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Abstract Sheng and Zuo’s characteristic forms are invariants of a variation of Hodge
structure. We show that they characterize Gross’s canonical variations of Hodge struc-
ture of Calabi—Yau type over (Hermitian symmetric) tube domains.

1 Introduction
1.1 The problem

To every tube domain 2 = G /K Gross [8] has associated a canonical (real) variation
of Hodge structure (VHS)

Vo

l (1.1

Q

of Calabi—Yau (CY) type. The construction of (1.1) is representation theoretic, not
geometric, in nature; in particular, the variation is not, a priori, induced by a family

X
1 (1.2)

S
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1230 C. Robles

of polarized, algebraic Calabi—Yau manifolds. So an interesting problem is to construct
such a family realizing (1.1). By “realize” we mean the following: let

T:Q2 — Dg (1.3)

be the period map associated with (1.1), and ® o - S — D be the (lifted) period map
associated with (1.2); then we are asking for an identification D =~ Dg with respect
to which @, (S) is an open subset of 7(£2).

Example 1.4 One may obtain a family of n-folds by resolution of double covers
of P" branched over 2n + 2 hyperplanes in general position. When n = 1, 2, the
associated VHS is a geometric realization of Gross’s type A canonical VHS over
Q =SU@,n)/S(U(n) x U(n)). For n = 1 this is the classical case of elliptic curves
branched over fours points in P!. In the case n = 2 this was proved by Matsumoto,
Sasaki and Yoshida [13]. However, for n > 3, the family does not realize Gross’s type
A canonical VHS [3,15], cf. Example 1.5.

A necessary condition for (1.2) to realize (1.1) is that invariants associated to (1.1)
and (1.2) agree. For example, dim S = dim 2, and the Hodge numbers h, and hg
must agree. (Of course, the latter implies that we may identify D with Dg.) These are
discrete invariants. Sheng and Zuo’s characteristic forms [16, §3] are infinitesimal,
differential-geometric invariants associated with holomorphic, horizontal maps (such
as 7 and ® o). In particular, the characteristic forms will necessarily agree when (1.2)
realizes (1.1).

Example 1.5 When n > 3 the family of Calabi—Yau’s in Example 1.4 does not realize
Gross’s type A canonical VHS over Q2 = SU(n, n)/S(U(n) xU(n)). (However, the two
discrete invariants above do agree.) This was proved by Gerkmann, Sheng, van Straten
and Zuo [3] in the n = 3 case, and their argument was extended to n > 3 by Sheng,
Xu and Zuo [15]. The crux of the argument is to show that the second characteristic
forms do not agree. (In fact, their zero loci are not of the same dimension if n > 3.)1

The purpose of this paper is to show that agreement of the characteristic forms is
both necessary and sufficient for (1.2) to realize (1.1). We will consider a more general
situation, replacing the period map ® o S — D =~ Dg with an arbitrary horizontal,
holomorphic map f : M — Dq into the compact dual, and asking when f realizes
(1.1). The first main result is stated precisely in Theorem 3.10. To state the informal
version, we first recall that Gross’s canonical VHS is given by a real representation

G — Aut(U, Q) = {g € Aut(U) | Q(gu, gv) = Q(u,v), Yu,ve U} (1.6
the period domain Dg, parameterizes (real) Q-polarized Hodge structures on U of

Calabi—Yau type; and the period map (1.3) extends to a G¢-equivariant map 7 : Q—
Dg between the compact duals.

LA similar argument was used by Sasaki, Yamaguchi and Yoshida [14] to disprove a related conjecture on
the projective solution of the system of hypergeometric equations associated with the hyperplane configu-
rations.
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Main Theorem 1 (Informal statement of Theorem 3.10) If the characteristic forms
of f and t are isomorphic, then there exists g € Aut(Uc) so that g o f (M) is an open
subset of T(2).

Characteristic forms are defined in Sect. 2. The statement of Theorem 3.10 is a bit
stronger than the above: in fact, it suffices to check that the characteristic forms of f
are isomorphic to those of T at a single point x € M, so long as the integer-valued
differential invariants (Sect. 2.3) associated with f are constant in a neighborhood of
x. Theorem 3.10 is a consequence of: (i) an identification of the characteristic forms
of Gross’s (1.1) with the fundamental forms of the minimal homogeneous embedding
o2 PU¢ (Proposition 4.4), and (ii) Hwang and Yamaguchi’s characterization
[9] of compact Hermitian symmetric spaces by their fundamental forms.

Main Theorem 1 characterizes horizontal maps realizing Gross’s canonical VHS
modulo the full linear automorphism group Aut(Uc). It is natural to ask if we can
characterize the horizontal maps realizing Gross’s VHS up to the (smaller) group
Aut(Uc, Q) preserving the polarization—these groups are the natural symmetry
groups of Hodge theory. (Note that Aut(Uc, Q) is the automorphism group of Dq,
the full Aut(Uc) does not preserve the compact dual.) The second main result does
exactly this. This congruence requires a more refined notion of agreement of the char-
acteristic forms than the isomorphism of Main Theorem 1; the precise statement is
given in Theorem 5.14. The refinement is encoded by the condition that a certain
vector-valued differential form » vanishes on a frame bundle £y — M (cf. Remark
5.21(b)). Informally, one begins with a frame bundle £9 — DQ with fibre over
(FP) e Dg consisting of all bases {eo, ..., es} of Uc such that Q(e;, ex) = 57+k and
F? = span{ep, ..., eqr}. The bundle £ is isomorphic to the Lie group Aut(Uc, Q),
and so inherits the left-invariant, Maurer—Cartan form 6 which takes values in the Lie
algebra

End(Uc, Q) :={X € End(U¢) | O(Xu,v) + Q(u, Xv) =0, Yu,v € Uc}

of Aut(Uc, Q). There is a Gc-module decomposition End(Uc, Q) = gc® gt ® géo;
letn = 09£ be the component of # taking value in g*.

