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Abstract We study the partial regularity of suitableweak solutions to the three dimen-
sional incompressible Navier–Stokes equations. There have been several attempts to
refine the Caffarelli–Kohn–Nirenberg criterion (1982). We present an improved ver-
sion of the CKN criterion with a direct method, which also provides the quantitative
relation in Seregin’s criterion (2007).
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1 Introduction

We consider the Navier–Stokes equations

(∂t − Δ)v + (v · ∇)v + ∇ p = f in Ω × (0, T )

∇ · v = 0 in Ω × (0, T )
(1)
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whereΩ ⊂ R
3 is a bounded domain withC2 boundary and T > 0. The state variables

v and p denote the velocity field of the fluid and its pressure. We complete the above
equations by the following boundary and initial conditions

v = 0 on ∂Ω × (0, T )

v = v0 in Ω × {0}

where the initial velocity v0 is sufficiently regular. Throughout this paper, we assume
that (v, p) is a suitable weak solution to this problem and the definition will be given
in the next section.

There are a huge number of important papers that contribute to the regularity prob-
lem of suitable weak solutions to the Navier–Stokes equations and there are many
good survey papers and books. So, we only mention a few of them. Scheffer [8,9]
introduced partial regularity for the Navier–Stokes system. Caffarelli et al. [1] further
strengthened Scheffer’s results. Lin [6] gave a new short proof by an indirect argument.
Neustupa [7] and Ladyzhenskaya and Seregin [5] investigated partial regularity. Choe
and Lewis [2] studied singular set by using a generalized Hausdorff measure. Escau-
riaza et al. [3] proved the marginal case of the so-called Ladyzhenskaya–Prodi–Serrin
condition based on the unique continuation theory for parabolic equations. Gustafson
et al. [4] generalize several previously known criteria.

Among the many important regularity conditions, the following criterion plays an
important role because it gives better information about the possible singular points:
There exists an absolute positive constant ε such that z = (x, t) ∈ Ω × (0, T ) is a
regular point if

lim sup
r→0

r−1
¨

Q(z,r)
|∇v|2dyds < ε (2)

where Q(z, r) denotes the parabolic cylinder B(x, r) × (t − r2, t) ⊂ R
3 × R.

There have been several attempts to refine this criterion. In particular, Seregin [10]
weakened the above condition as follows: for each 0 < M < ∞ there exists a positive
number ε(M) such that z ∈ Ω × (0, T ) is a regular point if

lim sup
r→0

r−1
¨

Q(z,r)
|∇v|2dyds ≤ M

lim inf
r→0

r−1
¨

Q(z,r)
|∇v|2dyds < ε(M).

(3)

The proof was done by an indirect argument, which has been widely used as an
effective way to prove such kind of regularity theorems in the field of nonlinear PDEs.
The proof goes as follows. If the theorem is false, then there should exist a sequence
of suitable solutions (vn, pn) such that the scaled quantity

r−1
¨

Q(z,r)
|∇vn|2dyds
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tends to zero on a fixed particular cylinder centered at a singular point z. One can
show that the uniform boundedness occurs to ensure a compactness lemma and its
sub-sequential limit must be regular enough at the point z, wihch gives a contradiction
to the fact that z is a singular point. By this argument one can know the theorem is
true so that ε(M) should exist. However, the argument does not provide any specific
information about ε(M), even the quantitative dependence on M is unclear.

In this paper, we shall give a new refined local regularity criterion of suitable
weak solutions to the Navier–Stokes system with a direct iteration method so that our
theorem shows a reverse relation between M and ε(M) and gives at least a quantitative
upper bound of ε(M) in terms of M . For simplicity we use the following notation.

Definition 1 For 9/5 ≤ q ≤ 2, we define

Eq(z, r) = r−5+2q
¨

Q(z,r)
|∇v|qdyds

and denote

Eq(z) = lim sup
r→0

Eq(z, r) and Eq(z) = lim inf
r→0

Eq(z, r)

We omit the subscript q when q = 2.

Here are our main results.

Theorem 1 Let 9/5 ≤ q < 2 and f = 0. There exists a positive number ε such that
z ∈ Ω × (0, T ) is a regular point if

Eq(z)(5−q)/(q−1)Eq(z) < ε.

