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Abstract We prove that the Atiyah–Singer Dirac operator /Dg in L2 depends Riesz
continuously on L∞ perturbations of complete metrics g on a smooth manifold. The

Lipschitz bound for themap g → /Dg(1+ /D2
g)

− 1
2 depends on bounds onRicci curvature

and its first derivatives as well as a lower bound on injectivity radius. Our proof uses
harmonic analysis techniques related to Calderón’s first commutator and the Kato
square root problem. We also show perturbation results for more general functions of
general Dirac-type operators on vector bundles.
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1 Introduction

In this paperweproveperturbation estimates for self-adjoint first-order partial differen-
tial operators D and D̃ of Dirac type, elliptic with domainsW1,2(M,V) in L2(M,V),
on vector bundles V over complete Riemannian manifolds (M, g). A typical quantity
to bound is

∥
∥
∥
∥
∥

D̃
√

I + D̃2
− D√

I + D2

∥
∥
∥
∥
∥
L2(M,V)→L2(M,V)

. (1.1)

Our motivating and main example is when D = /D is the Atiyah–Singer Dirac operator
/D on M, acting on sections of a given spin bundle V = /�M over (M, g). The
perturbations D̃ we consider arise from the pullback of the Atiyah–Singer operator on
a nearby manifold (N , h). More precisely, we have a diffeomorphism ζ : M → N
which induce a map /U : /�M → /�N between the two spinor bundles, and we set
D̃ := /U−1 /DN /U onM. For the construction of the induced spinor pullback, we follow
[8] by Bourguignon and Gauduchon and build this from the isometric factor of the
polar factorisation of the differential of ζ .

The perturbation (1.1) is for the symbol f (λ) = λ/
√
1+ λ2 in the functional calculi

of the operators D and D̃. This will yield continuity results in the Riesz metric given
by (1.1) for unbounded self-adjoint operators. However, our method of proof applies
equally well to any other symbol f (λ) which is holomorphic and bounded on the
neighbourhood Soω,σ := {

x + iy : y2 < tan2 ωx2 + σ 2
}

of R for some 0 < ω < π/2
and σ > 0. Our Riesz continuity result is non-trivial as it entails cutting through the
spectrum at infinity with the added complication that the symbol has different limits
at infinity (limλ→±∞ f (λ) = ±1). This should be compared to the weaker continuity
result for the graph metric

∥
∥
∥
∥
∥

D̃− i

D̃+ i
− D− i

D+ i

∥
∥
∥
∥
∥
L2(M,V)→L2(M,V)

for unbounded self-adjoint operators, which is simpler since the symbol g(λ) = (λ−
i)/(λ + i) is holomorphic at∞.

The Riesz and graph topologies are of great importance in the study of self-adjoint
unbounded operators because of their connection to the spectral flow. Loosely speak-
ing, this is the net number of eigenvalues crossing zero along a curve from the unit
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Riesz continuity of the Atiyah–Singer. . . 865

interval to the set of self-adjoint operators. The study of the spectral flow was initiated
byAtiyah and Singer in [2] since it has important connections to particle physics. Their
focus, however, was on bounded Fredholm self-adjoint operators and their point of
view was largely topological. An analytic formulation of the spectral flow also exists
due to Phillips in [25].

In the bounded case, the choice of topology for the study of the spectral flow
is canonically given by the norm topology. However, in order to study differential
operators, the unbounded case needs to be considered.Here, a choice of topology needs
to be made and the graph metric is most commonly used in the study of the spectral
flow, primarily since it is easier to establish continuity in this topology. However, the
Riesz topology is a preferred alternative since it better connects to topological and K -
theoretic aspects of the spectral flow that were observed in [2] for bounded operators.
Further details of the relation between different metrics on the set of unbounded self-
adjoint operators can be found in [20] by Lesch. Moreover, the survey paper [7] by
BooSS-Bavnbek provides a recent account of problems remaining in field of spectral
flow.

Since in this paper we establish results in the Riesz topology, of particular relevance
is Proposition 2.2 in [20] where it is proved that

∥
∥
∥
∥
∥

D̃
√

I + D̃2
− D√

I + D2

∥
∥
∥
∥
∥
L2(M,V)→L2(M,V)

� ‖D̃− D‖W1,2(M,V)→L2(M,V)

holds for small perturbations D̃ of D with both operators self-adjoint and with domain
W1,2(M,V). We achieve a non-trivial strengthening of this estimate for Dirac-type
differential operators, using techniques from harmonic analysis. The structure of the
perturbation that we consider is

D̃− D = A1∇ + div A2 + A3, (1.2)

where A1, A2 and A3 are bounded multiplication operators T∗M ⊗ V → V , V →
T∗M⊗V and V → V respectively. Typically in applications, and in particular for the
Atiyah–Singer Dirac operator, one can achieve

‖Ai‖∞ � ‖g̃− g‖∞,

where g is the metric on M and g̃ = ζ ∗h is the metric on N pulled back to M. In
order to conclude small Riesz distance between D and D̃ using the aforementioned
Proposition 2.2 in [20], onewould need not only smallness of‖Ai‖∞ but also smallness
of ‖∇gA2‖. Via our methods, we are able to dispense this requirement and only require
the finiteness of ‖∇gA2‖.

In Theorem 2.4, which is our main result, we prove the perturbation estimate

‖ f (D̃) − f (D)‖ � max
i

‖Ai‖∞‖ f ‖Hol∞(Soω,σ ), (1.3)
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866 L. Bandara et al.

where the implicit constant depends on the geometry of V → M and the operators D
and D̃ as described in the hypothesis (A1)–(A9) preceding Theorem 2.4. In Theorem
3.1, we specialise Theorem 2.4 to the case where the operators D and D̃ are the Atiyah–
Singer Dirac operators as previously discussed. Here, the implicit constant depends
roughly on the C0,1 norm of g̃ and C2 norm of g. Injectivity radius bounds coupled
with bounds on Ricci curvature and its first derivatives allow us to obtain uniformly
sized balls corresponding to harmonic coordinates at every point. Moreover, we obtain
uniform C2 control of the metric g in each such chart. Therefore our result, unlike
Proposition 2.2 in [20], will apply to metric perturbations with g̃−g small only in L∞
norm, under uniform C2 control of g and uniform C0,1 control of g̃ in each such chart.
A concrete example of such metrics are g = I and g̃(x) = (1+ ε sin(|x | /ε))I on R

n .
The main work in establishing (1.3) is to prove quadratic estimates of the form

ˆ 1

0

∥
∥
∥
∥
∥

tD̃

I + t2D̃2
B

I

I + t2D2 u

∥
∥
∥
∥
∥

2

L2(M,V)

dt

t
� ‖B‖2L∞(M,V)‖u‖2L2(M,V)

, (1.4)

where B is a bounded operator, a multiplication operator, or special kind of a singular
integral. The use of such quadratic estimates to bound functional calculi goes back
to the work of Coifman, McIntosh and Meyer [13,14] on Calderón’s problem on
the boundedness of the Cauchy integral of Lipschitz curves. The quadratic estimates
that we require in this paper are at the level of those needed to bound Calderón’s first
commutator.Anadditional technical difficulty for us is that B alsomay involve a certain
singular integral operator. To overcome this problem, we need a Riesz-Weitzenböck
condition stated as hypothesis (A9).

The starting point for our work in this paper, was a twin result for the Hodge–Dirac
operator d+ d∗ proved by the last two named authors jointly with Keith in [4]. There
it was proved, in the case of compact manifolds, that

∥
∥
∥
∥
∥
∥

sgn

⎛

⎝
dg̃+d∗g̃

√

1+(dg̃ + d∗g̃)2

⎞

⎠−sgn

⎛

⎝
dg + d∗g

√

1+(dg+d∗g)2

⎞

⎠

∥
∥
∥
∥
∥
∥

� ‖ f ‖Hol∞(Soω,σ )‖g̃− g‖∞,

(1.5)

This made use not only of the methods from [14] described above, but also of
stopping time arguments for Carleson measures from the solution of the Kato square
root problem by Auscher, Hofmann, Lacey, McIntosh and Tchamitchian [3]. These
techniques give results for perturbations when the domains of the Hodge-Dirac opera-
tors change, that is when no Lipschitz control of the metric is assumed, and even give
holomorphic dependence of sgn(dg + d∗g) on the metric g instead of only Lipschitz
dependence. However, there are also reasons to prefer the softer methods used in this
paper and to avoid the stopping time arguments. Namely, even though they make the
implicit constant in (1.5) independent of any Lipschitz control of the metrics, this
constant in applications may become too large for the estimate to be useful. Our plan
is to return to the perturbation problem for the Hodge-Dirac operator in a forthcoming
paper.
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Riesz continuity of the Atiyah–Singer. . . 867

As aforementioned, since the Riesz topology is one of the most important operator
topologies for unbounded self-adjoint operators, it is a natural question how much
of the above estimates hold for more general Dirac type operators, and in particular
the most fundamental Atiyah–Singer Dirac operator. For these operators we no longer
have access to Hodge splittings, and it is not even clear that the Dirac operators exist as
closed and densely-defined operators for rough metrics (measurable coefficients but
locally bounded below). Therefore, the perturbation estimates that we achieve in this
paper, with the constant depending on the Lipschitz norm of the metrics, may be quite
sharp. We do not even know however if it is possible to go beyond Lipschitz metrics
for Dirac operators like the Atiyah–Singer one. In any case, as Lesch rightly points
out in [20], it is more difficult to prove Riesz continuity as compared to other operator
topologies and therefore, our results should have interesting applications to the study
of spectral flow and to index theory of Dirac operators. Moreover, given the generality
of Theorem 2.4, we anticipate that these applications will go beyond the fundamental
case of the Atiyah–Singer Dirac operator that we consider as an application here.

The outline of this paper is as follows. Our main perturbation theorem, Theorem
2.4 for general Dirac-type operators is formulated in Sect. 2.4. Before stating it, we
discuss the geometric and operator theoretic assumptions and we list quantities that
the implicit constant in the estimate (1.3) depends on as hypotheses (A1)–(A9).

For the proof of Theorem 2.4, the reader may jump directly to Sects. 4 and 5. Inde-
pendent of this, we first devote Sect. 3 to prove Theorem 3.1, which is an application
of Theorem 2.4 to the Atiyah–Singer Dirac operator. For the sake of concreteness,
we only consider this Dirac operator obtained from the standard spin representation
of dimension 2
 n2 � and a given Spin structure. However, we expect Theorem 3.1 to
hold for more general Dirac-type operators on Dirac-bundles under similar geometric
assumptions. The proof ofTheorem3.1 amounts to verifying (A1)–(A9) and the pertur-
bation structure (1.2). A key observation regarding the latter is the following exploited
in Sect. 3.3. A perturbation term A3 of the form A3 = ∂B (with ∂ denoting a partial
derivative) with ‖B‖∞ small, but with ‖∂B‖∞ only bounded, can be handed as terms
A1∂+∂A2, with B = A2 = −A1, since by the product rule, (∂B) f = ∂(B f )−B(∂ f ).

The proof of Theorem 2.4 in Sects. 4 and 5, brought together in Sect. 5.6, con-
tains the following steps. Using the functional calculus of D and D̃, the estimate of
‖ f (D)− f (D̃)‖ is reduced to the quadratic estimate (1.4) in Propositions 4.5 and 4.6.
This quadratic estimate is obtained in three steps described by the formula (5.11),
following a well known harmonic analysis technique used in the solution of the Kato
square root problem with its origins from Coifman and Meyer. For us, the last term
γtEt S f is not the main one, since the needed Carleson measure estimate follows
directly from the self-adjointness of D̃, as shown in Sect. 5.5. The main term in (5.11)
is rather the first, which localises the operator Qt , which is local on scale t , to the mul-
tiplication operator γt . Our problem here is the presence of S = ∇(iI+ D)−1, which
is essentially a singular integral operator. To handle the non-local operator S in Propo-
sition 5.4, we require some smoothness of D, guaranteed by the Riesz-Weitzenböck
condition (2.5). In [9], Bunke obtains such an estimate, but with assumptions on the
Riemannian curvature tensor in place of the Ricci curvature. Our proof here is inspired
by the improvements that Hebey presents using harmonic coordinate charts under the
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868 L. Bandara et al.

presence of positive injectivity radius and bounds on Ricci curvature to prove density
theorems for Sobolev spaces of functions on noncompact manifolds in [17].

2 Setup and the statement of the main theorem

2.1 Notation

Throughout this paper, we assumeEinstein summation convention and use the analysts
inequality a � b to mean that a ≤ Cb, where C > 0, and equivalence a  b.
The characteristic function on a set E will be denoted by χE . Throughout, we will
identify vectorfields and derivations. That is, for a function f differentiable at x and
a vectorfield X at x , we write X f to denote d f (X) = ∂X f . Often, X = ei , where
{ei } is a basis vector field inside a local frame. The support of a function (or section)
f is denoted by spt f . Whenever we write Ck,α , we do not assume Ck,α with global
control of the norm but rather, only Ck,α regularity locally.

2.2 Manifolds and vector bundles

Let M be a smooth, connected manifold and g be a metric on M that is at least C0,1

(locally Lipschitz). By ρ denote the distance metric induced by g and byμ the induced
volume measure.

Throughout this paper, we assume that (M, g) is complete, by which we mean that
(M, ρ) is a complete metric space. By B(x, r) or Br (x), we denote a ρ-metric open
ball of radius r > 0 centred at x ∈ M. For an arbitrary ball B, we denote its radius
by rad(B). We recall that by the Hopf-Rinow theorem, the condition of completeness
is equivalent to the fact that B(x, r) is compact for any x ∈ M and r < ∞.

ByV , we denote a smooth complex vector bundle of dimension dim V = N overM
with a metric h that is at least C0,1. We let πV : V → M be the bundle projection map.
We define the space of μ-measurable sections of V by �(V). Using the Riemannian
measureμ and the bundle metric h, we define the standard Lp spaces which we denote
by Lp(V).

Let us now assume that ∇ is a connection on V , compatible with h almost-
everywhere. By ∇2 : D(∇2) → L2(T∗M⊗ V), denote the operator ∇ with domain

D(∇2) =
{

u ∈ C∞ ∩ L2(V) : ∇u ∈ L2(T∗M⊗ V)
}

.

Then, ∇2 is densely-defined and closable, and we define the Sobolev space
W1,2(V) = D(∇2), with norm ‖u‖2

W1,2 = ‖∇2u‖2 + ‖u‖2. Moreover, recall that

the divergence operator is then div = −∇2
∗
. It is well known that C∞

c (V) is dense in
W1,2(V) and when g is smooth, that C∞

c (T∗M⊗ V) is dense in D(div) (see [5]). In
what is to follow, we will sometimes write ∇ in place of ∇2.

We shall require the following concept of growth of the measureμ in later analysis.
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Riesz continuity of the Atiyah–Singer. . . 869

Definition 2.1 (Exponential volume growth) We say that (M, g, μ) has exponential
volume growth if there exists cE ≥ 1, κ, c > 0 such that

0 < μ(B(x, tr)) ≤ ctκecE trμ(B(x, r)) < ∞, (Eloc)

for every t ≥ 1, r > 0 and x ∈ M.

We shall also require the following property.

Definition 2.2 (Local Poincaré inequality) We say that M satisfies a
local Poincaré inequality if there exists cP ≥ 1 such that for all f ∈ W1,2(M),

∥
∥
∥
∥
f −

( 
B
f dμg

)∥
∥
∥
∥
L2(B)

≤ cP rad(B)‖ f ‖W1,2(B) (Ploc)

for all balls B inM such that rad(B) ≤ 1.

This growth assumption as well as the local Poincaré inequality are very natural,
i.e., if the Ricci curvature Ricg of a smooth g satisfies Ricg ≥ ηg for some η ∈ R, then
by the Bishop–Gromov comparison theorem (c.f. Chapter 9 in [24]), (Eloc) and (Ploc)
are both satisfied.

As for the vector bundle V , we require the following uniformly local Euclidean
structure, referred to as generalised bounded geometry orGBG following terminology
from [6].

Definition 2.3 (Generalised Bounded Geometry) We say that (M, h) satisfies gener-
alised bounded geometry, or GBG for short, if there exist ρ > 0 and C ≥ 1 such that,
for each x ∈ M, there exists a continuous local trivialisation ψx : B(x, ρ) × C

N →
π−1
V (B(x, ρ)) satisfying

C−1
∣
∣
∣ψ

−1
x (y)u

∣
∣
∣
δ
≤ |u|h(y) ≤ C

∣
∣
∣ψ

−1
x (y)u

∣
∣
∣
δ
,

for all y ∈ B(x, ρ), where δ denotes the usual inner product in C
N and

ψ−1
x (y)u = ψ−1

x (y, u) is the pullback of the vector u ∈ Vy to C
N via the local

trivialisation ψx at y ∈ B(x, ρ). We call ρ the GBG radius.

