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Abstract We show that many spin 6-manifolds have the homotopy type but not the
homeomorphism type of a Kähler manifold. Moreover, for given Betti numbers, there
are only finitely many deformation types and hence topological types of smooth com-
plex projective spin threefolds of general type. Finally, on a fixed spin 6-manifold, the
Chern numbers take on only finitely many values on all possible Kähler structures.

Mathematics Subject Classification Primary 14F45 · 32Q15 · 57R15;
Secondary 14E30 · 57R20

1 Introduction

A classical question in complex algebraic geometry asks which smooth manifolds
carry a complex projective or a Kähler structure. Once we know that at least one such
structure exists, the next natural question is to ask how many there are. In this paper
we address both questions in the case where the underlying smooth manifold is a
spin 6-manifold. The condition for a 6-manifold M to be spin depends only on its
homotopy type; if M carries a complex structure X , then M is spin if and only if the
mod 2 reduction of c1(X) vanishes.
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The spin condition, though of a purely topological nature, turns out to put strong
restrictions on the bimeromorphic geometry ofKählermanifolds. Thismakes that class
of manifolds particularly accessible to the methods of the minimal model program,
established for Kähler threefolds only very recently by Höring and Peternell [10,11].
We will see that this leads to surprisingly strong topological constraints on this class
of Kähler manifolds; our main results are Theorems 1, 2 and 4 below.

1.1 Many spin 6-manifolds are non-Kähler but have Kähler homotopy type

Any closed spin 6-manifold carries an almost complex structure, see Sect. 2.1.1.More-
over, a conjecture of Yau predicts that actually any closed spin 6-manifold admits a
complex structure, see [20, p. 6] and [40, Problem 52]. On the other hand, our first main
result produces many examples that do not carry any Kähler structure. The interesting
feature of our result is that it holds for a large class of prescribed homotopy types.

Theorem 1 Let X be a simply connected Kähler threefold with spin structure and
H3(X,Z) = 0. Then there are infinitely many pairwise non-homeomorphic closed
spin 6-manifolds Mi with the same oriented homotopy type as X, but which are not
homeomorphic to a Kähler manifold.

To the best knowledge of the authors, the above theorem produces the first examples
of manifolds with b2 > 1 that are homotopy equivalent but not homeomorphic to
Kähler manifolds. This is interesting because most known topological constraints
implied by the Kähler condition (e.g. formality [6], restrictions on the fundamental
group [1], or constraints on the cohomology algebra that come from Hodge theory)
are only sensitive to the homotopy type, but not to the homeomorphism type.

Simple examples to which Theorem 1 applies are the blow-up of P3 in finitely
many points, the product of a K3 surface with P

1, or, more generally, the P1-bundle
P(KS ⊕OS) over any simply connected Kähler surface S; the surface S may very well
be non-spin.

Previously, only rather specific examples of non-Kähler manifolds with Kähler
homotopy type had been found. For example, Libgober andWood [23] proved that the
homotopy type ofPn with n ≤ 6 determines uniquely theKähler structure. This proves
Theorem 1 in the special case X = P

3, because it is well-known that there are infinitely
many pairwise non-homeomorphic 6-manifolds that are homotopy equivalent to P

3.
A related result of Hirzebruch–Kodaira [9] and Yau [41] asserts that for any n, the
homeomorphism type of Pn determines the Kähler structure uniquely.

1.2 Almost no spin 6-manifold is a complex projective variety of general type

In analogy with the classification of curves or surfaces, one expects that most Kähler
structures are of general type. Any Kähler structure of general type is projective and
it is natural to ask which smooth manifolds carry such a structure.

Our next result is the following strong finiteness statement.

Theorem 2 There are only finitely many deformation types of smooth complex pro-
jective spin threefolds of general type and with bounded Betti numbers.
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Kähler structures on spin 6-manifolds 399

The above theorem shows that the deformation type and hence the topological type
of a smooth complex projective spin threefold X of general type is determined up to
finite ambiguity by its Betti numbers. In particular, once we fix the Betti numbers,
only finitely many fundamental groups π1(X), and only finitely many ring structures
and torsion subgroups of H∗(X,Z) occur. In fact, Theorem 2 implies the following.

Corollary 3 Only finitely many closed spin 6-manifolds with bounded Betti numbers
carry a Kähler structure of general type.

Corollary 3 has the surprising consequence that almost no closed spin 6-manifold
is a complex projective variety of general type. To see this, we start with the case of
simply connected spin 6-manifolds M , which are completely classified by the work
of Wall, see Sect. 2.1.2. It turns out that for given Betti numbers with b2 > 0, the
ring structure on H∗(M,Z) may vary among infinitely many different isomorphism
types and almost none of these manifolds can be a variety of general type. In fact,
even the corresponding homotopy types cannot be realized by a variety of general
type; non-simply connected examples can be produced similarly by taking connected
sums with simply connected ones. Going further, it is also possible to produce many
new examples of manifolds that are homotopy equivalent but not homeomorphic to a
variety of general type, see Corollary 25 below.

Although it is well–known that Theorem 2 holds in dimension two, this cannot be
exploited in a similar way. The problem being that the oriented homeomorphism type
of a simply connected smooth 4-manifold M is determined by the cup product pairing
on H2(M,Z) by Freedman’s work, and only very few (in particular finitely many)
isomorphism types occur by Donaldson’s theorem.

Our arguments are new and do not seem to apply to other natural classes of Kähler
manifolds. Indeed, it is easy to see that Theorem 2 and Corollary 3 fail in higher
dimensions. Moreover, both statements are sharp in the sense that they fail if one
drops either the spin assumption, or the general type assumption, see Example 24 and
Proposition 35 below. Nonetheless, Theorem 1 and 2 lead to the expectation that in
some sense, most spin 6-manifolds should not carry any Kähler structure at all.

Finiteness results like Theorem 2 seem to be quite rare; in fact, apart from the
aforementioned case of surfaces, we are aware of only onemore result in this direction.
That result is due to Kollár, who showed [14, Theorem 4.2.3] that all Kähler manifolds
with b2 = 1, given cohomology ring and Pontryagin classes form a bounded family.
Minimal ruled surfaces show that this statement fails already for b2 = 2. Moreover,
for applications like Theorem 1 or Corollary 3, it is crucial not to fix the Pontryagin
classes.

1.3 Kähler structures on spin 6-manifolds have bounded Chern numbers

Let us nowassume that a given spin 6-manifold M carries aKähler structure andwe ask
how many there are. More precisely, it is natural to ask which (homotopy classes of)
almost complex structures can be realized by a Kähler structure. Since M is spin, the
first Chern class induces a bijection between the homotopy classes of almost complex
structures on M and the subgroup H2(M, 2Z) of classes in H2(M,Z) whose mod
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2 reduction vanishes, see Proposition 8. It follows from Theorem 2 that only finitely
many such classes come from Kähler structures of general type. This fails without the
general type assumption: there are spin 6-manifolds that admit infinitely many Kähler
structures with unbounded first Chern class, see Proposition 35. Nonetheless, our next
result shows that the Chern numbers are always bounded.