We only consider the case 9/5 ≤ q because of our interpolation inequality in
Sect. 5 (see Remark 17). The endpoint exponent 9/5 is important when one deals with
a reverse Hölder-type inequality. But, the restriction f = 0 is inessential. Actually,
under somemild integrability condition on f , one can easily show that the contribution
from f is small enough so that the theorem is still true for nonzero forces f .

We have a further improvement when q = 2. In this case, we treat f �= 0 as an
illustration how to control the nonzero forces.

Theorem 2 Let f ∈ Lr (ΩT ) for some r > 5/2. There exists a positive number ε

such that z ∈ Ω × (0, T ) is a regular point if

E(z)E(z) < ε.

This is a quantitative version of (3): the point z ∈ Ω × (0, T ) is regular if

E(z) <
ε

M
.
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Remark 3 We shall define several scaled functionals and give various relations among
them. However, the estimates of those functionals in this paper will not depend on the
reference point z. So, we shall assume z = (0, 0) and Q(z, 2) ⊂ Ω × (−8, 8) for
notational convenience. From now, we suppress z.

2 Preliminaries

We denote by L p(Ω) andWk,p(Ω) the standard Lebesgue and Sobolev spaces and we
use the boldface letters for the space of vector or tensor fields. We denote by Dσ (Ω)

the set of all solenoidal vector fields φ ∈ C∞
c (Ω). We define L2

σ (Ω) to be the closure
of Dσ (Ω) in L2(Ω) and W1,2

σ (Ω) to be the closure of Dσ (Ω) in W1,2(Ω).

Definition 2 (suitable weak solutions) Let ΩT = Ω × (0, T ). Suppose that f ∈
L p(ΩT ) for some p > 5/2. We say that (v, p) is a suitable weak solution to (1) if

v ∈ L∞(0, T ; L2
σ (Ω)) ∩ L2(0, T ;W1,2

σ (Ω)), p ∈ L3/2(ΩT ),

and (v, p) solves the Navier–Stokes equations in ΩT in the sense of distributions and
satisfies the generalized energy inequality

ˆ
Ω

|v(t)|2φ(t)dx + 2
ˆ t

0

ˆ
Ω

|∇v|2φdxds

≤
ˆ t

0

ˆ
Ω

|v|2(∂tφ + Δφ)dxds +
ˆ t

0

ˆ
Ω

|v|2v · ∇φdxds

+2
ˆ t

0

ˆ
Ω

pv · ∇φdxds + 2
ˆ t

0

ˆ
Ω

f · vφdxds (4)

for almost all t ∈ (0, T ) and for all nonnegative φ ∈ C∞
c (ΩT ).

Throughout the paper, we use the following notation.

Notation 1 We denote the average value of g over the set E by

〈g〉E =
 
E
gdμ = μ(E)−1

ˆ
E
gdμ.

We denote A � B if there exists a generic positive constant C such that |A| ≤ CB.

3 Local energy inequalities

We shall define several scaled functionals to describe neatly various relations among
them. The aim of this section is to present local Caccioppoli-type inequalities.

Definition 3 (scaled functionals I) Let

A(r) = r−1 sup
t−r2<s<t

ˆ
B(x,r)

|v|2dy
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C(r) = r−2
¨

Q(r)
|v|3dyds

˜C(r) = r−2
¨

Q(r)
|v − 〈v〉B(r)|3dyds

D(r) = r−2
¨

Q(r)
|p − 〈p〉B(r)|3/2dyds

where 〈g〉B(r) = ffl
B(r) gdy.

From the definition of suitable weak solutions we get the next lemma. Indeed, it
is a direct consequence of the inequality (4) with a standard cutoff function φ, so we
omit its proof.

Lemma 4 (local energy inequality I) For 0 < r ≤ 1

A(r) + E(r) � C(2r)2/3 + C(2r) + C(2r)1/3D(2r)2/3.

In terms of the following scaled functionals, we shall derive another version of a
local Caccioppoli-type inequality.

Definition 4 (scaled functionals II) Let

G(r) = r−1
ˆ 0

−r2

(

ˆ
B(r)

|v|6dy
)1/3

ds

P(r) = r−2 inf
c∈R

(ˆ 0

−r2

(

ˆ
B(r)

|p − c|3dy
)1/3

ds

)2

.

