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Abstract Let f : X → P
1 be a non-isotrivial semi-stable family of varieties of

dimension m over P1 with s singular fibers. Assume that the smooth fibers F are
minimal, i.e., their canonical line bundles are semiample. Then κ(X) ≤ κ(F) + 1. If
κ(X) = κ(F) + 1, then s > 4

m + 2. If κ(X) ≥ 0, then s ≥ 4
m + 2. In particular, if

m = 1, s = 6 and κ(X) = 0, then the family f is Teichmüller.

Mathematics Subject Classification 14D06 · 14H10 · 14J29

1 Introduction

We always work over the complex number field C. Let f : S → P
1 be a nontrivial

fibration of semi-stable curves of genus g ≥ 1. It is a classical problem to determine the
lower bound for the number s of singular fibers in the fibration f , see [1,6,7,9,15,17–
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19,23]. In [1], Beauville first proved that s ≥ 4 and conjectured that s ≥ 5when g ≥ 2.
In [15], the second author confirmed Beauville’s conjecture. Later, Tu, Zamora and
the second author proved in [17] that s ≥ 6 if S has non-negative Kodaira dimension.
It is conjectured that s ≥ 7 if S is of general type. The first purpose of this note is to
confirm this conjecture.

Theorem 1 Let f : S → P
1 be a nontrivial semi-stable fibration of curves of genus

g ≥ 2 over P1 with s singular fibers. If S is of general type, then s ≥ 7.

This conjecture has been verified for g ≤ 5 ([17,23] or g ≥ 58 ([16], unpublished)
by using the strict canonical class inequality established by the second author [15].
Recently, the authors in [10] have also proved this conjecture under the condition that
the family is birationally equivalent to a pencil of curves with only simple base points
on the minimal model of S.

We can find in [17] the examples of surfaces of general type admitting a semi-stable
fibration over P1 with 7 singular fibers.

It is an interesting phenomenon that when the number of singular fibers is minimal,
the family is of very interesting arithmetic and geometric properties. When g = 1 and
s = 4, Beauville [2] proved that the family of curves must be modular, and there are
exactly 6 such families. In [14], the authors prove that for a non-isotrivial family of
semi-stable K3 surfaces f : X → P

1 on a Calabi-Yau manifold X , we have s ≥ 4
and if s = 4, the family is modular.

Theorem 2 As in Theorem 1, if the Kodaira dimension of S is zero and s = 6, then
the family must be Teichmüller and ω2

S/P1
= 6g − 6.

Here a family of curves is said to be Teichmüller, if up to a suitable finite étale
cover of S, it comes from a Teichmüller curve.

For each type of surfaces of Kodaira dimension zero, Tu [18] has constructed an
example with a semi-stable family of curves over P1 admitting exactly 6 singular
fibers.

When the Kodaira dimension of the surface is 1, the minimal number s should be 6
or 7. We have not found examples with s = 6, and we tend to believe that there are no
such examples. On the other hand, we give more precise description of such surfaces.

Theorem 3 With the notation as in Theorem 1. Suppose the Kodaira dimension of S
is 1 and s = 6. Then S is simply connected, pg(S) = q(S) = 0, the canonical elliptic
fibration on S admits exactly two multiple fibers, one of the multiplicities is 2, and the
second one is n = 3 or 5.

(1) If n = 3, then 6g − 5 ≤ ω2
S/P1

≤ 6g − 3.

(2) If n = 5, then ω2
S/P1

= 6g − 3.

If the stability assumption is dropped, then it is only known that s ≥ 3 for any
non-isotrivial fibration of curves over P1, even if we require that two of the singular
fibers be semi-stable [1,6].

Our method works also for the higher dimensional cases.
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Theorem 4 Let f : X → P
1 be a non-isotrivial semi-stable family of varieties of

dimension m over P
1 with s singular fibers. Assume that the smooth fibers F are

minimal, i.e., their canonical line bundles are semiample. Then κ(X) ≤ κ(F) + 1.