Theorem 4 Let X be a smooth compact Kähler threefold with spin structure. Then
the Chern numbers of X are determined up to finite ambiguity by the isomorphism
type of the cohomology ring H∗(X,Z) and the first Pontryagin class p1(X).

The following corollary of the above theorem solves a problem of Kotschick in the
case of spin structures [17, Problem 1].

Corollary 5 The Chern numbers take on only finitely many values on the Kähler
structures with the same underlying closed spin 6-manifold.

While the boundedness of c3 and c1c2 onKähler structureswith the sameunderlying
smooth 6-manifold is well-known, the significance of the above results concerns the
boundedness of c31. For non-uniruled Kähler threefolds, our bounds for c31 are effective
and depend only on the Betti numbers, see Corollary 33.

The original motivation for Kotschick’s question goes back to a problem of Hirze-
bruch, asking which linear combinations of Chern and Hodge numbers of a smooth
complex projective variety are determined by the underlying smooth manifold [17–
19,21].

Interestingly, Theorem 4 and Corollary 5 fail if one drops the Kähler assumption
[22]. Moreover, none of the statements generalizes to higher dimensions. Indeed, for
any n ≥ 4 there are smooth 2n-manifoldswith infinitelymanyKähler structureswhose
Chern numbers are unbounded, see [31]. The method of that paper can be adapted
to produce similar examples with spin structures; more precisely, [31, Theorem 1]
remains true for spin manifolds.

Remark 6 Any topological 6-manifold admits atmost one equivalence class of smooth
structures; the existence of such a structure is detected by the Kirby–Siebenmann
invariant. In particular, Corollary 5 remains true if one replaces smooth spin
6-manifolds by topological ones.

1.4 Conventions

All manifolds are smooth, closed and connected. A Kähler manifold is a complex
manifold which admits a Kähler metric. All schemes are separated; a variety is an
integral scheme of finite type over C. A family of varieties is a proper flat morphism
π : X B between finite type schemes over C whose fibres over closed points are
varieties; in this paper, the base B will always be assumed to be reduced. For any
(Kähler) manifold X , we denote by H∗

t f (X,Z) the quotient H∗(X,Z)/H∗(X,Z)tors ,
where H∗(X,Z)tors is the torsion subgroup of H∗(X,Z).
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Kähler structures on spin 6-manifolds 401

2 Preliminaries

2.1 Spin 6-manifolds

A smooth orientable 6-manifold M is spin if and only if the second Stiefel–Whitney
class w2(M) ∈ H2(M,Z/2Z) vanishes. It follows from the Wu formula that this
condition depends only on the homotopy type of M . Moreover, if X is a complex
structure on M , then the mod 2 reduction of c1(X) coincides with w2(M) and so it
vanishes if and only if M is spin.

For example, by the adjunction formula, a smooth divisor X on a compact complex
fourfold Y is spin if it is linearly equivalent to KY +2L for some L ∈ Pic(Y ). In partic-
ular, any smooth complex projective fourfold contains (many) smooth hypersurfaces
X with spin structure. The smooth 6-manifold which underlies X , or the blow-up of
X in a finite number of points, is spin and so the results of this paper apply.

The following definition generalises the notion of spin threefold; note however that
this generalization is not a topological notion anymore.

Definition 7 Let X be a smooth complex projective threefold. We say that c1(X) is
numerically divisible by m ∈ N if its class in H2

t f (X,Z) is divisible by m. Moreover,
c1(X) is numerically divisible if it is divisible by some natural number m ≥ 2.

2.1.1 Almost complex structures

The obstruction for a closed oriented 6-manifold M to carry an almost complex struc-
ture is given by the image of the second Stiefel–Whitney class via the Bockstein
homomorphism H2(M,Z/2Z) H3(M,Z) and hence it vanishes if M is spin. In
fact, we have the following, see proof of [30, Proposition 8].

Proposition 8 Let M be a closed spin 6-manifold. Then the first Chern class induces
a bijection between the homotopy classes of almost complex structures on M and the
subgroup H2(M, 2Z) ⊂ H2(M,Z) of classes whose mod 2 reduction vanishes.

2.1.2 Classification of simply connected spin 6-manifolds

Wall [39] showed that simply connected closed spin 6-manifolds M with torsion free
cohomology are classified by the following tuple of algebraic invariants

(b3(M), H2(M,Z), FM , p1(M)),

where FM denotes the cubic form on H2(M,Z), given by cup product, and p1(M) is
the linear form on H2(M,Z), given by cup product with the first Pontryagin class, see
also [30, Section 1]. Two suchmanifolds M and M ′ are orientation-preservingly home-
omorphic (or diffeomorphic, seeRemark6 above) if andonly if there is an isomorphism
between H2(M,Z) and H2(M ′,Z)which respects the above tuple of algebraic invari-
ants. A given tuple (b3, H, F, p1) can be realized by a simply-connected smooth spin
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6-manifold with torsion-free cohomology if and only if b3 is even and

4W 3 ≡ p1(M)W mod 24 (1)

for all W ∈ H ; such tuples are called admissible.

2.2 Chern numbers of smooth threefolds

Let X be a smooth compact complex threefold. Since c3(X) = ∑
i (−1)i bi (X) coin-

cides with the topological Euler number, it is a topological invariant of X . Moreover,
by Riemann–Roch, c1c2(X) = 24χ(X,OX ) is bounded by the Hodge numbers, hence
by the Betti numbers if X is Kähler. In particular, in order to prove Theorem 4, we
only need to prove the boundedness of c31. This is known if K X is nef.

Proposition 9 Let X be a smooth Kähler threefold such that K X is nef. Then c31(X)

is bounded by the Betti numbers of X.

Proof If X is of general type, then it is projective because it is Moishezon and Kähler.
Following an observation of Kotschick [17], the boundedness of c31(X) follows then
from the Miyaoka–Yau inequality

0 > c31(X) ≥ 8

3
c1c2(X), (2)

see [36,42]. If X has Kodaira dimension 0, 1 or 2, then c31(X) = 0, cf. [4]. 
�

3 The bimeromorphic geometry of Kähler threefolds with spin structure

One of the key ideas of this paper is the observation that for a Kähler threefold, the
purely topological condition of being spin puts strong restrictions on its bimeromorphic
geometry. This is a consequence of the minimal model program for Kähler threefolds
[10,11], together with some classical results of Mori [26].

Before we state the result, let us recall that a Kähler manifold Y is a Mori fibre
space, if there is a proper morphism f : Y B with positive dimensional connected
fibres onto a normal Q-factorial Kähler space B with at most klt singularities, such
that −KY is f -ample and the relative Picard number is one, see [10]. In this paper, we
will only need to deal with the special case where B is smooth.