We remark that, unlike in [6], we do not ask for the trivialisations to be smooth.
A trivialisation satisfying the above condition is said to be a GBG chart and a set
of trivialisations {ψx : x ∈ M} a GBG atlas. For each GBG chart ψx , the associated
GBG frame is then

{

ei (y) = ψx (y, ê
i ) :

{

êi
}

standard basis for C
N
}

.

If these trivialisations have higher regularity, i.e. the trivialisations are Ck,α for some
k ≥ 0 and α ∈ (0, 1), then we refer to this aforementioned terminology as a Ck,α

GBG chart/atlas/frame respectively.

123



870 L. Bandara et al.

Like exponential growth, generalised bounded geometry is a geometrically natural
condition. In the case that the metric g is smooth and complete, under the assumption
inj(M, g) ≥ κ > 0 and Ricg ≥ ηg for some κ > 0 and η ∈ R, the bundle of
(p, q)-tensors satisfies GBG. See Theorem 1.2 in [17] and Corollary 6.5 in [6].

2.3 Functional calculus

In this section, we introduce some notions from operator theory and functional calculi
that will be of relevance in subsequent sections.

Let H be a Hilbert space, and T : D(T ) ⊂ H → H a self-adjoint operator.
Indeed, by the spectral theorem (see [18], Chapter 6, §5), for every Borel function
b : R → R, we can define and estimate the operator b(T ). However, we shall only
consider symbols b which are holomorphic on a neighbourhood of R, in which case
b(T ) is obtained by the Riesz-Dunford functional calculus as we now explain.

For ω ∈ (0, π/2) and σ ∈ (0,∞), define

Soω,σ :=
{

x + iy : y2 < tan2 ωx2 + σ 2
}

,

We say that a function ψ ∈ �(Soω,σ ) if it is holomorphic on Soω,σ and there exists an
α > 0, C > 0 such that

|ψ(ζ )| ≤ C

|ζ |α .

Letting the curveγ denote
{

y2 = tan2(ω/2)x2/2+ σ 2/2
}

, oriented counter-clockwise
inside Soω,σ , the Riesz-Dunford functional calculus is

ψ(T )u = 1

2π i

˛
γ

ψ(ζ )RT (ζ )u dζ, (2.1)

for eachu ∈ H ,withRT (ζ ) = (ζ I−T )−1 andwhere the integral converges absolutely
as Riemann-sums.

We say that a holomorphic function f ∈ Hol∞(Soω,σ ) if there existsC > 0 such that
‖ f (ζ )‖∞ ≤ C . For such a function, there exists a uniformly bounded ψn ∈ �(Soω,σ )

such that ψn → f pointwise, and the functional calculus is defined as

f (T )u = lim
n→∞ψn(T )u,

for u ∈ H , which converges due to the fact that T is self-adjoint, and is independent
of the sequence ψn .

These details are obtained as a special case of the functional calculus for the so-
called ω-bisectorial operators. A detailed exposition can be found in [22] by Morris
and for ω-sectorial operators in [1] by Albrecht, Duong, and McIntosh and [16] by
Haase.
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Riesz continuity of the Atiyah–Singer. . . 871

2.4 The main theorem

We assume that the manifold (M, g) is complete and that both g and h are at least
C0,1.

Let D be a first-order differential operator on C∞(V). By this, we mean that, inside

each frame
{

ei
}

for V and
{

v j
}

for TM near x , there exist coefficients α
jk
l and terms

ω
p
q (not necessarily smooth) such that

Du = (α
jk
l ∇v j uk + uiω

i
l ) e

l , (2.2)

where u = ui ei ∈ C∞(V).
We consider two essentially self-adjoint first-order differential operators D and D̃,

and with slight abuse of notation we use this notation for their self-adjoint extensions.
In establishing our main perturbation estimate from D to D̃ on V → M, we will

make the following hypotheses:

(A1) M and V are finite dimensional, quantified by dimM < ∞ and dim V < ∞,
(A2) (M, g) has exponential volume growth as defined in Definition 2.1, quantified

by c < ∞, cE < ∞ and κ < ∞ in (Eloc),
(A3) A local Poincaré inequality (Ploc) holds onM as in Definition 2.2 quantified by

cP < ∞,
(A4) T∗M has C0,1 GBG frames ν j quantified by ρT∗M > 0 and CT∗M < ∞ in

Definition 2.3, with regularity
∣
∣∇ν j

∣
∣ < CG,T∗M with CG,T∗M < ∞ almost-

everywhere,
(A5) V has C0,1 GBG frames e j quantified by ρV > 0 and CV < ∞ in Definition

2.3, with regularity
∣
∣∇e j

∣
∣ < CG,V with CG,V < ∞ almost-everywhere,

(A6) D is a first-order PDO with L∞ coefficients. In particular, [D, η] is a pointwise
multiplication operator on almost-every fibre Vx , and there exists cD > 0 such
that

|[D, η] u(x)| ≤ cD Lip η(x) |u(x)| (2.3)

for almost-every x ∈ M, every bounded Lipschitz function η, and where
Lip η(x) is the pointwise Lipschitz constant.

(A7) D satisfies
∣
∣De j

∣
∣ ≤ CD,V withCD,V < ∞ almost-everywhere inside each GBG

frame
{

e j
}

,
(A8) D and D̃ both have domains W1,2(V) with C ≥ 1 the smallest constants satisfy-

ing

C−1‖u‖D ≤ ‖u‖W1,2 ≤ C‖u‖D and C−1‖u‖D̃ ≤ ‖u‖W1,2 ≤ C‖u‖D̃. (2.4)

(A9) D satisfies the Riesz-Weitzenböck condition

‖∇2u‖ ≤ cW (‖D2u‖ + ‖u‖) (2.5)

with cW < ∞.
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872 L. Bandara et al.

The implicit constants in our perturbation estimates will be allowed to depend on

C(M,V,D, D̃) = max{dimM, dim V, c, cE , κ, cP , ρT∗M,CT∗M,CG,T∗M,

ρV ,CV ,CG,V , cD,CD,V ,C, cW } < ∞. (2.6)

In Sects. 4 and 5, we prove the following theorem.

Theorem 2.4 Let (M, g) be a smooth Riemannian manifold with g that is C0,1, com-
plete, and satisfying (Eloc) and (Ploc). Let (V, h,∇) be a smooth vector bundle with
C0,1 metric h and connection ∇ that are compatible almost-everywhere.

LetD, D̃ be self-adjoint operators on L2(V) and assume the hypotheses (A1)–(A9)
onM, V , D and D̃. Moreover, assume that

D̃ψ = Dψ + A1∇ψ + div A2ψ + A3ψ, (2.7)

holds in a distributional sense for ψ ∈ W1,2(V), where

A1 ∈ L∞(L(T∗M⊗ V,V)),

A2 ∈ L∞(W1,2(V),D(div)), and

A3 ∈ L∞(L(V)),

(2.8)

and let ‖A‖∞ = ‖A1‖∞ + ‖A2‖∞ + ‖A3‖∞.

Then, for each ω ∈ (0, π/2) and σ ∈ (0,∞], whenever f ∈ Hol∞(Soω,σ ), we have
the perturbation estimate

‖ f (D̃) − f (D)‖L2(V)→L2(V) � ‖ f ‖L∞(Sω,σ )‖A‖∞,

where the implicit constant depends on C(M,V,D, D̃).

Remark 2.5 The assumption of self-adjointness of the operators D and D̃ in Theorem
2.4 can be relaxed, as we only use this to deduce quadratic estimates for D and D̃. For
example, it suffices to assume that D and D̃ are similar in L2 to self-adjoint operators.

Remark 2.6 Although our motivation and key application in is in the case that D and
D̃ correspond to the Atiyah–Singer Dirac operators on a Spin manifold corresponding
to two different metrics, we allow for greater generality in our main theorem since we
anticipate it to have a much broader set of applications. For instance, in the study of
particle physics, twisted bundles and their associated twisted Dirac operators are of
significance and we expect that such situations might also be analysed by our main
theorem. For readers interested in such operators, we hope that Sect. 3 will serve as a
guideline to how hypotheses (A1)–(A9) can be shown to be satisfied.

3 Applications to the Atiyah–Singer Dirac operator

Let M be a smooth manifold with a C0,1 (locally Lipschitz) metric g. We let �M
denote the bundle of differential forms and on fixing a Clifford product � , we let
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Riesz continuity of the Atiyah–Singer. . . 873

�M = �TM denote the Clifford bundle. Recall that �M ∼= �M as a vector
space. Moreover, we remind the reader that we identify vectorfields and derivations
throughout, so X f means the directional derivative ∂X f where X is a vectorfield and
f is a scalar function.
Fix a frame

{

v j
}

near x , let gi j = g(vi , v j ) and define wi
kl at points where g is

differentiable inside the frame by

wi
kl =

1

2
gim(∂vlgmk + ∂vkgml − ∂vmgkl + cmkl + cmlk − cklm), (3.1)

where cklm = g([vk, vl ], vm) are the commutation coefficients and [· , · ] is the Lie
derivative. Let ωa

i = wa
ji e

j be the connection 1-form, and define ∇gv j = ωa
j ⊗ va .

Thus, we obtain the Levi-Civita connection almost-everywhere in M as a map ∇g :
C∞(TM) → �(T∗M ⊗ TM). Note that since g is only locally Lipschitz, we have
that smooth sections are mapped to locally bounded (1,1)-tensors . When the context
is clear, we often simply denote ∇g by ∇.

A manifold (M, g) is said to be Spin if it admits a spin structure ξ : PSpin(TM) →
PSO(TM), i.e., a 2− 1 covering of the frame bundle. It is well known that this occurs
if and only if the first and second Stiefel-Whitney classes of the tangent bundle vanish.
The triviality of the first Stiefel-Whitney class is equivalent to the orientability ofM.

For the case of M = R
n with g = δ, the usual Euclidean inner prod-

uct, we let /� R
n denote linear space of standard complex spinors of dimension

2
 n2 �. In odd dimensions, this space corresponds to the non-trivial minimal com-
plex irreducible representation η : Spinn → L(/� R

n), where Spinn is the spin
group, the double cover of SOn , and in even dimension to η = η+ ⊕ η− where
η± : Spinn → L(/�± R

n) are the representations of the positive/negative half spinors.
For example, see [19]. We define the standard (complex) Spin bundle to be

/�M = PSpin(TM) ×η /� R
n

as the bundle with fibre /� R
n associated to PSpin(TM) via η. We note that this is the

bundle with transition functions (η ◦ Tαβ) on �α ∩ �β �= ∅ for �α and �β open
sets, where Tαβ : �α ∩ �β → Spinn are transition functions for PSpin(TM).

The representation η induces an action · : �M → /�M. When n is odd, there
are two such multiplications up to equivalence opposite from each other, and for
n even, there is exactly one up to equivalence. Fixing such a Clifford action, /�M
has an induced hermitian metric 〈·, ·〉∗, pointwise unique up to scale satisfying
〈X · ϕ,ψ〉∗ = − 〈ϕ, X · ψ〉∗ for all X ∈ TxM and ϕ,ψ ∈ /�x M for every x ∈ M.
See Proposition 1.2.1 and 1.2.3 in [15].

Let E(e1, . . . , en) be an orthonormal frame for TM and
{

/eα

}

be the induced
orthonormal spin frame on /�M. Let ωa

i be the connection 1-form in E and define
the connection ∇ : C∞(/�M) → L∞

loc(T
∗M⊗ /�M) by writing

∇/eα = 1

2

∑

b<a

ωa
b ⊗ (eb · ea · /eα). (3.2)
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This connection satisfies the two following properties:

(i) it is almost-everywhere compatible with the induced spinor metric 〈· , · 〉∗, and
(ii) it is a module derivation: whenever X ∈ C∞(TM),

∇X (ω · ψ) = (∇Xω) · ψ + ω · (∇Xψ)

holds almost-everywhere for every ω ∈ C∞(�M) and ψ ∈ C∞(/�M).

We refer the reader to §1.2 in [15] for a exposition of these ideas, as well as Chapter
2, §3 to §5 in [19] for a detailed overview, noting that their proofs in the smooth setting
hold in our setting almost-everywhere.

Write

ω2
E = 1

2

∑

b<a

ωa
b ⊗ eb · ea (3.3)

to denote the lifting of the connection 2-form 1
2

∑

b<a ωa
b⊗eb∧ea to /�M, and where

E is used to denote the dependence on the frame E(e1, . . . , en). By /Dg denote the
associated Atiyah–Singer Dirac operator given by the expression

/Dg/eα = e j · ∇e j /eα = e j · ω2
E (e j ) · /eα, (3.4)

so that /Dg(ψ
α/eα) = (∇e j ψ

α) e j · /eα + ψαe j · ∇e j /eα. Note that,

/Dg(ηψ) = (dη) · ψ + η/Dg(ψ) (3.5)

for every η ∈ C∞(M) and ψ ∈ C∞(/�M) and, as a consequence of the aforemen-
tioned module-derivation property of the connection ∇ on /�M,

/Dg(ω · ψ) = (DHω) · ψ − ω · /Dgψ − 2∇ω�ψ (3.6)

for all ω ∈ C∞(�M) and ψ ∈ C∞(/�M), where DH = d + d∗ is the Hodge-Dirac
operator, and � : T∗M → TM given by ω� = g(ω, ·).

Next, let (N , h) be another Spin manifold with a smooth differentiable structure
and h at least C0,1. Suppose that ζ : M → N is a C1,1-diffeomorphism and let /�N
denote the complex standard spin bundle ofN obtained via η. Following [8], we define
an induced unitarymap of spinors /U : /�M → /�N . Let P = ζ∗ : TM → TN . Then,
the pullbackmetric is g̃(u, v) = h(Pu, Pv) andwe have that g̃(u, v) = g((P∗

g P)u, v),
where P∗

g is the adjoint of P , and this expression is readily checked to be a metric

of class C0,1. On letting U = P(P∗
g P)− 1

2 , we have that h(Uu,Uv) = g(u, v). So,

U : (TM, g) → (TN , h) is an isometry of class C0,1. ByU(x), we denote the induced
linear isometry U(x) : (TxM, g) → (Tζ(x)N , h).

Since ζ is a homeomorphism, an open set � ⊂ M is contractible if and only if
ζ(�) ⊂ N is contractible. For an orthonormal frame E(e1, . . . , en) ∈ PSO(TM)

in �, we obtain UE(e1, . . . , en) ∈ PSO(TN ). Lifting E and UE through the spin
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Riesz continuity of the Atiyah–Singer. . . 875

structures locally, we obtain two possible maps /USpin,� : PSpin(M) → PSpin(N )

differing by a sign. We say that the bundles /�M and /�N are compatible if /USpin,�
induces a well-defined global unitary map /U : /�M → /�N . By examining the local
expression, we see that /U : /�M → /�N and /U−1 : /�N → /�M are C0,1 maps.

Finally, we say that g and h are C-close for some C ≥ 1, if for all x ∈ M,

C−1 |u|g(x) ≤ |ζ∗u|h(ζ(x)) ≤ C |u|g(x) .

Define

CL = inf {C ≥ 1 : g and h are C-close} and ρM (g, ζ ∗h) = log(CL). (3.7)

The map ρM is readily verified to be a distance-metric on the set of metrics.
What follows is the main the result of this section. In fact, this theorem was the

original motivation of this paper, whereas Theorem 2.4 is a natural generalisation.
As aforementioned, we anticipate the more general result to have wider implications,
particularly to Dirac operators that arise through twisting the Spin bundle by other
natural vector bundles. The analysis of such objects is beyond the scope of this paper
and hence, we focus on the particular case of the Atiyah–Singer Dirac operator.

Theorem 3.1 LetM be a smooth Spin manifold with smooth, complete metric g with
Levi-Civita connection ∇g, letN be a smooth Spin manifold with a C0,1 metric h, and
ζ : M → N a C1,1-diffeomorphism with ρM (g, ζ ∗h) ≤ 1. We assume that the Spin
bundles /�M and /� N are compatible. Moreover, suppose that the following hold:

(i) there exists κ > 0 such that inj(M, g) ≥ κ ,
(ii) there exists CR > 0 such that

∣
∣Ricg

∣
∣ ≤ CR and

∣
∣∇gRicg

∣
∣ ≤ CR,

(iii) there exists Ch > 0 such that |∇g(ζ ∗h)| ≤ Ch almost-everywhere.