(1) If κ(X) ≥ 0, then s ≥ 4
m + 2. In particular, s ≥ 6 when m = 1, and s ≥ 4 when

m = 2 or 3.
(2) If κ(X) = κ(F) + 1, then s > 4

m + 2. In particular, s ≥ 7 when m = 1, s ≥ 5
when m = 2, and s ≥ 4 when m = 3 or 4.

Note that when X is of general type, we know that F must be also of general type
and the equality κ(X) = κ(F) + 1 holds. Hence the lower bound s > 4

m + 2 holds in
this case.

This note is organized as follows. Theorems 1–3 are proved in Sect. 2, and Theorem
4 is proved in Sect. 3.

2 Variations of the Hodge structures

In this section, we would like to prove Theorems 1–3. The main technique is based
on the variation of the Hodge structures attached to a semi-stable family of curves,
especially to a Teichmüller family.

2.1 Preliminaries

In this subsection, we give a brief recall about the Teichmüller curve and the associated
variation of the Hodge structures, and derive some inequalities. For more details, we
refer to [3,12,13].

LetMg be the moduli space of smooth projective curves of genus g, andΩMg →
Mg the bundle of pairs (F, ω), where ω �= 0 is a holomorphic one-form on F ∈ Mg .
Here and in the following, we consider the moduli problems in the sense of stacks
(or one should take a suitable level structure). Let ΩMg(m1, . . . ,mk) ⊆ ΩMg →
Mg be the stratum of pairs (F, ω) such that ω admits exactly k distinct zeros of
order m1, . . . ,mk respectively. There is a natural action of SL2(R) on each stratum
ΩMg(m1, . . . ,mk). Each orbit projects to a complex geodesics in Mg . When the
projection of such an orbit is closed, it gives a so-called Teichmüller curve. After a
suitable unramified cover and compactification of a given Teichmüller curve, one gets
a universal family f : S → B, which is a semi-stable family of curves of genus
g. Moreover, there exist disjoint sections D1, . . . Dk of f such that the restriction(∑k

i=1 mi Di
)∣∣

F to each fiber F is just the zero locus of ω.
Denote by s the number of singular fibers contained in f . According to the classical

Arakelov inequality (see for instance the proof in [21, Proposition1.2] and Theorem 6
below for the generalization), for any line subbundleL ⊆ f∗ωS/B , the following upper
bound on the slope of L holds.

deg(L) = μ(L) ≤ 2g(B) − 2 + s

2
.
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In the case when f comes from a Teichmüller curve as above, the Hodge bundle
f∗ωS/B contains a line subbundle L ⊆ f∗ωS/B with maximal slope (see for instance
[12, Proposition2.4] or [13, Theorem5.5]):

2 deg(L) = 2g(B) − 2 + s. (1)

Consider the logarithmic Higgs bundle ( f∗ωS/B ⊕ R1 f∗OS, θ) associated to the
fibration f , which corresponds to the weight-one local system R1 f∗QS0 ; here f :
S0 → B0 is the smooth part of f . The Higgs field θ is simply the edge morphism

f∗ωS/B ∼= f∗Ω1
S/B(logΥ ) −→ R1 f∗OS ⊗ Ω1

B(logΔ)

of the tautological sequence

0 −→ f ∗Ω1
B(logΔ) −→ Ω1

S(logΥ ) −→ Ω1
S/B(logΥ ) −→ 0,

where Υ → Δ is denoted to be the singular locus of f . By Viehweg and Zuo [20],
the existence of a line subbundle L ⊆ f∗ωS/B with maximal slope is equivalent to
the existence of a rank two Higgs subbundle (L⊕L−1, θ) with maximal Higgs field
contained in the logarithmic Higgs bundle ( f∗ωS/B ⊕ R1 f∗OS, θ) associated to the
fibration f .

Conversely, one has the following theorem, which is due to Möller [12].

Theorem 5 Let f : S → B be a semi-stable fibration of curves of genus g ≥ 2
over a smooth projective curve with s singular fibers. Suppose that there exists a line
subbundle L ⊆ f∗ωS/B satisfying the equality (1) above. Then the family f comes
from a Teichmüller curve; that is, the induced map B0 → Mg is a finite unramified
cover of a Teichmüller curve. Here f : S0 → B0 is the smooth part of f .