Lemma 5 (local energy inequality II) For 0 < r ≤ 1

A(r) + E(r) � [1 + E(2r)]G(2r) + P(2r).

Proof First, we fix φ ∈ C∞
c (ΩT ) satisfying 0 ≤ φ ≤ 1 in R3, φ ≡ 1 on Q(r), φ ≡ 0

in R3 × (−∞, 0)\Q(2r)c and

|∂tφ| + |∇2φ| + |∇φ|2 � r−2.

Then, by the definition of the suitable weak solution, we have

ˆ
|v(t)|2φ2dy +

¨
|∇v|2φ2dyds

�
¨

|v|2(∂tφ2 + Δφ2)dyds +
¨

|v|2vφ · ∇φdyds

+2
¨

pvφ · ∇φdyds

=: I + I I + I I I. (5)
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We shall estimate each term on the right. By the Jensen inequality

I = r−2
¨

|v|2dyds � r
ˆ 0

−4r2

 
B(2r)

|v|2dyds

� r
ˆ 0

−4r2

(

 
B(2r)

|v|6dy
)1/3

ds � rG(2r). (6)

Since ∇ · v = 0, we have

I I =
¨

(|v|2 − |〈v〉B(2r)|2)vφ · ∇φdyds.

Using the Hölder inequality and then applying the Sobolev–Poincaré inequality, we
obtain that

I I � r−1
¨

|v − 〈v〉B(2r)||v + 〈v〉B(2r)||v|φdyds

� r−1/2
ˆ 0

−4r2

(

ˆ
B(2r)

|v − 〈v〉B(2r)|6dy
)1/6

×
(

ˆ
B(2r)

|v + 〈v〉B(2r)|6dy
)1/6(

ˆ
|v|2φ2dy

)1/2
ds

� r−1/2 sup
s

(

ˆ
|v|2φ2dy

)1/2
ˆ 0

−4r2

(

ˆ
B(2r)

|∇v|2dy
)1/2(

ˆ
B(2r)

|v|6dy
)1/6

ds

� r1/2 sup
s

(

ˆ
|v|2φ2dy

)1/2
E(2r)1/2G(2r)1/2.

By the Young inequality we have for some C > 0 for all δ > 0

I I ≤ δ sup
s

ˆ
|v|2φ2dy + Cr

4δ
E(2r)G(2r). (7)

Hölder’s inequality gives

I I I =
¨

pvφ · ∇φdyds � r−1
¨

|p − c||v|φdyds

� r−1/2
ˆ 0

−4r2

(

ˆ
B(2r)

|p − c|3dy
)1/3(

ˆ
|v|2φ2dy

)1/2
ds

� r1/2 sup
s

(

ˆ
|v|2φ2dy

)1/2
P(2r)1/2.

By the Young inequality we have for some C > 0 for all δ > 0

I I I ≤ δ sup
s

ˆ
|v|2φ2dy + Cr

4δ
P(2r). (8)
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Combining (5)–(8) with a fixed small number δ, we get the result. 
�
Remark 6 If f �= 0, then we have for 0 < r ≤ 1

A(r) + E(r) � [1 + E(2r)]G(2r) + P(2r) + F(2r)

where

F(r) =
(ˆ 0

−r2

(

ˆ
B(r)

| f |2dy
)2/3

ds

)3/2

.

Indeed, Hölder’s inequality gives

¨
f · vφ2dyds �

ˆ 0

−4r2

(

ˆ
B(2r)

| f |2dy
)1/2(

ˆ
|v|2φ2dy

)1/2
ds

� sup
s

(

ˆ
|v|2φ2dy

)1/2
ˆ 0

−4r2

(

ˆ
B(2r)

| f |2dy
)1/2

ds

� r1/2 sup
s

(

ˆ
|v|2φ2dy

)1/2
F(2r)1/2.

By the Young inequality we have for some C > 0 for all δ > 0

¨
f · vφ2dyds ≤ δ sup

s

ˆ
|v|2φ2dy + Cr

4δ
F(2r).

