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Abstract Sheng and Zuo’s characteristic forms are invariants of a variation of Hodge
structure. We show that they characterize Gross’s canonical variations of Hodge struc-
ture of Calabi–Yau type over (Hermitian symmetric) tube domains.

1 Introduction

1.1 The problem

To every tube domain � = G/K Gross [8] has associated a canonical (real) variation
of Hodge structure (VHS)

V�

�

(1.1)

of Calabi–Yau (CY) type. The construction of (1.1) is representation theoretic, not
geometric, in nature; in particular, the variation is not, a priori, induced by a family

X

S

ρ (1.2)
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1230 C. Robles

of polarized, algebraic Calabi–Yaumanifolds. So an interesting problem is to construct
such a family realizing (1.1). By “realize” we mean the following: let

τ : � → D� (1.3)

be the period map associated with (1.1), and �̃ρ : S̃ → D be the (lifted) period map
associated with (1.2); then we are asking for an identification D � D� with respect
to which �̃ρ(S̃) is an open subset of τ(�).

Example 1.4 One may obtain a family of n-folds by resolution of double covers
of P

n branched over 2n + 2 hyperplanes in general position. When n = 1, 2, the
associated VHS is a geometric realization of Gross’s type A canonical VHS over
� = SU(n, n)/S(U(n) × U(n)). For n = 1 this is the classical case of elliptic curves
branched over fours points in P

1. In the case n = 2 this was proved by Matsumoto,
Sasaki and Yoshida [13]. However, for n ≥ 3, the family does not realize Gross’s type
A canonical VHS [3,15], cf. Example 1.5.

A necessary condition for (1.2) to realize (1.1) is that invariants associated to (1.1)
and (1.2) agree. For example, dim S = dim�, and the Hodge numbers hρ and h�

must agree. (Of course, the latter implies that we may identify D with D�.) These are
discrete invariants. Sheng and Zuo’s characteristic forms [16, §3] are infinitesimal,
differential–geometric invariants associated with holomorphic, horizontal maps (such
as τ and �̃ρ). In particular, the characteristic forms will necessarily agree when (1.2)
realizes (1.1).

Example 1.5 When n ≥ 3 the family of Calabi–Yau’s in Example 1.4 does not realize
Gross’s type A canonicalVHSover� = SU(n, n)/S(U(n)×U(n)). (However, the two
discrete invariants above do agree.) This was proved by Gerkmann, Sheng, van Straten
and Zuo [3] in the n = 3 case, and their argument was extended to n ≥ 3 by Sheng,
Xu and Zuo [15]. The crux of the argument is to show that the second characteristic
forms do not agree. (In fact, their zero loci are not of the same dimension if n ≥ 3.)1

The purpose of this paper is to show that agreement of the characteristic forms is
both necessary and sufficient for (1.2) to realize (1.1). We will consider a more general
situation, replacing the period map �̃ρ : S̃ → D � D� with an arbitrary horizontal,
holomorphic map f : M → Ď� into the compact dual, and asking when f realizes
(1.1). The first main result is stated precisely in Theorem 3.10. To state the informal
version, we first recall that Gross’s canonical VHS is given by a real representation

G → Aut(U, Q) := {g ∈ Aut(U ) | Q(gu, gv) = Q(u, v) , ∀ u, v ∈ U }; (1.6)

the period domain D� parameterizes (real) Q-polarized Hodge structures on U of
Calabi–Yau type; and the period map (1.3) extends to a GC-equivariant map τ : �̌ →
Ď� between the compact duals.

1 A similar argument was used by Sasaki, Yamaguchi and Yoshida [14] to disprove a related conjecture on
the projective solution of the system of hypergeometric equations associated with the hyperplane configu-
rations.
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Characterization of Calabi–Yau variations… 1231

Main Theorem 1 (Informal statement of Theorem 3.10) If the characteristic forms
of f and τ are isomorphic, then there exists g ∈ Aut(UC) so that g ◦ f (M) is an open
subset of τ(�̌).

Characteristic forms are defined in Sect. 2. The statement of Theorem 3.10 is a bit
stronger than the above: in fact, it suffices to check that the characteristic forms of f
are isomorphic to those of τ at a single point x ∈ M , so long as the integer-valued
differential invariants (Sect. 2.3) associated with f are constant in a neighborhood of
x . Theorem 3.10 is a consequence of: (i) an identification of the characteristic forms
of Gross’s (1.1) with the fundamental forms of the minimal homogeneous embedding
σ : �̌ ↪→ PUC (Proposition 4.4), and (ii) Hwang and Yamaguchi’s characterization
[9] of compact Hermitian symmetric spaces by their fundamental forms.

Main Theorem 1 characterizes horizontal maps realizing Gross’s canonical VHS
modulo the full linear automorphism group Aut(UC). It is natural to ask if we can
characterize the horizontal maps realizing Gross’s VHS up to the (smaller) group
Aut(UC, Q) preserving the polarization—these groups are the natural symmetry
groups of Hodge theory. (Note that Aut(UC, Q) is the automorphism group of Ď�,
the full Aut(UC) does not preserve the compact dual.) The second main result does
exactly this. This congruence requires a more refined notion of agreement of the char-
acteristic forms than the isomorphism of Main Theorem 1; the precise statement is
given in Theorem 5.14. The refinement is encoded by the condition that a certain
vector-valued differential form η vanishes on a frame bundle E f → M (cf. Remark
5.21(b)). Informally, one begins with a frame bundle EQ → Ď� with fibre over
(F p) ∈ Ď� consisting of all bases {e0, . . . , ed} ofUC such that Q(e j , ek) = δdj+k and
F p = span{e0, . . . , ed p }. The bundle EQ is isomorphic to the Lie group Aut(UC, Q),
and so inherits the left-invariant, Maurer–Cartan form θ which takes values in the Lie
algebra

End(UC, Q) := {X ∈ End(UC) | Q(Xu, v) + Q(u, Xv) = 0 , ∀ u, v ∈ UC}

of Aut(UC, Q). There is aGC-module decomposition End(UC, Q) = gC⊕g⊥− ⊕g⊥≥0;
let η = θg⊥− be the component of θ taking value in g⊥−.

Main Theorem 2 (Informal statement of Theorem 5.14) Let f : M → Ď� be a
holomorphic, horizontalmap. There exists g ∈ Aut(UC, Q) so that g◦ f (M) is an open
subset of τ(�̌) ⊂ Ď� if and only if η vanishes on the pull-back E f := f ∗EQ → M.

Roughly speaking, η vanishes on E f if and only if the coefficients of the fundamental
forms of f agree with those of Gross’s canonical CY-VHS when expressed in terms
of bases e ∈ EQ (Remark 5.21). Main Theorem 2 is reminiscent of Green–Griffiths–
Kerr’s characterization of nondegenerate complex variations of quintic mirror Hodge
structures by the Yukawa coupling (another differential invariant associated to a VHS)
[4, §IV]. BothMain Theorems 1 and 2, and the Green–Griffiths–Kerr characterization,
are solutions to equivalence problems in the sense of Cartan. And from that point of
view, the formulation ofMainTheorem2 is standard in that it characterizes equivalence
by the vanishing of a certain form on a frame bundle over M .
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1232 C. Robles

The proof of Theorem 5.14 is established by a minor modification of the arguments
employed in [12] (which are similar to those of [9]), and is in the spirit of Cartan’s
approach to equivalence problems via the method of moving frames.

