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Abstract We study zeta functions enumerating submodules invariant under a given
endomorphism of a finitely generated module over the ring of (S-)integers of a number
field. In particular, we compute explicit formulae involving Dedekind zeta functions
and establish meromorphic continuation of these zeta functions to the complex plane.
As an application, we show that ideal zeta functions associated with nilpotent Lie
algebras of maximal class have abscissa of convergence 2.

Mathematics Subject Classification 11M41 · 15A04 · 15A21 · 17B30

1 Introduction

1.1 Zeta functions derived from endomorphisms

Throughout, rings are assumed to be commutative and unital. We say that a ring R
has polynomial submodule growth if the following holds for every finitely generated
R-module M : for each m � 1, the number of submodules of additive index m of M
is finite and polynomially bounded as a function of m. Recall that R is semi-local if it
contains only finitely many maximal ideals.
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392 T. Rossmann

Theorem 1.1 ([21, Thm 1]) Let R be a ring which is finitely generated over Z or
semi-local with finite residue fields. Then R has polynomial submodule growth if and
only if it has Krull dimension at most 2.

Let R be a ring with polynomial submodule growth, let M be a finitely generated
R-module, and let A ∈ EndR(M). For m � 1, let am(A, R) denote the number of
A-invariant R-submodules U � M with |M : U | = m. We define a zeta function

ζA,R(s) :=
∞∑

m=1

am(A, R)m−s

and we let αA,R < ∞ denote its abscissa of convergence; it is well-known that αA,R

is precisely the degree of polynomial growth of the partial sums a1(A, R) + · · · +
am(A, R) as a function of m.

The zeta functions ζA,R(s) belong to the larger theory of subobject zeta functions;
for a recent survey of the area, see [26]. Indeed, using the terminology from [17],
ζA,R(s) is the submodule zeta function ζR[A]�M (s) of the enveloping algebra R[A] :=∑∞

i=0 R · Ai ⊂ EndR(M) of A acting on M .
The main results of this article, Theorems A–D, constitute a rather exhaustive

analysis of the zeta functions ζA,R(s) in the cases that R is the ring of (S-)integers
of a number field or a (generic) completion of such a ring. In particular, our findings
provide further evidence in support of the author’s general conjectures on submodule
zeta functions stated in [17, §8].

1.2 Related work: invariant subspaces

The study of subspaces invariant under an endomorphism has a long history. For a
finite-dimensional vector space V over the real or complex numbers and A ∈ End(V ),
Shayman [22] investigated topological properties of the compact analytic space SA of
A-invariant subspaces of V . In particular, if A is nilpotent, then he found the subspace
SA(d) ⊂ SA of d-dimensional A-invariant subspaces of V to be connected but usually
singular.

For an arbitrary ground field F and a fixed number n, Ringel and Schmidmeier [16]
studied the category of triples (V,U, T ), where V is a finite-dimensional vector space
over F , T ∈ EndF (V ) satisfies T n = 0, and U � V is F-invariant. While their
point of view is rather different from ours, we would like to point out that they found
the case of exponent n � 7 to involve instances of so-called “wild” representation
type.

1.3 Ideal zeta functions

In our study of the zeta functions ζA,R(s), wewill frequently encounter another special
case of submodule zeta functions, namely ideal zeta functions. Let R be a ring with
polynomial submodule growth and let A be a possibly non-associative R-algebra
whose underlying R-module is finitely generated. We write I �R A to indicate that I
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Enumerating submodules invariant under an endomorphism 393

is a two-sided ideal of A which is also an R-submodule. The ideal zeta function (cf.
[11]) of A is

ζA(s) :=
∑

I�RA|A:I|<∞

|A : I|−s .

For example, the ideal zeta function of the ring of integers of a number field k
is precisely the Dedekind zeta function of k. In particular, the ideal zeta function
of Z is the Riemann zeta function ζ(s). As explained in [17, Rem. 2.2 (ii)], ideal
zeta functions are in fact a special case of the submodule zeta functions discussed
below.