As in the proof of the previous lemma, we can absorb the first term on the right by
choosing small δ. We notice that F(r) → 0 as r → 0.

Remark 7 The implied constants of the estimates in this section are all absolute.

4 Pressure inequalities

In this section we present pressure inequalities, Lemmas 8 and 13, which are used to
complete iteration schemes.

Lemma 8 (pressure inequality I) For 0 < r ≤ 1 and 0 < θ < 1/4

D(θr) � θD(r) + θ−2
˜C(r).

Proof We may assume r = 1. In the sense of distributions we have

−Δp = ∂ j∂k(v jvk).

Let ṽ = v − 〈v〉B(1) and let p1 satisfy the equation

−Δp1 = ∂ j∂k (̃v j ṽkφ)

123
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where φ is a cutoff function which equals 1 in Q(1/2) and vanishes outside of Q(1).
By the Calderon–Zygmund inequality

θ−2
¨

Q(θ)

|p1|3/2dyds � θ−2
˜C(r). (9)

Since p2 := p − p1 is harmonic in B(1/2), we have by the mean value property

θ−2
¨

Q(θ)

|p2|3/2dyds � θ

¨
Q(1/2)

|p2|3/2dyds

� θD(1) + θ

¨
Q(1)

|p1|3/2dyds (10)

Since we have

D(θ) � θ−2
¨

Q(θ)

|p1|3/2 + |p2|3/2dyds,

combining the two estimates (9) and (10) yields the result. 
�
Now, we recall a decomposition of Lebesgue spaces.

Definition 5 For 1 < p < ∞ define

A p(Ω) =
{

Δv : v ∈ W 2, p
0 (Ω)

}

,

B p(Ω) =
{

ph ∈ L p(Ω) ∩ C∞(Ω) : Δph = 0
}

.

Lemma 9 Let 1 < p < ∞ and Ω ⊂ R
n be a bounded C2-domain. Then

L p(Ω) = A p(Ω) ⊕ B p(Ω).

Proof The proof can be found in [11]. 
�
Remark 10 Denote L p

0 (Ω) = { f ∈ L p(Ω) : 〈 f 〉Ω = 0} and

B
p
0 (Ω) = B p(Ω) ∩ L p

0 (Ω).

Since A p(Ω) ⊂ L p
0 (Ω), Lemma 9 implies that

L p
0 (Ω) = A p(Ω) ⊕ B

p
0 (Ω).

Lemma 11 For 1 < s < ∞ the operator Ts :A s(Ω) → W−2,s(Ω) defined by

〈Ts p0, v〉 =
ˆ

Ω

p0Δv, v ∈ W 2,s′
0 (Ω).

is an isomorphism.
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Proof Let p0 ∈ A s(Ω) and set

q = |p0|s−2 p0 ∈ Ls′(Ω).

By Lemma 9 there exist unique q0 ∈ A s′(Ω) and qh ∈ Bs′(Ω) such that

q = q0 + qh .

In particular, q0 = Δv0 for some v0 ∈ W 2,s′
0 (Ω). Hence

‖p0‖sLs (Ω) =
ˆ

Ω

p0q =
ˆ

Ω

p0Δv0 ≤ ‖Ts p0‖W−2,s (Ω)‖v0‖W 2,s′
0 (Ω)

� ‖Ts p0‖W−2,s (Ω)‖q0‖Ls′ (Ω)
� ‖Ts p0‖W−2,s (Ω)‖p0‖s−1

Ls (Ω).

This implies that

‖p0‖Ls (Ω) � ‖Ts p0‖W−2,s (Ω)

and the operator Ts has closed range. Furthermore, Lemma 9 implies also that if
Ts p0 = 0, then p0 ∈ A s(Ω) ∩ Bs(Ω) = {0}. Hence Ts is injective and the result
follows from the closed range theorem. 
�
Remark 12 1. Let f ∈ Ls(Ω;Rn×n), 1 < s < ∞. Then by Lemma 11 there exists

a unique p0 ∈ A s(Ω) such that

Δp0 = ∇ · ∇ · f (11)

in Ω in the sense of distributions. Morevoer, there holds the estimate

‖p0‖Ls (Ω) � ‖ f ‖Ls (Ω). (12)