Remark 1.7 Sheng and Zuo [16, §2] extended Gross’s construction of the canonical
real CY-VHS over a tube domain to a canonical complex CY-VHS over a bounded
symmetric domain. The analogs of Theorems 3.10 and 5.14 hold for the Sheng–Zuo
CY-VHS as well. Specifically, the definition of the characteristic forms holds for
arbitrary (not necessarily real) VHS; and the arguments establishing the theorems do
not make use of the hypotheses that the bounded symmetric domain � is of tube type
or that the VHS is real. As indicated by the proofs of Theorems 3.10 and 5.14, the
point at which some care must be taken is when considering the case that �̌ is either
a projective space or a quadric hypersurface. If �̌ is not of tube type, then it can not
be a quadric hypersurface. If �̌ is a projective space, then �̌ = Ď�, and the theorems
are trivial.

1.2 Notation

Throughout V will denote a real vector space, and VC the complexification. All Hodge
structures are assumed to be effective; that is, the Hodge numbers h p,q vanish if either
p or q is negative. Throughout Ď will denote the compact dual of a period domain D
parameterizing effective, polarized Hodge structures of weight n on V . Here D and
V are arbitrary; we will reserve D� and U for the period domain and vector space
specific to Gross’s canonical variation of Hodge structure. We will let Q denote the
polarization on both V and U , as which is meant will be clear from context.

2 Characteristic forms

2.1 Horizontality

Let
Fn ⊂ Fn−1 ⊂ · · · ⊂ F1 ⊂ F0 (2.1)

denote the canonical filtration of the trivial bundle F0 = Ď × VC over Ď. Given a
holomorphic map f : M → Ď, let

F p
f := f ∗F p

denote the pull-back of the Hodge bundles to M . We say that f is horizontal if it
satisfies the infinitesimal period relation (IPR)

dF p
f ⊂ F p−1

f ⊗ �1
M . (2.2)

Example 2.3 The lifted period map �̃ : S̃ → D arising from a family X → S of
polarized, algebraic manifolds is a horizontal, holomorphic map [6,7].
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2.2 Definition

Given a horizontal map f : M → Ď, the IPR (2.2) yields a vector bundle map

γ f : T M → Hom(Fn
f ,Fn−1

f /Fn
f );

sending ξ ∈ TxM to the linear map γ f,x (ξ) ∈ Hom(Fn
f,x ,F

n−1
f,x /Fn

f,x ) defined as
follows. Fix a locally defined holomorphic vector field X on M extending ξ = Xx .
Given any v0 ∈ Fn

f,x , let v be a local section of Fn
f defined in a neighborhood of x

and with v(x) = v0. Then

γ f (ξ)(v0) := X (v)|x mod Fn
f,x

yields a well-defined map γ f (ξ) ∈ Hom(Fn
f ,F

n−1
f /Fn

f ). More generally there is a
vector bundle map

γ k
f : SymkT M → Hom(Fn

f ,Fn−k
f /Fn−k+1

f )

defined as follows. Given ξ1, . . . , ξk ∈ TxM , let X1, . . . , Xk be locally defined holo-
morphic vector fields extending the ξ j = X j,x . Given v0 and v as above, define

γ k
f (ξ1, . . . , ξk)(v0) := X1 · · · Xk(v)|x mod Fn−k+1

f,x . (2.4)

It is straightforward to confirm that γ k
f is well-defined. This bundle map is the kth

characteristic form of f : M → Ď. Let Ck
f ⊂ SymkT ∗M denote the image of the

dual map. In a mild abuse of terminology we will also call Ck
f the k− th characteristic

forms of f : M → Ď.

2.3 Isomorphism

Given two horizontal maps f : M → Ď and f ′ : M ′ → Ď, we say that
the characteristic forms of f at x are isomorphic to those of f ′ at x ′ if there
exists a linear isomorphism λ : TxM → Tx ′M ′ such that the induced linear map
λk : Symk(T ∗

x ′M ′) → Symk(T ∗
x M) identifies Ck

f ′,x ′ with Ck
f,x , for all k ≥ 0.

Each Ck
f,x is a vector subspace of Sym

kT ∗
x M , and

ckf,x := dimC Ck
f,x ≤ dimFn−k

f,x /Fn−k+1
f,x

is an example of an “integer-valued differential invariant of f : M → Ď at x .” Let

C f,x :=
⊕

k≥0

Ck
f,x ⊂

⊕

k≥0

SymkT ∗
x M =: Sym T ∗

x M ,
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1234 C. Robles

and set c f,x := dimC C f,x = ∑
k≥0 c

k
f,x . Regard C f,x as an element of the Grass-

mannian Gr(c f,x ,Sym T ∗
x M). Note that Aut(TxM) acts on this Grassmannian. By

integer-valued differential invariant of f : M → Ď at x we mean the value at C f,x

of any Aut(TxM)-invariant integer-valued function on Gr(c f,x ,Sym T ∗
x M).

A necessary condition for two characteristic formsC f,x andC f ′,x ′ to be isomorphic
is that the integer-valued differential invariants at x and x ′, respectively, agree.

3 Gross’s canonical CY-VHS

3.1 Maps of Calabi–Yau type

A period domain D parameterizing effective polarized Hodge structures of weight n
is of Calabi–Yau type (CY) if hn,0 = 1. In this case we also say that the compact dual
Ď is of Calabi–Yau type.

A holomorphic, horizontal map f : M → Ď is ofCalabi–Yau (CY) type if Ď is CY
and γ f,x : TxM → Hom(Fn

f,x ,F
n−1
f,x /Fn

f,x ) is a linear isomorphism for all x ∈ M .

Remark 3.1 In particular, if f : M → Ď and f ′ : M ′ → Ď are CY, then the
first characteristic forms C1

f,x and C1
f ′,x ′ are always isomorphic, for any x ∈ M and

x ′ ∈ M ′.

The condition that hn,0 = rankC Fn = 1 implies that there is an map

π : Ď → PVC

sending φ ∈ D to Fn
φ ∈ PVC.

3.2 Definition

We briefly recall Gross’s canonical CY-VHS over a tube domain � = G/K [8]. Up
to G-module isomorphism, there is a unique real representation

G → Aut(U ) (3.2)

with the following properties:

(i) The complexification UC is an irreducible G-module.
(ii) The maximal compact subgroup K ⊂ G is the stabilizer of a highest weight line

� ⊂ UC. In particular, if P ⊂ GC is the stabilizer of �, then K = G ∩ P , and
the map gP �→ g · � ∈ PUC is a GC-equivariant homogeneous embedding

σ : �̌ ↪→ PUC (3.3)

of the compact dual �̌ = GC/P of �.
(iii) The dimension ofU is minimal amongst all G-modules with the two properties

above.
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The maximal compact subgroup K is the centralizer of a circle ϕ : S1 → G (a
homomorphism ofR-algebraic groups). The representationUC decomposes as a direct
sum

UC =
⊕

p+q=n

U p,q (3.4a)

of ϕ-eigenspaces
U p,q := {u ∈ UC | ϕ(z)u = z p−qu}. (3.4b)

This is a Hodge decomposition, and there exists a G-invariant polarization Q of the
Hodge structure; in particular, the representation (3.2) takes values in Aut(U, Q):

G → Aut(U, Q). (3.5)

Each subset U p,q is K -invariant, and so defines a G-homogeneous bundle U p,q

over �. The resulting decomposition

� ×UC =
⊕

U p,q (3.6)

of the trivial bundle over � is Gross’s canonical VHS over � [8].

