∈ N, ∀ j ≥ j0 :|κ̃ j |2(p, τ ) ≤ 1 + ε

∀τ ∈ [−Q2
j0 t j0 , τ̄ ],∀p ∈ [a, b].
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Then there exist reparametrizations ψ j : I j → [a, b] with |I j | → ∞ ( j → ∞) such
that a subsequence of the rescaled curves

γ j := γ̃ j (ψ j , ·) : I j × [−Q2
j t j , Q2

j (T − t j − 1
j )] → R

2

converges locally smoothly to a limit flow γ̃∞ : Ĩ × (−∞,∞) → R
2 (where Ĩ is an

unbounded interval containing 0). The proof of this subconvergence can be found in
[15, Proposition 6.2, Proposition 4.7]. It is again similar to the proofs of Theorem 2.11
and Corollary 2.13.

The limit flow γ̃∞ is a smooth solution of the curve shortening flow and satisfies
0 < κ̃∞ ≤ 1 everywhere and κ̃∞ = 1 at least at one point. If M̃∞

τ :=γ̃∞( Ĩ , τ )

has a boundary, then ∂ M̃∞
τ ⊂ �∞, where �∞ is a line through 0 ∈ R

2, and
〈ν̃∞, ν�∞〉 = 0 on ∂ M̃∞. By reflecting at the line �∞ one gets an eternal solution
of the curve shortening flow with bounded curvature where the maximal curvature
is attained at least at one point. Due to [10, Theorem 1.3], the limit flow must
be a translating solution, and the only translating solution in the case of curves is
the “grim reaper” which is the flow of curves given by x = − log cos y + τ for
y ∈ (−π

2 , π
2 ). In the situation where the limit flow does have a boundary it must

be “half the grim reaper” at �∞ because the grim reaper has only one symmetry
axis. ��
In [3,6] the blowup-rate at the singularity was characterized for the L2-norm of the
curvature, and not for the C0-norm as above. This L2-rate can also be proved for the
free boundary setting:

Proposition 2.17 Let γ : [a, b]×[0, Tmax ) → R
2 be a solution of (2)with Tmax < ∞

and |κ̄| ≤ c < ∞. Then there is a constant C > 0 and a sequence of times tk → Tmax

such that
∫

|κ(·, tk)|2dstk ≥ C(Tmax − tk)
− 1

2

Proof The proof is due to [3, Proposition A] and [6, Proposition 5]. Since Tmax < ∞
we have that

{∫
κ2ds : t ∈ [0, Tmax )

}
is unbounded. As it was pointed out in [6, Proof

of Proposition 5], this comes from the fact that the proof of the short time existence
only depends on the C1,α-norm of the initial data for all α ∈ (0, 1). For the Neumann
boundary condition setting the estimates behind this argument can be found in [14,
Lemma 5.3.2]. In order to follow the proof of [6, Proposition 5] we only have show
that

d

dt
E(t) ≤ C

(
E(t) + E(t)3

)

for E(t) := ∫
(κ − κ̄)2ds. In [15, Corollary 7.4], the inequality

d

dt
E(t) ≤ C

(
E(t) + E(t)

5
3 + E(t)3

)
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Fig. 1 An initial curve, where
the flow develops a singularity in
finite time, see Example One

is proved under the condition |κ̄| ≤ c < ∞. We have

E
5
3 ≤

{
E, if 0 ≤ E ≤ 1
E3, if 1 ≤ E

}
≤ E3 + E .

This was also used in [6, Proof of Proposition 5]. ��
The following corollary is immediate.

Corollary 2.18 Under the conditions of Theorem 2.12 there is a sequence of times

tk → Tmax < ∞ such that
∫ |κ(·, tk)|2dstk ≥ C(Tmax − tk)−

1
2 .

3 Examples

It remains to show that there are curves that satisfy the conditions from Theorem 2.12
or Corollary 2.13.