2. Let g ∈ Ls(Ω;Rn), 1 < s < n. Then by means of Sobolev’s embedding theorem
∇ · g ∈ W−1,s(Ω) ↪→ W−2, s∗(Ω) where s∗ = ns/(n − s). Thus, there exists a
unique p0 ∈ A s∗(Ω) such that

Δp0 = ∇ · g (13)

in Ω in the sense of distributions. By the definition of A s∗(Ω) there exist v0 ∈
W 2,s∗

0 (Ω) with Δv0 = p0, and there holds Δ2v0 = ∇ · g in Ω in the sense of
distributions. By means of elliptic regularity we find v0 ∈ W 3,s(Ω) together with
the estimate

‖∇ p0‖Ls (Ω) � ‖v0‖W 3,s (Ω) � ‖g‖Ls (Ω). (14)
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3. Let p ∈ Ls(Ω). In view of Lemma 9 we have p = p0 + ph with unique p0 ∈
A s(Ω) and ph ∈ Bs(Ω). Observing that p − 〈p〉Ω = p0 + (ph − 〈ph〉Ω) and
appealing to Remark 10 it follows that

‖ph − 〈ph〉Ω‖Ls (Ω) � ‖p − 〈p〉Ω‖Ls (Ω). (15)

4. The implied constant in (12), (14) and (15) depend only on s and Ω . When Ω

equals a ball, these constants depend on s but not on the radius of the ball.

Lemma 13 (pressure inequality II) For 0 < r ≤ 1 and 0 < θ ≤ 1/4

P(2θr) � θ2P(r) + θ−2E(r)2 + θ−2F(r).

Proof We may assume r = 1 and denote B = B(1) and Q = Q(1). By Lemma 9 we
may decompose for a. e. t ∈ IR

p = p0 + ph

where p0 ∈ A 3(B) and ph ∈ B3(B) is harmonic. By Remark 12 wemay decompose

p0 = p01 + p02

where p01 ∈ A 3(B) is the unique weak solution to

Δp01 = −∇ · ∇ · ((v − 〈v〉B) ⊗ (v − 〈v〉B))

in B in the sense of distributions, while p02 ∈ A 3(B) is the unique weak solution to

Δp02 = ∇ · f

in B in the sense of distributions for a. e. t ∈ I (r) := (−r2, 0).
By the aid of (12) and (13) along with Sobolev–Poincaré’s inequality, we find that

for a. e. t ∈ IR

‖p01(t)‖L3(B) � ‖v(t) − 〈v〉B(t)‖2
L6(B)

� ‖∇v(t)‖2
L2(B)

,

‖p02(t)‖L3(B) � ‖∇ p02(t)‖L3/2(B) � ‖ f (t)‖L3/2(B).

Integrating in time, we get

ˆ
I
‖p01‖L3(B)ds �

´
I ‖∇v‖2

L2(B)
ds = E(1), (16)

ˆ
I
‖p02‖L3(B)ds �

´
I ‖ f ‖L3/2(B)ds = F(1)1/2. (17)
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On the other hand, employing (15), we see that ph − 〈ph〉B ∈ L1(I ; L3(B)) and

ˆ
I
‖ph − 〈ph〉B‖L3(B)ds �

ˆ
I
‖p − 〈ph〉B‖L3(B)ds.

Applying the Poincaré-type inequality and using the mean value property of harmonic
functions, we obtain that

ˆ
I (2θ)

‖ph − 〈ph〉BθR‖L3(B(2θ))ds � θ2
ˆ
I (1/2)

‖∇ ph‖L∞(B(1/2))ds

� θ2
ˆ
I
‖p − 〈p〉B‖L3(B)ds. (18)

Combining (16), (17), and (18), we get

P(2θ)1/2 � θ−1
ˆ
I (2θ)

‖p − 〈p〉B(θ)‖L3(B(2θ))ds

� θ−1
ˆ
I (2θ)

‖ph − 〈ph〉B(θ)‖L3(B(2θ))ds

+ θ−1
ˆ
I
‖p01‖L3(B)ds + θ−1

ˆ
I
‖p02‖L3(B)ds

� θ

ˆ
I
‖p − 〈p〉B‖L3(B)ds + θ−1E(1) + θ−1F(1)1/2

and the result follows. 
�
Remark 14 The implied constants of the estimates in this section are all absolute.