1.4 Global setup, Euler products, and growth rates

For the remainder of this article, let k be a number field with ring of integers o.
Let Vk denote the set of non-Archimedean places of k. For v ∈ Vk , let kv be the

v-adic completion of k and let ov be its valuation ring. For S ⊂ Vk , let

oS =
⋂

v∈Vk\S
ov ∩ k

be the usual ring of S-integers of k.
In the following, we investigate ζA,R(s), where A ∈ EndR(M) and R = ov or

R = oS for v ∈ Vk or a finite set S ⊂ Vk , respectively. The techniques that we use
are predominantly local and valid for almost all places of k (i.e. for all but finitely
many places); the exclusion of a finite number of exceptional places is common and
frequently unavoidable in the theory of subobject zeta functions.

If M is a finitely generated oS-module, then M ⊗oS ov is a free ov-module for
almost all v ∈ Vk\S. We thus lose little by henceforth assuming that M = onS and
A ∈ Mn(oS), where Mn(R) denotes the algebra of n × n matrices over a ring R.
Note that if A ∈ Mn(k), then A ∈ Mn(ov) for almost all v ∈ Vk . In order to exclude
trivialities, unless otherwise stated, we always assume that n > 0. Being instances
of submodule zeta functions, the zeta functions ζA,oS (s) admit natural Euler product
factorisations.

Proposition (Cf. [17, Lemma 2.3]) Let A ∈ Mn(oS) for finite S ⊂ Vk . Then

ζA,oS (s) =
∏

v∈Vk\S
ζA,ov (s).

The following is a consequence of deep results of du Sautoy and Grunewald on
subobject zeta functions expressible in terms of what they call “cone integrals”.

Theorem 1.2 (Cf. [7, §4]) Let A ∈ Mn(oS) for finite S ⊂ Vk . Then:
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394 T. Rossmann

(i) The abscissa of convergence αA,oS of ζA,oS (s) is a rational number.
(ii) ζA,oS (s) admits meromorphic continuation to {s ∈ C : Re(s) > αA,oS − δ} for

some δ > 0. This continued function is regular on the line Re(s) = αA,oS except
for a pole at s = αA,oS .

(iii) Let βA,oS denote the multiplicity of the pole of (the meromorphic continuation
of) ζA,oS (s) at αA,oS . Then there exists a real constant cA,oS > 0 such that

a1(A, oS) + · · · + am(A, oS) ∼ cA,oS ·mαA,oS (logm)βA,oS−1.

where f (m) ∼ g(m) signifies that f (m)/g(m) → 1 as m → ∞.

1.5 Matrices, polynomials, and partitions

Prior to stating our main results, we need to establish some notation and recall some
terminology. By a partition of an integer n � 0, we mean a non-increasing sequence
λ = (λ1, . . . , λr ) of positive integers with n = λ1+· · ·+λr ; for background, we refer
to [12]. We write |λ| := n, len(λ) := r , and λ−1 := λr . We write λ 
 n to signify
that λ is a partition of n. For i � 0, define σi (λ) := λ1 + · · · + λi . For 1 � j � |λ|,
let λ−1( j) be the unique number i ∈ {1, . . . , len(λ)} with σi−1(λ) < j � σi (λ);

equivalently, λ−1( j) = min
(
i ∈ {1, . . . , len(λ)} : j � σi (λ)

)
. The dual partition

of λ is denoted by λ∗. Thus, if |λ| > 0, then λ∗ = (μ1, . . . , μt ), where t = λ1 and
μi = #

{
i ∈ {1, . . . , len(λ)} : λi � i

}
.

For a monic polynomial f = Xm + am−1Xm−1 + · · · + a0, let

C( f ) =

⎡

⎢⎢⎢⎣

0 1
. . .

. . .

0 1
−a0 . . . −am−2 −am−1

⎤

⎥⎥⎥⎦

be its companion matrix. Let A ∈ Mn(k). It is well-known that there are monic irre-
ducible polynomials f1, . . . , fe ∈ k[X ] and partitions λ1, . . . ,λe of positive integers
n1,. . . , ne such that n = deg( f1)n1 +· · ·+deg( fe)ne and A is similar to its (primary)
rational canonical form

diag
(
C

(
f
λ1,1
1

)
, . . . ,C

(
f
λ1,len(λ1)

1

)
, . . . . . . , C

(
f
λe,1
e

)
, . . . C

(
f
λe,len(λe)

e

))

over k. We call (( f1,λ1), . . . , ( fe,λe)) an elementary divisor vector of A over k; any
two elementary divisor vectors of A coincide up to reordering.