Example 3.7 In the case that � is irreducible, Gross’s canonical CY-VHS is one of
the following six:

(a) For G = U(n, n) = Aut(C2n,H), we have UC = ∧n
C
2n and �̌ = Gr(n, C

2n).
If C

2n = A ⊕ B is the ϕ-eigenspace decomposition, then n = dim A = dim B
and the Hermitian form H restricts to a definite form on both A and B. The
Hodge decomposition is given by U p,q � (

∧p A) ⊗ (
∧q B).

(b) For G = O(2, k) = Aut(R2+k, Q), we have UC = C
2+k and � is the period

domain parameterizing Q-polarized Hodge structures on U = R
2+k with h =

(1, k, 1), so that �̌ is the quadric hypersurface {Q = 0} ⊂ P
k+1.

(c) For G = Sp(2g, R) = Aut(R2g, Q), we have UC = ∧g
C
2g and � is the period

domain parameterizing Q-polarizedHodge structures onC
2g with h = (g, g), so

that �̌ is the Lagrangian grassmannian of Q-isotropic g-planes inC
2g . Given one

such Hodge decomposition C
2n = A ⊕ B, the corresponding Hodge structure

on U is given by U p,q = (
∧p A) ⊕ (

∧q B).
(d) For G = SO∗(2n), UC is a Spinor representation, and the summands of the

Hodge decomposition are U p,q � ∧2p
C
2n .

(e) If G is the exceptional simple real Lie group of rank 7 with maximal compact
subgroup K = U (1)×μ3 E6, then the Hodge decomposition isUC � C⊕C

27⊕
(C27)∗ ⊕ C.

Lemma 3.8 (Gross [8]) Gross’s canonical VHS (3.6) is of Calabi–Yau type (Sect.
3.1).

The lemma follows from the well-understood representation theory associated with
(3.3) and (3.5). We briefly review the argument below as a means of recalling those
representation theoretic properties that will later be useful. (See [8] for details.)
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1236 C. Robles

Let

ϕ ∈ D�

denote the Hodge structure given by (3.4). The map

τ : �̌ ↪→ Ď� (3.9)

sending gP �→ g · ϕ is a GC-equivariant homogeneous embedding of the compact
dual �̌ = GC/P . The restriction of τ to � is the period map associated to Gross’s
canonical CY-VHS. The precise statement of Main Theorem 1 is

Theorem 3.10 Let f : M ↪→ Ď� be any CY map (Sect. 3.1), and let x ∈ M be a
point admitting a neighborhood in which all integer-valued differential invariants of
f are constant (Sect. 2.3). If the characteristic forms of f at x are isomorphic to the
characteristic forms of τ : �̌ ↪→ Ď� at o ∈ � in the sense of Sect. 2.3, then there
exists g ∈ Aut(UC) so that g ◦ f (M) is an open subset of τ(�̌).

The theorem is proved in Sect. 4.4.

Remark 3.11 To see how Main Theorem 1 follows from Theorem 3.10 we make
precise the hypothesis that “the characteristic forms of f and τ are isomorphic”:
by this, we mean that there exists a local biholomorphism i : M → �̌ so that the
characteristic forms of f at x ∈ M are isomorphic to those of τ at i(x) for all x ∈ M
(cf. Sect. 2.3). (Equivalently, since �̌ is homogeneous, the characteristic forms of f
at x ∈ M are isomorphic to those of τ at o for all x ∈ M .) Given this definition, it is
clear that the hypotheses of Main Theorem 1 imply those of Theorem 3.10.

Proof of Lemma 3.8 Let

h� = (h p,q
� = dimCU p,q)

denote the Hodge numbers, and let D� denote the period domain parameterizing Q-
polarized Hodge structures onU with Hodge numbers h�. The weight n of the Hodge
structure is the rank of �, and the highest weight line stabilized by K is

� = Un,0. (3.12)

In particular,
hn,0 = 1. (3.13)

Let

0 ⊂ Fn
� ⊂ Fn−1

� ⊂ · · · ⊂ F1
� ⊂ F0

�

denote the canonical filtration (2.1) of the trivial bundle F0
� = Ď� × UC over Ď�.

Then

F p
�

∣∣
τ(�)

=
⊕

r≥p

Ur,n−r .
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We will identify

o = K/K ∈ � = G/K

with P/P ∈ �̌ = GC/P . Note that

ϕ = τ(o).

The weight zero Hodge decomposition

gC = g1,−1
ϕ ⊕ g0,0ϕ ⊕ g−1,1

ϕ (3.14)

induced by ϕ has the property that p = g1,−1
ϕ ⊕g0,0ϕ and kC = g0,0ϕ are the Lie algebras

of P and KC, respectively. Consequently, the holomorphic tangent space is given by

To� = To�̌ = gC/p � g−1,1
ϕ . (3.15)

Regarding g−1,1
ϕ as a subspace of End(UC, Q) we have

U p−1,q+1 = g−1,1
ϕ (U p,q) := {ξ(u) | ξ ∈ g−1,1

ϕ , u ∈ U p,q}. (3.16)

In particular, given ξ ∈ g−1,1
ϕ , we have

ξ(U p,q) ⊂ U p−1,q+1. (3.17)

The maps
ψ

p,q
� : g−1,1

ϕ × U p,q → U p−1,q+1 (3.18a)

sending
(ξ, u) �→ ξ(u) (3.18b)

are surjective. Moreover, given fixed nonzero u0 ∈ Un,0, the map g−1,1
ϕ → Un−1,1

sending ξ �→ ξ(u0) is an isomorphism. It follows from the homogeneity of the bundles
F p

�, and the GC-equivariance of τ , that τ is horizontal and of Calabi–Yau type. ��

3.3 Characteristic forms

In this section we describe the characteristic forms γ k
� of (3.9). The discussion will

make use of results reviewed in the proof of Lemma 3.8.
Since τ is GC-equivariant and the bundles F p

� → Ď� are Aut(UC, Q)-
homogeneous, we see that the push-forward g∗ : To�̌ → Tg·o�̌ is an isomorphism
identifying Ck

τ,g·o with Ck
τ,o for all k and g ∈ GC; that is, the characteristic forms of τ

at g · o are isomorphic to those at o. So it suffices to describe the characteristic forms
at the point o ∈ �. It follows from F p

�,o/F
p+1
�,o = U p,n−p, the identification (3.15),
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1238 C. Robles

and (3.17) that γ k
�,o : SymkTo�̌ → Hom(Fn

�,o,F
n−k
�,o /Fn−k+1

�,o ) may be identified
with the map

γ k
�,o : Symkg−1,1

ϕ → Hom(Un,0,Un−k,k) (3.19a)

defined by
γ k
�,o(ξ1 · · · ξk)(u) = ξ1 · · · ξk(u), (3.19b)

with ξ1, . . . , ξk ∈ g−1,1
ϕ ⊂ End(UC, Q) and u ∈ Un,0.