Main Theorem 2 (Informal statement of Theorem 5.14) Let f : M — bg be a
holomorphic, horizontal map. There exists g € Aut(Uc, Q) sothat go f (M) is an open
subset of T(S2) C Dgq if and only if n vanishes on the pull-back £ := f*Eg — M.

Roughly speaking, n vanishes on £ if and only if the coefficients of the fundamental
forms of f agree with those of Gross’s canonical CY-VHS when expressed in terms
of bases e € £ (Remark 5.21). Main Theorem 2 is reminiscent of Green—Griffiths—
Kerr’s characterization of nondegenerate complex variations of quintic mirror Hodge
structures by the Yukawa coupling (another differential invariant associated to a VHS)
[4, §IV]. Both Main Theorems 1 and 2, and the Green—Griffiths—Kerr characterization,
are solutions to equivalence problems in the sense of Cartan. And from that point of
view, the formulation of Main Theorem 2 is standard in that it characterizes equivalence
by the vanishing of a certain form on a frame bundle over M.
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1232 C. Robles

The proof of Theorem 5.14 is established by a minor modification of the arguments
employed in [12] (which are similar to those of [9]), and is in the spirit of Cartan’s
approach to equivalence problems via the method of moving frames.

Remark 1.7 Sheng and Zuo [16, §2] extended Gross’s construction of the canonical
real CY-VHS over a tube domain to a canonical complex CY-VHS over a bounded
symmetric domain. The analogs of Theorems 3.10 and 5.14 hold for the Sheng—Zuo
CY-VHS as well. Specifically, the definition of the characteristic forms holds for
arbitrary (not necessarily real) VHS; and the arguments establishing the theorems do
not make use of the hypotheses that the bounded symmetric domain €2 is of tube type
or that the VHS is real. As indicated by the proofs of Theorems 3.10 and 5.14, the
point at which some care must be taken is when considering the case that €2 is either
a projective space or a quadric hypersurface. If €2 is not of tube type, then it can not
be a quadric hypersurface. If Qisa projective space, then 2 = Dgq, and the theorems
are trivial.

1.2 Notation

Throughout V will denote a real vector space, and V¢ the complexification. All Hodge
structures are assumed to be effective; that is, the Hodge numbers /7-7 vanish if either
p or g is negative. Throughout D will denote the compact dual of a period domain D
parameterizing effective, polarized Hodge structures of weight n on V. Here D and
V are arbitrary; we will reserve Dg and U for the period domain and vector space
specific to Gross’s canonical variation of Hodge structure. We will let Q denote the
polarization on both V and U, as which is meant will be clear from context.

2 Characteristic forms
2.1 Horizontality

Let
FrcFtco..c Fl! ¢ F 2.1

denote the canonical ﬁltratiorl of the trivial bundle F° = D x Ve over D. Given a
holomorphic map f : M — D, let

FP o= frFP

denote the pull-back of the Hodge bundles to M. We say that f is horizontal if it
satisfies the infinitesimal period relation (IPR)

dFf c Fi'e Q). 2.2)

Example 2.3 The lifted period map ® : S—> D arising from a family X — § of
polarized, algebraic manifolds is a horizontal, holomorphic map [6,7].
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Characterization of Calabi—Yau variations... 1233

2.2 Definition
Given a horizontal map f : M — D, the IPR (2.2) yields a vector bundle map
vf:TM — Hom(F}, ]-";71/.7:]’1);

sending £ € T, M to the linear map ys . (§) € Hom(F% ]-':f»*l/]:’?’x) defined as

fx2Y fix

follows. Fix a locally defined holomorphic vector field X on M extending & = X,.
Given any vy € ]—";5 .» let v be a local section of F ;} defined in a neighborhood of x
and with v(x) = vg. Then

v (E)(wo) = X(v)l, mod FF

yields a well-defined map y (&) € Hom(F7%, .7-";_1 / ]—"}). More generally there is a
vector bundle map

y; : SykaM — Hom(f”, f?—k/f;—k+1)

defined as follows. Given &1, ..., & € Ty M, let X1, ..., X; be locally defined holo-
morphic vector fields extending the £; = X ; . Given vg and v as above, define

yEEL . E)Wo) = X1+ Xk(v)|, mod F . 2.4)

It is straightforward to confirm that y}‘ is well-defined. This bundle map is the kth
characteristic form of f : M — D. Let Cl} C SymfT*M denote the image of the
dual map. In a mild abuse of terminology we will also call C’} the k —th characteristic
formsof f : M — D.

2.3 Isomorphism

Given two horizontal maps f : M — D and fl:o M - D, we say that
the characteristic forms of f at x are isomorphic to those of f’ at x’ if there
exists a linear isomorphism A : TxyM — T, M’ such that the induced linear map

W Sym (TEM") — Sym* (T M) identifies C%, ., with C'; , for all k > 0.
Each C’}’X is a vector subspace of Sym* T)M, and

o = dime < dim Y/ FH

WX

is an example of an “integer-valued differential invariant of f : M — D at x.” Let

Crv = PC, c Psym'TiM = SymTiM,
k>0 k>0
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1234 C. Robles

and set cr, = dimc Cry = ) 159 cl}’x. Regard Cy,, as an element of the Grass-
mannian Gr(cy,, Sym 7, M). Note that Aut(T, M) acts on this Grassmannian. By

integer-valued differential invariant of f : M — D at x we mean the value at Crx
of any Aut(T, M)-invariant integer-valued function on Gr(cy,, Sym 7, M).

A necessary condition for two characteristic forms C ¢ and C ¢/ ,+ to be isomorphic
is that the integer-valued differential invariants at x and x’, respectively, agree.

3 Gross’s canonical CY-VHS
3.1 Maps of Calabi-Yau type

A period domain D parameterizing effective polarized Hodge structures of weight n
is of Calabi—Yau type (CY) if K0 = 1. In this case we also say that the compact dual
D is of Calabi—Yau type.

A holomorphic, horizontal map f : M — D is of Calabi-Yau (CY) type if DisCY
and yry : TuM — Hom(]:;l’x, F?_l/f?’x) is a linear isomorphism for all x € M.