Theorem 10 [10,11,26]Let X be a smooth Kähler threefold such that c1(X) is numer-
ically divisible by 2 (e.g. a spin threefold). Then there is a finite sequence of blow-downs
to smooth points

X = Yr Yr−1 · · · Y1 Y0 = Y,

such that Y is a smooth Kähler threefold with c1(Y ) numerically divisible by 2, which
is either a minimal model (i.e. KY is nef) or a Mori fibre space. Moreover, if Y is a
Mori fibre space, then it is one of the following:
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(1) an unramified conic bundle over a smooth Kähler surface;
(2) a quadric bundle over a smooth curve;
(3) a smooth Fano threefold.

Proof By [10,11], we can run a minimal model program on X . If X is not a minimal
model, nor a Mori fibre space, then, since there are no flips in the smooth category
[26,27], there is a divisorial contraction f : X Y with exceptional divisor E . Since
c1(X) is numerically divisible by 2, we get that K X .C ≤ −2 for every contracted curve
C ⊂ E . It is known to experts, that the theorem follows now from [26] and [28]; we
sketch the proof for convenience of the reader.

Since −K X is f -ample, Mori’s classification of all possible exceptional divisors
applies [26, Theorem 3.3]. In particular, f contracts E either to a smooth curve, or
to a point. In the former case, f is the blow-up of a smooth curve of Y and so the
general fibre of E f (E) is a rational curve C ⊂ E with K X .C = −1, which
contradicts our assumptions. In the latter case, E together with its normal bundle
in X is isomorphic to (P2,O(1)), (P2,O(2)) or (Q,O(1)), where Q ⊂ P

3 is an
integral quadric. If (E, NE/X ) = (Q,O(1)), then K X = f ∗KY + E which implies
K X · � = −1 for a line � ⊂ Q. If (E, NE/X ) = (P2,O(2)), then K X = f ∗KY + 1

2 E
which implies again K X ·� = −1 for a line � ⊂ P

2. Since K X is numerically divisible
by 2, none of the two possibilities occur, which shows (E, NE/X ) = (P2,O(1)), and
so f is the blow-down to a smooth point of Y . In particular, K X = f ∗KY + 2E and
so Y is a smooth Kähler threefold such that c1(Y ) is numerically divisible by 2 and
b2(Y ) = b2(X) − 1. After a finite number of such blow-downs, we may assume that
Y is either a minimal model, or a Mori fibre space.

It remains to deal with the case where f : Y B is a Mori fibre space.
If dim(B) ≤ 1, then h2,0(Y ) = 0 and so Y is projective by Kodaira’s criterion. It
thus follows from [26, Theorem 3.5] that B is smooth. Moreover, if dim(B) = 1,
then the general fibre of f is a smooth del Pezzo surface with spin structure, hence a
smooth quadric in P3. This concludes the case dim(B) ≤ 1.

If dim(B) = 2, then, by [28, Corollary 2.4.2], B is smooth and there is a rank
3 vector bundle E on B together with an inclusion Y ⊂ P(E) which realises each
fiber f −1(b) as a conic in P(Eb). If f −1(b) is singular, then it contains a line � with
KY · � = −1, which contradicts the assumption that c1(Y ) is numerically divisible.
This proves that f is an unramified conic bundle over a smooth Kähler surface, which
finishes the proof. 
�

The same argument as above, together with the classification of smooth Fano three-
folds [12, §12], shows the following.

Theorem 11 [10,11,26]Let X be a smooth Kähler threefold such that c1(X) is numer-
ically divisible by some integer m ≥ 3. Then one of the following holds:

(1) X is a minimal model, i.e. K X is nef;
(2) m = 3 and X is a P

2-bundle over a smooth curve;
(3) m = 3 and X is isomorphic to a smooth quadric in P

4;
(4) m = 4 and X is isomorphic to P

3.
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4 Non-Kähler manifolds with Kähler homotopy types

In this section we produce many non-Kähler manifolds with the homotopy type of
Kähler manifolds. The main results are Theorem 13 and Proposition 16 below. We
start with the following lemma.

Lemma 12 Let X be a smooth Kähler threefold admitting the structure of an
unramified conic bundle f : X S over a smooth Kähler surface S. Then,
p1(X) ∈ f ∗H4(S,Z).

Proof If X is projective, then the first statement follows from the observation that for
any smooth curve C ⊂ S, the preimage R := f −1(C) is a ruled surface with normal
bundle f ∗OS(C)|R and so p1(X) · R = p1(R) + p1( f ∗OS(C)|R) = 0. The second
statement can be proven similarly.

In general, the lemma follows from the following topological argument, suggested
to us by M. Land. By [34], any smooth S2-bundle f : M S can be realized as the
sphere bundle of an oriented real rank three vector bundle E on S. Since the tangent
bundle of a sphere is stably trivial, T M is stably isomorphic to f ∗(T S ⊕ E) and so
p1(M) = f ∗ p1(T S ⊕ E). 
�

The next result implies Theorem 1 stated in the introduction.

Theorem 13 Let X be a simply connected spin 3-fold with b2(X) ≥ 1 and
H3(X,Z) = 0. Then there are infinitely many pairwise non-homeomorphic spin
6-manifolds Mi with the oriented homotopy type of X, and which are not homeomor-
phic to a Kähler manifold.

Proof Since X is simply connected with H3(X,Z) = 0, X has torsion free cohomol-
ogy, and so the classification of Wall applies, see Sect. 2.1.2. Let

(0, H2(X,Z), FX , p1(X))

be the admissible tuple which corresponds to X .
In order to construct examples that are homotopy equivalent to X , we fix a general

element

ω ∈ H2(X,Z)∨ with ω ≡ 0 mod 48.

Generalmeans here that its image in rational cohomology lies outside afinite number of
proper subvarieties that we will encounter in the process of the proof; it is important to
note that these subvarieties are going to depend only on the ring structure of H∗(X,Q).

For any integer r ≡ 1 mod 48, the tuple

(0, H2(X,Z), FX , r(p1(X) + ω))

is admissible, see (1). Let Mr be the corresponding spin 6-manifold. By work of Zhubr
(see [43] or [30, Theorem 2]), the homotopy type of Mr depends only on the reduction
modulo 48 of p1(Mr ). Our choices ensure therefore that Mr is homotopy equivalent
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to X . Since the image of the first Pontryagin class in H4
t. f.(X,Z) (= H4(X,Z)) is

a homeomorphism invariant by Novikov’s theorem [29], Mr and Mr ′ are not home-
omorphic if r = r ′, see also Remark 6. In order to conclude Theorem 13, it thus
suffices to show that for infinitely many values of r , Mr is not homeomorphic to a
Kähler manifold.