Then, for ω ∈ (0, π/2), σ > 0, whenever f ∈ Hol∞(Soω,σ ), we have the perturba-
tion estimate

‖ f (/Dg) − f ( /U−1 /Dh /U)‖L2→L2 � ‖ f ‖∞ρM (g, ζ ∗h)

where the implicit constant depends on dimM and the constants appearing in (i)–(iii).

Remark 3.2 The map /U is the fibrewise unitary map /�p M → /�ζ(p) N . For the

L2(/�M) → L2(/�N ) unitary operator /U2 = √
det B /U, we also have an estimate

of ‖ f (/Dg) − f ( /U−1
2 /Dh /U2)‖L2→L2 as in Theorem 3.1. Either this can be seen by

inspection of the proof, noting Remark 2.5, or by using the functional calculus to
write

f (/Dg)− f ( /U−1
2 /Dh /U2)=( f (/Dg)− f ( /U−1 /Dh /U))+( /U−1 f (/Dh) /U − /U−1

2 f (/Dh) /U2),

noting that the second term is straightforward to bound.
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Remark 3.3 On fixing a Spin structure ξ : PSpin(TM) → PSO(TM), we obtain an
induced ξ ′ = Uξ : (ξ−1U−1PSO(TN )) → PSO(TN )which is a Spin structure forN .
Since U : PSO(TM) → PSO(TN ) is a homeomorphism, it is an easy matter to verify
that the bundles /�N = (ξ−1U−1PSO(TN )) ×η /� R

n and /�M are compatible.
For the case of M = N , where /�M and /�N denote the respective bundles

constructed via g and h, we obtain this theorem for ζ = id. If further M = N is
compact, then (i)–(iii) in the hypothesis of the theorem are automatically satisfied,
and thus we obtain the result under the sole geometric assumption that ρM (g, h) ≤ 1.

Proof of Theorem 3.1 We apply Theorem 2.4, to the operators D = /Dg and
D̃ = /U−1 /Dh /U, setting V = /�M.

The assumptions of completeness of g along with (i) and (ii) imply (Eloc) and (Ploc)
immediately (see Theorem 1.1 in [23]). Moreover, there exists rH ,CH > 0, such that
for all x ∈ M such that ψx : B(x, rH ) → R

n are coordinate charts such that inside
each chart, ‖gi j‖C2(B(x,rH )) ≤ CH and g  ψ∗

x δRn with constant CH . See Theorem
1.2 in [17].

This C2-control of the metric inside each B(x, rH ) means that coordinate frames
{

∂xi
}

satisfy
∣
∣∇∂xi

∣
∣ � 1 and

∣
∣∇2∂xi

∣
∣ � 1. On orthonormalisation of these frames

in each B(x, rH ) via the Gram-Schmidt algorithm yields frames {ei } for TM,
{

ei
}

for T∗M (the dual frame), and
{

/eα

}

for /�M. These are smooth GBG frames with
constant CT∗M = C/�M = 1, and with

∣
∣∇e j

∣
∣ ,

∣
∣∇2e j

∣
∣ � 1 and

∣
∣∇/eα

∣
∣ ,

∣
∣∇2/eα

∣
∣ � 1.

The constants only depend on (i) and (ii). Thus, we have verified the hypotheses
(A1)–(A5).

The hypothesis (A6) follows with C∞ coefficients due to the derivation prop-
erty (3.5) of /Dg with constant CD = 1, and (A7) follows from the fact that
∣
∣/Dg/eα

∣
∣ �

∣
∣∇/eα

∣
∣ � 1.

The hypothesis (A8) is proved in Sect. 3.1 as Proposition 3.6, which makes use of
the completeness of g, C-closeness of h to g and the geometric assumptions (i) and
(ii). The hypothesis (A9) is proved in Sect. 3.4 as Proposition 3.18. It depends on the
crucial covering Lemma 3.5 which is a consequence of completeness of g coupled
with (i) and (ii).

The remaining hypothesis to verify in Theorem 2.4 is the perturbation structure 1.2,
which is done in Sect. 3.3. ��

Through the remaining sections, we assume the hypothesis of Theorem 3.1 to hold.

3.1 The domain of the Dirac operator as the Spinor Sobolev space

In this section, we establish the essential-self adjointness of /Dg and /Dh. By the smooth-
ness (and completeness) of g, it is well known that this operator, and all of its positive
powers, are essentially-self adjoint. For instance, see [11]. Thus, we focus only on /Dh
which arises from the lower regularity metric.

First, we assert /Dh is a symmetric operator on C∞
c (/�N ). This is immediate since

we assume that h is at least C0,1, and therefore, the remaining divergence term in
when computing the symmetry pointwise almost-everywhere is the divergence of a
compactly supported Lipschitz vectorfield. A particular consequence of symmetry is
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that /Dh is a closable operator by the density of C∞
c (/�N ) in L2(/�N ). Operator theory

yields that /Dh = /D∗∗
h . With these observations in mind, we prove the following.

Proposition 3.4 The operator /Dh on C∞
c (/�N ) is essentially self-adjoint.

Proof The conclusion is established if we prove that C∞
c (/�N ) is dense in

D(/D∗
h) =

{

ψ ∈ L2(/�N ) : ∣∣〈ψ, /Dhϕ
〉∣
∣ � ‖ϕ‖, ϕ ∈ C∞

c (/�N )
}

.

The first reductionwemake is to note thatDc(/D
∗
h) =

{

u ∈ D(/D∗
h) : spt u compact

}

is dense in D(/D∗
h). This is a direct consequence of the fact that we are able to find a

C-close smooth metric h′, which is complete since h is complete, and for this metric
h′, there exists a sequence of smooth functions ρk : N → [0, 1] with spt ρk compact,
with ρk → 1 pointwise, and |dρk |h′ ≤ C−11/k for almost-every x ∈ N (and hence
|dρk |h ≤ 1/k for almost-every x ∈ N ). See Proposition 2.3 in [6] or Proposition 1.3.5
in [15] for the existence of such a sequence. The aforementioned density is then simply
a consequence of noting the formula /D∗

h( f ϕ) = f /D∗
h(ϕ)+ (d f ) · ϕ, for f ∈ C∞

c (N )

and ϕ ∈ D(/D∗
h).

Next, forψ ∈ Dc(/D
∗
h)∩W1,2(/�N ), we canwriteψ = ∑N

j=1 ψ j whereψ j = η jψ ,
where η j is a finite partition of unity and spt η j is contained in a coordinate patch.
On obtaining a sequence ψδ ∈ C∞

c (/�N ) by obtaining a mollification ηδ
j of η j inside

each coordinate patch, using the fact thatψ ∈ W1,2(/�N ) so that ‖/D∗
hψ‖ = ‖/Dhψ‖ �

‖∇ψ‖, we have that ψδ → ψ in ‖· ‖/D∗
h
.

The proof is then complete if we show that whenever ψ ∈ Dc(/D
∗
h), we have

that ψ ∈ W1,2(/�N ). By the compactness of spt ψ , we assume without the loss of
generality that spt ψ is contained in a coordinate patch corresponding to a ball B.
Thus assume that for every ϕ ∈ C∞

c (/�N ),
∣
∣
〈

ψ, /Dhϕ
〉∣
∣ � ‖ϕ‖. In particular, this holds

when spt ϕ ⊂ B, so let us further assume that. Then, note that

〈

ψ, /Dhϕ
〉 =

ˆ
B

〈

ψ, ei · (∂ei ϕα)/eα

〉

∗ dμh +
ˆ
B

〈

ψ, ei · 1
2
ω2(ei ) · ϕ

〉

∗
dμh,

and since ω2 ∈ L∞(B) since h is locally Lipschitz, we obtain that

∣
∣
∣
∣

ˆ
B

〈

ψ, ei · (∂eiϕα)/eα

〉

∗ dμh

∣
∣
∣
∣
� ‖ϕ‖.

Moreover, lettingL denote the Lebesgue measure, we have that dμh = θdL , where
θ = √

det h is Lipschitz inside B since h is locally Lipschitz. Thus

(∂ei ϕ
α)θ = ∂ei (θϕα) − (∂ei θ)ϕα,

and since (∂eiθ) ∈ L∞(B), we further obtain that

∣
∣
∣
∣

ˆ
B

〈

ψ, ei · ∂ei (θϕα)/eα

〉

∗ dL

∣
∣
∣
∣
� ‖θϕ‖L2(B,L ).
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Now, note that ei · /eα = η(ei )/eα , which is a constant expression inside B. Identifying
B with χ(B) where χ : B → R

n is the coordinate map,

̂(ei · f ) = ei · f̂

for f ∈ L2(/� R
n), where f̂ is the Fourier Transform of f . On extending ψ by zero to

all of R
n , we obtain that for any ϕ ∈ C∞

c (Rn, /� R
n),

∣
∣
∣
∣

〈

ψ, ∂ei (θϕα)ei · /eα

〉

L2(/�Rn)

∣
∣
∣
∣
� ‖θϕ‖L2(/�Rn).

Then, by Parseval’s identity, we have that

〈

ψ, ∂ei (θϕα)ei · /eα

〉

L2(/�Rn)
=

〈

ψ̂, ei · ξi θ̂ϕ
〉

L2(/�Rn)
.

That is,

∣
∣
∣

〈

ψ̂, ξ · θ̂ϕ
〉

L2(/�Rn)

∣
∣
∣ � ‖θϕ‖L2(/�Rn)

where ξ = ξi ei and for all ϕ ∈ C∞
c (/� R

n). Since θϕ is dense in L2(/� R
n), we have

that ξ · ψ̂ ∈ L2(/� R
n) (since vectors act skew-adjointly on spinors) which implies that

ψ ∈ W1,2(/� R
n). On recalling that spt ψ ⊂ B and that ω2 ∈ L∞(�1M⊗�M), we

have that ψ ∈ W1,2(B, /�N ). ��
To characterise the domains of the operators /Dg and /Dh as W1,2, we first note the

following lemma.

Lemma 3.5 On themanifold (M, g), there exists a sequence of points xi and a smooth
partition of unity {ηi } uniformly locally finite and subordinate to {B(xi , rH )} satis-
fying

∑

i

∣
∣∇ jηi

∣
∣) ≤ CH for j = 0, ..., 3. Moreover, there exists M > 0 such that

1 ≤ M
∑

i η
2
i .

Proof The proof of this lemma, except for the estimate on the sum of squares of the
partition of unity, is included in the proof of Proposition 3.2 in [17]. This is due to the
completeness of g and (i) and (ii). We prove the remaining estimate, by noting that
by the uniformly locally finite property, there exists a constant M such that for each
x ∈ M, 1 = ∑M

k=1 ηik (x). Moreover, by Cauchy-Schwarz inequality,

1 =
(

M
∑

k=1

ηik (x)

)2

≤
(

M
∑

k=1

ηik (x)
2

)(
M
∑

k=1

12
)

= M
∑

i

η2i (x).

��
With this, the following proposition becomes immediate.
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Proposition 3.6 WehaveD(/Dh) = W1,2(/�N )with‖/Dhϕ‖2+‖ϕ‖2  ‖∇ϕ‖2+‖ϕ‖2
whenever ϕ ∈ W1,2(/�N ). A similar conclusion holds for /Dg.

Proof By Proposition 3.4, it suffices to demonstrate the estimate ‖/Dhψ‖ + ‖ψ‖ 
‖∇ψ‖ + ‖ψ‖ for ψ ∈ C∞

c (/�N ). From the definition of the operator /Dh, we obtain
‖/Dhψ‖ � ‖∇ψ‖ for all ψ ∈ C∞

c (/�N ). Thus, W1,2(/�N ) ↪→ D(/Dh) is a continuous
embedding.

Let the partition of unity given by Lemma 3.5 for the metric g be denoted by
{

η
g
i

}

.
Define ηi = ζ ∗ηgi = (η

g
i ◦ ζ−1). Now, ∇ηi = dMηi and by the fact that pullback

commutes with the exterior derivative, we have that dN ηi = dN ζ ∗ηgi = ζ ∗dMη
g
i .

Thus,
∑

i

∣
∣dN ηi

∣
∣ ≤ CCH , since g and h are C-close.

Fix ψ ∈ C∞
c (/�N ) so we can write ψ = ∑N

i=1 ηiψ . By Fourier theory, we obtain
a constant C ′ > 0 such that ‖∇(ηiψ)‖2 ≤ C ′(‖/Dh(ηiψ)‖2 +‖ηiψ‖2) since spt ηi ⊂
B(xi , rH ), which corresponds to a chart forwhich themetric g is uniformly comparable
to the pullback Euclidean metric.

Moreover, note that since∇ is a derivation, |ηi∇ψ |2 �
∣
∣dN ηi

∣
∣
2 |ψ |2+|∇(ηiϕ)|2 ,

and since |∇ψ |2 ≤ M
∑

i η
2
i |∇ψ |2 pointwise by Lemma 3.5,

‖∇ψ‖2 ≤ M
ˆ

∑

i

|ηi∇ψ |2 dμ �
ˆ

∑

i

∣
∣
∣dNψ

∣
∣
∣

2 |ψ |2 dμ+
∑

i

ˆ
|∇(ηiψ)|2 dμ

� ‖ψ‖2+
∑

i

ˆ
∣
∣/Dh(ηiψ)

∣
∣
2
dμ.

But by the definition of /Dh, we have that

∣
∣/Dh(ηiψ)

∣
∣
2 �

∣
∣
∣dN ηi

∣
∣
∣

2 |ψ |2 + η2i

∣
∣/Dhψ

∣
∣
2
.

Integrating this estimate and on combining it with the previous estimates proves the
claim. The argument for g is similar. ��
Remark 3.7 Typically, the estimate ‖/Dhψ‖2 + ‖ψ‖2  ‖∇ψ‖2 + ‖ψ‖2 is obtained
via the Bochner-Lichnerowicz–Schrödinger-Weitzenböck identity:

/D2
hψ = − tr∇2ψ + 1

4
Rh

Sψ,

where Rh
S is the scalar curvature of h. This would force h to be at least C1,1 and we

would need to assume that Rh
S ≥ γ almost-everywhere for some γ ∈ R. However,

the fact that h is C-close to the smooth metric g with stronger curvature bounds allow
us to work in the setting where h is only C0,1.

3.2 Pullback of Lebesgue and Sobolev spaces of spinors

In this section, we demonstrate that the unitary map /U as defined before Theorem 3.1
induces maps between Lp spaces and Sobolev spaces.
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For the remainder of this section, let us write

B = (PgP)−
1
2 , and θ = det B (3.8)

so that g(B−1u,B−1v) = g̃(u, v) and dμg = θdμg̃.

Proposition 3.8 The isometry U : (TM, g) → (TN , h) is of class C0,1 and the
induced /U : /�M → /�M itself induces a bounded invertible map /U : Lp(/�M) →
Lp(/�N ) for all p ∈ [1,∞] satisfying

‖/Uu‖Lp(/�N )  ‖u‖Lp(/�M).

In what is to follow, let us fix some notation. As noted in the proof of Theorem
3.1, the assumptions we make yields: uniform constants rH ,C > 0 such that at each
x ∈ M, the ball B(x, rH ) is contractible and inside B(x, rH ), we have orthonormal
frames {ei } for TM and

{

/eα

}

for /�M so that

‖ei‖C2(B(x,rH )) ≤ C and ‖/eα‖C2(B(x,rH )) ≤ C. (3.9)

Let the induced orthonormal frame for TN and /�N inside ζ(B(x, rH )) respec-
tively

{ẽi = Uei } and
{
/̃eα = /U/eα

}

. (3.10)

Throughout, by � we mean such a ball B(x, rH ).

Lemma 3.9 We have ωa
b(e j ) = g(∇e j eb, ea) and

2g(∇e j eb, ea) = g([ea, eb], e j ) + g([e j , ea], eb) − g([eb, e j ], ea)

almost-everywhere inside�. Similarly conclusion holds for ω̃a
b(ẽi )with respect to the

metric h. Moreover: h([Uu,Uv],Uw) = g([Bu,Bv],B−1w).

Proof We note thatωa
b(e j ) = wa

jb = ea(∇e j eb) = g(∇e j eb, ea) by (3.1). The expres-
sion for 2g(∇e j eb, ea) is well known. Since P = ζ∗, we have [Pu, Pv] = P[u, v]
and on recalling (3.8), we obtain

h([Uu,Uv],Uw) = h([PBu, PBv], PBw) = h(P[Bu,Bv], PBw)

= g̃([Bu,Bv],Bw) = g(B−1[Bu,Bv], w) = g([Bu,Bv],B−1w).