X

Remark 3.1 In particular, if f : M — D and f' : M’ — D are CY, then the
first characteristic forms C lf . and C#, .+ are always isomorphic, for any x € M and

x' e M.
The condition that /%% = rankc F” = 1 implies that there is an map

n:b—>]P’Vc

sending ¢ € D to f; e PVe.

3.2 Definition

We briefly recall Gross’s canonical CY-VHS over a tube domain 2 = G/K [8]. Up
to G-module isomorphism, there is a unique real representation

G — Aut(U) (3.2)

with the following properties:

(i) The complexification Ug is an irreducible G-module.

(i) The maximal compact subgroup K C G is the stabilizer of a highest weight line
¢ C Uc. In particular, if P C G is the stabilizer of ¢, then K = G N P, and
the map gP +— g - £ € PUc is a G¢-equivariant homogeneous embedding

o:Q < PUC (3.3)
of the compact dual Q= Gc/P of Q.

(iii) The dimension of U is minimal amongst all G-modules with the two properties
above.
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The maximal compact subgroup K is the centralizer of a circle ¢ : S!' — G (a
homomorphism of R-algebraic groups). The representation Uc decomposes as a direct
sum

Uc = EB ur (3.4a)
pt+qg=n
of p-eigenspaces
UPY = {ueUc|p@u=z""1u}. (3.4b)

This is a Hodge decomposition, and there exists a G-invariant polarization Q of the
Hodge structure; in particular, the representation (3.2) takes values in Aut(U, Q):

G — Aut(U, Q). 3.5)

Each subset U?-? is K-invariant, and so defines a G-homogeneous bundle /79
over 2. The resulting decomposition

QxUc = @uw (3.6)

of the trivial bundle over 2 is Gross’s canonical VHS over Q [8].

Example 3.7 In the case that €2 is irreducible, Gross’s canonical CY-VHS is one of
the following six:

(a) For G = U(n, n) = Aut(C?", ), we have Uc = A"C?" and & = Gr(n, C?").
If C** = A @ B is the ¢-eigenspace decomposition, then n = dim A = dim B
and the Hermitian form J restricts to a definite form on both A and B. The
Hodge decomposition is given by U?9 >~ (AP A) ® (A\?B).

(b) For G = O(2,k) = Aut(R>T*, 0), we have Uc = C>**¥ and Q is the period
domain parameterizing Q-polarized Hodge structures on U = R*** with h =
(1, k, 1), so that €2 is the quadric hypersurface {Q = 0} c P+

(c) For G = Sp(2g, R) = Aut(R?*¢, Q), we have Uc = A\$C?¢ and  is the period
domain parameterizing Q-polarized Hodge structures on C>¢ withh = (g, g), so
that € is the Lagrangian grassmannian of Q-isotropic g-planes in C>¢. Given one
such Hodge decomposition C** = A @ B, the corresponding Hodge structure
on U is given by UP1 = (AP A) & (\!B).

(d) For G = SO*(2n), Uc is a Spinor representation, and the summands of the
Hodge decomposition are U?4 ~ A\>PC?".

(e) If G is the exceptional simple real Lie group of rank 7 with maximal compact
subgroup K = U(1) X, Eg, then the Hodge decomposition is Uc >~ C® o
C*)*aC.

Lemma 3.8 (Gross [8]) Gross’s canonical VHS (3.6) is of Calabi—Yau type (Sect.
3.1).

The lemma follows from the well-understood representation theory associated with

(3.3) and (3.5). We briefly review the argument below as a means of recalling those
representation theoretic properties that will later be useful. (See [8] for details.)
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1236 C. Robles

Let
¢ € Dg
denote the Hodge structure given by (3.4). The map
1:Q < Dg 3.9)

sending gP +— g - ¢ is a G-equivariant homogeneous embedding of the compact
dual Q2 = G¢/P. The restriction of 7 to Q2 is the period map associated to Gross’s
canonical CY-VHS. The precise statement of Main Theorem 1 is

Theorem 3.10 Let f : M — D, be any CY map (Sect. 3.1), and let x € M be a
point admitting a neighborhood in which all integer-valued differential invariants of
f are constant (Sect. 2.3). If the characteristic forms of f at x are isomorphic to the
characteristic forms of T : Q< Dq at o € Q in the sense of Sect. 2.3, then there
exists g € Aut(Uc) so that g o f(M) is an open subset ofr(SVZ).

The theorem is proved in Sect. 4.4.

Remark 3.11 To see how Main Theorem 1 follows from Theorem 3.10 we make
precise the hypothesis that “the characteristic forms of f and t are isomorphic™:
by this, we mean that there exists a local biholomorphism i : M — €2 so that the
characteristic forms of f at x € M are isomorphic to those of t ati(x) forallx € M
(cf. Sect. 2.3). (Equivalently, since Qis homogeneous, the characteristic forms of f
at x € M are isomorphic to those of t at o for all x € M.) Given this definition, it is
clear that the hypotheses of Main Theorem 1 imply those of Theorem 3.10.

Proof of Lemma 3.8 Let

hg = (b7 = dimc UP9)
denote the Hodge numbers, and let Dg, denote the period domain parameterizing Q-
polarized Hodge structures on U with Hodge numbers hg. The weight n of the Hodge
structure is the rank of €2, and the highest weight line stabilized by K is

¢ =yl (3.12)

In particular,
W0 o= 1. (3.13)

Let
0CFhCcFa'lc-CFycry

denote the canonical filtration (2.1) of the trivial bundle f-g = DQ x Uc over DQ.
Then

Foleg = @um_r'

rzp
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We will identify
o =K/KeQ = G/K
with P/P € § = G/ P. Note that
¢ = 1(0).
The weight zero Hodge decomposition
gc =g, @ g,° @ g, (3.14)

induced by ¢ has the property that p = gé;_l @ gg,o and ¢c = g%o are the Lie algebras
of P and K¢, respectively. Consequently, the holomorphic tangent space is given by

T,Q = T,Q = gc/p ~ g,"". (3.15)

Regarding g;l’l as a subspace of End(U¢c, Q) we have

urmhatt = g Ml wrh) = jEw) 1§ e gt we UMY (3.16)
In particular, given & € g;l*l, we have
EUPY C ypr—la+l (3.17)
The maps
Yot g, x urt — yrohat (3.18a)
sending
& u) = &u) (3.18b)

are surjective. Moreover, given fixed nonzero ug € U™?, the map g;l’l — yrbl
sending & +— & (up) is an isomorphism. It follows from the homogeneity of the bundles
.7-'5, and the G¢-equivariance of 7, that 7 is horizontal and of Calabi—Yau type. O

3.3 Characteristic forms

In this section we describe the characteristic forms yé of (3.9). The discussion will
make use of results reviewed in the proof of Lemma 3.8.