Since the relative canonical sheaf of a fibration of curves over a Teichmüller curve
has a very special form [see (3) below], we can derive the following upper bound on
ω2
S/B .

Proposition 1 Let f : S → B be a semi-stable fibration of curves as in Theorem 5,
and assume also that there exists a line subbundle L ⊆ f∗ωS/B with the equality (1).
Then

ω2
S/B ≤ 3

2
(g − 1)

(
2g(B) − 2 + s

)
. (2)

Proof By Theorem 5, the induced map B0 → Mg is finite unramified covering of a
Teichmüller curve. Hence after a suitable unramified base change, there exist disjoint
sections D1, . . . Dk of f such that the relative canonical sheaf ωS/B has the form (cf.
[3])

ωS/B ∼= f ∗L ⊗ OS

(
k∑

i=1

mi Di

)

, (3)
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where L ⊆ f∗ωS/B is the line subbundle satisfying the equality (1). Note that the
inequality (2) is invariant under any finite unramified base change. Thus we may
assume that ωS/B already has the form as above.

As Di ’s are disjoint sections, it follows that Di · Dj = 0 for i �= j , and that

(ωS/B + Di ) · Di = 0, ∀ 1 ≤ i ≤ k.

Combining these with (3), one gets that D2
i = − 1

mi+1 · degL. Note also that
∑k

i=1 mi = degωF = 2g − 2, where ωF is the canonical sheaf on a general fiber of
f . Hence by (3) again, we obtain that

ω2
S/B = 4(g − 1) · degL +

k∑

i=1

m2
i D

2
i

=
(

4(g − 1) −
k∑

i=1

m2
i

mi + 1

)

degL.

As
∑k

i=1 mi = 2g − 2, one gets easily that

k∑

i=1

m2
i

mi + 1
≥

k∑

i=1

mi

2
= g − 1.

Therefore,

ω2
S/B ≤ 3(g − 1) · degL = 3

2
(g − 1)

(
2g(B) − 2 + s

)
.

This completes the proof. 
�
In the case when f : S → P

1 is a semi-stable fibration of curves of genus g ≥ 2
over P1 with s = 6 singular fibers, we have the following easy criterion when f comes
from a Teichmüller curve.

Lemma 1 Let f : S → P
1 be a semi-stable fibration of curves of genus g ≥ 2 over

P
1 with s = 6 singular fibers. If the geometric genus pg(S) := dim H0(S, ωS) > 0,

then there exists a line subbundle L ⊆ f∗ωS/B satisfying the equality (1), and hence
f comes from a Teichmüller curve.

Proof As a locally free sheaf on P
1, the direct image sheaf f∗ωS/P1 is isomorphic to

a direct sum of invertible sheaves:

f∗ωS/P1
∼=

g⊕

i=1

OP1(di ).

Note that di ≥ 0 due to the semi-positivity of the direct image sheaf f∗ωS/P1 (cf. [4]),

and that di ≤ 1
2

(
2g(B) − 2 + s

) = 2 due to the Arakelov type inequality (cf. [20]).
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Without loss of generality, we assume that 0 ≤ d1 ≤ · · · ≤ dg ≤ 2. By Fujita [4,
Theorem3.1], we obtain that

d1 = · · · = dq(S) = 0, and di > 0 ∀ i ≥ q(S) + 1,

where q(S) := dim H1(S, ωS) is the irregularity of S. Hence

deg f∗ωS/P1 =
g∑

i=q(S)+1

di .

On the other hand, it is well-known that

deg f∗ωS/P1 = χ(ωS) − (g − 1)
(
g(P1) − 1

) = g + pg(S) − q(S).