4 Proof of Theorem 3.10 (Main Theorem 1)

4.1 The osculating filtration

Let X ↪→ PVC be any complex submanifold. The osculating filtration at x ∈ X

T 0
x ⊂ T 1

x ⊂ · · · ⊂ T m
x ⊂ VC

is defined as follows. First, T 0
x ⊂ VC is the line parameterized by x ∈ PVC. Let

X̂ ⊂ VC\{0} be the cone over X . Let � = {z ∈ C : |z| < 1} denote the unit disc, and
let O(�, 0; X̂ , x) denote the set of holomorphic maps α : � → X̂ with α(0) ∈ T 0

x .
Given one such curve, let α(k) denote the k-th derivative dkα/dzk . Inductively,

T k
x = T k−1

x + spanC{α(k)(0) | α ∈ O(�, 0; X, x)}.

Note that T 1
x = Tu X̂ is the embedded tangent space at u ∈ T 0

x . Here m = m(x) is
determined by T m−1

x � T m
x = T m+1

x .

4.2 Fundamental forms

If bothm and the rank of T k
x are independent of x , then the osculating filtrations define

a filtration T 0
X ⊂ T 1

X ⊂ · · · ⊂ T m
X ⊂ X × VC of the trivial bundle over X . Assume

this is the case. By construction the osculating filtration satisfies

dT k ⊂ T k+1 ⊗ �1
X (4.1)

Just as the IPR (2.2) lead to the characteristic forms (2.4), the relation (4.1) yields
bundle maps

ψk
X : SymkT X → Hom(T 0

X , T k
X /T k−1

X ) , k ≥ 1 .

This is the k-th fundamental form of X ↪→ PVC. The image Fk
X ⊂ SymkT ∗X of the

dual map is a vector subbundle of

rank Fk
X = dim T k

x /T k−1
x .
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Characterization of Calabi–Yau variations… 1239

Again, in mild abuse of terminology, we will call Fk
X the k-th fundamental forms of

X ⊂ PVC.
Given two complex submanifolds X, X ′ ↪→ PVC, we say that the fundamental

forms of X at x are isomorphic to those of X ′ at x ′ if there exists a linear isomorphism
λ : Tx X → Tx ′ X ′ such that the induced linear map Sym T ∗

x ′ X ′ → Sym T ∗
x X identifies

Fk
X ′,x ′ with Fk

X,x .

EachFk
X,x is a vector subspace of Sym

kT ∗
x X , and d

k
X,x := dimC Fk

X,x is an example
of an “integer-valued differential invariant of X ↪→ PVC at x .” Let

FX,x :=
⊕

k≥0

Fk
X,x ⊂

⊕

k≥0

SymkT ∗
x X =: Sym T ∗

x X ,

and set dX,x := dimC FX,x = ∑
k≥0 d

k
X,x . Regard FX,x as an element of the Grass-

mannian Gr(dX,x ,Sym T ∗
x X). Note that Aut(Tx X) acts on this Grassmannian. By

integer-valued differential invariant of X ↪→ PVC at x we mean the value at FX,x of
any Aut(Tx X)-invariant integer-valued function on Gr(dX,x ,Sym T ∗

x X).
A necessary condition for two fundamental forms FX,x and FX ′,x ′ to be isomorphic

is that the integer-valued differential invariants at x and x ′, respectively, agree.

Remark 4.2 When X ↪→ PVC is a homogeneous embedding of a compact Hermi-
tian symmetric space [such as the σ : �̌ ↪→ PUC of (3.3)], there are only finitely
many Aut(To�̌)-invariant integer-valued functions on Gr(dσ,o,Sym T ∗

o �̌), and they
distinguish/characterize the Aut(To�̌)-orbits [9, Proposition 5].

4.3 Fundamental forms for σ : �̌ ↪→ PUC

Recall the maps σ and τ of (3.3) and (3.9), respectively. Theorem 4.3 asserts that the
Hermitian symmetric σ(�̌) ⊂ PUC are characterized by their fundamental forms, up
to the action of Aut(UC).

Theorem 4.3 (Hwang–Yamaguchi [9]) Assume that the compact dual �̌ contains
neither a projective space nor a quadric hypersurface as an irreducible factor. Let
M ⊂ PUC be any complex manifold, and let x ∈ M be a point in a neighborhood of
which all integer-valued differential invariants are constant. If the fundamental forms
of M at x are isomorphic to the fundamental forms of σ : �̌ ↪→ PUC at o, then M is
projective-linearly equivalent to an open subset of �̌.

Proposition 4.4 The k-th characteristic form γ k
� of τ : �̌ ↪→ Ď� coincides with the

k-th fundamental form ψk
� of σ : �̌ ↪→ PUC.

Proof The proof is definition chasing. Since both the Hodge bundles F p
� and the

osculating filtration T k
� are homogeneous, and the maps σ and τ areGC-equivariant, it

suffices to show that γ k
�,o = ψk

�,o at the point o = P/P ∈ �̌. The former is computed

in Sect. 3.3; so it suffices to compute the latter and show that ψk
�,o agrees with (3.19).

This follows directly from the definition σ(gP) = g · � and the identifications (3.12)
and (3.15). ��
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Remark 4.5 Amore detailed discussion of the fundamental forms of compact Hermi-
tian symmetric spaces (such as �̌) may be found in [9, §3]

Corollary 4.6 The Hodge filtration F p
�

∣∣
τ(�̌)

agrees with the osculating filtration

T n−p

σ(�̌)
.

4.4 Characteristic versus fundamental forms

Lemma 4.7 Let f : M ↪→ Ď be a CY map (Sect. 3.1). Let π : Ď → PVC be the
projection of Sect. 3.1. Then T n−k

π◦ f,x ⊂ Fk
f,x for all x ∈ M.

Proof This followsdirectly from thedefinitions of horizontality (Sect. 1.2) andCalabi–
Yau type (Sect. 3.1), and the osculating filtration (Sect. 4.1). ��
Remark 4.8 Let f : M ↪→ Ď be a CY map, and recall the projection π : Ď → PVC
of Sect. 3.1. By definition f (x) = F •

f,x . So, if the Hodge and osculating filtrations

agree, Fk
f,x = T n−k

π◦ f,x , then we can recover f from π ◦ f .

Lemma 4.9 Let f : M ↪→ Ď be a CY map. If T n−k
π◦ f,x = Fk

f,x for all x ∈ M, then the

characteristic and fundamental forms agree, Ck
f = Fn−k

f .