Since t is Gc-equivariant and the bundles .7-"5 — bg are Aut(Uc, Q)-
homogeneous, we see that the push-forward g, : T, — Tg.ofz is an isomorphism
identifying CX. g0 With C’;o forall k and g € G; that s, the characteristic forms of T
at g - o are isomorphic to those at 0. So it suffices to describe the characteristic forms

at the point 0 € Q. It follows from ]:5’0/]:521 = UP-"~P the identification (3.15),
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1238 C. Robles

and (3.17) that y& | : Sym*T,2 — Hom(F% . F ¥ /F& ") may be identified
with the map
Vo0 Sym*g M — Hom(U™?, u"th) (3.192)

defined by
V& JE - EOW) = & - &), (3.19b)

with &, ..., & € g,""! C End(Uc, Q) and u € U™P.

4 Proof of Theorem 3.10 (Main Theorem 1)
4.1 The osculating filtration
Let X — PV be any complex submanifold. The osculating filtration at x € X
' cT! c--cT" C Ve
is defined as follows. First, TXO C Vc is the line parameterized by x € PV¢. Let
X C Vc\{0} be the cone over X.Let A = {z € C : |z| < 1} denote the unit disc, and

let O(A, 0; }?, x) denote the set of holomorphic maps o : A — X with «(0) e ’];O.
Given one such curve, let «® denote the k-th derivative d*a/dz¥. Inductively,

TF = TF 1 4 spanc{a®(0) |« € O(A, 0; X, x)}.

Note that 7! = T, X is the embedded tangent space at u € 7. Here m = m(x) is
determined by 7"~ ¢ 7" = 7"+,

4.2 Fundamental forms
If both m and the rank of 'Z;k are independent of x, then the osculating filtrations define

a filtration 7, )? c T, )g C --- C Ty C X x Vg of the trivial bundle over X. Assume
this is the case. By construction the osculating filtration satisfies

a7t ¢ " el (4.1)

Just as the IPR (2.2) lead to the characteristic forms (2.4), the relation (4.1) yields
bundle maps

l/ff( :SykaX — Hom(TO,T)](‘/T;;_I), k>1.

This is the k-th fundamental form of X < PV¢. The image F% C Sym*T*X of the
dual map is a vector subbundle of

rank F%, = dim 7 /7%,
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Again, in mild abuse of terminology, we will call F’)‘( the k-th fundamental forms of
X c Pve.

Given two complex submanifolds X, X’ < PV, we say that the fundamental
forms of X at x are isomorphic to those of X’ at x” if there exists a linear isomorphism
A : Ty X — Ty X' such that the induced linear map Sym 775 X" — Sym 7,* X identifies
F, . with F§

Each Fk . s avector subspace of Sym* T)X,and dk = dim¢ Fk . is an example
of an 1nteger-valued differential invariant of X — IP’V@ at x.” Let

@FXX C @Sykax*X =: Sym7;X,
k=0 k=0

and set dy , = dimcFyx , = > ;- d;‘(’x. Regard Fy . as an element of the Grass-
mannian Gr(dx x, Sym 7,°X). Note that Aut(7,X) acts on this Grassmannian. By
integer-valued differential invariant of X < PV at x we mean the value at Fx , of
any Aut(Ty X)-invariant integer-valued function on Gr(dx , Sym 7," X).

A necessary condition for two fundamental forms Fy  and Fy/ ,+ to be isomorphic
is that the integer-valued differential invariants at x and x’, respectively, agree.

Remark 4.2 When X — PV is a homogeneous embedding of a compact Hermi-
tian symmetric space [such as the o : 2 < PUc of (3.3)], there are only finitely
many Aut(T,,SVZ)—invariant integer-valued functions on Gr(ds,,, Sym TU*SVZ), and they
distinguish/characterize the Aut(7, Q)-orbits [9, Proposition 5].

4.3 Fundamental forms for o : @ < PUc

Recall the maps o and t gf (3.3) and (3.9), respectively. Theorem 4.3 asserts that the
Hermitian symmetric o (2) C PU( are characterized by their fundamental forms, up
to the action of Aut(Ug).

Theorem 4.3 (Hwang—Yamaguchi [9]) Assume that the compact dual  contains
neither a projective space nor a quadric hypersurface as an irreducible factor. Let
M C PUc¢ be any complex manifold, and let x € M be a point in a neighborhood of
which all integer-valued differential invariants are constant. If the fundamental forms
of M at x are isomorphic to the fundamental forms of o : Q<> PUc at o, then M is
projective-linearly equivalent to an open subset of Q.

Proposition 4.4 The k-th characteristic form yé oft: 2 <> Dg coincides with the
k-th fundamental form Wé of o : Q — PUC.