For a contradiction, we assume from now on that r >> 0 is sufficiently large and
that there is a Kähler manifold Xr which is homeomorphic to Mr . By construction,
there is a natural isomorphism

H∗(Xr ,Z) � H∗(X,Z). (3)

By Novikov’s theorem, or Remark 6, the above isomorphism identifies p1(Xr ) with
p1(Mr ) = r(p1(X) + ω). Since the first Pontryagin class of a blow-up of a complex
threefold in a point is not divisible by any integer greater than 4, see [30, Proposition
13], it follows from Theorem 10 that Xr is minimal or a Mori fibre space.

Since Xr is Kähler with b1(Xr ) = b3(Xr ) = 0, Riemann–Roch says

c1c2(Xr ) = 24 + 24h2,0(Xr ) > 0. (4)

The Miyaoka–Yau inequality (2) shows then that Xr is not of general type. We claim
that it must in fact be of negative Kodaira dimension. Indeed, otherwise c31(Xr ) = 0
and so

p1(Xr )c1(Xr ) = c31(Xr ) − 2c1c2(Xr ) = −48 − 48h2,0(Xr )

would be non-zero and very divisible, whereas h2,0(Xr ) is bounded by
b2(Xr ) = b2(X).

We have thus shown that Xr is aMori fibre space. Since there are only finitely many
deformation types of Fano threefolds, and since p1(Xr ) is sufficiently divisible, Xr

cannot be Fano.
Let us assume that f : Xr C is a Mori fibre space over a curve. A general

fibre Q of f is a smooth quadric surface and so p1(Xr ) · Q = p1(Q) = 0. On the
other hand, the line [Q] · Q ⊂ H2(Xr ,Q) lies in the locus where the cubic form
vanishes and so it is, up to at most three possibilities, uniquely determined by (3).
(This uses b2(Xr ) = 2, which follows from ρ(Xr/C) = 1 and h2,0(Xr ) = 0). Since
ω is sufficiently general, the restriction of p1(Xr ) ∈ H2(Xr ,Q)∨ to any of these lines
will be nonzero and so this case cannot happen.

It remains to deal with the case where f : Xr S is a Mori fibre space
over a Kähler surface S. By Theorem 10, f is an unramified conic bundle. Since
f ∗ H2(S,Z) ⊂ H2(Xr ,Z) is a hyperplane which is contained in the vanishing locus
of the cubic form, it follows from (3) that the subspace f ∗H2(S,Z) ⊂ H2(Xr ,Z) is
determined uniquely up to at most three possibilities. Therefore, the line in H4(Xr ,Q)

that is spanned by the class of a fibre of f is also determined up to atmost three possibil-
ities. Sinceω is general, p1(Xr ) is not contained in any of those lines. This contradicts
Lemma 12, which finishes the proof of the theorem. 
�

123



406 S. Schreieder, L. Tasin

Remark 14 Any simply connected spin 6-manifold M with torsion free cohomology
can be written as a connected sum M = M0�

b3/2(S3 × S3), with H3(M0,Z) = 0;
the diffeomorphism type of M0, called the core of M , is uniquely determined by M ,
cf. [30, Corollary 1]. In particular, Theorem 13 applies to the core M0 of any such
manifold M as long as b2(M) > 0.

Remark 15 A Kähler threefold X with spin structure and b3(X) = 0 cannot be of
general type. Indeed, if it was of general type, then we may by Theorem 10 assume
that it is minimal and so the Miyaoka–Yau inequality (2) holds. In particular, c1c2(X)

is negative, which contradicts Riemann–Roch (4), because b1(X) = 0 by Hard Lef-
schetz.

In view of Theorem 1 and Remark 15, it is natural to ask for non-Kähler manifolds
with the homotopy type of a variety of general type. We were unable to find such
examples in the literature. The next result fills this gap; it applies for instance to
arbitrary complete intersection threefolds X ⊂ P

N , which might very well be non-
spin.

Proposition 16 Let X be a simply connected 6-manifold with H2(X,Z) � Z. Then
there are infinitely many pairwise non-homeomorphic 6-manifolds with the same ori-
ented homotopy type as X, but which are not homeomorphic to a Kähler manifold.

Proof Let Y be a Kähler threefold which is homotopy equivalent to X . Since
b2(Y ) = 1, Y is either Fano, Calabi–Yau or KY is ample. Moreover, the ample gener-
ator L of H2(Y,Z) is uniquely determined by the topological property L3 > 0. If Y
is Calabi–Yau, then p1(Y ) = −2c2(Y ) and so

p1(Y ) · L < 0 (5)

by Miyaoka’s inequality [24, Theorem 1.1].
In order to construct infinitely many pairwise non-homeomorphic manifolds Mi

with the homotopy type of X , we may now proceed similar to the proof of Theorem 1.
By the classification of simply connected 6-manifolds with torsion free cohomology,
see [30, Section 1], we can choose p1(Mi ) sufficiently divisible and of a sign which
violates Miyaoka’s inequality (5). It follows that Mi cannot support a Calabi–Yau
structure. For sufficiently divisible p1(Mi ), the cases where the canonical bundles
are ample or anti-ample cannot happen either, because the corresponding families are
bounded by the boundedness of Fano threefolds andMatsusaka’s big theorem together
with the Miyaoka–Yau inequality, respectively, cf. [32, Proposition 28]. 
�
Remark 17 Borel’s conjecture predicts that a homotopy equivalence between closed
manifolds with contractible universal cover is homotopic to a homeomorphism; this
is known for large classes of fundamental groups, such as hyperbolic groups, see [2].
Thus the assumption on π1(X) in Theorem 13 and Proposition 16 is important.

By Remark 15, the following question remains open, but see Corollary 25 below,
where a weaker statement is proven.
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Question 18 Is there a non-Kähler manifold with large b2 that has the oriented homo-
topy type of a smooth complex projective variety of general type?

As mentioned in the introduction, most topological constraints known for Kähler
or projective manifolds are only sensitive to the homotopy type, but not to the home-
omorphism type. For instance, Voisin used restrictions on the cohomology algebra
to produce Kähler manifolds that are not homotopy equivalent to smooth complex
projective varieties [38], but the following question remained open.

Question 19 Is there a Kähler manifold which has the oriented homotopy type but
not the homeomorphism type of a smooth complex projective variety?

5 Proof of Theorem 2

Theorem 2 stated in the introduction follows from the following result.

Theorem 20 Let b ∈ N. Then there are only finitely many deformation types of
smooth complex projective threefolds X of general type, such that c1(X) is numerically
divisible and bi (X) ≤ b for all i .

Proof Let X be a smooth complex projective threefold of general type such that c1(X)

is numerically divisible. By Theorems 10 and 11, there is some r ≥ 0 and a smooth
complex projective minimal threefold Y of general type such that X is obtained from
Y by a finite sequence of r blow-ups along points. Clearly, any variety that is obtained
from Y by a sequence of r blow-ups along points is deformation equivalent to X .
Moreover, the number r of blow-ups is bounded from above by b2(X) − 1.