��
The following lemma allow us to relate derivatives of the metric g̃ = ζ ∗h to the

coefficients of the tensorfield B. We note that this lemma can also be obtained via a
functional calculus argument. Inside �, we write B = (β i

j ) and B−1 = (β̄ i
j ).
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Lemma 3.10 Then, there is a constant C2 > 0 independent of � such that such that∣
∣
∣∂etβ

i
j

∣
∣
∣ ≤ C2 and

∣
∣
∣∂et β̄

i
j

∣
∣
∣ ≤ C2

Proof First note that we have
∣
∣∂et g̃(ei , e j )

∣
∣ � 1 inside �, since in this frame,

∇g(ζ ∗h) = (∂et g̃i j )e
t ⊗ ei ⊗ e j + g̃i j e

t ⊗∇et (e
i ⊗ e j ),

and by assumption (iii) of Theorem 3.1, we have that |∇g(ζ ∗h)| � 1 as well as
∣
∣∇et (e

i ⊗ e j )
∣
∣ � 1. Now, et β̄r

s = −(etβ
q
p)β̄

r
q β̄

p
s and so it suffices to simply bound

∣
∣
∣etβ i

j

∣
∣
∣ � 1. We first note that

et g̃rs = etg(Ber ,Bes) = etg(B
2er , es) = et (B

2)rs,

where B2 = ((B2)rs) as a matrix. Thus, we obtain
∣
∣etβr

s

∣
∣ � 1 if we are able to prove

|etB| �
∣
∣etB2

∣
∣. Now, by the product rule, note that we obtain etB2 = B(etB)+(etB)B,

and that, for a vector u ∈ TxM with |u| = 1,

g(etB
2u, u) = g((BetB)u, u) + g((etB)Bu, u)

= g(etBu,Bu) + g(Bu, etB) = 2g(B(etB)u, u)

sinceB is real-symmetric, as is etB.This proves that the numerical radius nrad(etB2) =
2 nrad(B(etB). Moreover, note that nrad(· ) is a norm, and since any two norms on
a finite dimensional vector space are equivalent, and by the C-closeness of g and g̃
we have that |Bu| ≥ C−1 |u|, ∣∣etB2

∣
∣  nrad(etB2) = 2 nrad(B(etB))  |B(etB)| ≥

C−1 |etB| . ��
With the aid of these lemmas, we obtain the following boundedness of /U between

Sobolev spaces.

Proposition 3.11 The space /UW1,2(/�M) = W1,2(/�N )with ‖/Uψ‖+‖∇h( /Uψ)‖ 
‖ψ‖+‖∇gψ‖. In fact, the pointwise estimate ∣∣/Uψ

∣
∣+∣

∣∇h( /Uψ)
∣
∣  |ψ |+|∇gψ | holds

almost-everywhere.

Proof Note that the assumptions (i)-(iii) in Theorem 3.1 imply an open covering
{

�p = B(p, rH )
}

ofM satisfying
∣
∣∇gep,i

∣
∣ ≤ C and

∣
∣∂ep,k g̃(ep,i , ep, j )

∣
∣ � C , where

{

ep,i
}

is the frame inside �p. So, fix p and let ψ ∈ �(/�M) be differentiable at
x ∈ �p and note that at x ,

∣
∣
∣∇h( /Uψ)

∣
∣
∣

2 =
∑

j

∣
∣
∣∇h

ẽ j
( /Uψ)

∣
∣
∣

2 =
∑

j

∣
∣
∣/U−1∇h

ẽ j
( /Uψ)

∣
∣
∣

2
.

Now, note that

∇h
ẽ j

( /Uψ) = ∂ẽ j (ψ
α ◦ ζ−1)/̃eα + (ψα ◦ ζ−1)∇h

ẽ j
/̃eα,
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and that by the chain rule, on noting that ∇h
ẽ j

/̃eα = 1
2

∑

b<a ω2
F (ẽ j )ẽb · ẽa · /̃eα from

(3.2) and (3.3), we obtain that

/U−1∇h
ẽ j

( /Uψ) = ∂Be j (ψ
α)/eα + ψα(ωb

a(ẽ j ) ◦ ζ )eb · ea · /eα.

We estimate each term on the right side of the equation.
First, note that by Lemma 3.9,

ωb
a(ẽ j ) =

1

2

(

g([Bea,Beb],B−1e j )+g([Be j ,Bea],B−1eb)−g([Beb,Be j ],B−1ea)
)

,

and by metric compatibility between g and ∇g, we have that

g([Ber ,Bes],B−1et ) = g(∇g
Ber

(Bes),B
−1et ) − g(∇g

Bes
(Ber ),B

−1et ).

We compute

∇g
Ber

(Bes) = B j
r∇g

e j (B
k
s ek) = B j

r

(

(e jB
k
s )ek + Bk

s∇g
e j ek

)

.

On combining these calculations using Lemma 3.9, we obtain that

∑

j

∣
∣
∣ψ

α(ωb
a(ẽ j ) ◦ ζ )eb · ea · /eα

∣
∣
∣

2
� |ψ |2 .

To estimate the remaining term, we note that

(∂Be j ψ
α)/eα = Bk

j (∂ekψ
α)/eα = Bk

j∇g
ekψ − Bk

jψ
α∇g

ek/eα.

But by Lemma 3.9

∣
∣∇g

ek/eα

∣
∣ ≤ 1

2

∑

b<a

∣
∣
∣ωb

a(ek)eb · ea · /eα

∣
∣
∣ �

∑

b<a

∣
∣∇g

ek ea
∣
∣ |eb| � 1.

Therefore,

∑

j

∣
∣(∂Be j ψ

α)/eα

∣
∣ �

∣
∣∇gψ

∣
∣+ |ψ | .

This proves the pointwise estimate, and interchanging the roles of M and N proves
the reverse estimate. ��
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3.3 The pullback Dirac operator and the structural condition

In this section, we pullback the Dirac operator /Dh to on /�N to an operator /̃D on

/�M, and prove (2.7).
Fix an � = B(x, rH ) and let ψ ∈ �(/�M). For y ∈ � for which ∇ψ(y) exists,

define

/Dψ(y) = /Dgψ(y) and /̃Dψ(y) = /U−1
(y)/Dh( /Uψ)(y). (3.11)

Recall the map B from (3.8) and since B ∈ �(T (1,1)M), in an orthonormal frame
{ei }, we have that Bei = β

j
i e j and Be j = β

j
i e

i . Moreover, we note that since

ρM (g, ζ ∗h) ≤ 1,
∣
∣
∣δ

j
i − β

j
i

∣
∣
∣ ≤ ‖I − B‖∞ ≤ ρM (g, h)

First, we examine the structure of the difference /̃D− /D locally in a frame, the main
point being the use of the derivation property in Proposition 3.15, before establishing
the global result in Proposition 3.16.

Recall from (3.10) that ẽi = Uei and /̃eα = /U/eα . Note that this is the fibre-wise /U
and not the /U in L2. We also denote the induced fibrewise Clifford bundle pullback
between �M and �N by U.

Proposition 3.12 We have

(/D− /̃D)ψ = Z∇ψ − ((I − B)ei ) · ω2
E (ei ) · ψ + ei · (ω2

E (ei ) − U−1ω2
F (ẽi )) · ψ,

distributionally for ψ ∈ W1,2(/�M), where Z ∈ L∞(T∗M⊗ /�M, /�M) with norm
‖Z‖∞ � ‖I − B‖∞.

Proof If ψ = ψα/eα , /Uψ = (ψα ◦ ζ−1)/̃eα , and so

/Dh /Uψ = ẽi · ∂ẽi (ψα ◦ ζ−1)/̃eα + (ψα ◦ ζ−1)ẽi · ∇ẽi
/̃eα.

Thus, on pulling back this expression to /�M via /U−1, and invoking the chain rule to
the first sum in this expression, we obtain that

/̃Dψ = ei · (∂Beiψα)/̃eα + ψαei · /U−1∇ẽi
/̃eα.

Thus, the difference of these operators is given by the expression

(/D− /̃D)ψ = ei · (∂eiψα − ∂Bei ψ
α)/eα + ψαei · (∇ei /eα − /U−1

(∇ẽi
/̃eα)).

Recalling that ∇ei /eα = ω2
E (ei ) · /eα and that

/U−1∇ẽi
/̃eα = /U−1

(ω2
F (ẽi ) · /̃eα) = U−1ω2

F (ẽi ) · /U−1/̃eα = (U−1ω2
F (ẽi )) · /eα.
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The first expression is then given by

ei · (∂eiψα − ∂Beiψ
α)/eα = (δ

j
i − β

j
i )ei · (∂e jψα)/eα

= ((I − B)e j ) · (∂e j ψα)/eα = ((I − B)e j ) · ∇e j ψ − ψα(I − B)e j · ∇ei /eα.

Let ω = wa ⊗ /wa ∈ �(T∗M⊗ /�M) and define Zω = (I−B)wa · /wa . This defines
a frame invariant expression with

Z∇ψ = ((I− B)e j ) · ∇e j ψ,

and |Zω| = ∣
∣(I − B)wa · /wa

∣
∣ ≤ |(I − B)wa | ∣∣ /wa

∣
∣ � |wa | ∣∣ /wa

∣
∣  |ω| . ��

As a consequence of this proposition, we will continue to examine remaining terms
of the expression (/D− /̃D−Z∇)ψ with themain termbeing ei ·(ω2

E (e j )−U−1ω2
F (ẽ j ))·

ψ . Letting B−1 = (β̄
j
i ) in the frame {ei }, note that

(ω2
E (e j ) − U−1ω2

F (ẽ j )) = 1

2

∑

b<a

(ωb
a(ei ) − ω̃b

a(ẽi ) ◦ ζ−1) eb · ea

= 1

4

∑

b<a

{

(g([ea, eb], e j ) + g([e j , ea], eb) − g([eb, e j ], ea))

−(h([ẽa, ẽb], ẽ j ) + h([ẽ j , ẽa], ẽb) − h([ẽb, ẽ j ], ẽa))
}

eb · ea

= 1

4

∑

b<a

{

(g([ea, eb], e j ) + g([e j , ea], eb) − g([eb, e j ], ea))

−(g([Bea,Beb],B−1e j ) + g([Be j ,Bea],B−1eb)

−g([Beb,Be j ],B−1ea))

}

eb · ea, (3.12)

where the last line follows from Lemma 3.9. Hence, it suffices to consider the differ-
ences of the form g([u, v], w) − g([Bu,Bv],B−1w).

Lemma 3.13 We have

g([ei , e j ], ek) − g([Bei ,Be j ],B−1ek) = (δai δ
b
j δ

c
k − βa

i βb
j β̄

c
k )g([ea, eb], ec)

− g( (∂Bei (β
a
j ) − ∂Be j (β

a
i ))ea,B

−1ek)

almost-everywhere in �.

Proof Using the derivation property, we obtain that

[Bei ,Be j ] f = ∂Bei (β
b
j )eb( f ) + βb

j β
a
i eaeb( f ) − ∂Be j (β

a
i )ea( f ) − βa

i βb
j ebea( f )

= (∂Bei (β
a
j ) − ∂Be j (β

a
i ))ea( f ) + βa

i βb
j [ea, eb] f,
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where the last equality follows from the fact that a and b are dummy indices, i.e.,
βb
j eb = βa

j ea . Therefore,

g([ei , e j ], ek) − g([Bei ,Be j ],B−1ek) = g([ei , e j ], ek) − g([Bei ,Be j ],B−1ek)

= g([ei , e j ], ek) − g(βa
i βb

j [ea, eb], β̄c
k ec) − g( (∂Bei (β

a
j ) − ∂Be j (β

a
i ))ea,B

−1ek).

Then, on noting that g([ei , e j ], ek) = δai δ
b
j δ

c
kg([ea, eb], ec), we obtain the desired

conclusion. ��
With the aid of this, we re-organise the expression (3.12) in the following way:

(ω2
E (ei ) − U−1ω2

F (ẽi )) = 1

4

∑

b<a

(�
qrs
abi + �

qrs
iab − �

qrs
bia )g([eq , er ], es) eb · ea

+1

4

∑

b<a

(ϒabi−ϒbai+ϒiab−ϒaib+ϒiba−ϒbia) eb · ea,

(3.13)

where �
qrs
abc = (δ

q
a δrbδ

s
c − β

q
a βr

b β̄
s
c ), ϒabc = ∂Bea (β

p
b )β̄

q
c δpq . We analyse terms of the

form ϒrst eb · ea where (r, s, t) are permutations of {a, b, i}.
Lemma 3.14 The following holds almost-everywhere in �:

ϒabc = tr∇g(�abc) − ε
p
b ∂Bel (β̄

q
c θad)β̄

l
mδmd + ed(�abc)w

d
mkδ

mk,

where tr denotes the trace with respect to the metric g and where ε
p
b = β

p
b − δ

p
b ,

�abc = ε
p
b β̄

q
c δpqθad ed and θad = βa

d = δakβ
k
d .

Proof We compute ∇(�abc) on letting va = Bea

∇(�abc) = vl ⊗∇vl (ε
p
b β̄

q
c δpqθad ed)

= ∂vl (ε
p
b )β̄

q
c δpqθad β̄

l
m em ⊗ ed + ε

p
b ∂vl (β̄

q
c θad)δpq β̄

l
m em ⊗ ed

+ ed(�abc)v
l ⊗∇vl e

d .

Now, note that vl ⊗∇vl e
d = em ⊗∇em e

d = −wd
mke

m ⊗ ek and hence,

ed(�abc)v
l ⊗∇vl e

d = −ed(�abc)w
d
mk e

m ⊗ ek .

Take the trace with respect to g to get

tr
(

∂vl (ε
p
b )β̄

q
c δpqθad β̄

l
m em ⊗ ed

)

= ∂vl (ε
p
b )β̄

q
c δpqθad β̄

l
mδmd

= ∂vl (ε
p
b )β̄

q
c δpqδ

l
a = ∂va (ε

p
b )β̄

q
c δpq = ϒabc
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since θad β̄
l
mδmd = ∑

m θam β̄l
m = ∑

m βa
m β̄l

m = δla by the symmetry of β
p
q . This

yields the stated identity. ��
With this, we obtain the following local decomposition.

Proposition 3.15 There are pointwise multiplication operators X� ∈ L∞(L(/� �))

and Y� ∈ L∞(L(T∗�⊗ /��, /� �)) and �� ∈ L∞∩Lip(L(/� �,T∗�⊗ /��))) such
that

div(��ψ) + Y�∇ψ + X�ψ

= 1

4

∑

b<a

(ϒabi − ϒbai + ϒiab − ϒaib + ϒiba − ϒbia) eb � ea · ψ

holds distributionally for ψ ∈ W1,2(/�M). Moreover,

‖X�‖∞ � ‖I − B‖∞, ‖Y�‖∞ � ‖I − B‖∞,

‖��‖∞ � ‖I − B‖∞, and ‖∇��‖∞ � 1,

where the implicit constants in the gradient bound for �� is independent of �.

Proof By the completeness and smoothness of g along with (i) and (iii) of Theorem
3.1 we have uniform constants C1,C2 > 0 so that |∇ea | ≤ C1 and

∣
∣∂ec g̃ab

∣
∣ ≤ C2

inside �. Let ��ψ = �rst ⊗ (eb · ea · ψ) = (ε
p
s β̄

q
t δpqδrkβ

k
d ) e

d ⊗ (eb · ea · ψ) and
note that

∇(�rst ⊗ (eb · ea · ψ)) = ∇(�rst ) ⊗ (eb · ea · ψ) + �rst ⊗∇(eb · ea · ψ),

where

∇(eb · ea · ψ) = em ⊗∇em (eb · ea) · ψ + em ⊗ (eb · ea) · ∇emψ.

Taking traces with respect to g, we obtain that

tr∇(�rst (eb · ea · ψ)) = (tr∇(�rst ))(eb · ea · ψ) + tr(�rst ⊗∇(eb · ea · ψ)).

Moreover, note that we can write �rst = ed(�rst )ed and therefore, we obtain that

�rst ⊗∇(eb · ea · ψ) = ed(�rst )e
d ⊗ em ⊗∇em (eb · ea) · ψ

+ ed(�rst )e
d ⊗ em ⊗ (eb · ea) · ∇emψ

so that

tr(�rst ⊗∇(eb · ea · ψ)) = ed(�rst )δ
md∇em (eb · ea) · ψ

+ ed(�rst )δ
dm(eb · ea) · ∇emψ.
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Define

X�
rstψ = ed(�rst )δ

md∇em (eb · ea) · ψ
+

(

ed(�rst )w
d
mkδ

mk − ε
p
s ∂Bel (β̄

q
t θrd)β̄

l
mδmd

)

eb · ea · ψ,

and for ϕ ∈ �(T∗M⊗ /�M), define

Y�
rstϕ = Y�(ϕα

a e
a ⊗ /eα) = ed(�rst )δ

daϕα
a (eb · ea) · /eα.