Proof The proof is definition chasing. Since both the Hodge bundles .7-'5 and the
osculating filtration ’Tg]zC are homogeneous, and the maps o and t are G ¢-equivariant, it
suffices to show that Vs’%,o = 1,05"2’0 atthe pointo = P/P € €2. The former is computed

in Sect. 3.3; so it suffices to compute the latter and show that ‘ﬁéz, , agrees with (3.19).
This follows directly from the definition o (g P) = g - £ and the identifications (3.12)
and (3.15). O
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1240 C. Robles

Remark 4.5 A more detailed discussion of the fundamental forms of compact Hermi-
tian symmetric spaces (such as 2) may be found in [9, §3]

Corollary 4.6 The Hodge filtration .7-'5‘
n—p
o)’

(&) d8rees with the osculating filtration

4.4 Characteristic versus fundamental forms

Lemma4.7 Let f : M — D be a CY map (Sect. 3.1). Let 7 : D — PVc be the
projection of Sect. 3.1. Then T * .7-";){ forallx € M.

wof,x

Proof This follows directly from the definitions of horizontality (Sect. 1.2) and Calabi—
Yau type (Sect. 3.1), and the osculating filtration (Sect. 4.1). O

Remark 4.8 Let f : M — DbeaCY map, and recall the projection 7 : D — PV¢
of Sect. 3.1. By definition f(x) = }"}’ .- So, if the Hodge and osculating filtrations

agree, f ko — ’Tﬂ"o ka, then we can recover f from o f.

Lemma4.9 Let f: M — Dbea CY map. If’T;’Oka = Fﬁ,x forall x € M, then the
characteristic and fundamental forms agree, Ck = F'} k

Proof Again this is an immediate consequence of the definitions of the characteristic
and fundamental forms (Sects. 2, 4.2, respectively). O

Lemma 4.10 Let f : M — Dgq be a CY map. Suppose that the characteristic forms
C:; of f are isomorphic to the characteristic forms Cg, of T : Q < Dgq. Then the
Sfundamental forms F;, | s and F, are isomorphic.

Proof The lemma is a corollary of Corollary 4.6 and Lemma 4.9. O

Proof of Theorem 3.10 First observe that we may reduce to the case that < is irre-
ducible: for if Q factors as €1 x €2, then we have corresponding factorizations
DQ = DQ] X DQ2 and f = fi x o with f; : M — DQ the theorem holds
for f if and only if it holds for the f;.

Now suppose that Qisa projective space. Then €2 = P!. In this case 2 = Dg, and
the theorem is trivial. Likewise if € is a quadric hypersurface, then Q = Dg, and the
theorem is trivial. (In both these cases T = o and 7 is the identity.)

The remainder of the theorem is essentially a corollary of Theorem 4.3 and Lemma
4.10. These results imply that there exists g € Aut(Uc) so that g o m o f(M) is an
open subset of 7 o r(SVZ) = O'(SVZ). From Remark 4.8 we deduce that g o f(M) is an
open subset of r(SVZ). O

5 Main Theorem 2

In this section we give a precise statement (Theorem 5.14) and proof of Main Theorem
2. The theorem assumes a stronger form of isomorphism between the characteristic
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forms of T and f than Main Theorem 1; specifically the identification Fo >~ F ¢ will
respect the polarization Q in a way that is made precise by working on a natural frame
bundle £g9 — Daq.

5.1 The frame bundle £9 — bg

Letd + 1 = dim Uc, and let
dP +1 := dim FP

be the dimensions of the flags (F?) parameterized by Dg. Let Ep be the set of all

bases e = {eg, ..., ey} of Uc so that Q(ej, ex) = 8?+k. Note that we have bundle
map

o

1#

p 25} ESZ

ln’

Q = {lvlePUc| Q(v,v) =0}
given by

7(e) = (FP), FP =spanieg,...,eq4r},
mo(e) = [eo].
5.2 Maurer-Cartan form
The frame bundle £ is naturally identified with the Lie group Aut(Uc, Q),
Eo =~ Aut(Uc, Q), 5.1
and the bundle maps are equivariant with respect to the natural (left) action of
Aut(Uc, Q). Consequently, the (left-invariant) Maurer—Cartan form on Aut(Uc, Q)

defines a Aut(Uc, Q)-invariant coframing 6 = (9;‘) € QI(SQ, End(Uc, Q)). Letting
e denote the natural map €9 — Ucg, the coframing is determined by

dej = 60} ex. (5.2)

(The ‘Einstein summation convention’ is in effect throughout: if an index appears as
both a subscript and a superscript, then it is summed over. For example, the right-hand
side of (5.2) should be read as ), 9;? er.) The form 6 can be used to characterize
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horizontal maps as follows: let f : M — Dg be any holomorphic map and define

= f*(&o).

In a mild abuse of notation, we let 6 denote both the Maurer—Cartan form on £¢, and
its pull-back to £. Then it follows from the definition (2.2) that

the map f is horizontal if and only if 6} ‘ g = = 0 for all

53
dq+1+1<;L<dqanddp+l+l<v<d1’W1thp q >2. (5-3)

5.3 Precise statement of Main Theorem 2

The precise statement (Theorem 5.14) of Main Theorem 2 is in terms of a decom-
position of the Lie algebra End(Uc, Q). Recall the Hodge decomposition (3.4), and
define

E, = {g € End(Uc, Q) | E(UPT) C UP+‘4‘1—‘}.

Then
End(Uc. Q) = @ E.. (54)
£

and this direct sum is a graded decomposition in the sense that the Lie bracket satisfies
[Ek, E¢] C Ejqe. (5.5)

Let 6, € QL (E 0, E¢) denote the component of 6 taking value in Ey. It follows from
(5.3) that
a holomorphic map f : M — Dg is horizontal

if and only if 9_g|g/ =O0forall £ > 2. (5.6)

Let P C Aut(Uc, Q) be the stabilizer of ¢ =1(0) € D. Notice that the fibre
1((,0) C &g is isomorphic to P,and 77 : Eo — DQ is a principle P-bundle. The
L1e algebra of P is

Ex = PE.

>0

Consequently, if 8 = 6> + 6_ is the decomposition of 6 into the components taking
value in E>o and E_ := @~ E_g, respectively, then

kerst, = kerf>9 C T&p. 5.7
We may further refine the decomposition (5.4) by taking the representation (3.5)

into account. The latter allows us to view End(Uc, Q) as a G¢-module via the adjoint
action of Aut(Uc, Q) on the endomorphism algebra. Likewise, we may regard gc as
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a subalgebra of End(Uc, Q) via the induced representation g < End(U, Q). Since
gc C End(Ug, Q) is a Ge-submodule and G is reductive, there exists a Ge-module
decomposition

End(Uc, Q) = gc @ g¢.