Therefore, dg = 2 once pg(S) > 0. In other word, the line subbundle OP1(dg) ⊆
f∗ωS/P1 satisfies the equality (1). 
�
Corollary 1 Let f : S → P

1 be a semi-stable fibration of curves of genus g ≥ 2
over P1 with s = 6 singular fibers. If the geometric genus pg(S) > 0, then f comes
from a Teichmüller curve and

ω2
S/P1

≤ 6(g − 1). (4)

Proof This is a combination of Lemma 1 and Proposition 1. 
�

2.2 Proof of Theorem 1

By Tan et al. [17, Theorem0.1], s ≥ 6 if S is of general type (actually, the inequality
s ≥ 6 holds once the Kodaira dimension of S is non-negative). To complete the proof,
it suffices to deduce a contradiction if s = 6.

Since S is of general type, we may assume that g ≥ 5 by Tan et al. [17, Theo-
rem0.1(2)], and according to Tan et al. [17, Theorem0.2] one has

ω2
S/P1

≥ 6g − 6 + 1

2

(
ω2
X +

√
ω2
X

√
ω2
X + 8g − 8

)
, (5)

where X is the minimal model of S. Hence we may assume that pg(S) = 0 by
Corollary 1. It then follows that

deg f∗ωS/P1 = χ(ωS) − (g − 1)
(
g(P1) − 1

) = g − q(S).

Let δ f be the number of nodes contained in the fibers of f . Then byNoether’s formula,
one has

δ f = 12 deg f∗ωS/P1 − ω2
S/P1

= 12
(
g − q(S)

) − ω2
S/P1

.
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According to Tan [15], for any integer e ≥ 2, we have the following inequality

ω2
S/P1

≤ (2g − 2)
(
2g

(
P
1) − 2 + (e − 1)s

e

)
+ 3δ f

e2
,

= (2g − 2)
(
4 − 6

e

)
+

3
(
12

(
g − q(S)

) − ω2
S/P1

)

e2
.

Hence

ω2
S/P1

≤ e2

e2 + 3
(2g − 2)

(
4 − 6

e

)
+ 36

(
g − q(S)

)

e2 + 3
.

Taking e = 3, one obtains

ω2
S/P1

≤ 6g − 3 − 3q(S) ≤ 6g − 3. (6)

Combining this with (5), one obtains that

√
ω2
X

√
ω2
X + 8g − 8 ≤ 6 − ω2

X ,

�⇒ ω2
X

(
ω2
X + 8g − 8

) ≤ (6 − ω2
X )2,

�⇒ ω2
X ≤ 9

2g + 1
< 1, since g ≥ 5.

This gives a contradiction. 
�

2.3 Proof of Theorem 2

Let X be the minimal model of S. If X is either an abelian surface or a K3 surface,
then pg(S) > 0, and hence the conclusion follows directly from Corollary 1 and [17,
Theorem0.2].

In the remaining cases, X must be either an Enriques surface or a bielliptic surface
according to the classification of surfaces with Kodaira dimension equal to zero. Let
KX be the canonical divisor of X . Then there exists an n > 1 such that nKX ≡ 0.
Hence one can construct a finite étale cover π : S̃ → S such that pg(S̃) > 0 and that
the Kodaira dimension of S̃ is still zero. Moreover f̃ := f ◦ π : S̃ → P

1 is still a
semi-stable fibration with 6 singular fibers by Beauville [1, Lemma3].

S̃
π

f̃

S

f

P
1
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Since π is finite étale,

ω2
S̃/P1

= deg(π) · ω2
S/P1

, g̃ − 1 = deg(π) · (g − 1), (7)

where g̃ is the genus of a general fiber of f̃ . By construction, S̃ is either an abelian
surface or a K3 surface, so pg(S̃) = 1. Hence the family f̃ comes from a Teichmüller
curve and ω2

S̃/P1
= 6(g̃ − 1) by the above argument. Therefore, the family f is

Teichmüller. Moreover, Together with (7), we obtain ω2
S/P1

= 6g − 6 as required. 
�

2.4 Proof of Theorem 3

Because the Kodaira dimension of S is 1, by Tan et al. [17, Theorem0.2] we have

ω2
S/P1

≥ 6g − 5. (8)

Hence pg(S) = 0 by Corollary 1. Similar to the proof of Theorem 1, the inequality
(6) holds. Thus q(S) = 0 by (6) and (8).