Estimating with Lemma 3.10, we get ‖X�
rst‖∞ � ‖I−B‖∞, ‖Y�

rst‖∞ � ‖I−B‖∞,
‖�rst‖ � ‖I − B‖∞ and

∣
∣∇��

rst

∣
∣ � 1.

Lastly, by taking a sum over permutations over {abc} for the indices {r, s, t}, the
existence of coefficients X�, Y� and�� as stated in the conclusion is then immediate.

��

By collating our efforts throughout this section, we obtain the followingmain result.

Proposition 3.16 We have

/̃Dψ = /Dψ + A1∇ψ + div A2ψ + A3ψ, (3.14)

distributionally for ψ ∈ W1,2(/�M) where the coefficients A1, A2, A3 satisfy

A1 ∈ L∞(L(T∗M⊗ /�M, /�M)),

A2 ∈ L∞(L(W1,2(/�M),D(div)))

A3 ∈ L∞(L(/�M))

with ‖A1‖∞ + ‖A2‖∞ + ‖A3‖∞ � ‖I − B‖∞ and ‖∇A2‖ � 1.

Proof First, we remark that by the assumptions in Theorem 3.1, exist constants
C1,C2,C3 > 0, a covering

{

Bj
}

which are of fixed radius r > 0 with orthonor-
mal frames e j,k inside Bj , and a Lipschitz partition of unity

{

ηp
}

subordinate to
{

Bp
}

satisfying:

(a)
∣
∣∇e j,i

∣
∣ ≤ C1 for all i almost-everywhere on Bp,

(b)
∣
∣∂e j,k g̃(e j,i , e j,l)

∣
∣ ≤ C2, where g̃ = ζ ∗h, and

(c)
∣
∣∇η j

∣
∣ ≤ C3 in Bj .

Let

WBj ψ = 1

4

∑

b<a

(�
qrs
abi + �

qrs
iab − �

qrs
bia )g([eq , er ], es) eb · ea − ((I − B)ei ) · ω2

E (ei ),
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and recall the operator Z fromProposition 3.12,�U , and YU and XU fromProposition
3.15. Inside Bj , we have the expression

( /̃D− /D)ψ=
∑

j

η j div(�
Bj ψ)+

⎛

⎝Z+
∑

j

η j Y B j

⎞

⎠∇ψ+
∑

j

η j X
B j ψ+

∑

j

η jW
Bj ψ

On noting that div(ηϕ) = η div ϕ+tr(∇η⊗ϕ) for η ∈ C∞(M) and ϕ ∈ �(T∗M⊗
V) differentiable almost-everywhere, we let

A1 = Z +
∑

j

Y B j η j ,

A2 =
∑

j

�Bj η j ,

A3 = XBj η j +
∑

j

W Bj η j −
∑

j

tr((∇η j ) ⊗ ψ).

It is easy to check that the decomposition of the operator holds almost-everywhere.
The conditions (a) and (b) yield that ‖A1‖+‖A2‖+‖A3‖ � ‖I−B‖∞ by Propositions
3.15. Moreover,

|∇A2| ≤
∑

j

∣
∣∇η j

∣
∣

∣
∣
∣�

Bj

∣
∣
∣+

∑

j

η j

∣
∣
∣�

Bj

∣
∣
∣ � 1,

almost-everywhere uniformly with the constant depending on C1,C2 and C3. ��

3.4 Riesz-Weitzenböck formula for Dirac operator

The goal of this subsection is to demonstrate (A9). We begin by noting the following.

Lemma 3.17 The Sobolev spaces satisfyW2,2
0 (/�M) = W2,2(/�M).

Proof Due to the geometric assumptions (i) and (ii) in Theorem 3.1, the argument to
prove the assertion proceeds exactly as Proposition 3.2 in [17], which is a version of
this result for functions. The crucial point in the proof is to note that by the derivation
property for ∇, for η ∈ C∞(M) and u ∈ C∞(V)

∣
∣
∣∇2(ηu)

∣
∣
∣ ≤ |η|

∣
∣
∣∇2u

∣
∣
∣+ 2 |∇η| |∇u| +

∣
∣
∣∇2η

∣
∣
∣ |u| . ��

With this, we obtain the following Riesz-Weizenböck estimate.

Proposition 3.18 There exists CW > 0 such that ‖∇2ψ‖ ≤ CW (‖/D2
gψ‖ + ‖ψ‖) for

all ψ ∈ D(/D2
g) = W2,2

0 (/�M) = W2,2(/�M).
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Proof Since our metric g is smooth, by Theorem 2.2 in [11], it is well known that
C∞
c (/�M) is dense (with norm ‖· ‖/D2) in the domain of /D2

g (and in fact for any positive

power /Dk
g). By Lemma 3.17, in order to obtain the conclusion, it suffices to establish

‖∇2ψ‖ � ‖/D2
gψ‖ + ‖ψ‖ (3.15)

for all ψ ∈ C∞
c (/�M).

First we show that (3.15) holds for ψ ∈ C∞
c (/�M) with spt ψ ⊂ B(x, rH ). To

consider just the second-order part of the operator /D2
g, we define

Lψ = /D2
gψ − ei · e j · ((e jψα)∇ei /eα + (eiψα)∇e j /eα + ψα∇ei∇e j /eα)

−ei · ∇ei e
j · ∇e j ψ.

Estimating this operator by Plancherel’s theorem, we get ‖D2ψ‖2
L2(B(x,rH ))

�
‖Lψ‖2 + ‖ψ‖2, where D2 = ei ⊗ e j ⊗ (ei e jψα)/eα is the second-order part of
the Hessian. Also,

‖Lψ‖2 � ‖/D2
gψ‖2 +max

α
‖/eα‖2C1(B(x,rH ))

‖∇ψ‖2 + ‖/eα‖2C2(B(x,rH ))
‖ψ‖2

+max
j

‖e j‖2C1(B(x,rH ))
‖∇ψ‖2.

As we have noted in (3.9), a consequence of the assumptions (i)–(iii) in Theorem
3.1 is that maxα

∣
∣∇/eα

∣
∣ � 1 and maxα

∣
∣∇2/eα

∣
∣ � 1 inside B(x, rH ) with constants

independent of B(x, rH ). Again, by Plancherel’s theorem,

‖∇ψ‖2 � ‖/Dgψ‖2 + ‖ψ‖2 � ‖/D2
gψ‖2 + ‖ψ‖2.

Combining these estimates, we obtain that ‖∇2ψ‖2 � ‖/D2
gψ‖2 + ‖ψ‖2.

Now, letψ ∈ C∞
c (/�M) and note by the assumptionswemake, on invoking Lemma

3.5,weobtainCH > 0 such that {Bi = B(xi , rH )} is a cover forMwith‖gi j‖C2(Bi )) ≤
CH and a smooth partition of unity {ηi } such that ∑i

∣
∣∇ jηi

∣
∣ ≤ CH for j = 0, . . . , 3.

Moreover, this lemma guarantees that there exists M > 0 such that 1 ≤ M
∑

i η
2
i .

From the derivation property for ∇, we obtain

∣
∣
∣ηi∇2ψ

∣
∣
∣ �

∣
∣
∣∇2ηi

∣
∣
∣

2 |ψ |2 + |∇ηi |2 |∇ψ |2 +
∣
∣
∣∇2(ηiψ)

∣
∣
∣

2
,
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and we have that

‖∇2ψ‖2 ≤
ˆ

M
∑

i

η2i

∣
∣
∣∇2ψ

∣
∣
∣

2
dμ

≤ M
ˆ

∑

i

∣
∣
∣∇2ηi

∣
∣
∣

2 |ψ |2 dμ + M
ˆ

∑

i

|∇ηi |2 |∇ψ |2 dμ

+ M
ˆ

∑

i

∣
∣
∣∇2(ηiψ)

∣
∣
∣

2
dμ

� ‖ψ‖2 + ‖∇ψ‖2 +
∑

i

‖∇2(ηiψ)‖2.

Now, spt (ηiψ) ⊂ B(xi , rH ) and so ‖∇2(ηiψ)‖2 � ‖/D2
g(ηiψ)‖2 +‖ψ‖2 by what we

have just calculated, and so on noting that /D2
g(ηiψ) = ηi /D

2
gψ−2∇(grad ηi )ψ−(�ηi )ψ

by (3.6), where grad ηi = (∇ηi )
� = g(∇ηi , ·), we estimate

∑

i

‖∇2(ηiψ)‖2 �
∑

i

ˆ
ηi

∣
∣
∣/D2

gψ

∣
∣
∣

2
dμ +

ˆ
∑

i

|∇ηi |2 |ψ |2 dμ

+
ˆ

∑

i

∣
∣
∣∇2ηi

∣
∣
∣

2 |ψ |2 dμ

� ‖/D2
gψ‖2 + ‖ψ‖2.

In Proposition 3.6, we have already shown that ‖∇ψ‖2 � ‖/Dgψ‖2+‖ψ‖2 and hence
it suffices to note that

‖/Dgψ‖2 =
〈

/D2
gψ,ψ

〉

≤ ‖/D2
gψ‖‖ψ‖ � ‖/D2

gψ‖2 + ‖ψ‖2,

to complete the proof. ��

4 Reduction to quadratic estimates

The estimates in this section are operator theoretical in their nature and only make
use of the structure (2.7) of the perturbation, along with the assumption that D̃ and D
are self-adjoint operators with domains contained in W1,2(V). We will show how to
reduce the estimate of f (D̃)− f (D) in Theorem 2.4 to quadratic estimates. Moreover,
in Sect. 5, we will see that the latter type of estimates allow us to prove the main
theorem via harmonic analysis techniques. Throughout this section, we assume the
hypothesis of Theorem 2.4.
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4.1 Perturbations of resolvents

Since the operatorsDand D̃ are both self-adjoint, they admit aBorel functional calculus
via the spectral theorem as well as a bounded holomorphic functional calculus as
outlined in Sect. 2.3.

For t > 0, let us define operators

Pt = 1

I + t2D2 , P̃t = 1

I + t2D̃2
, Qt = tDPt , and Q̃t = tD̃P̃t .

The fact that D and D̃ are self-adjoint gives

ˆ ∞

0
‖Q̃t u‖2 dt

t
≤ 1

2
‖u‖2 and

ˆ ∞

0
‖Qt u‖2 dt

t
≤ 1

2
‖u‖2,

as well as

sup
t

‖Pt‖, sup
t

‖P̃t‖, sup
t

‖Qt‖, sup
t

‖Q̃t‖ ≤ 1

2
.

Furthermore, we note that the operators Pt , Pt , Qt , Q̃t are self-adjoint.
Moreover, let

ψ(ζ ) = ζ

1+ ζ 2 and ψt (ζ ) = ψ(tζ )

and note that Qt = ψt (D) and Q̃t = ψt (D̃). We establish some operator theoretic facts
about Q̃t and Qt that will be of use to us later.

Let

R̃t = 1

I + itD̃
= −(it)−1RD̃(−(it)−1) and Rt = 1

I + itD
= −(it)−1RD(−(it)−1),

and note that

R̃t = 1

I+ itD̃
= 1

I + itD̃

I − itD̃

I − itD̃
= 1

I + t2D̃2
− i

tD̃

I + t2D̃2
= P̃t − iQ̃t . (4.1)

Similarly, Rt = Pt − iQt .

Proposition 4.1 The difference of the resolvents satisfies the formula:

R̃t − Rt = R̃t [it (D− D̃)]Rt .

Moreover,

Q̃t − Qt = −P̃t [t (D̃− D)]Pt − Q̃t [t (D̃− D)]Qt

123



892 L. Bandara et al.

Proof First, note that:

R̃t − Rt = R̃t (1+ itD)Rt − R̃t (1+ itD̃)Rt .

Since by assumption D(D̃) = D(D) = W1,2(V), we have that R(R̃t ) = D(D̃) and
hence, (I+ itD̃)Rt ∈ L(H ). Thus,

R̃t − Rt = R̃t [(1+ itD) − (1+ itD̃)]Rt = R̃t [it (D− D̃)]Rt .

Expanding R̃t = P̃t − iQ̃t as we noted in (4.1), a straightforward calculation yields
that

(P̃t − Pt ) − i(Q̃t − Qt ) = R̃t − Rt = P̃t [t (D− D̃)]Qt + Q̃t [t (D− D̃)]Pt
+i

{

P̃t [t (D− D̃)]Pt + Q̃t [t (D− D̃)]Qt

}

,

which shows the expression for Q̃t − Q̃t . ��
In particular, we see that

‖(Q̃t − Qt ) f ‖ ≤ ‖P̃t (t A1∇)Pt f ‖ + ‖P̃t (t div A2)Pt f ‖ + ‖P̃t (t A3)Pt f ‖
+‖Q̃t (t A1∇)Qt f ‖ + ‖Q̃t (t div A2)Qt f ‖ + ‖Q̃t (t A3)Qt f ‖,

(4.2)

Proposition 4.2 We obtain the estimates

sup
t∈(0,1]

‖Q̃t − Qt‖ � ‖A‖∞, sup
t∈(0,1]

‖R̃t − Rt‖ � ‖A‖∞,

where the implicit constants depend on C(M,V,D, D̃).

Proof First, we bound the terms with P̃t and Pt . Note that,

‖P̃t (t A1∇)Pt‖ ≤
(

sup
t∈(0,1]

‖P̃t‖
)

‖A1‖∞‖t∇Pt‖.

Moreover, by (2.4),

‖t∇Pt‖ ≤ CD(‖tDPt‖ + ‖tPt‖) ≤ C(1+ t).

On combining this with the assumption that ‖A1‖∞ ≤ ‖A‖∞, we obtain that
‖P̃t (t A1∇)Pt‖ ≤ C‖A‖∞(1+ t).

Next, we estimate ‖P̃t (t div A2)Pt‖. First, we note that, for v ∈ D(div),

‖P̃t (t div)v‖ = sup
‖g‖=1

∣
∣
∣

〈

P̃t (t div)v, g
〉∣
∣
∣ = sup

‖g‖=1

∣
∣
∣

〈

v, tdiv∗P̃t g
〉∣
∣
∣ ≤ sup

‖g‖=1
‖v‖‖tdiv∗P̃t g‖.
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Now, note that div∗ = −∇ and on invoking (2.4),

‖tdiv∗P̃t g‖ ≤ C(‖tD̃P̃t g‖ + ‖t P̃t g‖) ≤ C(1+ t)‖g‖.

Thus,‖P̃t (t div)v‖ ≤ 2C‖v‖ and sinceD(div) is dense inL2(T∗M⊗V), we obtain that
P̃t (t div) extends to a bounded operator, uniformly bounded in t ∈ (0, 1]. Therefore,

‖P̃t (t div A2)Pt‖ ≤ ‖P̃t (t div)‖‖A2‖∞‖Pt‖ ≤ C‖A‖∞.

It is immediate that ‖P̃t A3Pt‖ ≤ ‖P̃t‖‖A3‖∞‖Pt‖ ≤ ‖A‖∞.
Similar bounds for Q̃t and Qt in place of P̃t and Pt follow by exactly the same

arguments noting that ‖t∇Qt‖  ‖I − Pt‖. This shows that supt∈(0,1] ‖Q̃t − Qt‖ �
‖A‖∞. To show supt∈(0,1] ‖R̃t−Rt‖ � ‖A‖∞, we note that it suffices to simply verify

that the previous argument holds for R̃t and Rt in place of P̃t and Pt due to the formula
established in Proposition 4.1. ��

A similar estimate of Pt also holds, but we shall not need that.

4.2 First reduction

Now, let f ∈ Hol∞(Soω,σ ), for ω ∈ (0, π/2) and σ ∈ (0,∞). We reduce estimating

‖ f (D̃) − f (D)‖ to obtaining an appropriate estimate for ‖Q̃t − Qt‖. To that end, we
begin with the following lemma.

Lemma 4.3 The following identities hold:

I = P̃1 + 2
ˆ 1

0
Q̃2
s
ds

s
= P1 + 2

ˆ 1

0
Q2
s
ds

s
,

where P̃1 = (I + D̃2)−1 and P1 = (I + D2)−1.

Proof Note that,

I − P1 = I − (I + D2)−1 = D2(I + D2)−1.