Proof Again this is an immediate consequence of the definitions of the characteristic
and fundamental forms (Sects. 2, 4.2, respectively). ��
Lemma 4.10 Let f : M ↪→ Ď� be a CY map. Suppose that the characteristic forms
C•

f of f are isomorphic to the characteristic forms C•
� of τ : �̌ ↪→ Ď�. Then the

fundamental forms F•
π◦ f and F•

σ are isomorphic.

Proof The lemma is a corollary of Corollary 4.6 and Lemma 4.9. ��
Proof of Theorem 3.10 First observe that we may reduce to the case that �̌ is irre-
ducible: for if �̌ factors as �̌1 × �̌2, then we have corresponding factorizations
Ď� = Ď�1 × Ď�2 and f = f1 × f2 with fi : M → Ď�i ; the theorem holds
for f if and only if it holds for the fi .

Now suppose that �̌ is a projective space. Then �̌ = P
1. In this case �̌ = Ď�, and

the theorem is trivial. Likewise if �̌ is a quadric hypersurface, then �̌ = Ď�, and the
theorem is trivial. (In both these cases τ = σ and π is the identity.)

The remainder of the theorem is essentially a corollary of Theorem 4.3 and Lemma
4.10. These results imply that there exists g ∈ Aut(UC) so that g ◦ π ◦ f (M) is an
open subset of π ◦ τ(�̌) = σ(�̌). From Remark 4.8 we deduce that g ◦ f (M) is an
open subset of τ(�̌). ��

5 Main Theorem 2

In this section we give a precise statement (Theorem 5.14) and proof ofMain Theorem
2. The theorem assumes a stronger form of isomorphism between the characteristic
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forms of τ and f than Main Theorem 1; specifically the identification F� � F f will
respect the polarization Q in a way that is made precise by working on a natural frame
bundle EQ → Ď�.

5.1 The frame bundle EQ → Ď�

Let d + 1 = dimUC, and let

d p + 1 := dim F p

be the dimensions of the flags (F p) parameterized by Ď�. Let EQ be the set of all
bases e = {e0, . . . , ed} of UC so that Q(e j , ek) = δdj+k . Note that we have bundle
map

EQ

Ď�

Q {[v] ∈ PUC | Q(v, v) = 0}

π̌

πQ

π

:=

given by

π̌(e) = (F p) , F p = span{e0, . . . , ed p } ,

πQ(e) = [e0] .

5.2 Maurer–Cartan form

The frame bundle EQ is naturally identified with the Lie group Aut(UC, Q),

EQ � Aut(UC, Q), (5.1)

and the bundle maps are equivariant with respect to the natural (left) action of
Aut(UC, Q). Consequently, the (left-invariant) Maurer–Cartan form on Aut(UC, Q)

defines a Aut(UC, Q)-invariant coframing θ = (θkj ) ∈ �1(EQ,End(UC, Q)). Letting
e j denote the natural map EQ → UC, the coframing is determined by

de j = θkj ek . (5.2)

(The ‘Einstein summation convention’ is in effect throughout: if an index appears as
both a subscript and a superscript, then it is summed over. For example, the right-hand
side of (5.2) should be read as

∑
k θkj ek .) The form θ can be used to characterize
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horizontal maps as follows: let f : M → Ď� be any holomorphic map and define

E f := f ∗(EQ) .

In a mild abuse of notation, we let θ denote both the Maurer–Cartan form on EQ , and
its pull-back to E f . Then it follows from the definition (2.2) that

the map f is horizontal if and only if θ
μ
ν

∣∣E f
= 0 for all

dq+1 + 1 ≤ μ ≤ dq and d p+1 + 1 ≤ ν ≤ d p with p − q ≥ 2.
(5.3)

5.3 Precise statement of Main Theorem 2

The precise statement (Theorem 5.14) of Main Theorem 2 is in terms of a decom-
position of the Lie algebra End(UC, Q). Recall the Hodge decomposition (3.4), and
define

E� :=
{
ξ ∈ End(UC, Q) | ξ(U p,q) ⊂ U p+�,q−�

}
.

Then
End(UC, Q) =

⊕

�

E�, (5.4)

and this direct sum is a graded decomposition in the sense that the Lie bracket satisfies

[Ek, E�] ⊂ Ek+� . (5.5)

Let θ� ∈ �1(EQ, E�) denote the component of θ taking value in E�. It follows from
(5.3) that

a holomorphic map f : M → Ď� is horizontal
if and only if θ−�|E f

= 0 for all � ≥ 2.
(5.6)

Let P̃ ⊂ Aut(UC, Q) be the stabilizer of ϕ = τ(o) ∈ Ď. Notice that the fibre
π̌−1(ϕ) ⊂ EQ is isomorphic to P̃ , and π̌ : EQ → Ď� is a principle P̃-bundle. The
Lie algebra of P̃ is

E≥0 :=
⊕

�≥0

E�.

Consequently, if θ = θ≥0 + θ− is the decomposition of θ into the components taking
value in E≥0 and E− := ⊕�>0 E−�, respectively, then

ker π̌∗ = ker θ≥0 ⊂ TEQ . (5.7)

We may further refine the decomposition (5.4) by taking the representation (3.5)
into account. The latter allows us to view End(UC, Q) as a GC-module via the adjoint
action of Aut(UC, Q) on the endomorphism algebra. Likewise, we may regard gC as
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a subalgebra of End(UC, Q) via the induced representation g ↪→ End(U, Q). Since
gC ⊂ End(UC, Q) is a GC-submodule and GC is reductive, there exists a GC-module
decomposition

End(UC, Q) = gC ⊕ g⊥
C
.

Note that
[gC, gC] ⊂ gC and [gC, g⊥

C
] ⊂ g⊥

C
. (5.8)

where the Lie bracket is taken in End(UC, Q).
Both gC and g⊥

C
inherit graded decompositions

gC = ⊕ g� and g⊥
C

= ⊕ g⊥
� (5.9)

defined by g� := gC ∩ E� and g⊥
� := g⊥

C
∩ E�. From (5.5) and (5.8) we deduce

[gk, g�] ⊂ gk+� and [gk, g⊥
� ] ⊂ g⊥

k+�. (5.10)

Recall the Hodge decomposition (3.14) and note that g� = g�,−�
ϕ ; in particular, g� =

{0} if |�| > 1, so that
gC = g1 ⊕ g0 ⊕ g−1 (5.11)

and
g⊥
� = E� for all |�| ≥ 2. (5.12)

Set

g≥0 =
⊕

�≥0

g� and g− =
⊕

�<0

g� ,

g⊥≥0 =
⊕

�≥0

g⊥
� and g⊥− =

⊕

�<0

g⊥
� .

Let θg≥0 , θg⊥≥0
,

ω := θg− and η := θg⊥−

denote the components of θ taking value in g≥0, g⊥≥0, g− and g⊥−, respectively.
Given any complex submanifold M ⊂ EQ , we say that the restriction ω|M is

nondegenerate if the linear map

ω : TeM → g−

is onto for all e ∈ M.

123



1244 C. Robles

Example 5.13 Recall the horizontal, equivariant embedding τ : �̌ → Ď�. It follows
from (5.7) and the fact that τ : �̌ ↪→ Ď� is GC-equivariant that

η|Eτ
= 0

and ω|Eτ
is nondegenerate.