As the Kodaira dimension of S is 1, the minimal model X of S admits an elliptic
fibration

h : X −→ C.

Since q(X) = q(S) = 0, it follows that C ∼= P
1. Let {n1Γ1, . . . , nrΓr } be the set of

multiple fibers of h with 2 ≤ n1 ≤ · · · ≤ nr . Then the canonical sheaf of X is given
by Griffiths and Harris (cf. [5, § IV-5])

ωX = h∗(OP1(−1)
)

⊗ OX

(
r∑

i=1

(ni − 1)Γi

)

. (9)

We claim first that r = 2. Indeed, it is clear that r ≥ 2 by (9) since κ(X) = 1, and
that r < 3, since otherwise by an unramified cover one can construct a new surface
S̃ with pg(S̃) > 0. Moreover, similar to the proof of Theorem 2, one shows that S̃ is
still a semi-stably fibred over P1 with 6 singular fibers. This is a contradiction by the
above argument.

We claim also that n1 � | n2. Suppose n1 divides n2, one can construct an unramified
cover S′′ over S, which is still semi-stably fibred over P1 with 6 singular fibers.
Moreover, the minimal model of S′′ admits an elliptic fibration with only one multiple
fiber. This is again a contradiction by the above argument.

Let F be a general fiber of f and F0 its image in X . Let Γ be a general fiber of h
and d = gcd(n1, n2). Then there exist m1,m2 ∈ Z such that m1n1 + m2n2 = d. Let
Γ0 = m2Γ1 + m1Γ2. Then numerically,

Γ0 = m2

n1
· n1Γ1 + m1

n2
· n2Γ2 ∼num

(
m2

n1
+ m1

n2

)
Γ = d

n1n2
· Γ.
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Moreover, by (9), one has the following numerical equivalence:

ωX ∼num

(
1 − 1

n1
− 1

n2

)
Γ ∼num

(n1n2
d

− n1
d

− n2
d

)
Γ0.

According to the proof of [17, Theorem2.1], one has

ω2
S/P1

≥ 6g − 6 + ωX · F0
= 6g − 6 +

(n1n2
d

− n1
d

− n2
d

)
Γ0 · F0

≥ 6g − 6 +
(n1n2

d
− n1

d
− n2

d

)
.

From n1 � | n2 and (6),we see that there are only two possibilities as stated inTheorem3.
It remains to show that S is simply connected. Since χ(OX ) = 1 > 0, it follows

from Noether’s formula that the elliptic fibration h admits at least one singular fiber.
Moreover, we have shown that h has exactly two multiply fibers whose multiplicities
are coprime. From [11, § II.2-Theorem10], it follows that X , and hence also S, are
both simply connected. This completes the proof. 
�

3 Arakelov type inequality

In this section, we generalize our results to the high dimension cases, i.e., we prove
Theorem 4. The technique uses the Arakelov type inequality, which is deduced from
the variation of the Hodge structures attached to such families.

The Arakelov type inequality for the direct image of the relative pluri-canonical
sheaves goes back to Viehweg and the last author [22,24]. This kind of inequality is
generalized in the recent work [8]. The following form can be found in [24, Theo-
rem4.4] and [8, Prop3.1 & Remark3.2], which is the key to our proof.

Theorem 6 Let f : X → B be a semi-stable family of varieties of relative dimension
m ≥ 1 over a smooth projective curve of genus g(B)with s singular fibers. Assume that
the smooth fibers F are minimal, i.e., their canonical line bundles are semiample. Let
ωX/B be the relative canonical sheaf, and E ⊆ f∗

(
ω⊗k
X/B

)
be any non-zero subsheaf.

Then the slope μ(E) := degE
rankE satisfies that

μ(E) ≤ mk
(
2g(B) − 2 + s

)

2
.

The main idea of proving Theorem 4 is to compute the plurigenera by applying
Riemann-Roch theorem for the direct image sheaves f∗

(
ω⊗k
X

)
on the base curve.

Combining with the asymptotic behavior of the plurigenera, we complete the proof.