Moreover,

d

ds

(
s2

1+ s2

)

= 2s

(1+ s2)2

and by setting s = t z, we have that

ˆ 1

0

(t z)2

(1+ (t z)2)2
dt

t
=
ˆ z

0

s2

(1+ s2)2
ds

s
= 1

2

z2

1+ z2
.
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By the functional calculus we obtain that

D2(I + D2)−1u = 2
ˆ 1

0
ψt (D)2u

dt

t
.

The calculation for D̃2(I + D̃2)−1 is similar. ��
With the aid of this lemma, we obtain

f (D̃) − f (D) = [P̃1 + (I− P̃1)] f (D̃)[P̃1 + (I− P̃1)]
− [P1 + (I − P1)] f (D)[P1 + (I − P1)]

= [(2P̃1 − P̃21) f (D̃) − (2P1 − P21) f (D)]

+ 4
ˆ 1

0

ˆ 1

0
[(ψ2

s f ψ2
t )(D̃) − (ψ2

s f ψ2
t )(D)] ds

s

dt

t
.

(4.3)

Consider the second term on the right. Using the fact that the functional calculus
is a homomorphism yields that

(ψ2
s f ψ2

t )(D̃) − (ψ2
s f ψ2

t )(D) = ψs(D̃)(ψs f ψt )(D̃)[ψt (D̃) − ψt (D)]
+ψs(D̃)[(ψs f ψt )(D̃) − (ψs f ψt )(D)]ψt (D)

+[ψs(D̃) − ψs(D)](ψs f ψt )(D)ψt (D). (4.4)

Let η(x) = min
{

x, 1
x

}

(1 + |log |x ||). Then, we have the following preliminary
estimates for each of the three terms appearing in (4.4).

Lemma 4.4 The following estimates hold:

‖(ψs f ψt )(D̃)‖ � ‖ f ‖∞η(s/t), ‖(ψs f ψt )(D)‖ � ‖ f ‖∞η(s/t), and

‖(ψs f ψt )(D̃) − (ψs f ψt )(D)‖ � ‖ f ‖∞‖A‖∞η(s/t),

where the implicit constants only depend on C(M,V,D, D̃).

Proof The bound for the first two terms follows directly from the norm estimate of
the Riesz-Dunford integral (2.1). For the last estimate, we have that, after fixing an
appropriate curve γ ,

‖(ψs f ψt )(D̃) − (ψs f ψt )(D)‖ �
˛

γ

‖(ψs f ψt )(ζ )(RD̃(ζ ) − RD(ζ ))‖ |dζ |

� ‖ f ‖∞η(s/t)

(˛
γ

‖ψs f ψtψ(ζ )‖ |dζ |
|ζ |

)

sup
ζ∈γ

(‖RD̃(ζ ) − RD(ζ )‖ |ζ |)

� ‖ f ‖∞‖A‖∞η(s/t),

where the penultimate inequality follows from the decay of ψs f ψt and from Propo-
sition 4.2. ��
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Proposition 4.5 Suppose that

ˆ 1

0
‖(Q̃t − Qt )u‖2 dt

t
≤ C0‖A‖2∞‖u‖2

for all u ∈ L2(V). Then,

‖ f (D̃) − f (D)‖ � ‖A‖∞‖ f ‖∞,

where the implicit constant depends only on C(M,V,D, D̃) and C0.

Proof We appeal to (4.3) and first prove that

‖(2P̃1 − P̃21) f (D̃) − (2P1 − P21) f (D)‖ � ‖ f ‖∞‖A‖∞.

To that end, define

ϕ(ζ ) =
(

2

1+ ζ 2 − 1

(1+ ζ 2)2

)

f (ζ )

and note that ϕ ∈ �(Soω,σ ). Moreover, by the functional calculus, we have [(2P̃1 −
P̃21) f (D̃)− (2P1 − P21) f (D̃)] = ϕ(D̃)− ϕ(D). Then, for an appropriate chosen curve
γ ,

‖ϕ(D̃)u − ϕ(D)u‖ � ‖ f ‖∞
˛

γ

|ϕ(ζ )| ‖RD̃(ζ )(D− D̃)RD(ζ )u‖ |dζ |

� ‖ f ‖∞‖A‖∞‖u‖
(˛

γ

|ϕ(ζ )|
) |dζ |

|ζ | � ‖ f ‖∞‖A‖∞‖u‖

where the first inequality follows from Proposition 4.2.
Now, to bound the second term of (4.3), we appeal to (4.4). As we have previously

noted, ψt (D) = Qt and ψt (D̃) = Q̃t , and so,

‖ψs(D̃)(ψs f ψt )(D̃)[ψt (D̃) − ψt (D)]‖
= sup

‖u‖=‖v‖=1

∣
∣
∣

〈

ψs(D̃)(ψs f ψt )(D̃)[ψt (D̃) − ψt (D)]u, v
〉∣
∣
∣

= sup
‖u‖=‖v‖=1

∣
∣
∣

〈

(ψs f ψt )(D̃)(Q̃t − Qt )u, Q̃sv
〉∣
∣
∣ .

Fix ‖u‖ = ‖v‖ = 1, and we compute

∣
∣
∣

〈

(ψs f ψt )(D̃)(Q̃t − Qt )u, Q̃sv
〉∣
∣
∣ � ‖ψs f ψt (D̃)(Q̃t − Qt )u‖‖Q̃sv‖

� ‖ f ‖∞η(s/t)‖(Q̃t − Qt )u‖‖Q̃sv‖.
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Thus,

ˆ 1

0

ˆ 1

0

∣
∣
∣

〈

(ψs f ψt )(D̃)(Q̃t − Qt )u, Q̃sv
〉∣
∣
∣
ds

s

dt

t

� ‖ f ‖∞
(ˆ 1

0

(ˆ 1

0
η(s/t)‖(Q̃t − Qt )u‖2 ds

s

)
dt

t

) 1
2

×
(ˆ 1

0

ˆ 1

0
η(s/t)‖Q̃sv‖2 ds

s

dt

t

) 1
2

� ‖ f ‖∞
(ˆ 1

0
‖(Q̃t − Qt )u‖2 dt

t

) 1
2
(ˆ 1

0
‖Q̃sv‖2 ds

s

) 1
2

� ‖ f ‖∞‖A‖∞‖u‖‖v‖,

where the last inequality follows via our hypothesis and the self-adjointness of D̃. This
bounds the first term of (4.4). For the second term, we note that by using duality to
compute the norm, we arrive at:

∣
∣
∣

〈

[(ψs f ψt )(D̃) − (ψs f ψt )(D)]Qt u, Q̃sv
〉∣
∣
∣ � ‖A‖∞‖ f ‖∞η(s/t)‖Qt u‖‖Q̃sv‖,

where we have used Lemma 4.4. By a similar computation to the previous integral,
we obtain that

ˆ 1

0

ˆ 1

0

∣
∣
∣

〈

[(ψs f ψt )(D̃) − (ψs f ψt )(D)]Qt u, Q̃sv
〉∣
∣
∣
ds

s

dt

t
� ‖A‖∞‖ f ‖∞‖u‖‖v‖.

The last term in (4.4) is argued similar to the first term. Combining these estimates
together, we obtain that ‖ f (D̃) − f (D)‖ � ‖A‖∞‖ f ‖∞ as claimed. ��

4.3 Second reduction

In this section, we show that the quadratic estimate

ˆ 1

0
‖(Q̃t − Qt )u‖2 dt

t
� ‖A‖2∞‖u‖2

can be reduced to quadratic estimates of the form

ˆ 1

0
‖Qt SPt u‖2 dt

t
� ‖A‖2∞‖u‖2,

where the operator Qt is an operator satisfying quadratic estimates, where Pt is
either P̃t or Pt , and S is an appropriate bounded operator with norm controlled by
C(M,V,D, D̃). Due to Proposition 4.1, via the decomposition of the difference
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D− D̃ = A1∇ + div A2 + A3, it is clear how the term ‖A‖∞ arise in the expression
as we note in the following:

(ˆ 1

0
‖(Q̃t − Qt ) f ‖2 dt

t

) 1
2

≤
(ˆ 1

0
‖P̃t t A1∇Pt f ‖2 dt

t

) 1
2

+
(ˆ 1

0
‖P̃t t div A2Pt f ‖2 dt

t

) 1
2

+
(ˆ 1

0
‖P̃t t A3Pt f ‖2 dt

t

) 1
2

+
(ˆ 1

0
‖Q̃t t A1∇Qt f ‖2 dt

t

) 1
2

+
(ˆ 1

0
‖Q̃t t div A2Qt f ‖2 dt

t

) 1
2

+
(

‖Q̃t t A3Qt f ‖2 dt

t

) 1
2

. (4.5)

With this, we obtain the following.

Proposition 4.6 Suppose that

ˆ 1

0
‖Q̃t A1∇(iI+ D)−1Pt f ‖2 dt

t
≤ C1‖A‖2∞‖ f ‖2, and

ˆ 1

0
‖t P̃t div A2Pt f ‖2 dt

t
≤ C2‖A‖2∞‖ f ‖2

for all u ∈ L2(V). Then, for ω ∈ (0, π/2) and σ ∈ (0,∞), whenever f ∈
Hol∞(Soω,σ ), we obtain that

‖ f (D̃) − f (D)‖ � ‖ f ‖∞‖A‖∞

where the implicit constant depends on C1, C2 and C(M,V,D, D̃).

Proof We demonstrate that each term to the right of (4.5) is bounded by

max {C1,C2} ‖A‖2∞
and apply Proposition 4.5. First note that

ˆ 1

0
‖P̃t (t A3)Pt f ‖2 dt

t
≤ ‖A‖2∞

ˆ 1

0
t2‖ f ‖2 dt

t
≤ ‖A‖2∞‖ f ‖2,

and by the same calculation with Q̃t and Qt in place of P̃t and Pt ,´ 1
0 ‖Q̃t (t A3)Qt f ‖2 dt

t ≤ ‖A‖2∞‖ f ‖2.
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By (2.4) and using the quadratic estimates for Qt ,

ˆ 1

0
‖P̃t (t A1∇)Pt f ‖2 dt

t
≤ ‖A1‖2∞

ˆ 1

0
‖t∇Pt f ‖2 dt

t

≤ 2C2‖A‖2∞
ˆ 1

0
(‖tDPt f ‖2 + ‖tPt f ‖2) dt

t

≤ 2C2‖A‖2∞
ˆ 1

0
(‖Qt f ‖2 + t2‖ f ‖2) dt

t
≤ C2‖A‖2∞‖ f ‖2.

Next, note that for u ∈ D(div),

‖Q̃t t div u‖ = sup
‖g‖=1

〈

Q̃t t div u, g
〉

≤ sup
‖g‖=1

‖u‖‖tdiv∗Q̃t g‖

≤ C‖u‖ sup
‖g‖=1

(‖tD̃Q̃t g‖ + ‖tQ̃t g‖) � C‖u‖.

Therefore

ˆ 1

0
‖Q̃t (t div A2)Qt f ‖2 dt

t
≤ C2‖A2‖2

ˆ 1

0
‖Qt f ‖2 dt

t
≤ C2‖A‖2∞‖ f ‖2.

The two remaining terms are then handled via the hypothesis. The first term is
immediate. For the remaining estimate,

(ˆ 1

0
‖Q̃t (t A1∇)Qt f ‖2 dt

t

) 1
2

=
(ˆ 1

0
‖Q̃t A1∇(iI+ D)−1(t (iI+ D)Qt ) f ‖2 dt

t

) 1
2

≤
(ˆ 1

0
‖Q̃t A1∇(iI+ D)−1 f ‖2 dt

t

) 1
2

+
(ˆ 1

0
‖Q̃t A1∇(iI + D)−1Pt f ‖2 dt

t

) 1
2

+
(ˆ 1

0
‖Q̃t A1∇(iI + D)−1tQt f ‖2 dt

t

) 1
2

,

since tDQt = I − Pt . By hypothesis,

ˆ 1

0
‖Q̃t A1∇(iI + D)−1Pt f ‖2 dt

t
≤ C2‖A‖2∞‖ f ‖2,

and by the quadratic estimates for Q̃t , (2.4) and noting that ‖∇(iI+ D)−1u‖ � ‖u‖,
ˆ 1

0
‖Q̃t A1∇(iI+ D)−1 f ‖2 dt

t
≤ ‖A1‖2∞‖∇(iI+ D)−1‖2‖ f ‖2 � ‖A‖2∞‖ f ‖2.
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For the remaining term,

ˆ 1

0
‖Q̃t A1∇(iI+ D)−1(tQt ) f ‖2 dt

t
�
ˆ 1

0
‖A1‖2∞t2‖ f ‖2 dt

t
≤ ‖A‖2∞‖ f ‖2.

This finishes the proof. ��
We conclude this section by remarking that in typical applications, as we will see

in Sect. 5, the constants C1 and C2 themselves will depend on C(M,V,D, D̃).

5 Quadratic estimates

In this section, we prove the quadratic estimates in the hypothesis of Proposition 4.6.
We consider both quadratic estimates appearing as the hypothesis of this proposition
combined into the general form

ˆ 1

0
‖Qt SPt f ‖2 dt

t
� ‖A‖2∞‖ f ‖2, (5.1)

where S : L2(V) → L2(W) and Qt : L2(W) → L2(V), with W an auxiliary vector
bundle and Qt is a family of operators with sufficient decay.

It is well known in harmonic analysis, going back to the counter example in [21] by
the second author to the abstract Kato square root conjecture, that estimates of the form
(5.1), even for multipliers S, cannot be proved only using operator theory methods
such as those in Sect. 4. Instead one needs to apply harmonic analysis to exploit the
differential structure of the operators and the space. It is here that we require the full
list (A1)–(A9) of assumptions.

The purpose of considering an abstract estimate of this form is due to the fact
that to satisfy the hypothesis of Proposition 4.6, we are required to prove two differ-
ent quadratic estimates with the choice of operators S = I for Qt = P̃t div A2 and
S = ∇(iI+D)−1 for Qt = Q̃t A1. Therefore, in order to make the presentation clearer
for the reader, we combine these two estimates into a single estimate. Note that while
it may seem that the first choice for Qt and S is an easy estimate, the fact that the
operator Pt appears in the required quadratic estimate to the right of Qt precisely
means that this estimate that cannot be handled by operator theory methods alone.

In what will follow, the key is to reduce the estimate (5.1) to a Carleson measure
estimate. We will impose further restrictions on S as required in the analysis that will
follow.

5.1 Dyadic grids and GBG frames

A central consequence of the growth assumption (Eloc) is that it affords us with a
dyadic decomposition. This is illustrated in the following theorem.

Theorem 5.1 (Existenceof a truncateddyadic structure)Suppose that (M, g) satisfies
(Eloc). Then, there exist countably many index sets Ik , a countable collection of open
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subsets
{

Qk
α ⊂ M : α ∈ Ik, k ∈ N

}

, points zkα ∈ Qk
α (called the centre of Qk

α), and
constants δ ∈ (0, 1), a0 > 0, η > 0 and C1,C2 < ∞ satisfying:

(i) for all k ∈ N, μ(M\ ∪α Qk
α) = 0,

(ii) if l ≥ k, then either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = ∅,

(iii) for each (k, α) and each l < k there exists a unique β such that Qk
α ⊂ Ql

β ,

(iv) diam Qk
α < C1δ

k ,
(v) B(zkα, a0δk) ⊂ Qk

α ,
(vi) for all k, α and for all t > 0, μ

{

x ∈ Qk
α : d(x,M\Qk

α) ≤ tδk
} ≤ C2tημ(Qk

α).

This theorem was first proved by Christ in [12] for k ∈ Z (i.e. untruncated) for
doubling measure metric spaces. It was generalised by Morris in [23] to our particular
setting.

In what is to followwe couple this dyadic grid with the notion of GBG for the vector
bundle (V, h).We encourage the reader to assume familiaritywith the constantsC1, a0
and δ from Theorem 5.1. We remark that terminology we define below first arose in
the harmonic analysis of the Kato square root problem on vector bundles in [6].

We define and note the following:

• fix J ∈ N such that C1δ
J ≤ ρ/5 where ρ is from Definition (2.3),

• let tS = δ J which we call the scale,

• whenever j ≥ J,Q j denotes the set of cubes Q j
α,

• define Q = ∪ j≥JQ
j ,

• whenever t ≤ tS, we define Qt = Q j if δ j+1 < t ≤ δ j ,

• the length of a cube Q ∈ Q j is �(Q) = δ j ,

• for any Q ∈ Q j , there exists a unique ancestor cube Q̂ ∈ QJ

such that Q ⊂ Q̂, and the cube Q̂ is called the GBG cube of Q .