1.6 Main results

Recall that k is a number field with ring of integers o. Throughout, pv ∈ Spec(o)
denotes the prime ideal corresponding to a place v ∈ Vk and qv = |o/pv| denotes the
residue field size of kv . Our global main result is the following.
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Enumerating submodules invariant under an endomorphism 395

Theorem A Let S ⊂ Vk be finite and A ∈ Mn(oS). Let (( f1,λ1), . . . , ( fe,λe)) be an
elementary divisor vector of A over k. Write ki = k[X ]/( fi ). Let oi denote the ring
of integers of ki . Let Si = {w ∈ Vki : ∃v ∈ S.w | v} and write oi,Si := (oi )Si . Then
the following hold:

(i) There are finitely many places w1, . . . , w� ∈ Vk\S and associated rational func-
tions W1, . . . ,W� ∈ Q(X) such that

ζA,oS (s) =
�∏

u=1

Wu(q
−s
wu

) ×
e∏

i=1

|λi |∏

j=1

ζoi,Si

(
(λ∗

i )
−1( j) · s − j + 1

)
. (1.1)

In particular, ζA,oS (s) admits meromorphic continuation to the complex plane.
(ii) The abscissa of convergenceαA,oS of ζA,oS (s) satisfiesαA,oS =max1�i�e len(λi )

∈ N.
(iii) Let I := {

i ∈ {1, . . . , e} : len(λi ) = αA,oS

}
. Then the multiplicity βA,oS of the

pole of ζA,oS (s) at αA,oS satisfies βA,oS = ∑
i∈I λi,−1.

As we will see, part (i) is in fact a consequence of a similar formula (5.1) which
is valid for almost all local zeta functions ζA,ov (s). The exceptional factors Wu(q−s

wu
)

in (1.1) cannot, in general, be omitted, see Example 5.5 below.
We note that the special case A = 0n in Theorem A is consistent with the well-

known formula ζoS (s)ζoS (s−1) · · · ζoS (s− (n−1)) for the zeta function enumerating
all finite-index submodules of onS . We further note that the shape of the right-hand side
of (1.1) is rather similar to that of Solomon’s formula [23, Thm 1] for the zeta function
enumerating submodules of finite index of a ZG-lattice for a finite group G.

Local functional equations under “inversion of the residue field size” are a common,
but not universal, phenomenon in the theory of subobject zeta functions; see [24,25].
For an extension of number fields k′/k and v ∈ Vk , let gv(k′) denote the number of
places of k′ which divide v.

Theorem B Let A ∈ Mn(k) and let (( f1,λ1), . . . , ( fe,λe)) be an elementary divisor
vector of A over k. Write μi := λ∗

i . Then, for almost all v ∈ Vk ,

ζA,ov (s)

∣∣∣∣
qv →q−1

v

= (−1)

e∑
i=1

|λi | ·gv(k[X ]/( fi )) · q
e∑

i=1
deg( fi )(

|λi |
2 )−

(
e∑

i=1
deg( fi )

λi1∑
j=1

jμi j

)
s

v · ζA,ov (s).

(1.2)

We now give a description of the operation “qv → q−1
v ” in Theorem B. Let k′/k

be an extension of number fields, let o′ be the ring of integers of k′, let v ∈ Vk , and let
w ∈ Vk′ divide v. It is well-known that ζo′

w
(s) = 1/(1−q−s

w ) = 1/
(
1−q−f(w/v)s

v

)
for

some f(w/v) � 1. After excluding finitely many places of k, the local version (5.1) of
(1.1) expresses ζA,ov (s) as a product of factors of the form ζo′

w
(as−b). The operation

“qv → q−1
v ” is then applied in the evident way to each of these factors.

We note that in the special case that (A−a1n)n = 0 for some a ∈ k, the functional
equation (1.2) follows from [25, Thm 1.2] (see [25, Rem. 1.5]).
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396 T. Rossmann

It is natural to ask what properties of A can be inferred from its associated zeta
functions. We will make frequent use of the following elementary observation.