Note that
l[gc, oc] C gc and [gc, 9] C o (5.8)

where the Lie bracket is taken in End(Uc, Q).
Both g¢ and gé inherit graded decompositions

gc = ®gr and gF = ®gf (5.9)

defined by g¢ := gc N E¢ and gj‘ = g(JC- N E,. From (5.5) and (5.8) we deduce

lgk, 8¢] C gire and [gi, 7] C oty (5.10)

Recall the Hodge decomposition (3.14) and note that g, = gf;;’l; in particular, gy =

{0} if |€] > 1, so that

gc =01 D go D g1 (5.11)
and
gf = E; forall [€] > 2. (5.12)
Set
00 = Pacandg- = P,
>0 <0
020 = Por andgt = Py
=0 <0
Let 9920, 991_0,

w =0y and 75 = ng

denote the components of 6 taking value in g, gio, g_ and g, respectively.
Given any complex submanifold M C Ep, we say that the restriction |, is
nondegenerate if the linear map

w:TeM — g_
is onto for all e € M.
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Example 5.13 Recall the horizontal, equivariant embedding 7 : Q — Dgq. It follows
from (5.7) and the fact that 7 : Q< DQ is G¢-equivariant that

nlg, =0
and w|g_ is nondegenerate.

Our second main theorem asserts that these two properties suffice to characterize
T : Q — Dg up to the action of Aut(Uc, Q).

Theorem 5.14 Let f : M — Dq be a horizontal map of Calabi-Yau type. There
exists g € Aut(Uc, Q) so that g o f(M) is an open subset of T(2) if and only if n
vanishes on Ey.

The theorem is proved in Sect. 5.5.

5.4 Relationship to characteristic forms

The purpose of this section is to describe the characteristic forms C’}- when nl¢ ;= 0.
The precise statement is given by Proposition 5.18. It will be convenient to fix the
following index ranges

A" 41 < v < d"F withk > 1.

As we will see below, the indices 1 < pup, v; < d" ! are distinguished, and we will
use the notation

1 <ab <d!
for this range. We claim that the equations
=0 and 6 = wf, forall 1 <a<d"! (5.15)

hold on £p. (Note that the first implies the second, and visa versa.) The way to see
this is to observe that (i) (96’)2:11 is precisely the component of 6 taking value in

E_y N Hom(Fy, F3~') ~ Hom(F), Fo =" /7).
and (ii) the fact that t is Calabi—Yau implies that the projection
T, ~ g- — E_; N Hom(F,, Fp~' /7"
is an isomorphism. Therefore,

E_; N Hom(F}, 7~ = g1 N Hom(F}, 75~ ~ g_;. (5.16)
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There are three important consequences of (5.16). First, we have
a __ a
Oy = wy,
which forces

ng =0,

forall 1 <a < d"!. Second, the fact that Yf,x 18 an isomorphism implies that w|g ;
is nondegenerate. Third, from g_ = g_; we conclude that

(@) = 0 when k—¢>2.

It follows from (5.16) that the remaining components of w = 63_ may be expressed
as

a),’fk’il = r,ﬁf{’ila ] (5.17)
k > 2, for some holomorphic functions

bk &9 — C.

Vk—1a
It will be convenient to extend the definition of rﬁf{’j 1a to k =1 by setting rg; := §j,.

Proposition 5.18 Ler f : M — Dg be a horizontal map of Calabi-Yau type. Fix
£ > 0. The component of 0 taking value in

gty (M) @ Hom (f"*k“,f"*k) (5.19)

k<t
vanishes on & if and only if the

=k — Mk Vik—1 )
rakv--azal T rkalak rUk—lek—l razal

are the coefficients of y/’f- forall k < £, that is,

VoG o) = feo o P o @0 o @) e mod FL
(5.20)
where {; € TeE} with ¢ = {eg, ..., eq} € 7 N (f(x)) and 7.(&) = fo(&). In
particular, n| & = 0 if and only if the characteristic forms are given by (5.20) for all
k.

Note that the component of 6 taking value in (5.19) is (nffl‘i )e<k- The proposition

is proved by induction in Sects. 5.4.1-5.4.4; because the first nontrivial step in the
induction is £ = 3, we work through the cases ¢ = 1, 2, 3 explicitly.
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Remark 5.21 Suppose that e = {eo, ..., eq} € & ,. Making use of (5.16), we may
identify {ey, ..., egn—1} with a basis of {&,...,§;—1} of g_. Then the coefficients
o’ 4 are determined by

Ealey_)) = rl% ey, mod FrF+l. (5.22)

There are two important consequences of this expression:

(a) It follows from (3.19) that (5.20) holds for f = t.
(b) Equation (5.16) tells us that g_1 is the graph over E_; N Hom(F, ]-"(’;_1/]-"(’;) of
a linear function

R:E_y 0 Hom (73, 73~ /7)) — €D Hom (Fp—*, Fa*=tymnt).
k>1

The functions rv“kk_ 1a(€) of (5.17) are the coefficients of this linear map with respect
to the bases of E_; N Hom(FZ, .Tg_l/fg) and @g>1 Hom(]-';’_k, fg’g_k—l/]—';’_k)
determined by e € &£p. Assuming that (5.20) holds, this implies that the k-th
characteristic form of f is isomorphic to that of t in the following sense: given
e, € & in the fibre over o and e, € &y in the fibre over x, there exists a
unique g € Aut(Uc, Q) =~ &p so that e, = g - e,. The group element g
defines an explicit isomorphism between Sym*T*Q ® Hom(F7 ,, ff’;k /.7-'?;"“)
and SymX T*M @ Hom(F ? . .7-";5;]‘ / .7-";;1“"1) that identifies the k-th characteristic
forms yr]f , and y;’x at o and x, respectively. This is the precise sense in which the
vanishing of n on Ey is a refined notion of agreement of the characteristic forms.

Remark 5.23 Recalling (3.16), and the identification UP4 = FF, JFPEL (5.22)
implies that the system {r};*  ,¥,,, = 0} of d"~!(d*~! —d*) equations in the d¥ —d**!
unknowns {Y,, } has only the trivial solution ¥,,, = 0.