(5.2)

The following notion allows us to couple the dyadic structure with the GBG condi-
tion yielding “good” coordinates for V that enable us to import tools from Euclidean
harmonic analysis to the vector bundle setting. In the following definition, for a cube
Q = Q j

α ∈ Q j , we define xQ = z jα and call this the centre of the cube.

Definition 5.2 We call the following system of GBG trivialisations

C =
{

ψ : B(xQ , ρ) × C
N → π−1

V (B(xQ , ρ)), Q ∈ Q J
}

the GBG coordinates. Moreover, we let

CJ =
{

ψ |Q : Q × C
N → π−1

V (Q), ψ ∈ C
}

which we call the dyadic GBG coordinates. For an arbitrary cube Q ∈ Q, the GBG
coordinates of Q are the GBG coordinates of the GBG cube Q̂.
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An important tool in harmonic analysis is to be able to perform averages, which
requires a notion of integration. In a general vector bundle, this is not a well-defined
notion under transformations. However, by using the GBG structure, we define the
notion of cube integration, as a map B(xQ̂ , ρ) × Q � (x, Q)  → (

´
Q · )(x). For

u ∈ L1
loc(V), and y ∈ B(xQ̂ , ρ) we write

(ˆ
Q
u dμ

)

(y) =
(ˆ

Q
ui dμ

)

ei (y)

where u = ui ei in the GBG coordinates of Q . Note that this integral is only defined
in B(xQ̂ , ρ). We then define the cube average uQ ∈ L∞(V) of some u ∈ L1

loc(V) as
as

uQ (y) =
{ffl

Q u dμ y ∈ B(xQ̂ , ρ)

0 y /∈ B(xQ̂ , ρ).

Lastly, for each t > 0, we define the dyadic averaging operator Et : L1
loc(V) →

L1
loc(V) by

Et u(x) =
( 

Q
u dμ

)

(x) (5.3)

where Q ∈ Qt and x ∈ Q . This defines Et u(x) for x-a.e. onM. We remark that this
operator is well defined, and that Et u(x) on each Q ∈ Qt . Moreover, Et : L2(V) →
L2(V) is bounded uniformly for t ≤ tS with the bound depending on the constant C
arising in the GBG criterion.

5.2 Harmonic analysis

Let us assume that V andW are two vector bundles both satisfying the GBG condition
and on taking a minimum of the GBG radius of the two bundles, assume that V
and W share the same GBG radius. Let Qt : L2(W) → L2(V) be a family of
operators uniformly bounded in t ∈ (0, 1]. The Qt we consider will naturally contain
the coefficients Ai as a factor.

On defining 〈a〉 = max {1, a}, we assume that Qt satisfies off-diagonal estimates:
there exists CQ > 0 such that, for each M > 0, there exists a constant C�,M > 0
satisfying:

‖χEQt (χFu)‖L2(V) ≤ C�,M‖A‖2∞〈ρ(E, F)

t
〉−M

× exp

(

−CQ
ρ(E, F)

t

)

‖χFu‖L2(W) (5.4)
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902 L. Bandara et al.

for every Borel set E, F ⊂ M and u ∈ L2(W). Moreover, we assume thatQt satisfies
quadratic estimates, by which we mean there exists C ′

Q > 0 so that

ˆ 1

0
‖Qt f ‖2 dt

t
≤ C ′

Q‖A‖2∞‖ f ‖2 (5.5)

for all f ∈ L2(V).
Recalling the constants cE and κ appearing in (Eloc), Lemma 4.4 in [23] states that,

whenever M > κ alnd m > cE/t , we have

sup
Q′∈Qt

∑

Q∈Qt

μ(Q)

μ(Q′)
〈ρ(Q , Q′)

t
〉−M exp

(

−m
ρ(Q , Q′)

t

)

� 1. (5.6)

As a consequence, arguing exactly as in Lemma 5.3 in [23], we obtain that Qt

extends to a bounded operator Qt : L∞(W) → L2
loc(V) with c > 0 such that

‖Qt u‖2L2(Q ;V)
≤ c‖A‖2∞μ(Q)‖u‖2L∞(W), (5.7)

whenever t ∈ (0, tH(Q)], where

tH(Q) = min
{

tS, 〈2〈δ/C1〉−1cE/CQ〉−1
}

which we call the harmonic analysis scale of Qt .
In harmonic analysis, constant functions are often required to extract principal parts

of operators. Under the guise of the GBG coordinate system, we are able to define a
notion of a constant section, locally, of V . Let x ∈ Q ∈ Q and w ∈ Vx ∼= C

N , and
write w = wi ei (x) in the GBG frame

{

ei (x)
}

associated to Q . We then define the
constant extension of w by

wc(y) =
{

wi ei (y) y ∈ B(xQ̂, ρ)

0 y /∈ B(xQ̂, ρ),
(5.8)

and we note that wc ∈ L∞(V).
For x ∈ Q ∈ Q, and w ∈ Vx , with GBG constant extension wc ∈ L∞(V), we

define the principal part of Qt by

γ
Q
t (x)w = (Qtw

c)(x). (5.9)

It is easy to see that the principal part is a well defined operator γ
Q
t (x) : Wx → Vx

for almost-every x ∈ M. For convenience, we often write γt instead of γ
Q
t .

We note that as a consequence of (5.7) that

 
Q
|γt (x)|2 dμ(x) ≤ ‖A‖2∞ and sup

t∈(0,tH(Q)]
‖γtEt‖ � ‖A‖∞. (5.10)
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for all t ∈ (0, tH(Q)]. This can be seen by a similar argument to that found in [23] or
[6].

With this notation in hand, we split the quadratic from (5.1) as follows:

ˆ 1

0
‖Qt SPt f ‖2 dt

t
�
ˆ 1

0
‖(Qt − γtEt )SPt f ‖2 dt

t

+
ˆ 1

0
‖γtEt S(I − Pt ) f ‖2 dt

t
+
ˆ 1

0
‖γtEt S f ‖2 dt

t
.

(5.11)

We call the first term on the left of (5.11) the principal part, the second term the
cancellation part and the last term the Carleson part.

From here on, we let the standing assumptions throughout the remainder of this
section be (A1)–(A9).

5.3 The principal part term

In this subsection, under some additional conditions on S, we bound the principal part.
The first thing we observe and require is a Poincaré inequality that is bootstrapped
from the Poincaré inequality for functions.

Lemma 5.3 (Dyadic Poincaré Lemma) There exists CP > 0 such that

ˆ
B

∣
∣u − uQ

∣
∣
2
dμ ≤ CPr

κecErt (r t)2
ˆ
B

(

|∇u|2 + |u|2
)

dμ

for u ∈ W1,2(V), for all balls B = B(xQ , r t) with r ≥ C1/δ (with the constant C1
and δ from Theorem 5.1) where Q ∈ Qt with t ≤ tS (withQt and tS from (5.2)). The
constant CP depends on C(M,V,D, D̃).

The proof of this lemma proceeds similar to the proof of Proposition 5.3 in [6].

Proposition 5.4 (Principal part) Let (W, hW ,∇W ) be another vector bundle satisfy-
ing C0,1-GBG and suppose there exists CG,W such that in each GBG frame

{

ei
}

for

W ,
∣
∣
∣∇Wei (x)

∣
∣
∣ ≤ CG,W for almost-every x. Let Qt : L2(W) → L2(V) be a family

of operators uniformly bounded in t ∈ (0, 1] satisfying (5.4) and (5.5), and suppose
S : L2(V) → L2(W) is a bounded operator for which

‖∇W Sv‖ ≤ CS‖v‖W1,2

for some CS > 0 and v ∈ W1,2(V). Then, whenever u ∈ L2(V),

ˆ t1(Q)

0
‖(Qt − γtEt )SPt u‖2 dt

t
� ‖A‖2∞‖u‖2,
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904 L. Bandara et al.

where t1(Q) = min
{

tH(Q),CQ/(11cE )
}

. The implicit constant dependsonCG,W , CS,
C�,κ+3 from (5.4), C ′

Q from (5.5) and C(M,V,D, D̃).

Remark 5.5 We allow for an auxiliary vector bundle W in this proposition since, in
the proof of Theorem 2.4, we are required to invoke this with different choices for
W . We will see later that the constants CS , CG,W , C�,κ+3 and C ′

Q are themselves

dependent on C(M,V,D, D̃).

Proof The proof proceeds similar to Proposition 8.4 in [6], by replacing their QB
t with

our Qt .
Set v = SPt u. First, note from (5.3) that Etv(x) = vQ (x) for x ∈ Q , and so

‖(Qt − γtEt )v‖2 =
∑

Q∈Qt

‖Qt (v − vQ )‖2L2(Q )
.

Letting BQ = B(xQ ,C1/δt), C j (Q) = 2 j+1BQ\2 jBQ , and on invoking (5.4) for
Qt and for some M > 0 to be chosen later, we obtain that

ˆ
Q

∣
∣Qt (v − vQ )

∣
∣2 dμ

� ‖A‖2∞
⎛

⎝

∞
∑

j=0

〈ρ(Q ,C j (Q))

t
〉−M exp

(

−CQ
ρ(Q ,C j (Q))

t

)

‖v − vQ ‖L2(C j (Q ))

⎞

⎠

2

.

(5.12)

By (4.1) in [23], we have

2 j C1

δ
t ≤ ρ(xQ ,C j (Q)) ≤ ρ(Q ,C j (Q)) + diam Q

and therefore

〈
ρ(Q ,C j (Q))

t

〉−M

� 2−M( j+1) and,

exp

(

−CQ
ρ(Q ,C j (Q))

t

)

� exp

(

−CQC1

4δ
2 j+1

) (5.13)

for all j ≥ 0. Thus, by Cauchy-Schwartz inequality applied to (5.12), we obtain that

ˆ
Q

∣
∣Qt (v − vQ )

∣
∣2 dμ

� ‖A‖2∞
∞
∑

j=0

2−M( j+1) exp

(

−CQ
C1

2δ
2 j+1

)ˆ
C j (Q )

∣
∣v − vQ

∣
∣
2
dμ.

(5.14)
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On observing that C j (Q) ⊂ 2 j+1BQ , v ∈ W1,2(W), S : W1,2(V) → W1,2(W),

and since (W, hW ,∇W ) has C0,1-GBG with
∣
∣
∣∇Wei

∣
∣
∣ ≤ CG almost-everywhere, we

apply Lemma 5.3 to obtain

ˆ
C j (Q )

∣
∣v − vQ

∣
∣
2
dμ

�
(
C1

δ

)κ+2

exp

(
cEC1

δ
2 j+1t

)

22( j+1)t2
ˆ
2 j+1BQ

(

∣
∣
∣∇Wv

∣
∣
∣

2 + |v|2) dμ.

(5.15)

To estimate the term

ˆ
2 j+1BQ

(

∣
∣
∣∇Wv

∣
∣
∣

2 + |v|2) dμ =
ˆ

χ2 j+1BQ
(

∣
∣
∣∇Wv

∣
∣
∣

2 + |v|2) dμ,

we use Lemma 8.3 in [6], which states that whenever r > 0 and
{

B j = B(x j , r)
}

is
a disjoint collection of balls, then for every η ≥ 1,

∑

j

χηB j � ηκe4cEηκ ,

where the implicit constant depends on (Eloc). We apply this on setting r = a0t and
η = 2 j+1C1/(δa0) so that

{

B(xQ , a0t)
}

is disjoint to obtain the bound

χ2 j+1BQ
� 2κ( j+1) exp

(
4cEC1

δ
2 j+1t

)

. (5.16)

On combining estimates (5.13), (5.15) and (5.16) with (5.14),

∑

Q∈Qt

ˆ
Q

∣
∣Qt (v − vQ )

∣
∣
2
dμ

� ‖A‖2∞
∞
∑

j=0

2−(M−κ−2)( j+1) exp

(

−C1

2δ

(

CQ − 10cE t
)

2 j+1
)

t2(‖∇Wv‖2 + ‖v‖2). (5.17)

This sum converges by choosing M > κ + 2 and for t ≤ CQ
11cE

. Then, on setting

t1(Q) = min
{

tH(Q),CQ/(11cE )
}

, and recalling that v = SPt u,
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ˆ t1(Q)

0
‖(Qt − γtEt )SPt u‖2 dt

t

� ‖A‖2∞
ˆ t1(Q)

0
t2‖∇W SPt u‖2 dt

t
+ ‖A‖2∞

ˆ t1(Q)

0
t2‖SPt u‖2 dt

t

� ‖A‖2∞
ˆ t1(Q)

0
(t2‖∇VPt u‖2 + ‖Pt u‖2) dt

t
+ ‖A‖2∞

ˆ t1(Q)

0
t2‖SPt u‖2 dt

t

� ‖A‖2∞‖u‖2 + ‖A‖2∞
ˆ t1(Q)

0
t2‖DPt u‖2 dt

t

� ‖A‖2∞‖u‖2,

where the second inequality follows from the assumption ‖∇W Sw‖2 � ‖∇Vw‖2 +
‖w‖2, the third inequality from the boundedness of S : L2(V) → L2(W) and (2.4),
and the last inequality from the fact that tDPt = Qt satisfies quadratic estimates. ��

5.4 The cancellation term

In this subsection, we estimate the cancellation term. First, we observe the following.

Lemma 5.6 On each dyadic cube Q, and for each u ∈ W1,2(V) with spt u ⊂ Q, we
have that

∣
∣
∣
∣

ˆ
Q
Du dμ

∣
∣
∣
∣
� μ(Q)

1
2 ‖u‖.

The implicit constant depends on C(M,V,D, D̃).

Proof Let u = ui ei inside the GBG frame associated to Q , and let
{

v j
}

be the GBG
frame for TM. Then, from (2.2), we write in this frame

Du = (α
jk
l ∇v j uk + uiω

i
l ) e

l ,

and for a bounded Lipschitz η : M → R,

[η,D] u = ηDu − D(ηu)

= η(α
jk
l ∇v j uk + uiω

i
l ) e

l−α
jk
l ∇v j (ηuk)+ηuiω

i
l ) e

l=α
jk
l (∇v j η)uk e

l ,

almost-everywhere inside theGBG frame. By choosing η appropriately, i.e.,∇η = v j ,

∑

j,k,l

∣
∣
∣α

jk
l

∣
∣
∣

2
� dim(V).

Moreover, from (A7), we deduce the bound

∑

k

∣
∣
∣ω

i
k

∣
∣
∣

2 
∣
∣
∣ω

i
ke

k
∣
∣
∣

2 =
∣
∣
∣Dei

∣
∣
∣

2 ≤ cD,V .
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Before we proceed, we note that the assumption |∇ei | ≤ CG,V implies that
∣
∣∇ν j hi j

∣
∣ � 1 almost-everywhere since we assume that h and∇ are compatible almost-

everywhere. The implicit constant here depends only on of CG,V and CV .
Now, let h∗ = hi j ei ⊗ e j denote the induced metric for V∗ from h = hi j ei ⊗ e j ,

where ei (e j ) = δi j . Now, note that we can write a section f ∈ L1
loc(V) in

{

ei
}

as
f = fi ei = h( f, hik ei ) ek , and on choosing ψ to be a Lipschitz function supported
inside the trivialisation for the frame {ei }, with ψ ≡ 1 on Q we compute using the
fact that u = 0 on spt ∇ψ

ˆ
Q
Du =

ˆ
Q
h(Du, ψhik e

i ) ek=
ˆ
M

h(Du, ψhik e
i ) ek=

ˆ
M

h(u,D(ψhik e
i )) ek

=
ˆ
Q
h(u,D(hik e

i )) ek =
ˆ
Q
h(u, (α

jm
l ∇v j hmk + hikω

i
l ) e

l) ek .

Therefore,

∣
∣
∣
∣

ˆ
Q
Du

∣
∣
∣
∣
�
ˆ
Q
|u|

∑

k,m,l

∣
∣
∣α

jm
l ∇v j hmk

∣
∣
∣+

ˆ
Q
|u|

∑

k,m

∣
∣
∣(hikω

i
m) em)

∣
∣
∣

�
ˆ
Q
|u| =

ˆ
M

χQ |u| ≤
(ˆ

M
χ2
Q

) 1
2
(ˆ

M
|u|2

) 1
2 = μ(Q)

1
2 ‖u‖,

using the proved bounds on α
jk
l and ωi

j and bounds on ∇v j hkl and hkl from (A5). ��

Lemma 5.7 On each dyadic cube Q, each u ∈ W1,2(V) and v ∈ D(div) with
spt v, spt u ⊂ Q, we have that

∣
∣
∣
∣

ˆ
Q
∇u dμ

∣
∣
∣
∣
� μ(Q)

1
2 ‖u‖ and

∣
∣
∣
∣

ˆ
Q
div v dμ

∣
∣
∣
∣
� μ(Q)

1
2 ‖v‖.