By [5, Theorem 1.2] (or Proposition 9 above), there is a constant c which depends
only on the Betti numbers of X such that

vol(Y, KY ) ≤ c.

In order to prove Theorem 20, it is therefore enough to prove that there are only
finitely many deformation equivalence classes of smooth complex projective minimal
threefolds of general type and with volume bounded by c.

By [8,35,37], threefolds of general type and with bounded volume are birationally
bounded. That is, there is a projective morphism of normal quasi-projective schemes
πbdd : X bdd B such that any smooth complex projective threefold of general type
and of volume at most c is birational to a fibre of πbdd . By Noetherian induction,
replacing B by a disjoint union of locally closed subsets and resolving X bdd , we
get a smooth projective family π sm : X sm B. By the deformation invariance
of plurigenera [33], we may assume that any fibre of π sm is of general type. Up to
replacing B by a finite étale covering, we can apply theMMP in families [16, Theorem
12.4.2] to π sm and obtain a projective family π : X B of minimal models of
general type, such that any smooth complex projective threefold of general type and
with volume bounded by c is birational to a fibre of π .

In the next step of the proof, we use the family π to construct a second family
π ′ : X ′ B ′ with the following property:
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(∗) if b ∈ Bi is a very general point of some component Bi of B, then the fibre
Xb = π−1(b) has the property that any of its minimal models is isomorphic to a
fibre of π ′ : X ′ B ′.

In order to explain our construction, let Bi be a component of B and consider the
geometric generic fibre Xi,η of Xi Bi . The number of minimal models of Xi,η is
finite by [13] and they are all connected by flops by [15]. If X ′

i,η is such a minimal
model, then there is a sequence of flopsXi,η ��� X ′

i,η. This sequence of flops is defined
over some finite extension of the function field k(Bi ), hence over the ring of regular
functions of some affine variety B ′

i which maps finitely onto a Zariski open and dense
subset of Bi . In particular, we can spread X ′

i,η over B ′
i to get a family

X ′
i B ′

i ,

whose geometric generic fibre is X ′
i,η.

We define π ′ : X ′ B ′ to be the disjoint union of all such families X ′
i B ′

i
that we can construct in the above way from all the minimal models of all geometric
generic fibres Xi,η of π . In particular, the number of irreducible components of B ′
corresponds to the number of minimal models of the geometric generic fibres Xi,η

and so B ′ has finitely many components. By construction, any minimal model of any
Xi,η appears as geometric generic fibre of π ′ over some component of B ′. Since the
geometric generic fibre is abstractly (as scheme overZ) isomorphic to any very general
fibre, this implies that property (∗) holds; for convenience of the reader we give some
details below.

Lemma 21 Property (∗) holds.

Proof Let Xb be the fibre above a very general point b ∈ Bi ; and let k be a finitely
generated extension of Q over which Bi can be defined. Since B ′

i is affine, Bi ⊂ A
N

for some N and so we may write b = (b1, . . . , bN ). We can choose an isomorphism
of fields

σ : C ∼
C(Bi ),

which restricts to an isomorphism between the subfield k(b1, . . . , bN ) and the function
field of Bi over k. The field automorphism σ induces an isomorphism

ϕ : Xb Xi,η

of schemes over Z (on stalks, this map is not C-linear but σ−1-linear). Any sequence
of flops Xb ��� X+

b corresponds via ϕ to a sequence of flops of the geometric generic
fibre Xi,η ��� X+

i,η. Moreover, X+
i,η is a minimal model of Xi,η because it is obtained

by a sequence of flops. By the construction of the family π ′, X+
i,η is isomorphic to the

geometric generic fibre of π ′ over some component B ′
j of B ′:

X+
i,η � X ′ ×B′ C(B ′

j ).
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By construction of π ′, B ′
j maps finitely onto a Zariski open subset of Bi , which yields

an identification C(Bi ) = C(B ′
j ). Therefore, σ induces a (σ -linear) isomorphism

ψ : X+
i,η X ′

b′

of schemes over Z, where X ′
b′ = π ′−1

(b′) is a fibre of π ′ for some point b′ ∈ B ′
j

which maps to b via B ′
j Bi . Moreover, the composition

Xb
ϕ Xi,η X+

i,η
ψ X ′

b′ ,

is a rational map Xb ��� X ′
b′ which is C-linear on stalks. Therefore, Xb ��� X ′

b′ is a
sequence of flops of complex projective varieties, which identifies X ′

b′ with X+
b . This

proves that (∗) holds. 
�
Let us now consider the following set of deformation equivalence classes of smooth

fibres X ′
b′ := π ′−1

(b′) of π ′:

S := {[X ′
b′ ] | b′ ∈ B ′ such that X ′

b′ is smooth}.

Since B ′ has finitely many irreducible components, and since smoothness is an open
condition, S is finite.

To conclude, let X be any smooth complex projective minimal threefold of general
type and with vol(X, K X ) ≤ c. We claim that the deformation equivalence class [X ]
belongs to S, which implies the theorem. To prove the claim, recall that π : X B
is a family of complex projective minimal threefolds with the property that any smooth
threefold of general type whose volume is bounded by c is birational to a fibre of π . In
particular, there is a component Bi0 and a point 0 ∈ Bi0 such that the fibre X0 above
0 is birational to X . Then, since X and X0 are birational minimal models, they are
connected by a sequence of flops. Therefore, by [16, Theorem 11.10], we can find an
analytic neighbourhood U ⊂ Bi0 of 0 ∈ Bi0 , such that the base change XU U
admits a sequence of flops to get a familyX+

U U whose central fibre is isomorphic
to X . Since X is projective, we may by [16, Theorem 12.2.10] assume that all fibres of
X+

U U are projective.Moreover, a very general fibre X+
t ofX+

U U is connected
to a very general fibre ofXU U by a sequence of flops. Therefore, X+

t is a minimal
model of a very general fibre of Xi0 Bi0 . Thus, by (∗), X+

t is isomorphic to a fibre
of π ′. Since X is smooth, X+

t is smooth, which implies [X ] = [X+
t ] ∈ S. This finishes

the proof of Theorem 20. 
�
Remark 22 Generalizing the above argument,we have shown in a jointworkwithMar-
tinelli [25] that in arbitrary dimension, minimal models of general type and bounded
volume form a bounded family.

Remark 23 TheP1-bundle Xn := P(OP2(2n+1)⊕OP2) overP
2 is a simply connected

spin threefold with torsion free cohomology, b2(Xn) = 2 and b3(Xn) = 0. However,
c31(Xn) is unbounded for n → ∞, and so the Xn’s do not belong to a finite number of
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deformation types. Therefore, the general type assumption is needed in Theorem 2.
The next example shows that the spin assumption is also necessary.