5 Interpolation inequalities

In this section we give a few interpolation inequalities.

Lemma 15 For 0 < r ≤ 1 and 0 < θ ≤ 1

C(θr) � θC(r) + θ−2
˜C(r)

and

C(θr) � θ3A(r)3/2 + θ−2
˜C(r). (19)

Proof We may assume r = 1 and denote B = B(1) and 〈v〉B = ffl
B vdy. By subtract-

ing the average 〈v〉B we have

ˆ
B(θ)

|v|3dy � θ3|〈v〉B |3 +
ˆ
B(θ)

|v − 〈v〉B |3dy.

Integrating in time and using Jensen’s inequality we get the result. 
�

123



640 H. J. Choe et al.

Lemma 16 (interpolation inequality I) Let

9

5
≤ q ≤ 2,

3 − q

5q − 6
≤ k ≤ 3 − q

3
. (20)

Then for 0 < r ≤ 1

˜C(r) � A(r)(9−3q−3qk)/(6−2q)Eq(r)
3k/(3−q). (21)

Proof By scaling we may assume r = 1 and denote B = B(1). Let q∗ = 3q/(3− q).
From the condition (20), we have 0 < (3−kq∗)/2 < 1, 0 < k < 1, and (3−kq∗)/2+
k ≤ 1. Thus, we can apply the Hölder inequality to get

ˆ
B

|v − 〈v〉B |3dy

=
ˆ
B
(|v − 〈v〉B |2)(3−kq∗)/2(|v − 〈v〉B |q∗

)kdy

≤
(

ˆ
B
1dy

)1−k−(3−kq∗)/2( ˆ
B

|v − 〈v〉B |2dy
)(3−kq∗)/2(ˆ

B
|v − 〈v〉B |q∗

dy
)k

.

By the Sobolev–Poincaré inequality

ˆ
B

|v − 〈v〉B |3dy �
(

ˆ
B

|v|2dy
)(3−kq∗)/2( ˆ

B
|∇v|qdy

)kq∗/q

� A(1)(3−kq∗)/2
(

ˆ
B

|∇v|qdy
)kq∗/q

.

From the condition (20), we have 0 < kq∗/q ≤ 1. Thus, we can apply the Jensen
inequality to get

ˆ 0

−1

ˆ
B

|v − (v)B |3dyds

� A(1)(3−kq∗)/2
ˆ 0

−1

(

ˆ
B

|∇v|qdy
)kq∗/q

ds

� A(1)(3−kq∗)/2Eq(1)
kq∗/q .

Finally, we have (3 − kq∗)/2 = (9 − 3q − 3qk)/(6 − 2q) and kq∗/q = 3k/(3 − q)

by simple calculations. 
�
Remark 17 In the proof of Lemma 16 we used the condition (3 − kq∗)/2 + k ≤ 1
to apply the Hölder inequality and the condition 0 < kq∗/q ≤ 1 to apply the Jensen
inequality. These two conditions are equivalent to

3 − q

5q − 6
≤ k ≤ 3 − q

3
.

123



A new local regularity criterion for suitable weak... 641

So, we should have 5q − 6 ≥ 3. This is the reason for the restriction of q ≥ 9/5 in the
condition (20). In addition, we do not know that such kind of interpolation inequality
holds for some q < 9/5. This is the reason why we only conisder the case q ≥ 9/5 in
Thoerem 1.

Remark 18 If we choose q = 2 and k = 1/4, then the estimate (21) becomes the
well-known estimate

˜C(r) � A(r)3/4E(r)3/4.

If we choose k = (3 − q)/3, then the estimate (21) becomes

˜C(r) � A(r)(3−q)/2Eq(r). (22)

Lemma 19 Let

X (r) := C(r) + D(r).

If 9
5 ≤ q ≤ 2 and 3−q

5q−6 ≤ k ≤ 3−q
3 , then for 0 < r ≤ 1 and 0 < θ < 1

4

X (θr) � θX (r) + θ−2A(r)(9−3q−3qk)/(6−2q)Eq(r)
3k/(3−q).