Our second main theorem asserts that these two properties suffice to characterize
τ : �̌ → Ď� up to the action of Aut(UC, Q).

Theorem 5.14 Let f : M → Ď� be a horizontal map of Calabi–Yau type. There
exists g ∈ Aut(UC, Q) so that g ◦ f (M) is an open subset of τ(�̌) if and only if η

vanishes on E f .

The theorem is proved in Sect. 5.5.

5.4 Relationship to characteristic forms

The purpose of this section is to describe the characteristic forms Ck
f when η|E f

= 0.
The precise statement is given by Proposition 5.18. It will be convenient to fix the
following index ranges

dn−k+1 + 1 ≤ μk, νk ≤ dn−k with k ≥ 1 .

As we will see below, the indices 1 ≤ μ1, ν1 ≤ dn−1 are distinguished, and we will
use the notation

1 ≤ a, b ≤ dn−1

for this range. We claim that the equations

ηa0 = 0 and θa0 = ωa
0 , for all 1 ≤ a ≤ dn−1 (5.15)

hold on EQ . (Note that the first implies the second, and visa versa.) The way to see

this is to observe that (i) (θa0 )d
n−1

a=1 is precisely the component of θ taking value in

E−1 ∩ Hom(Fn
ϕ ,Fn−1

ϕ ) � Hom(Fn
ϕ ,Fn−1

ϕ /Fn
ϕ ) ,

and (ii) the fact that τ is Calabi–Yau implies that the projection

To�̌ � g− → E−1 ∩ Hom(Fn
ϕ ,Fn−1

ϕ /Fn−1)

is an isomorphism. Therefore,

E−1 ∩ Hom(Fn
ϕ ,Fn−1

ϕ ) = g−1 ∩ Hom(Fn
ϕ ,Fn−1

ϕ ) � g−1 . (5.16)
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There are three important consequences of (5.16). First, we have

θa0 = ωa
0 ,

which forces

ηa0 = 0 ,

for all 1 ≤ a ≤ dn−1. Second, the fact that γ f,x is an isomorphism implies that ω|E f

is nondegenerate. Third, from g− = g−1 we conclude that

(θg)
μk
ν�

= 0 when k − � ≥ 2 .

It follows from (5.16) that the remaining components of ω = θg− may be expressed
as

ωμk
νk−1

= rμk
νk−1a ωa

0 , (5.17)

k ≥ 2, for some holomorphic functions

rμk
νk−1a : EQ → C.

It will be convenient to extend the definition of rμk
νk−1a to k = 1 by setting ra0b := δab .

Proposition 5.18 Let f : M → Ď� be a horizontal map of Calabi–Yau type. Fix
� ≥ 0. The component of θ taking value in

g⊥−1

⋂ ⊕

k≤�

Hom
(
Fn−k+1,Fn−k

)
(5.19)

vanishes on E f if and only if the

r̃μk
ak ···a2a1 := rμk

νk−1ak r
νk−1
σk−2ak−1 · · · r τ2

a2a1

are the coefficients of γ k
f for all k ≤ �; that is,

γ k
f,x (ξk, . . . , ξ1) =

{
e0 �→ r̃μk

ak ···a1 ω
ak
0 (ζk) · · · ωa1

0 (ζ1) eμk mod Fn−k+1
f,x

}
,

(5.20)
where ζi ∈ TeE ′

f with e = {e0, . . . , ed} ∈ π̌−1( f (x)) and π̌∗(ζi ) = f∗(ξi ). In
particular, η|E f

= 0 if and only if the characteristic forms are given by (5.20) for all
k.

Note that the component of θ taking value in (5.19) is (η
μ�
ν�−1)�≤k . The proposition

is proved by induction in Sects. 5.4.1–5.4.4; because the first nontrivial step in the
induction is � = 3, we work through the cases � = 1, 2, 3 explicitly.
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Remark 5.21 Suppose that e = {e0, . . . , ed} ∈ Eτ,o. Making use of (5.16), we may
identify {e1, . . . , edn−1} with a basis of {ξ1, . . . , ξdn−1} of g−. Then the coefficients
rμk
νk−1a are determined by

ξa(eνk−1) = rμk
νk−1aeμk mod Fn−k+1

τ,o . (5.22)

There are two important consequences of this expression:

(a) It follows from (3.19) that (5.20) holds for f = τ .
(b) Equation (5.16) tells us that g−1 is the graph over E−1 ∩ Hom(Fn

ϕ ,Fn−1
ϕ /Fn

ϕ ) of
a linear function

R : E−1 ∩ Hom
(
Fn

ϕ ,Fn−1
ϕ /Fn

ϕ

)
→

⊕

k≥1

Hom
(
Fn−k

ϕ ,Fn−k−1
ϕ /Fn−k

ϕ

)
.

The functions rμk
νk−1a(e) of (5.17) are the coefficients of this linear map with respect

to the bases of E−1 ∩ Hom(Fn
ϕ ,Fn−1

ϕ /Fn
ϕ ) and ⊕k≥1 Hom(Fn−k

ϕ ,Fn−k−1
ϕ /Fn−k

ϕ )

determined by e ∈ EQ . Assuming that (5.20) holds, this implies that the k-th
characteristic form of f is isomorphic to that of τ in the following sense: given
eo ∈ Eτ in the fibre over o and ex ∈ E f in the fibre over x , there exists a
unique g ∈ Aut(UC, Q) � EQ so that ex = g · eo. The group element g
defines an explicit isomorphism between SymkT ∗

o �̌ ⊗ Hom(Fn
τ,o,Fn−k

τ,o /Fn−k+1
τ,o )

and SymkT ∗
x M ⊗ Hom(Fn

f,x ,F
n−k
f,x /Fn−k+1

f,x ) that identifies the k-th characteristic

forms γ k
τ,o and γ k

f,x at o and x , respectively. This is the precise sense in which the
vanishing of η on E f is a refined notion of agreement of the characteristic forms.

Remark 5.23 Recalling (3.16), and the identification U p,q = F p
τ,o/F p+1

τ,o , (5.22)
implies that the system {rμk

νk−1aYμk = 0} of dn−1(dk−1−dk) equations in the dk−dk+1

unknowns {Yμk } has only the trivial solution Yμk = 0.

5.4.1 The first characteristic form

Let f : M → Ď� be any horizontal map of Calabi–Yau type. On the bundle E f , (5.3)
and (5.15) yield

de0 = θ00 e0 +
dn−1∑

a=1

ωa
0 ea .