Example 24 There are infinitely many deformation types of smooth projective three-
folds of general type andwith boundedBetti numbers. Indeed, we start with a threefold
Y of general type which contains a smooth quadric surface Q. Then, Q contains
smooth rational curves Ci ⊂ Q such that the degree of the normal bundle of Ci in Q
is unbounded. The blow-up Xi := BlCi Y satisfies K 3

Xi
= K 3

Y + 2 deg(NCi /X ) + 6,

see [5, Proposition 4.8] and [30, Proposition 14]. Hence, c31(Xi ) is unbounded in i ,
although the Betti numbers of Xi do not depend on i .

Using the classification of simply connected spin 6-manifolds whose cohomology
is not necessarily torsion free, see [43], Theorem 2 implies easily the following; the
details are analogous (but simpler) to the proof of Theorem 1 and so we leave them
out.

Corollary 25 Let X be any simply connected Kähler threefold with spin structure.
Then there are infinitely many pairwise non-homeomorphic simply connected closed
spin 6-manifolds Mi , that have the same oriented homotopy type as X, but which are
not homeomorphic to any smooth complex projective variety of general type.

Corollary 25 has the following amusing consequence: either there is a large supply
of examples of homotopy equivalent Kähler manifolds with different Kodaira dimen-
sions, or one can produce many more smooth manifolds which do not carry a Kähler
structure although they have the homotopy type of a smooth complex projective vari-
ety of general type. The known examples of homotopy equivalent Kähler manifolds
with different Kodaira dimensions are rather scarce and come usually from particular
complex surfaces, see for instance [14]; it seems unlikely that they form a really big
class.

6 Mori fibre spaces

In this section, we analyse the Chern numbers of smooth Mori fibre spaces with spin
structure in dimension three. This will be used in the proof of Theorem 4 in Sect. 7.

6.1 Mori fibre spaces over curves

In this subsection we prove the following result.

Proposition 26 Let (Xi )i≥0 be a sequence of compact Kähler manifolds of dimension
n, admitting the structure of a Mori fibre space Xi Ci over a curve Ci . Suppose
that

(1) the Betti numbers of the Xi ’s are bounded;
(2) there is an isomorphism H2∗

t f (Xi ,Z)
∼ H2∗

t f (X0,Z) between the even torsion
free cohomology algebras, which respects the Pontryagin classes.
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Then the images of the Chern classes c1(Xi ) and c2(Xi ) in H2∗
t f (X0,Z) are bounded.

In particular, for all 0 ≤ k ≤ n/2, the sequence of Chern numbers cn−2k
1 ck

2(Xi ) is
bounded.

Proof Let Fi denote the general fiber of Xi Ci . Then

H2(X0,Q) = x · Q ⊕ y · Q,

where y = c1(X0), and x ∈ H2
t f (X0,Z) is primitive such that [F0] is a positive

multiple of x . The ring structure satisfies x2 = 0, yn−1x = cn−1
1 (F0) and yn = cn

1(X0).
From now on we will use the isomorphism H2(Xi ,Q) � H2(X0,Q) to think about
x and y as basis elements of H2(Xi ,Q).

We can write c1(Xi ) = ai · x + bi · y, for some ai , bi ∈ Q. Next, since [Fi ]2 = 0,
[Fi ] = λi · x , for some λi ∈ Z.1 Moreover, since Fi ⊂ Xi has trivial normal bundle,
c(Xi )|Fi = c(Fi ). This implies

cn−1
1 (Fi ) = c1(Xi )

n−1[Fi ] = (ai · x + bi · y)n−1λi · x = bn−1
i λi · yn−1x .

Since Fi is Fano, bi and λi are both nonzero and bounded, because Fano varieties of
a fixed dimension form a bounded family.

What follows is inspired by [14, Theorem 4.2.3]. We have

χ(Xi ,OXi ) =
∑

s≥0

1

2n+2s(n − 2s)!c1(Xi )
n−2s As(p1, . . . , ps),

where As(p1, . . . , ps) is a polynomial in the Pontryagin classes. Since bi is bounded
and x2 = 0, the above expression is a linear polynomial inai with bounded coefficients,

χ(Xi ,OXi ) = μ1(i) · ai + μ0(i).

Here,

μ1(i) =
∑

s≥0

1

2n+2s(n − 2s)! (n − 2s)x · (bi y)n−1−2s As(p1, . . . , ps)

= 1

λi
[Fi ] ·

∑

s≥0

1

2n+2s(n − 1 − 2s)! (bi y)n−1−2s As(p1, . . . , ps)

= 1

2λi
[Fi ] ·

∑

s≥0

1

2n−1+2s(n − 1 − 2s)!c1(Xi )
n−1−2s As(p1, . . . , ps)

= 1

2λi
χ(Fi ,OFi )

= 1

2λi
,

1 In fact, λi = ±1, because Xi Ci has a rational section by Grabber–Harris–Starr’s theorem, but we
do not use this here.
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where we used that the Chern and Pontryagin classes of Xi restrict to those of Fi . The
above computation shows μ1(i) = 0 for all i .

Since the Betti numbers of Xi are bounded, and Xi is Kähler, χ(Xi ,OXi ) attains
only finitely many values. Since μ0(i) and μ1(i) = 0 are bounded, ai is bounded.
This proves that c1(Xi ) is bounded. The boundedess of c2(Xi ) follows from
p1(Xi ) = c21(Xi ) − 2c2(Xi ). This proves the proposition. 
�
Remark 27 The above proof shows that for n = 3, one can replace condition (2) in
Proposition 26 by the following slightly weaker assumption: for each i there is an
isomorphism H2

t f (Xi ,Z) H2
t f (X0,Z) which respects the trilinear forms, given by

cup products, and the linear forms, given by the first Pontryagin classes.

6.2 Unramified conic bundles over surfaces

The aim of this subsection is to prove

Proposition 28 Let (Xi )i≥0 be a sequence of smooth Kähler threefolds with the struc-
ture of an unramified conic bundle fi : Xi Si over a smooth Kähler surface Si .
Suppose that

(1) the Betti numbers of the Xi ’s are bounded;
(2) for each i , there is an isomorphism H2

t f (Xi ,Z) � H2
t f (X0,Z) which respects the

trilinear forms given by cup products.

Then the sequence of Chern numbers c31(Xi ) is bounded.

We need the following lemma, which is well-known (at least) in the projective case.

Lemma 29 Let X be a smooth Kähler threefold admitting the structure of an unram-
ified conic bundle f : X S over a smooth Kähler surface S. Then we have the
following numerical equivalence on S:

f∗K 2
X ≡ −4KS .