5.4.1 The first characteristic form

Letf: M — D be any horizontal map of Calabi—Yau type. On the bundle £, (5.3)
and (5.15) yield

dn—]
dey = 98(30 + Za)gea.

a=1

Consequently, the first characteristic form yyx : TyM — Hom(F' ;’c

o T ) s
given by

3 X

dnfl
v = Jeo > Y wfj&)e, mod et (5.24)

a=1

where { € TeEr withe = {eg, ..., eq} € fr‘l(f(x)) and 74 (¢) = f(§).
This establishes Proposition 5.18 for the trivial case that £ = 1.
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5.4.2 The second characteristic form

From (5.3) we see that
60 =0 on & (5.25)

for all "' +1 < o < d"2. The derivative of this expression is given by the
Maurer—Cartan equation2

do = —1[6,0]; equivalently, d§] = —6] A6} (5.26)
Differentiating (5.25) and applying (5.3) yields
0 = do)* = -0 Ao
on &y. Cartan’s Lemma [10] asserts that there exist holomorphic functions
ap = ba €5 = C

so that
o2 = g2 wh. (5.27)

The q"; , are the coefficients of the second characteristic form; specifically,
v &) = [eo = alf of@ef@ e, mod FiTthL (528)

where ¢; € Te& withe = {eo, ..., eq} € 77N f () and 7.(8;) = fi(&).
Remark 5.29 From Example 5.13, (5.17) and (5.27) we see that q(’;bz = r(’sz on &;.

Returning to the bundle £ 7, notice that (n4?) is precisely the component of 6 taking
value in

gfl N Hom (.7-'(;1_1,.7:3_2) .

Comparing (5.17) and (5.27), we see that this component vanishes if and only if

ri? = q!}7 on 5. Noting that 7,2 = r!)? this yields Proposition 5.18 for ¢ = 2.

5.4.3 The third characteristic form

From (5.3) we see that
03 =0 on &f (5.30)

2 Given two Lie algebra valued 1-forms ¢ and v, the Lie algebra valued 2-form [¢, ¥] is defined by
[¢, ¥, v) = %([d)(u), vl —[o), @]
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forall "2 + 1 < up < d"3. Applying (5.3), the Maurer—Cartan equation (5.26),
and substituting (5.27), we compute

— n3 — M3 V2 __ M3 v2 b
0 = —db,° = 0,7 N0, = 0,7 Nq, o).

Again Cartan’s Lemma implies there exist holomorphic functions q;;?c & = C,
fully symmetric in the subscripts a, b, ¢, so that

Qap O = qlpe @ - (5.31)

These functions are the coefficients of the third characteristic form of f in the sense
that

Vi 8,8) = {eo = Gl 0f (ED) @) (E2)wG(83) €4y mod f’;;z}, (5.32)

where ¢; € TeE} withe = {eg, ..., eq} € T (f(x)) and 7.(&) = fi ().

To prove Proposition 5.18 for £ = 3, note that Sect. 5.4.2 yields ¢/) = rl2.
Then we can solve (5.31) for 6#23 (Remark 5.23). In particular, there exist qﬁ?u so that
6)5> = qry @3. The component of 6 taking value in

gfl N Hom(}';“z, ]—';,‘73)

vanishes (equivalently, n} = 0) if and only if these gl are the i} of (5.17);
equivalently, (5.20) holds for k = 3. This is Proposition 5.18 for £ = 3.

5.4.4 And so on

Assume that Proposition 5.18 holds for a fixed ¢ > 3. Then we have 0),* | = o}t | =
rlﬁ;’i 1aa)(‘)’ forall k < £. Asin Sects. 5.4.2-5.4.3 we obtain the coefficients of the (£ +1)-

st characteristic form by differentiating Qﬁfffl‘ = 0 and invoking Cartan’s Lemma to
obtain
oy Mer1 _ He+d b
rl)gfla 90'5 - ve_1ab 20>
et

for some holomorphic functions ¢

5.23 implies that there exist g, : £ — C so that

ve_jab - £ = C, symmetric in a, b. Then Remark

He+1 He+1 | a
91)@ = vea (1)0 .
The g4, a0 = qinas Tor_iap_, - Taray are the coefficients of the (¢ 4 1)-st charac-

teristic form of f in the sense that

yitlE, ... &) = {eo P> gy @ (50 - - 0 (§0) €y, mod f*;;‘} :
(5.33)
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where ¢; € Te(‘:} with e = {eg, ..., eq} € 771 (f(x)) and 7,() = fu(&). The
component of 9 taking value in

gfl N Hom(]-';‘fe, .7-';’471)

vanishes (equivalently, ni,*' = 0), if and only if the gy, 5" are the 5" of (5.17);

equivalently, (5.20) holds for k < £ + 1.
This establishes Proposition 5.18.

5.5 Proof of Theorem 5.14

Claim 5.34 It suffices to show that £y admits a sub-bundle £ } on which g1 vanishes.

Example 5.35 (Subbundle G C &£;) The bundle £&; — €2 admits a subbundle G that is
isomorphic to the image of G¢ in Aut(Uc, Q), and on which the entire component gL
of 0 taking value in gL vanishes. To see this, fix abasis e, = {eo, ..., e4} thatis adapted
to the Hodge decomposition (3.4) in the sense that ep spans U n0 {e1, ..., eq,} spans
U™ L1 et cetera, so that {edq_1+1, A edq} spans U"~%4, for all ¢g. Then e, € &,
and

G = G-e, C &
()
is a G¢-homogenous subbundle with the properties that

Ot |g =0, (5.36)

(in particular, n|g = 0) and 64 | G is a coframing of G (so that w|g is nondegenerate).