The implicit constants depend on C(M,V,D, D̃).

This lemma is proved very similar to Lemma 5.6. For a comprehensive outline of
the proof, we consult the reader to the proof of Theorem 6.2 in [6]. Although the
metrics in [6] are assumed to be smooth, it is easy to verify that our assumption of
C0,1 regularity of the metric suffices in their proof.

The following is a generalisation of a key estimate in [3].

Lemma 5.8 (Cancellation lemma) Let ϒ be either one of D, D̃, ∇, or div. Then,

∣
∣
∣
∣

 
Q

ϒu dμ

∣
∣
∣
∣

2

� 1

�(Q)η

( 
Q
|u|2 dμ

) η
2
( 

Q
|ϒu|2

)1− η
2 +

 
Q
|u|2 ,

for all u ∈ D(ϒ), Q ∈ Q, t ∈ (0, tS], where η is the parameter from Theorem 5.1
and �(Q) and tS are from (5.2).
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At this point, we note that the operator D satisfies the following off-diagonal esti-
mates.

Lemma 5.9 Let Ut be one of Rt = (I + itD)−1, Pt = (I + t2D2)−1, Qt = tD(I +
t2D2)−1, t∇Pt , P̃t t div, and Q̃t . Then, there exists CU > 0 such that, for each M > 0,
there exists a constant C� > 0 so that

‖χEUt (χFu)‖ � C�

〈

ρ(E, F)

t

−M
〉

exp

(

−CU
ρ(E, F)

t

)

‖χFu‖ (5.18)

for every Borel set E, F ⊂ M and u ∈ L2(V).

This “exponential” version of off-diagonal estimates first appeared as Lemma 5.3
in [10] by Carbonaro, Morris and McIntosh. The proof here is similar, and relies on
the commutator estimate (2.3).

With the aid of these tools, we estimate the cancellation term in (5.11). We note
that the proof is similar to the corresponding result found in [4], with the exception
being the complication arising from the operator S in the following statement. Thus,
we give sufficiently detailed recollection of the proof.

Proposition 5.10 Let S = I or S = ∇(iI+ D)−1. Then,

ˆ tH(Q)

0
‖γtEt S(I − Pt )u‖2 dt

t
� ‖u‖2.

Proof First we note that E
2
t = Et , and therefore,

‖γtEt S(I − Pt )u‖ = ‖γtEtEt S(I − Pt )u‖ ≤ ‖A‖∞‖Et S(I − Pt )u‖.

By Schur estimate techniques (see Proposition 5.7 in [4]), it suffices to prove that

‖Et S(I − Pt )Qs‖ � min

{( s

t

)α

,

(
t

s

)α}

for some α > 0.
Note the identities

(I − Pt )Qs = t

s
Qt (I− Ps) and PtQs = s

t
QtPs . (5.19)

For t ≤ s, it immediately follows from (5.19) that

‖Et S(I − Pt )Qs‖ � ‖(I − Pt )Qs‖ � t

s
.

For t > s, we write

‖Et S(I − Pt )Qs‖ � ‖Et SQs‖ + ‖PtQs‖ � ‖Et SQs‖ + s

t
,
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where the last inequality follows from (5.19). Thus, we only need to prove that there
is an α > 0 such that

‖Et SQs‖ �
( s

t

)α

.

Fix u ∈ L2(V) and note that

‖Et SQsu‖2 =
∑

Q∈Qt

‖Et SQsu‖2L2(Q )
. (5.20)

If S = ∇(iI+ D)−1, we have that

SQs = SsDPs = ∇(iI+ D)−1sDPs = s∇Ps − is∇(iI + D)−1Ps .

Also, for x ∈ Q ,

Et SQsu(x) =
 
Q
s∇Psu dμ −

 
Q
is∇Ps(iI + D)−1Psu dμ,

and therefore,

‖Et SQsu‖2L2(Q )

=
ˆ
Q

∣
∣
∣
∣

 
Q
s∇Psu dμ −

 
Q
is∇Ps(iI+ D)−1u dμ

∣
∣
∣
∣

2

dμ

� μ(Q)

∣
∣
∣
∣

 
Q
s∇Psu dμ

∣
∣
∣
∣

2

+ μ(Q)

∣
∣
∣
∣

 
Q
s∇Ps(iI + D)−1u dμ

∣
∣
∣
∣

2

. (5.21)

In the case S = I, we obtain that Et SQsu = ffl
Q sDPsu dμ, so that

‖Et SQsu‖L2(Q )  μ(Q)

∣
∣
∣
∣

 
Q
sDPsu dμ

∣
∣
∣
∣

2

.

This latter estimate can be handled if we can handle the former estimate and so it
suffices to only consider this case. On noting that t  �(Q) from (5.2), by Lemma
5.8

∣
∣
∣
∣

 
Q
s∇Psu dμ

∣
∣
∣
∣

2

�
( s

t

)η 1

μ(Q)
‖Psu‖η

L2(Q )
‖s∇Psu‖2−η

L2(Q )

+t2
( s

t

)2 1

μ(Q)
‖Psu‖2L2(Q )

.
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Then, by choosing p = 2/η and q = 2/(2 − η), and by Hölder’s inequality and
the uniform boundedness of Ps , sPs , and Qs = sDPs on s ∈ (0, 1],

∑

Q∈Qt

‖Psu‖η

L2(Q )
‖s∇Psu‖2−η

L2(Q )

�

⎛

⎝
∑

Q∈Qt

‖Psu‖2L2(Q )

⎞

⎠

η
2
⎛

⎝
∑

Q∈Qt

‖s∇Psu‖2L2(Q )

⎞

⎠

2−η
2

� ‖Psu‖η(‖sDPsu‖2 + ‖sPsu‖2) 2−η
2 � ‖u‖2.

Thus, for u replaced by (iI+ D)−1u, we obtain,

‖Et SQsu‖2 �
( s

t

)2 ‖u‖2 +
( s

t

)η ‖u‖2 +
( s

t

)η ‖(iI + D)−1u‖2

�
( s

t

)2 ‖u‖2 +
( s

t

)η ‖u‖2.

This finishes the proof. ��

5.5 The Carleson term

We are now left with the task of estimating the last term, the Carleson term in (5.11).
Recall that ν is a local Carleson measure onM× (0, t ′] (for some t ′ ∈ (0, tS], where
tS is the scale we define in Sect. 5.1 ) if

‖ν‖C = sup
t∈(0,t ′]

sup
Q∈Qt

ν(R(Q))

μ(Q)
< ∞,

where R(Q) = Q × (0, �(Q)), the Carleson box over Q . The norm ‖ν‖C is the local
Carleson norm of ν.

If ν is a local Carleson measure, then by Carleson’s inequality,

¨
M×(0,t ′]

|Et (x)u(x)|2 dν(x, t) � ‖ν‖C‖u‖2

for all u ∈ L2(V). This is proved for functions in Theorem 4.2 in [23] but we note that
the proof carries over mutatis mutandis to our setting.

Since S is a bounded operator, we can reduce Carleson’s inequality

ˆ 1

0
‖γtEt Su‖2 dt

t
� ‖A‖2∞‖u‖2
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to showing that

dν(x, t) = |γt (x)|2 dμ(x)dt

t

is a local Carleson measure with Carleson norm controlled by ‖A‖2∞.
Fix a cube Q ∈ Qt , let BQ = B(xQ ,C1 �(Q)), Note that since we consider t ′ ≤ tS,

we have that 3BQ ⊂ B(xQ̂ ,C1 �(Q̂)), where ρ is the GBG radius. This is one reason
why we fix tS ≤ ρ/5 in our analysis.

For w ∈ C
N , let wc denote the local constant extension of w as defined in (5.8),

and define wQ = χ2BQ wc. Then, we note that

¨
R(Q )

|γt (x)|2 dμ(x)dt

t
� sup

|w|
CN=1

ˆ �(Q )

0

ˆ
Q

∣
∣
∣γtEtw

Q
∣
∣
∣

2 dμdt

t
,

and therefore, it suffices to prove that

ˆ �(Q )

0

ˆ
Q

∣
∣
∣γtEtw

Q
∣
∣
∣

2 dμdt

t
� ‖A‖2∞μ(Q) (5.22)

for each |w|
CN = 1.

In order to do this, we split up this integral in the following way:

ˆ �(Q )

0

ˆ
Q

∣
∣
∣γtEtw

Q
∣
∣
∣

2 dμdt

t

�
ˆ �(Q )

0

ˆ
Q

∣
∣
∣(γtEt − Qt )w

Q
∣
∣
∣

2 dμdt

t
+
ˆ �(Q )

0

ˆ
Q

∣
∣
∣Qtw

Q
∣
∣
∣

2 dμdt

t

(5.23)

Proposition 5.11 Let Qt : L2(W) → L2(V) be a family of operators uniformly
bounded in t ∈ (0, 1] satisfying (5.4). Then for each cube Q ∈ Qt ,

ˆ �(Q )

0

ˆ
Q

∣
∣
∣(γtEt − Qt )w

Q
∣
∣
∣

2 dμdt

t
� ‖A‖2∞μ(Q),

whenever t ∈ (0, t3(Q)], where t3(Q) = min
{

tH(Q),
CQ
3cE

}

. The implicit constant

depends on C(M,V,D, D̃) and C�,κ+1 from (5.4).

Proof First, we note that for x ∈ Q , Etw
Q (x) = wc(x) and hence, γt (x)Etw

Q (x) =
(Qtw

c)(x). Setting v = wQ − wc, we have
∣
∣(γtEt − Qt )w

Q
∣
∣ = |Qtv| almost-

everywhere in Q .
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Letting C j (Q) = 2 j+1BQ \ 2 jBQ , and fixing M > 0 to be chosen later, we
estimate via (5.4) and by using Cauchy-Schwartz as in (5.14)

ˆ
Q
|Qtv|2 dμ =

ˆ
Q

∣
∣
∣
∣
∣
∣

Qt

⎛

⎝

∞
∑

j=0

χC j (Q )

⎞

⎠ v

∣
∣
∣
∣
∣
∣

2

dμ

� ‖A‖2∞
∞
∑

j=0

〈
ρ(Q ,C j (Q))

t

〉−M

× exp

(

−2CQ
ρ(Q ,C j (Q))

t

)ˆ
M

∣
∣χC j (Q )v

∣
∣2 dμ. (5.24)

First, note that v(x) = wQ (x) − wc(x) = χ2BQ (x)wi ei (x) − wi ei (x) and hence,
|v(x)| ≤ 1 for almost-every x , and thus

ˆ
M

∣
∣χC j (Q )v

∣
∣2 dμ ≤ μ(C j (Q)) ≤ μ(2 j+1BQ ).

Moreover, from (Eloc) and since δ j+1 < t ≤ �(Q) = δ j ,

μ(2 j+1BQ ) ≤ μ(B(xQ , 2 j+1tC1/δ)) � 2κ( j+1) exp

(

cE
C1

δ
2 j+1t

)

μ(Q).

Thus, on combining these two inequalities with (5.13) we obtain from (5.24) that

ˆ
Q
|Qtv|2 dμ�‖A‖2∞

t

�(Q)
μ(Q)

∞
∑

j=0

2(κ−M)( j+1) exp
((

cEC1

δ
t−CQC1

2δ

)

2 j+1
)

.

Thus, by choosing M > κ , or explicitly, setting M = κ + 1 and choosing t ≤ CQ
3cE

,
the right hand sum converges. That is,

ˆ
Q

∣
∣
∣(γtEt − Qt )w

Q
∣
∣
∣

2 dμdt

t
� ‖A‖2∞μ(Q),

which completes the proof. ��
From this, we obtain the following.

Proposition 5.12 Let Qt : L2(W) → L2(V) be a family of operators uniformly
bounded in t ∈ (0, 1] satisfying (5.5) and (5.4). Then, whenever S ∈ L(L2(V)), for
every u ∈ L2(V), we obtain that

ˆ t3(Q)

0
‖γtEt Su‖2 dt

t
� ‖A‖2∞‖u‖2,
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where t3(Q) = min
{

tH(Q),
CQ
3cE

}

and where the implicit constants depend on the

bound on ‖S‖L2→L2 , C(Q)′ from (5.5), C�,κ+1 from (5.4), and C(M,V,D, D̃).

Proof This follows from Proposition 5.11 and the computation:

ˆ �(Q )

0

ˆ
Q

∣
∣
∣Qtw

Q
∣
∣
∣

2 dμdt

t
�
ˆ 1

0
‖Qtw

Q‖2 dt

t
� ‖A‖2∞‖wQ‖2 � ‖A‖2∞μ(Q)

where the second inequality comes from the (5.5) assumption on Qt and the third
inequality follows from the fact that spt wQ ⊂ 2BQ and μ(2BQ ) � μ(Q) by (Eloc).

��

5.6 Proof of the main theorem

Finally, we gather the estimates in Sects. 4 and 5 to obtain a proof of the main theorem.

Proof of Theorem 2.4 First, we note that, by Proposition 4.6, it suffices to show that

ˆ 1

0
‖t P̃t div A2Pt f ‖2 dt

t
� ‖A‖2∞‖ f ‖2, and

ˆ 1

0
‖Q̃t A1∇(iI+ D)−1Pt f ‖2 dt

t
� ‖A‖2∞‖ f ‖2.

For the first inequality, we set Qt = t P̃t div A2, and noting the identity t P̃t div =
(Q̃t + it P̃t )(∇(iI− D̃)−1)

∗
, the quadratic estimates for Q̃t , the boundedness of P̃t

uniformly in t and the the boundedness of ∇(iI− D̃)−1, we obtain

ˆ 1

0
‖Qt f ‖2 dt

t
=
ˆ 1

0
‖(t P̃t div)A2 f ‖2 dt

t
� ‖A2 f ‖2 ≤ ‖A‖2∞‖ f ‖2.

Moreover, fromLemma 5.9 with D′ = div and u = A2 f , we obtain thatQt satisfies
(5.4). Letting S = I Propositions 5.4, 5.10 and 5.12 yields

ˆ t1(Q)

0
‖t P̃t div A2Pt f ‖2 dt

t
� ‖A‖2∞‖ f ‖2

for all f ∈ L2(V), where t1(Q) = min
{

tH(Q),CQ/(11cE )
}

(from Proposition 5.4),
and since t1(Q) ≤ t3(Q) where t3(Q) is defined in Proposition 5.12. We obtain

ˆ 1

t1(Q)

‖t P̃t div A2Pt f ‖2 dt

t
� ‖A‖2∞‖ f ‖2

from recalling that ‖t P̃t div A2Pt f ‖ � ‖A2‖∞‖ f ‖ uniformly in t .
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Now, set Qt = Q̃t A1 and S = ∇(iI + D)−1. This Qt clearly satisfies (5.5) and by
Lemma 5.9 it satisfies (5.4). Thus, we are able to apply Propositions 5.10 and 5.12,
but in order to apply Proposition 5.4, it remains to verify that the operator S satisfies
‖∇Su‖ � ‖∇u‖ + ‖u‖ whenever u ∈ W1,2(V), To this end, we use the assumptions
(A8) and (A9) to estimate

‖∇Su‖ = ‖∇∇(iI + D)−1u‖ = ‖∇2(iI + D)−1u‖
� ‖D2(iI+ D)−1u‖ + ‖(iI+ D)−1u‖
� ‖D(iI + D−1)Du‖ + ‖u‖ � ‖Du‖ + ‖u‖ � ‖∇u‖ + ‖u‖.

We obtain

ˆ t1(Q)

0
‖Q̃t A1∇(iI + D)−1Pt f ‖ dt

t
� ‖A‖2∞‖ f ‖2

for f ∈ L2(V). Similar to our previous calculation,

ˆ 1

t1(Q)

‖Q̃t A1∇(iI + D)−1Pt f ‖ dt

t
� ‖A‖2∞‖ f ‖2

follows from ‖Q̃t A1∇(iI + D)−1Pt f ‖ � ‖A1‖∞‖ f ‖ uniformly in t .
For the two choices ofQt whichwemade, namelyQt = t P̃t div A2 andQt = Q̃t A1,

the constantsC�,M from (5.4) andC ′
Q from (5.5) only depend on C(M,V,D, D̃) and

the constants CS and CG,W from Proposition 5.4. This completes the proof. ��
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