Proof Note first that the Néron–Severi group NS(S) is generated by smooth curves
C ⊂ S; this is clear if S is projective and it follows easily from the classification of
surfaces if S is a non-projective Kähler surface, see [3]. It thus suffices to compare the
intersection numbers of f∗K 2

X and −4KS with a smooth curve C ⊂ S. This follows
from an easy computation, where one uses that R := f −1(C) is a minimal ruled
surface with normal bundle f ∗OS(C)|R , cf. [12, Proposition 7.1.8] and the references
therein.

The following alternative (and slightly more general) argument was suggested to us
by D. Kotschick. We have T X = f ∗T S ⊕ T f , where T f = ker( f∗ : T X f ∗T S)

is the tangent bundle along the fibres of f . Hence,

c21(X) = f ∗c21(S) + 2c1(T f ) f ∗c1(S) + c21(T f ).

As in Lemma 12, T f is stably isomorphic to f ∗E for a real rank three vector bundle E
on S. Since T f is a complex line bundle, we deduce c21(T f ) = p1(T f ) ∈ f ∗ H4(S,Z)

and so f∗c21(T f ) = 0. Hence,
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f∗c21(X) = f∗(2c1(T f ) f ∗c1(S)) = 4c1(S),

because c1(T f ) restricts to c1(P1) = 2 on each fibre. 
�
Proof of Proposition 28 Using the isomorphism H2

t f (Xi ,Z) � H2
t f (X0,Z) which

respects the trilinear forms given by cup products, we identify degree two cohomology
classes of Xi with those of X0. Using Poincaré duality, we further identify classes of
H4

t f (Xi ,Z) with linear forms on H2
t f (Xi ,Z) � H2

t f (X0,Z).

The codimension one linear subspace fi
∗
P(H2(Si ,C)) of P(H2(X0,C)) is con-

tained in the cubic hypersurface {α | α3 = 0}. Passing to a suitable subsequence we
can therefore assume that

f ∗
i H2(Si ,C) ⊂ H2(X0,C)

does not depend on i . Let �i ∈ H4
t f (X0,Z) be the class of a fiber of fi . The action

of this class on H2(X0,Q) has kernel f ∗
i H2(Si ,Q), and so �i · Q is independent of

i . Since �i is an integral class with K Xi · �i = −2, we may after possibly passing to
another subsequence thus assume that �i = � does not depend on i .

For any class y ∈ H2(X0,Q) which does not lie in fi
∗ H2(Si ,Q), we have

H2(X0,Q) = fi
∗H2(Si ,Q) ⊕ y · Q and H4(X0,Q) = fi

∗ H2(Si ,Q) · y ⊕ � · Q.

In particular, y2 = uy + λ� for some λ ∈ Q and u ∈ fi
∗H2(Si ,Q). Replacing y by a

suitable multiple of y − 1
2u, we may thus assume that

y · � = −2 and y2 ∈ fi
∗ H4(Si ,Q) = � · Q.

Using this class, we have

K Xi = y + f ∗
i zi ,

for some zi ∈ H2(Si ,Q). We claim that z2i ∈ H4(Si ,Q) � Q is a bounded sequence,
which implies the theorem, because

K 3
Xi

= y3 + 3 f ∗
i z2i · y = y3 − 6z2i ,

and y3 does not depend on i .
By Lemma 29, we have a numerical equivalence

fi ∗K 2
Xi

≡ −4zi ≡ −4KSi .

In particular, z2i = K 2
Si

is bounded by the Betti numbers of Xi , as we want. This
finishes the proof of Proposition 28. 
�
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6.3 Chern numbers of Mori fibre spaces with divisible canonical class

The results of the previous subsections imply the following result.

Corollary 30 Let X be a smooth Kähler threefold which admits the structure of a Mori
fibre space f : X B. If c1(X) is numerically divisible, then the Chern numbers of
X are determined up to finite ambiguity by the following invariants:

(1) the Betti numbers of X;
(2) the triple (H2

t f (X,Z), FX , p1(X)), where FX denotes the cubic form on

H2
t f (X,Z), given by cup product, and p1(X) denotes the linear form given by

the first Pontryagin class.

Proof The case where B is a point follows from the boundedness of Fano threefolds
[12]. Next, note that FX determines the trilinear form on H2

t f (X,Z), given by cup
product. If B is a curve, then the assertion follows therefore from Proposition 26
and Remark 27, and if B is a surface, we conclude via Theorems 10 and 11, and
Proposition 28. 
�

7 Proof of Theorem 4

In the Proof of Theorem 4, we will use the following result from [5].

Lemma 31 [5] Let Y be a smooth complex projective threefold and let f : X Y
be the blow-up of a point of Y . If E ⊂ X denotes the exceptional divisor of f , then

(1) the class [E] ∈ H2
t f (X,Z) is determined up to finite ambiguity by the cubic form

on H2
t f (X,Z).

(2) the class [E] ∈ H2
t f (X,Z) determines uniquely the subspace f ∗ H2

t f (Y,Z) ⊂
H2

t f (X,Z).

Proof The first assertion follows from [30, Proposition 13] and [5, Proposition 3.3].
The second assertion follows from H2

t f (X,Z) = f ∗ H2
t f (Y,Z)⊕[E] ·Z, which shows

that the cup product map

∪[E] : H2
t f (X,Z) H4

t f (X,Z)

has kernel f ∗H2
t f (Y,Z). 
�

The following theorem implies Theorem 4 from the introduction.

Theorem 32 Let X be a smooth Kähler threefold such that c1(X) is numerically
divisible. Then the Chern numbers of X are determined up to finite ambiguity by the
following invariants:

(1) the Betti numbers of X;
(2) the cubic form FX ∈ S3H2

t f (X,Z)∨, given by cup product;

(3) the linear form, given by the first Pontryagin class p1(X) ∈ H2
t f (X,Z)∨.
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Proof Let X be a smooth complex projective threefold such that c1(X) is numerically
divisible. By Theorems 10 and 11, there is a sequence of blow-downs to points in
smooth loci

X = Yr Yr−1 · · · Y1 Y0 = Y,

such that Y is either a smooth minimal model or a smooth Mori fiber space. Moreover,
c1(Y ) is numerically divisible and the number of such blow-downs is bounded by
r ≤ ρ(X) − 1, where ρ(X) denotes the Picard number of X .

Let Ei ⊂ Yi be the exceptional divisor of Yi Yi−1 and let fi : X Yi

denote the natural map. By Lemma 31, the class [Er ] ∈ H2
t f (X,Z) is deter-

mined up to finite ambiguity by the cubic form on H2
t f (X,Z), and it determines

the subspace f ∗
r−1H2

t f (Yr−1,Z) ⊂ H2
t f (X,Z) uniquely. Repeating this argument

r times, we conclude that for all i , the classes f ∗
i [Ei ] as well as the subspaces

f ∗
i H2

t f (Yi ,Z) ⊂ H2
t f (X,Z) are up to finite ambiguity determined by the cubic form

on H2
t f (X,Z).