Proof Recalling (5.8), the Maurer—Cartan equation d9 = — % [0, 6] implies that
{641 = O}isaFrobenius systemon Ep. Notice that the bundle G C E¢ of Example 5.35
is the maximal integral through e,,. Since 6 is Aut(Uc, Q)-invariant, it follows that the
maximal integral manifolds of the Frobenius system are the g-G, with g € Aut(Uc, Q).
Therefore, g - E/f C G forsome g € Aut(Uc, Q). From the Aut(Uc, Q)-equivariance

of 7 we conclude that g o f (M) C S2. O

We will show that £ admits a sub-bundle £ } on which 61 vanishes by induction.

Given £ > —1, suppose that £y admits a subbundle £ Jl; on which the form 6 o vanishes

for all k < £. This inductive hypothesis holds for £ = —1 with €7 = 5;1.
Claim 5.37 A maximal such 55@ will have the property that the linear map

O>042 1 kerw C TeEf — Esi2

is onto for all e € S;.
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Proof Recollect that £9 — Dqisa principal P-bundle. Given g € P, let
R, : &g — &g
denote the right action of P. Set 13@+2 = exp(E>¢42) C P. Then
gf}‘; = {Ree| g € Piio, eeé‘fﬁ} D 55@

is a bundle over M, and 65447 : kerw C Te(‘f‘; — E>¢42 onto by construction.
Additionally, RZQ = Ad,-16 implies that Ggiz vanishes on 5;@ O

Given £ fc, which we assume to be maximal, we will show that 5§+1 cé& ﬁ exists. This

will complete the inductive argument establishing the existence of the bundle £ } in
Claim 5.34.

Claim 5.38 There exists a holomorphic map X : E]‘Q — Hom(g_, gj;r]) =gt ®g*
so that
Qﬂﬁl = AMw). (5.39)

Proof Since 0L vanishes on 5e the exterior derivative d9 s must as well. Making
use of the Maurer—Cartan equatlon (5.26) and the relations (5 10) we compute

0 = dyy = [0y,

, @] (5.40)
on EX. The claim will then follow from Cartan’s Lemma [10, Lemma A.1.9] once we
show that the natural map

gjﬂ — gy ®g* isinjective. (5.41)
The map (5.45) fails to be injective if and only if

Ter1 = {C egp |[6,¢1=0VEecg)

is nontrivial. The Jacobi identity implies that 'y | is a go-module. Inductively define
Iy =g+ p-1) C gfn-. The Jacobi identity again implies that I' = @,,>¢41 ' is a
gc-module.

Let E € End(Uc, Q) be the endomorphism acting on E,, by the scalar m. (That
is, (5.4) is the eigenspace decomposition for E.) Then E C gc lies in the center of
go = €c [1, Proposition 3.1.2]. As a nontrivial semisimple element of gc, E will act on
any nontrivial gc-module by both positive and negative eigenvalues. Since £ > —1,
we see that E acts on I by only non-negative eigenvalues. This forces ' = 'y = Ty
and [gc, '] = 0.

A final application of the Jacobi identity implies that gc @ I' is a subalgebra of
End(Uc, Q). Since gc C End(Uc, Q) is a maximal proper subalgebra [2, Theorem
1.5], and gc @ 'y # End(Uc, Q), it follows that ' =Ty = 0. O
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So to complete our inductive argument establishing the existence of £ } it suffices to
show that there exists a subbundle &£ ?H cé& fi on which A vanishes.

Claim 5.42 The map A takes value in the kernel of the Lie algebra cohomology [11]
differential

sligt @yt — gt NGt
defined by

'@ &L &) = [aE), &] — (&), &1,
where & € gt ® g* = Hom(g_, g') and & € g_.
Proof Substituting (5.39) into (5.40) yields [A(®), @] = 0. The claim follows. ]

Claim 5.43 Suppose A takes value in the image of the Lie algebra cohomology dif-
ferential

80:gt > gt g
defined by

820)©E) = [&,¢]

with ¢ € g' and & € g_. Then there exists a subbundle S?H C Eﬁ- on which A
vanishes. '

Proof Differentiating (5.39) yields

0=13 > [0a6ly + dirw — A0y o). (5.44)
a+b=(+1

Claim 5.37 implies that 6 (Z) = ¢ determines a unique, holomorphic vector field Z on
Sﬁ. (At the point e € 5;, the vector field is given by Z, = (%ReXp(t{)e’,:()') Taking
the interior product of Z with (5.44) yields

0 = (ZM)(w) + [¢, ]. (5.45)

That is, ZA = dA(Z) = ad;. Given e € Sfc’x, set Ay 1= Ae(r) With €(?) := Rexp(rr)€-
Then (5.45) implies we may solve A; = O for 7 if and only if A takes value in the
image of 8°. O

It follows from Claims 5.42 and 5.43 that the bundle 5?“] exists if the cohomology
group

ker 8!

H'g_.gb) = 42
(9-.8") = ——
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is trivial. In general H'(g_, g*) # 0. Happily it happens that we don’t need all
of H'(g_, g) to vanish, just the positively graded component. To be precise, the
gradings (5.9) induce a graded decomposition

gt gt = @gj@gi.
¢

Since g— = g_1, the dual g* has graded degree 1. Consequently, gj ® g* has
graded degree £ + 1. The Lie algebra cohomology differentials §' and 8° preserve this
bigrading, and so induce a graded decomposition of the cohomology

1 1 1
H'g .¢") = PH
4

where the component of graded degree £ + 1 is

ker{8' 1 g7 ® g — g, ® A7g*)
im {80 : 92_+1 — gfz- — gt}

1 —
HZ+1 i

Since A takes value in gj‘H ® g*, and the latter is of pure graded degree £ + 2 > 1.
Consequently,
there exists a subbundle £ } of £ on which

QgL vanishes if H,}, =O0forallm > 1.

(5.46)

To complete the proof of Theorem 5.14 we make the following observations: First, as
in the proof of Theorem 3.10 we may reduce to the case that 2 is irreducible. Also as
in that proof, the case that €2 is either a projective space (necessarily P!) or a quadric
hypersurface is trivial.

In the remaining cases H,,L = 0 for all m > 1; this is a consequence of Kostant’s
theorem [11] on Lie algebra cohomology; see [9, Proposition 7] or [12, §7.3]. The
theorem now follows from Claim 5.34 and (5.46).
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