Consequently, the first characteristic form γ f,x : TxM → Hom(Fn
f,x ,F

n−1
f,x /Fn

f,x ) is
given by

γ f,x (ξ) =
⎧
⎨

⎩e0 �→
dn−1∑

a=1

ωa
0(ζ ) ea mod e0

⎫
⎬

⎭ , (5.24)

where ζ ∈ TeE f with e = {e0, . . . , ed} ∈ π̌−1( f (x)) and π̌∗(ζ ) = f∗(ξ).
This establishes Proposition 5.18 for the trivial case that � = 1.
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5.4.2 The second characteristic form

From (5.3) we see that
θ

μ2
0 = 0 on E f (5.25)

for all dn−1 + 1 ≤ μ2 ≤ dn−2. The derivative of this expression is given by the
Maurer–Cartan equation2

dθ = − 1
2 [θ, θ ] ; equivalently, dθ j

k = −θ
j
� ∧ θ�

k . (5.26)

Differentiating (5.25) and applying (5.3) yields

0 = dθμ2
0 = −θμ2

a ∧ ωa
0

on E f . Cartan’s Lemma [10] asserts that there exist holomorphic functions

qμ2
ab = qμ2

ba : E f → C

so that
θμ2
a = qμ2

ab ωb
0 . (5.27)

The qμ2
ab are the coefficients of the second characteristic form; specifically,

γ 2
f,x (ξ1, ξ2) =

{
e0 �→ qμ2

ab ωa
0(ζ1)ω

b
0(ζ2) eμ2 mod Fn−1

f,x

}
, (5.28)

where ζi ∈ TeE ′
f with e = {e0, . . . , ed} ∈ π̌−1( f (x)) and π̌∗(ζi ) = f∗(ξi ).

Remark 5.29 From Example 5.13, (5.17) and (5.27) we see that qμ2
ab = rμ2

ab on Eτ .

Returning to the bundle E f , notice that (η
μ2
a ) is precisely the component of θ taking

value in

g⊥−1 ∩ Hom
(
Fn−1

ϕ ,Fn−2
ϕ

)
.

Comparing (5.17) and (5.27), we see that this component vanishes if and only if
rμ2
ab = qμ2

ab on E f . Noting that r̃μ2
ab = rμ2

ab , this yields Proposition 5.18 for � = 2.

5.4.3 The third characteristic form

From (5.3) we see that
θμ3
a = 0 on E f (5.30)

2 Given two Lie algebra valued 1-forms φ and ψ , the Lie algebra valued 2-form [φ,ψ] is defined by
[φ, ψ](u, v) := 1

2 ([φ(u), ψ(v)] − [φ(v), ψ(u)].
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for all dn−2 + 1 ≤ μ2 ≤ dn−3. Applying (5.3), the Maurer–Cartan equation (5.26),
and substituting (5.27), we compute

0 = −dθμ3
a = θμ3

ν2
∧ θν2

a = θμ3
ν2

∧ qν2
ab ωb

0 .

Again Cartan’s Lemma implies there exist holomorphic functions qν3
abc : E f → C,

fully symmetric in the subscripts a, b, c, so that

qν2
ab θμ3

ν2
= qμ3

abc ωc
0 . (5.31)

These functions are the coefficients of the third characteristic form of f in the sense
that

γ 3
f,x (ξ1, ξ2, ξ3) =

{
e0 �→ qμ3

abc ωa
0(ζ1)ω

b
0(ζ2)ω

c
0(ζ3) eμ3 mod Fn−2

f,x

}
, (5.32)

where ζi ∈ TeE ′
f with e = {e0, . . . , ed} ∈ π̌−1( f (x)) and π̌∗(ζi ) = f∗(ξi ).

To prove Proposition 5.18 for � = 3, note that Sect. 5.4.2 yields qμ2
ab = rμ2

ab .
Then we can solve (5.31) for θ

μ3
ν2 (Remark 5.23). In particular, there exist qμ3

ν2a so that
θ

μ3
ν2 = qμ3

ν2a ωa
0 . The component of θ taking value in

g⊥−1 ∩ Hom(Fn−2
ϕ ,Fn−3

ϕ )

vanishes (equivalently, η
μ3
ν2 = 0) if and only if these qμ3

ν2a are the rμ3
ν2a of (5.17);

equivalently, (5.20) holds for k = 3. This is Proposition 5.18 for � = 3.

5.4.4 And so on

Assume that Proposition 5.18 holds for a fixed � ≥ 3. Then we have θ
μk
νk−1 = ω

μk
νk−1 =

rμk
νk−1aω

a
0 for all k ≤ �. As in Sects. 5.4.2–5.4.3 we obtain the coefficients of the (�+1)-

st characteristic form by differentiating θ
μ�+1
ν�−1 = 0 and invoking Cartan’s Lemma to

obtain

rσ�
ν�−1a θ

μ�+1
σ�

= qμ�+1
ν�−1ab

ωb
0 ,

for some holomorphic functions qμ�+1
ν�−1ab

: E f → C, symmetric in a, b. Then Remark

5.23 implies that there exist qμ�+1
ν�a : E f → C so that

θ
μ�+1
ν�

= qμ�+1
ν�a ωa

0 .

The qμ�+1
a�···a1a0 := qμ�+1

ν�a�
rν�
σ�−1a�−1 · · · r τ2

a1a0 are the coefficients of the (� + 1)-st charac-
teristic form of f in the sense that

γ �+1
f,x (ξ�, . . . , ξ0) =

{
e0 �→ qμ�+1

a�···a0 ω
a�

0 (ζk) · · · ωa0
0 (ζ0) eμ�+1 mod Fn−�

f,x

}
,

(5.33)
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where ζi ∈ TeE ′
f with e = {e0, . . . , ed} ∈ π̌−1( f (x)) and π̌∗(ζi ) = f∗(ξi ). The

component of θ taking value in

g⊥−1 ∩ Hom(Fn−�
ϕ ,Fn−�−1

ϕ )

vanishes (equivalently, η
μ�+1
ν�

= 0), if and only if the qμ�+1
ν�a are the rμ�+1

ν�a of (5.17);
equivalently, (5.20) holds for k ≤ � + 1.

This establishes Proposition 5.18.

5.5 Proof of Theorem 5.14

Claim 5.34 It suffices to show that E f admits a sub-bundle E ′
f on which θg⊥ vanishes.

Example 5.35 (Subbundle G ⊂ Eτ ) The bundle Eτ → �̌ admits a subbundle G that is
isomorphic to the image ofGC in Aut(UC, Q), and onwhich the entire component θg⊥
of θ taking value ing⊥ vanishes. To see this, fix a basis eo = {e0, . . . , ed} that is adapted
to the Hodge decomposition (3.4) in the sense that e0 spans Un,0, {e1, . . . , ed1} spans
Un−1,1, et cetera, so that {edq−1+1, . . . , edq } spans Un−q,q , for all q. Then eo ∈ Eτ ,
and

G G · eo ⊂ Eτ

τ (�̌)

:=

is a GC-homogenous subbundle with the properties that

θg⊥
∣∣G = 0, (5.36)

(in particular, η|G = 0) and θg
∣∣G is a coframing of G (so that ω|G is nondegenerate).

Proof Recalling (5.8), the Maurer–Cartan equation dθ = − 1
2 [θ, θ ] implies that

{θg⊥ = 0} is a Frobenius systemonEQ .Notice that the bundleG ⊂ EQ ofExample 5.35
is the maximal integral through eo. Since θ is Aut(UC, Q)-invariant, it follows that the
maximal integralmanifolds of theFrobenius systemare the g·G,with g ∈ Aut(UC, Q).
Therefore, g ·E ′

f ⊂ G for some g ∈ Aut(UC, Q). From the Aut(UC, Q)-equivariance

of π̌ we conclude that g ◦ f (M) ⊂ �̌. ��
We will show that E f admits a sub-bundle E ′

f on which θg⊥ vanishes by induction.