Example 1 Let us consider a convex curve � that almost looks like a circle with
d� > 2π . Then one can construct an initial curve γ0 : [0, 1] → R

2 with L0 < 4
3π ,

l = 2 and A(γ0+σ0) > π
2 .An example is drawn inFig. 1.Note thatσ0 is the connection

of γ0(1) and γ0(0) along � that is visible in the picture. We check the isoperimetric
quotient of that initial curve and compare it to the conditions of Theorem 2.12:

L2
0

A(γ0 + σ0)
<

2

π

(
4

3
π

)2

= 2
16

9
π <

9

2
π.

Thus, this curve develops a type II singularity in finite time. This is somehow not
surprising as it was shown in [6, Proposition 9] that a curve looking like the described
γ0 but closed on the “lower part” (a so-called “limaçon”) develops a singularity in
finite time under the area preserving curve shortening flow without boundary. And the
“limaçon” is the classical examplewhere the curve shortening flow (without boundary)
develops a type II singularity [2]. These type II singularities are usually expected when
there is a self-intersection.

But there are examples satisfying the conditions from case (ii) in Theorem 2.12
that seem to behave differently, see Example Two.
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Fig. 2 Another initial curve,
where the flow develops a
singularity in finite time, see
Example Two

Fig. 3 Another initial curve,
where the flow develops a
singularity in finite time, see
Example Three

Fig. 4 A non-convex initial
curve, where the flow develops a
singularity in finite time, see
Example Four

Example 2 We construct γ0 : [0, 1] → R
2 as shown in Fig. 2. Again, σ0 is the

connection of γ0(1) to γ0(0) along �. As in the first example we have that l = 2. We
construct γ0 such that L0 < d� , L0 < 4

3π and A(γ0 + σ0) > π
2 . We conclude again

L2
0

A(γ0 + σ0)
<

2

π

(
4

3
π

)2

= 2
16

9
π <

9

2
π.

For this particular γ0 we conjecture that the curves stay embedded under the flow (2)
and that the type II singularity forms at the boundary.

Example 3 The conditions of Theorem 2.12, case (ii) are satisfied by a curve γ0 :
[0, 1] → R

2 as shown in Fig. 3. We choose G� big enough such that L0 < d� . We
have that κ0 > 0 and l = 2.We have constructed γ0 in such a way that A(γ0+σ0) < 0.
By Theorem 2.12 we get a singularity in finite time that is of type II.

Example 4 As Theorem 2.12 gives the existence of singularities also for non-convex
curves, we provide such an example, see Fig. 4. The initial curve γ0 : [0, 1] → R

2

satisfies
∫
γ0

κds ∈ (−2π, 0) but A(γ0 + σ0) > 0. After changing the orientation
case (ii), Theorem 2.12 applies, and the flow develops a singularity in finite time.

123



1446 E. Mäder-Baumdicker

4 The area preserving curve shortening flow at a straight line

In this section, we consider the area preserving curve shortening flow (APCSF) at a
straight line. We prove that there are initial curves that develop a singularity in finite
time. The situation is somehow easier than in the previous section. The strategy is to
reflect the curves at the line and to use the results from [6] for the closed case. First
we have to specify some notation for the case that � is a straight line.

Definition 4.1 Consider the map f : s �→ (−s, 0) ∈ R
2, s ∈ (−∞,∞). The map

f parametrizes the line � := {(x, y) ∈ R
2 : x ∈ R, y = 0}. A smooth, regular curve

γ0 : [a, b] → R
2 is called initial curve if it satisfies the conditions

γ0(a), γ0(b) ∈ �

τ0(a) = e2,

τ0(b) = −e2,

where τ0 = ∂sγ0 is the tangent of γ0 and e2 = (0, 1) ∈ R
2 is the second standard

vector in R2.

Definition 4.2 Let f : [a, b] → R
2 be a piecewise smooth, regular and closed curve.