Proof It follows from combining Lemmas 15, 8, and 16. 
�
Lemma 20 (interpolation inequality II) For 0 < r ≤ 1 and 0 < θ ≤ 1

G(θr) � θ−1E(r) + θ2A(r).

Proof We may assume r = 1 and denote B = B(1) and 〈v〉B = ffl
B vdy. By the

Sobolev–Poincaré inequality

ˆ
B(θ)

|v|6dy �
ˆ
B(θ)

|v − 〈v〉B |6dy +
ˆ
B(θ)

|〈v〉B |6dy

�
(

ˆ
B

|∇v|2dy
)3 + (θr)3|〈v〉B |6.

Thus, we have

G(θ) = θ−1
ˆ 0

−θ2

(

ˆ
B(θ)

|v|6dy
)1/3

ds

� θ−1E(r) +
ˆ 0

−θ2
|〈v〉B |2ds,

and the result follows. 
�

123



642 H. J. Choe et al.

Lemma 21

(

r−2
¨

Q(r)
|v|3dyds

)2/3
� A(r) + E(r).

Proof By scaling we may assume r = 1 and denote B = B(1) and Q = Q(1). By
the Hölder inequality

¨
Q

|v|3dyds ≤
ˆ 0

−1

(

ˆ
B

|v|2dy
)1/2(

ˆ
B

|v|6dy
)1/3

ds.

By the Young inequality

(

¨
Q

|v|3dyds
)2/3

� A(1)1/3G(1)2/3 ≤ A(1) + G(1).

By Lemma 20 with θ = 1 we get the result. 
�
Remark 22 The implied constants of the estimates in this section are all absolute.

6 Control of local kinetic energy and pressure

The aim of this section is to prove that the scaled quantities of local kinetic energy
and pressure are controlled by the velocity gradient.

Lemma 23 Let 9/5 ≤ q ≤ 2. There exists an absolute positive constant γ such that
if 1 < Eq < ∞, then

lim sup
r→0

[A(r) + D(r)] ≤ γ E
2/(q−1)
q . (23)

Remark 24 We assume Eq > 1 for convenience. Indeed, we may consider the case
that Eq has a positive lower bound because of the criterion (2).

Proof Fix q and denote M = Eq . There is R < 1 such that for all 0 < r < R

Eq(r) ≤ 2M.

From the local energy inequality I in Sect. 3, we have for 0 < r < R and 0 < θ ≤ 1

A(θr) � 1 + X (2θr)

where X (r) = C(r) + D(r). If we set

Y (r) := A(r) + X (r),
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then, by using the trivial estimate X (θr) ≤ 4X (2θr), we get

Y (θr) � 1 + X (2θr). (24)

Using Lemma 19 with k = (3−q)/3 and then applying Young’s inequality, we obtain
that for 0 < r < R and 0 < θ < 1/4

X (2θr) � θX (r) + θ−2A(r)(3−q)/2M

� θY (r) + θ−(7−q)/(q−1)M2/(q−1).
(25)

Thus, combining (24) and (25) yields that for some positive constant β ≥ 2

Y (θr) ≤ βθY (r) + βθ−(7−q)/(q−1)M2/(q−1) + β

≤ βθY (r) + 2βθ−(7−q)/(q−1)M2/(q−1).

If we fix θ = (2β)−1, then the last inequality becomes

Y (θr) ≤ 1

2
Y (r) + (2β)6/(q−1)M2/(q−1).

By the standard iteration argument we get

lim sup
r→0

Y (r) ≤ γ M2/(q−1)

where γ = 2(2β)6/(q−1). This completes the proof. 
�
Lemma 25 There exists an absolute positive constant γ such that if E < ∞, then

lim sup
r→0

P(r) ≤ γ E
2
.

Proof From Lemma 13 we have for all r < 1 and 0 < θ ≤ 1/4

P(2θr) � θ2P(r) + θ−2E(r)2 + θ−2F(r).