Proof (Proof of Theorem 4) Since the base is a rational curve P1, it follows that

ωX = ωX/P1 ⊗ f ∗ωP1 = ωX/P1 ⊗ f ∗OP1(−2).
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1726 X. Lu et al.

Hence for any k ≥ 1, one has

f∗
(
ω⊗k
X

) = f∗
(
ω⊗k
X/P1

) ⊗ OP1(−2k). (10)

Let E ⊆ f∗
(
ω⊗k
X

)
be any subsheaf. Then by (10), E ⊗ OP1(2k) is a subsheaf of

f∗
(
ω⊗k
X/P1

)
. Thus by Theorem 6, one obtains

μ(E) + 2k = μ
(E ⊗ OP1(2k)

) ≤ mk

2
· (s − 2);

equivalently, we have

μ(E) ≤ k

2

(
m(s − 2) − 4

)
. (11)

As a locally free sheaf on P
1, the direct image sheaf f∗

(
ω⊗k
X

)
is isomorphic to a

direct sum of invertible sheaves,

f∗
(
ω⊗k
X

) ∼=
rk⊕

i=1

OP1(di ), rk = rank f∗
(
ω⊗k
X

)
.

By (11), we have

di ≤ k

2

(
m(s − 2) − 4

)
, i = 1, 2, . . . , rk .

Hence

dim H0(X, ω⊗k
X ) = dim H0(

P
1, f ∗(ω⊗k

X )
) =

∑

di≥0

(di + 1)

≤ max

{
0,

[k
2

(
m(s − 2) − 4

)] + 1

}
· rank f∗

(
ω⊗k
X

)
.

Here ‘[•]’ stands for the integral part.
According to the definition of the Kodaira dimension of a variety, when k is suffi-

ciently large, one has

{
rank f∗

(
ω⊗k
X

) = dim H0(F, ω⊗k
F ) ∼ kκ(F);

dim H0(X, ω⊗k
X ) ∼ kκ(X).

Hence κ(X) ≤ κ(F) + 1. Moreover, if κ(X) ≥ 0, then

1

2

(
m(s − 2) − 4

) ≥ 0, i.e., s ≥ 4

m
+ 2;

and if κ(X) = κ(F) + 1, then

1

2

(
m(s − 2) − 4

)
> 0, i.e., s >

4

m
+ 2.
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This completes the proof. 
�
Remark 1 Recall that the volume of a projective variety X is defined to be

Vol(X) = lim sup
k

(dim X)! · dim H0(X, ω⊗k
X )

kdim X
.

The above proof shows also that for a variety of general type semi-stably fibred over
P
1 with s singular fibers, one has

Vol(X) ≤ (m + 1)
(
m(s − 2) − 4

)

2
Vol(F),

where F is a general fiber of f . In particular, when X is of general type and f :
X → P

1 is a semi-stable fibration of curves of genus g ≥ 2 with s singular fibers, one
computes that

Vol(X) = ω2
X0

, Vol(F) = 2g − 2,

where X0 is the minimal model of X . Hence the above proof shows that in this case,

ω2
X0

≤ 2(s − 6)(g − 1).

Acknowledgements The authors would like to thank the referees for many useful suggestions for the
correction of the original manuscript.

References

1. Beauville, A.: Le nombre minimum de fibres singulieres d’une courbe stable sur P1. Astérisque 86,
97–108 (1981). (French)

2. Beauville, A.: Les familles stables de courbes elliptiques sur P1 admettant 4 fibres singulières. C. R.
Acad. Sci. Paris 294, 657–660 (1982)

3. Eskin, A., Kontsevich, M., Zorich, A.: Sum of Lyapunov exponents of the Hodge bundle with respect
to the Teichmüller geodesic flow. Publ. Math. Inst. Hautes Études Sci. 120, 207–333 (2014)

4. Fujita, T.: On Kähler fiber spaces over curves. J. Math. Soc. Jpn. 30(4), 779–794 (1978)
5. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York

(1994). Reprint of the (1978) original
6. Gong, C., Lu, X., Tan, S.-L.: Families of curves over P1 with 3 singular fibers. C. R. Math. Acad. Sci.