The number

ind( f ) := n(∂p f, 0) ∈ Z

is called the index (or turning number) of f . Here, n(∂p f, 0) denotes the winding
number of the curve ∂p f : [a, b] → R

2 with respect to 0 ∈ R
2.

Theorem 4.3 Let f be a piecewise smooth, regular and closed curve, defined on
intervals [a j , b j ], j = 1, . . . , k, and with exterior angles α j , j = 1, . . . , k. Then

ind( f ) = 1

2π

k∑
j=0

∫ b j

a j

κ f ds f + 1

2π

k∑
j=0

α j ∈ Z.

Proof See [13, Theorem 2.1.6]. ��
Lemma 4.4 Let γ0 : [a, b] → R

2 be an initial curve. Reflect the curve γ0 at the line
� into the lower half space of R2. Then the resulting closed curve δ0 is a C2 curve
with ind(δ0) =: m ∈ Z. The number m is odd.

Proof As the curves meet � perpendicularly and because of reflection at a line the
reflected curves are C2. We treat two cases:

Case 1: f −1(γ0(a)) ≤ f −1(γ0(b)).
Then consider γ0 + σ0 where σ0 is the line segment from γ0(b) to γ0(a). The exterior
angles at the points where τ0 is not continuous are +π

2 (or +π if γ0(a) = γ0(b)).
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Thus, we have l := ind(γ0 + σ0) = 1
2π

(∫
γ0

κds + π
)

∈ Z or equivalently
∫
γ0

κds =
2πl − π . After reflecting we get ind(δ0) = 2

∫
γ0

κds

2π = 2l − 1.

Case 2: f −1(γ0(a)) > f −1(γ0(b)).
We denote by σ0 the line segment from γ0(b) to γ0(a). Note that this is oriented in the
opposite direction compared to f . Now the exterior angles of γ0 + σ0 are −π

2 . This

implies
∫

κds = 2πl + π for l ∈ Z. By reflection we conclude ind(δ0) = 2
∫
γ0

κds

2π =
2l + 1. ��
Remark The APCSF preserves the reflection symmetry with respect to the x-axis. It
hence does not matter whether we start at the straight line the APCSF with Neumann
free boundary conditions and then reflect at � or if we reflect at first and then con-
sider the APCSF for closed curves. Thus, we recover the APCSF with Neumann free
boundary conditions from the flow of the closed curves.

Proposition 4.5 Let γ0 : [a, b] → R
2 be an initial curve. Reflect γ0 at � and denote

the closed curve by δ0. Choose the orientation of δ0 such that ind(δ0)=:m ≥ 0.
Lemma 4.4 shows that m is odd. Then the area preserving curve shortening flow with
Neumann free boundary conditions at the line � develops a singularity in finite time
if one of the following conditions is satisfied:

(i) Either A(δ0) < 0.
(ii) Or m ≥ 3 and L(δ0)

2 < 4πm A(δ0).

Proof We use Lemma 4.4 to get that m is odd, so m ≥ 1 is always satisfied. Use [6,
Proposition 9] for the flow of the reflected curve to get that that Tmax < ∞. ��
Corollary 4.6 The finite time singularity appearing in Proposition 4.5 is of type II.

Proof Denote by δt , t ∈ [0, Tmax ), the closed curves and with γt , t ∈ [0, Tmax ), the
curves with boundary. By the isoperimetric inequality for δt we get that L(δt )

2 ≥
4π |A(δt )| = 4π |A(δ0)|. This implies L(γt )

2 ≥ π |A(δ0)| > 0. Thus the length is
bounded from below uniformly in t . We have that 2

∫
γ0

κds = ∫
δ0

κds = 2πm ∈ Z.

Continuity yields
∫
γt

κds = πm for all t ∈ [0, Tmax ). Thus |κ̄γt (t)| ≤ c2 < ∞
uniformly in t . A blowup argument as in [15, Theorem 4.16] or as in the proof of
Corollary 2.13 implies that the singularity is of type II. ��
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