Given � ≥ −1, suppose that E f admits a subbundle E�
f onwhich the form θg⊥

k
vanishes

for all k ≤ �. This inductive hypothesis holds for � = −1 with E f = E−1
f .

Claim 5.37 A maximal such E�
f will have the property that the linear map

θ≥�+2 : ker ω ⊂ TeE�
f → E≥�+2

is onto for all e ∈ E�
f .
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Proof Recollect that EQ → Ď� is a principal P̃-bundle. Given g ∈ P̃ , let

Rg : EQ → EQ

denote the right action of P̃ . Set P̃�+2 := exp(E≥�+2) ⊂ P̃ . Then

Ẽ�
f := {Rge | g ∈ P̃�+2 , e ∈ E�

f } ⊃ E�
f

is a bundle over M , and θ≥�+2 : ker ω ⊂ TeẼ�
f → E≥�+2 onto by construction.

Additionally, R∗
gθ = Adg−1θ implies that θg⊥≤�

vanishes on Ẽ�
f . ��

Given E�
f , which we assume to be maximal, we will show that E�+1

f ⊂ E�
f exists. This

will complete the inductive argument establishing the existence of the bundle E ′
f in

Claim 5.34.

Claim 5.38 There exists a holomorphic map λ : E�
f → Hom(g−, g⊥

�+1) = g⊥ ⊗ g∗−
so that

θg⊥
�+1

= λ(ω) . (5.39)

Proof Since θg⊥
�
vanishes on E�

f , the exterior derivative dθg⊥
�
must as well. Making

use of the Maurer–Cartan equation (5.26) and the relations (5.10) we compute

0 = dθg⊥
�

= −[θg⊥
�+1

, ω] (5.40)

on E�
f . The claim will then follow from Cartan’s Lemma [10, Lemma A.1.9] once we

show that the natural map

g⊥
�+1 → g⊥

� ⊗ g∗− is injective . (5.41)

The map (5.45) fails to be injective if and only if

��+1 := {ζ ∈ g⊥
�+1 | [ξ, ζ ] = 0 ∀ ξ ∈ g−}

is nontrivial. The Jacobi identity implies that ��+1 is a g0-module. Inductively define
�m := g+(�m−1) ⊂ g⊥

m . The Jacobi identity again implies that � = ⊕m≥�+1 �m is a
gC-module.

Let E ∈ End(UC, Q) be the endomorphism acting on Em by the scalar m. (That
is, (5.4) is the eigenspace decomposition for E.) Then E ⊂ gC lies in the center of
g0 = kC [1, Proposition 3.1.2]. As a nontrivial semisimple element of gC, Ewill act on
any nontrivial gC-module by both positive and negative eigenvalues. Since � ≥ −1,
we see that E acts on � by only non-negative eigenvalues. This forces � = ��+1 = �0
and [gC, �] = 0.

A final application of the Jacobi identity implies that gC ⊕ � is a subalgebra of
End(UC, Q). Since gC ⊂ End(UC, Q) is a maximal proper subalgebra [2, Theorem
1.5], and gC ⊕ �0 �= End(UC, Q), it follows that � = �0 = 0. ��
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So to complete our inductive argument establishing the existence of E ′
f it suffices to

show that there exists a subbundle E�+1
f ⊂ E�

f on which λ vanishes.

Claim 5.42 The map λ takes value in the kernel of the Lie algebra cohomology [11]
differential

δ1 : g⊥ ⊗ g∗− → g⊥ ⊗ ∧2g∗−

defined by

δ1(α)(ξ1, ξ2) := [α(ξ1), ξ2] − [α(ξ2), ξ1] ,

where α ∈ g⊥ ⊗ g∗− = Hom(g−, g⊥) and ξi ∈ g−.

Proof Substituting (5.39) into (5.40) yields [λ(ω), ω] = 0. The claim follows. ��
Claim 5.43 Suppose λ takes value in the image of the Lie algebra cohomology dif-
ferential

δ0 : g⊥ → g⊥ ⊗ g∗−

defined by

δ0(ζ )(ξ) := [ξ, ζ ]

with ζ ∈ g⊥ and ξ ∈ g−. Then there exists a subbundle E�+1
f ⊂ E�

f on which λ

vanishes.

Proof Differentiating (5.39) yields

0 = 1
2

∑

a+b=�+1

[θa, θb]g⊥ + dλ ∧ ω − λ([θg0 , ω]) . (5.44)

Claim 5.37 implies that θ(Z) = ζ determines a unique, holomorphic vector field Z on
E�
f . (At the point e ∈ E�

f , the vector field is given by Ze = d
dt Rexp(tζ )e

∣∣
t=0.) Taking

the interior product of Z with (5.44) yields

0 = (Zλ)(ω) + [ζ, ω] . (5.45)

That is, Zλ = dλ(Z) = adζ . Given e ∈ E�
f,x , set λt := λe(t) with e(t) := Rexp(tζ )e.

Then (5.45) implies we may solve λt = 0 for t if and only if λe takes value in the
image of δ0. ��

It follows from Claims 5.42 and 5.43 that the bundle E�+1
f exists if the cohomology

group

H1(g−, g⊥) := ker δ1

im δ0
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is trivial. In general H1(g−, g⊥) �= 0. Happily it happens that we don’t need all
of H1(g−, g⊥) to vanish, just the positively graded component. To be precise, the
gradings (5.9) induce a graded decomposition

g⊥ ⊗ g∗− =
⊕

�

g⊥
� ⊗ g∗− .

Since g− = g−1, the dual g∗− has graded degree 1. Consequently, g⊥
� ⊗ g∗− has

graded degree �+1. The Lie algebra cohomology differentials δ1 and δ0 preserve this
bigrading, and so induce a graded decomposition of the cohomology

H1(g−, g⊥) =
⊕

�

H1
�

where the component of graded degree � + 1 is

H1
�+1 := ker {δ1 : g⊥

� ⊗ g∗− → g⊥
�−1 ⊗ ∧2g∗−}

im {δ0 : g⊥
�+1 → g⊥

� → g∗−} .

Since λ takes value in g⊥
�+1 ⊗ g∗−, and the latter is of pure graded degree � + 2 ≥ 1.

Consequently,
there exists a subbundle E ′

f of E f on which
θg⊥ vanishes if H1

m = 0 for all m ≥ 1.
(5.46)

To complete the proof of Theorem 5.14 we make the following observations: First, as
in the proof of Theorem 3.10 we may reduce to the case that �̌ is irreducible. Also as
in that proof, the case that �̌ is either a projective space (necessarily P

1) or a quadric
hypersurface is trivial.

In the remaining cases H1
m = 0 for all m ≥ 1; this is a consequence of Kostant’s

theorem [11] on Lie algebra cohomology; see [9, Proposition 7] or [12, §7.3]. The
theorem now follows from Claim 5.34 and (5.46).
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