Paris 351(9–10), 375–380 (2013)
7. Kovács, S.J.: On the minimal number of singular fibres in a family of surfaces of general type. J. Reine

Angew. Math. 487, 171–177 (1997)
8. Lu, J., Tan, S.-L., Zuo, K.: Canonical class inequality for fibred spaces. Math. Ann. (2016). doi:10.

1007/s00208-016-1474-2
9. Lu, X., Tan, S.-L., Xu, W.-Y., Zuo, K.: On the minimal number of singular fibers with non-compact

Jacobians for families of curves over P1. J. Math. Pures Appl. 105(5), 724–733 (2016)
10. Huitrado-Mora, A., Castaneda-Salazar, M., Zamora, A. G.: Toward a conjecture of Tan and Tu on

fibered general type surfaces. arXiv:1604.00050 (2016)
11. Moishezon, B.: Complex Surfaces and Connected Sums of Complex Projective Planes. With an

Appendix by R. Livne. Lecture Notes in Mathematics, vol. 603. Springer, Berlin (1977)
12. Möller, M.: Variations of Hodge structures of a Teichmüller curve. J. Am. Math. Soc. 19(2), 327–344

(2006)

123

http://dx.doi.org/10.1007/s00208-016-1474-2
http://dx.doi.org/10.1007/s00208-016-1474-2
http://arxiv.org/abs/1604.00050


1728 X. Lu et al.

13. Möller, M.: Teichmüller curves, mainly from the viewpoint of algebraic geometry. In: Moduli Spaces
of Riemann Surfaces. IAS/Park City Mathematics Series, vol. 20. American Mathematical Society,
Providence, pp. 267–318 (2013)

14. Sun, X., Tan, S.-L., Zuo, K.: Families of K3 surfaces over curves reaching the Arakelov-Yau type upper
bounds and modularity. Math. Res. Lett. 10(2–3), 323–342 (2003)

15. Tan, S.-L.: The minimal number of singular fibers of a semistable curve over P1. J. Algebraic Geom.
4(3), 591–596 (1995)

16. Tan, S.-L., Tu, Y., Yu, F.: On semistable families of curves over P1 with a small number of singular
curves (2009, preprint)

17. Tan, S.-L., Tu, Y., Zamora, A.G.: On complex surfaces with 5 or 6 semistable singular fibers over P1.
Math. Z. 249(2), 427–438 (2005)

18. Tu, Y.: Surfaces of Kodaira dimension zerowith six semistable singular fibers overP1.Math. Z. 257(1),
1–5 (2007)

19. Viehweg, E., Zuo, K.: On the isotriviality of families of projective manifolds over curves. J. Algebraic
Geom. 10(4), 781–799 (2001)

20. Viehweg, E., Zuo, K.: Families over curves with a strictly maximal Higgs field. Asian J. Math. 7(4),
575–598 (2003)

21. Viehweg, E., Zuo, K.: A characterization of certain Shimura curves in the moduli stack of abelian
varieties. J. Differ. Geom. 66(2), 233–287 (2004)

22. Viehweg, E., Zuo, K.: Numerical bounds for semi-stable families of curves or of certain higher-
dimensional manifolds. J. Algebraic Geom. 15(4), 771–791 (2006)

23. Zamora, A.G.: Semistable genus 5 general type P1-curves have at least 7 singular fibres. Note Mat.
32(2), 1–4 (2012)

24. Zuo, K.: Yau’s form of Schwarz lemma and Arakelov inequality on moduli spaces of projective mani-
folds. In: Handbook of Geometric Analysis. No. 1. Advanced Lectures in Mathematics (ALM), vol. 7,
pp. 659–676. International Press, Somerville, MA (2008)

123


	Singular fibers and Kodaira dimensions
	Abstract
	1 Introduction
	2 Variations of the Hodge structures
	2.1 Preliminaries
	2.2 Proof of Theorem 1
	2.3 Proof of Theorem 2
	2.4 Proof of Theorem 3

	3 Arakelov type inequality
	Acknowledgements
	References