In particular, the isomorphism type of H2
t f (Y,Z) together with the cubic form

FY given by cup product is up to finite ambiguity determined by the cubic form on
H2

t f (X,Z). We aim to show that p1(Y ) is determined up to finite ambiguity as well.
In order to see this, we note

H2
t f (X,Z) = f ∗ H2

t f (Y,Z) ⊕
r⊕

i=1

f ∗
i [Ei ] · Z.

Moreover,

c1(X) = f ∗c1(Y ) − 2
r∑

i=1

f ∗
i [Ei ] and c2(X) = f ∗c2(Y ).

Hence,

p1(X) = f ∗ p1(Y ) + 4
r∑

i=1

f ∗
i [Ei ]2,

which proves the claim.
We have thus proven that the triple (H2

t f (X,Z), FX , p1(X)) determines up to finite

ambiguity the isomorphism type of (H2
t f (Y,Z), FY , p1(Y )). Applying Proposition 9

and Corollary 30, we can therefore bound c31(Y ) in terms of the Betti numbers of X
and the isomorphism type of (H2

t f (X,Z), FX , p1(X)). Since [Ei ]3 = 1,

c31(X) = c31(Y ) − 8r, (6)

with 0 ≤ r ≤ ρ(X) − 1. Hence, c31(X) is also bounded in terms of the Betti numbers
of X and the isomorphism type of (H2

t f (X,Z), FX , p1(X)). This proves the theorem.

�

123



416 S. Schreieder, L. Tasin

7.1 Explicit bounds for c3
1 of non-uniruled Kähler threefolds

Using suitable examples of P1-bundles over surfaces, Kotschick showed that for unir-
uled spin threefolds X , the Betti numbers do not bound c31(X), see (proof of) [19,
Theorem 4]. In contrast to that result, the following corollary of the proof of Theo-
rem 4 shows that such a boundedness result is true if we restrict to non-uniruled spin
threefolds.

Corollary 33 Let X be a smooth Kähler threefold with spin structure. If X is not
uniruled, then

0 ≥ c31(X) ≥ min (64χ(X,OX ) − 8b2(X) + 8,−8b2(X) + 8) .

Proof of Corollay 33 We use the notation from the proof of Theorem 4. If X is not
of general type, then, by [11, Corollary 1.4], the Kodaira dimension of X satisfies
kod(X) ∈ {0, 1, 2}. Hence, Y is a minimal model which is not of general type and so
c31(Y ) = 0, see for instance [4]. It then follows from (6) that c31(X) = −8r for some
0 ≤ r ≤ ρ(X) − 1.

Conversely, if X is of general type, then Y is a minimal model of general type and
so the Miyaoka–Yau inequality yields c31(Y ) ≥ 8

3c1c2(Y ), see [36,42]. Again by (6),

c31(X) = c31(Y ) − 8r ≥ 8

3
c1c2(Y ) − 8r.

The corollary follows therefore from c1c2(X) = c1c2(Y ) and 0 ≤ r ≤ b2(X) − 1. 
�
Remark 34 Corollary 33 shows that non-uniruled Kähler threefolds X with spin struc-
ture satisfy K 3

X ≥ 0. This fails without the spin assumption. For instance, if C and E
denote smooth projective curves of genus g and 1, then X = Bl�C ×0(C × C × E)

satisfies K 3
X = −4g + 10, which is negative for g ≥ 3.

8 Examples of unbounded Chern classes and deformation types

By Theorem 2, the deformation types of Kähler structures of general type on a given
spin 6-manifold are bounded; by Theorem 4, the same holds for the Chern numbers
of arbitrary Kähler structures. In this section, we show that both results are sharp.

Proposition 35 There is a simply connected spin 6-manifold M, which admits a
sequence of Kähler structures Xi , such that c1(Xi ) ∈ H2(M,Z) is unbounded.

Proof Let q ≥ 3 be an odd integer. As in [31], we consider the Dolgachev sur-
face Sq , which is the elliptic surface, obtained from a general pencil of plane cubic
curves S P

1 by a logarithmic transformation of order 2 and q at two smooth
fibres. There is an h-cobordism Wq between Sq and S3 which induces isomorphisms
H2(Sq ,Z) � H2(S3,Z).

We choose a cohomology class ω ∈ H2(S3,Z) with ω2 = 0 and such that
the mod 2 reduction of c1(S3) + ω vanishes. Since Sq and S3 are h-cobordant,
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w2(Sq) ∈ H2(S3,Z/2Z) does not depend on q and so the mod 2 reduction of
c1(Sq)+ω vanishes for all q. Since h2,0(Sq) = 0, there is a line bundle Lq ∈ Pic(Sq)

with c1(Lq) = ω, see [31, Section 2].
Then the P1-bundle Xq := P(L ⊕ OSq ) over Sq is spin for all q. Moreover, since

Sq is h-cobordant to S3 and since L ⊕ OSq extends as a complex vector bundle over
the corresponding h-cobordism, it follows from the h-cobordism theorem that Xq is
diffeomorphic to X3 for all q, cf. [17,19,31].

From now on we think of Xq as a complex projective structure on a fixed spin
6-manifold M . If c1(Xq) ∈ H2(M,Z) is bounded, then, by Proposition 8, the almost
complex structures underlying the Xq ’s belong to finitely many homotopy classes. Let
us therefore assume that the almost complex structures which underly Xq1 and Xq2
are homotopic. Then there is an isomorphism of cohomology algebras,

φ : H∗(Xq1,Z) H∗(Xq2 ,Z),

which respects the Chern classes. We use the following isomorphisms

H2(Xq1,Z) � H2(S3,Z) ⊕ yZ and H2(Xq2 ,Z) � H2(S3,Z) ⊕ yZ,

to identify the restriction of φ to degree two cohomology classes with an endomor-
phism of H2(S3,Z) ⊕ yZ. Using this identification, the ring structure is determined
by y2 = −ω · y. Since {α ∈ H2(S3,Z) | α2 = ωα} is an irreducible quadric, one
easily proves that the elements of zero cube in H2(Xqi ,C) are given by the union
of H2(S3,C) with an irreducible quadric. In particular, φ(H2(S3,Z)) = H2(S3,Z).
Since φ respects the ring structures, we deduce

φ(H4(Sq1,Z)) = H4(Sq2 ,Z), (7)

where we identify H4(Sq ,Z) via pullback with a subgroup of H4(Xq ,Z). By assump-
tions, φ respects the second Chern class c2(Xqi ) = c2(Sqi ) + c1(Sqi )(2y + ω). Since
the Euler number of Sq is independent of q, it follows from (7) that

φ(c1(Sq1)(2y + ω)) = c1(Sq2)(2y + ω).

Multiplying this class with y shows that it is non-zero. Therefore, for q1 fixed, q2 is
bounded, because c1(Sq) is nonzero and divisible by (q − 2), see Proposition 3.7 in
[7, Section I.3]. This proves the proposition. 
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