Since limr→0 F(r) = 0, we initially start from a small number r = R and then
perform a standard iteration argument to get the result. 
�

7 Proof of Theorem 1

Fix q and denote

M = Eq and m = Eq .
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Suppose 1 < M < ∞ for convenience. Lemma 23 implies that there is a positive
number R such that for all 0 < r ≤ R

A(r) � M2/(q−1) and D(r) � M2/(q−1). (26)

On the other hand, there exists a sequence of positive numbers rn such that rn < R
and

lim
n→∞ rn = 0 and lim

n→∞ Eq(rn) = m.

Combining (19) and (22), we have for all n and 0 < θ ≤ 1

C(θrn) � θ3A(rn)
3/2 + θ−2A(rn)

(3−q)/2Eq(rn).

Hence from (26) we obtain that for some β > 0

C(θrn) ≤ βθ3M3/(q−1) + βθ−2M (3−q)/(q−1)Eq(rn).

If 0 < m, then we take θ = [M−q/(q−1)m]1/5 so that

C(θrn) ≤ βθ3M3/(q−1) + βθ−2M (3−q)/(q−1)Eq(rn)

≤ β
(

M (5−q)/(q−1)m
)3/5(

1 + m−1Eq(rn)
)

.

Since

lim
n→∞m−1Eq(rn) = 1,

we have for all large n

C(θrn) ≤ 3βε3/5.

If ε is small, then we take R = θrN and a large natural number N so that z is a regular
point.

Ifm = 0, then theorem is trivially true. Indeed,we can choose θ so thatβθ3M3/(q−1)

is small enough and

lim
n→∞ βθ−2M (3−q)/(q−1)Eq(rn) = 0.

Therefore z is a regular point. This completes the proof of Theorem 1. 
�

123



A new local regularity criterion for suitable weak... 645

8 Proof of Theorem 2

Finally, we give the proof of Theorem 2. From Remark 6 we have for all 2θr < R
and 0 < θ < 1/4

A(θr) + E(θr) � [1 + E(2θr)]G(2θr) + P(2θr) + F(R)

where R will be determined later. From Lemma 13, we have for 0 < θ < 1/4

P(2θr) � θ2P(r) + θ−2E(r)2 + θ−2F(R).

From Lemma 20

G(2θr) � θ−1E(r) + θ2A(r).

We also have

E(2θr) ≤ (2θ)−1E(r)

by the definition. Combining all the above estimates, we conclude that for 2θr < R
and 0 < θ < 1/4

A(θr) + E(θr)

� θ A(r)E(r) + θ2A(r) + θ2P(r) + θ−1E(r) + θ−2E(r)2 + θ−2F(R). (27)

Let us denote

M = E and m = E .

If m = 0, then theorem is trivially true. We may consider the case 0 < m and
1 ≤ M < ∞. Lemma 23 with q = 2 implies that there is a positive number R1 such
that for all 0 < r ≤ R1

A(r) � M2. (28)

Lemma 25 implies that there is a positive number R2 such that for all 0 < r ≤ R2

P(r) � M2. (29)

Since limr→0 F(r) = 0, there is a positive number R3 such that for all 0 < r ≤ R3

F(r) ≤ M−2ε2. (30)

We also have for some R4 and for all 0 < r ≤ R4

E(r) ≤ 2M.
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We can take

R = min{R1, R2, R3, R4}

and fix a sequence rn such that rn < R,

lim
n→∞ rn = 0 and lim

n→∞ E(rn) = m.

Combining (27)–(30), we have for all sufficiently large n and for all 0 < θ < 1/4

A(θrn) + E(θrn)

� θM2E(rn) + θ2M2 + θ−1E(rn) + θ−2E(rn)
2 + θ−2M−2ε2

� θM2m + θ2M2 + θ−1m + θ−2m2 + θ−2M−2ε2.

Since Mm < ε and ε < 1/16, we can take θ = ε1/2M−1 < 1/4 so that the above
estimate becomes

A(θrn) + E(θrn) � ε3/2 + ε + ε1/2 � ε1/2. (31)

As it has been proved in [12] there exists an absolute constant ε such that if D(r) ≤ ε

that z is a regular point (cf. [13]). This together with Lemma 21 shows that there exists
a positive constant ε such that z is a regular point if for some r > 0

A(r) + E(r) < ε.

Due to (29) and (31), we conclude that the reference point z is regular for the case
m > 0. This completes the proof of Theorem 2. 
�
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