Lemma Let A, B ∈ Mn(k). Suppose that k[A] and k[B] are similar (i.e. GLn(k)-
conjugate). Then for almost all v ∈ Vk , ζA,ov (s) = ζB,ov (s).

The following is another consequence of our explicit formulae.

Theorem C Let A ∈ Mn(k) and B ∈ Mm(k) be nilpotent. The following are equiva-
lent:

(i) n = m and A and B are similar.
(ii) For almost all v ∈ Vk , ζA,ov (s) = ζB,ov (s).
(iii) There exists a finite S ⊂ Vk such that A and B both have entries in oS and such

that ζA,oS (s) = ζB,oS (s).

The nilpotency condition in Theorem C cannot, in general, be omitted, see
Remark 5.8.

The author previously conjectured [17, §8.3] that generic local submodule zeta
functions associated with nilpotent matrix algebras have a simple pole at zero. In the
present case, our explicit formulae allow us to deduce the following.

Theorem D Let A ∈ Mn(k). Then for almost all v ∈ Vk , ζA,ov (s) has a pole at zero.
Moreover, the following are equivalent:

(i) For almost all v ∈ Vk , ζA,ov (s) has a simple pole at zero.
(ii) There exists a ∈ k with (A − a1n)n = 0.

1.7 Behaviour at zero in general—a conjecture

We use this opportunity to state a generalisation of our conjecture on the behaviour at
zero of local submodule zeta functions (see [17, Conj. IV and §8.3]); this generalisation
disposes of the mysterious nilpotency assumption found in its precursor.

For a ring R with polynomial submodule growth, a finitely generated R-module
M , and 	 ⊂ EndR(M), the submodule zeta function ζ	�M (s) is the Dirichlet series
enumerating 	-invariant R-submodules of finite index of M (cf. [17, Def. 2.1 (ii)]).

Let V be a finite-dimensional vector space over k and let A ⊂ Endk(V ) be
an associative, unital subalgebra. Let rad(A) denote the (nil)radical of A. By the
Wedderburn-Malcev Theorem [6, Thm 72.19], there exists a subalgebra S ⊂ A such
that A = rad(A) ⊕ S as vector spaces (whence S ≈k A/rad(A) is semisimple);
moreover, S is unique up to conjugacy under (1 + rad(A)) � A×. Choose o-forms
V ⊂ V , A ⊂ Endo(V) and S ⊂ Endo(V) of V , A, and S, respectively. We write
Xv := X ⊗o ov in the following.

Conjecture E For almost all v ∈ Vk ,

ζAv�Vv
(s)

ζSv�Vv
(s)

∣∣∣∣
s=0

= 1.
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Enumerating submodules invariant under an endomorphism 397

This conjecture reduces to the behaviour predicted in [17, §8.3] in the “nilpotent
case” A = rad(A) ⊕ k1V . In order to make Conjecture E more explicit, we recall
Solomon’s formula for ζSv�Vv

(s). Let S = S1 ⊕· · ·⊕Sr be the Wedderburn decom-
position of the semisimple algebra S (so that each Si is simple). Let Wi be a simple
Si -module and decompose V = V1 ⊕ · · · ⊕ Vr , where Vi is isomorphic to Wmi

i and
S acts diagonally on V . Let ki be the centre of Si and let oi be the ring of integers of
ki . Finally, let ei be the Schur index of the central simple ki -algebra Si and define ni
by dimki (Ai ) = n2i .

Theorem 1.3 ([23, §4]) For almost all v ∈ Vk ,

ζSv�Vv
(s) =

r∏

i=1

mi ei∏

j=1

∏

w∈Vki
w|v

ζoi,w (ni s − j + 1). (1.3)

The special caseA = k[α] (α ∈ Endk(V )) of Conjecture E follows from Theorem 1.3
and Theorem 5.1 below.

For a more abstract interpretation of Conjecture E, note that we may identify S
acting on V with A/rad(A) acting (faithfully) on the semi-simplification of V as an
A-module (i.e. the direct sum of the composition factors of V as an A-module).

1.8 Overview

In order to derive Theorems A–D, we proceed as follows. In Sect. 2, we reduce the
computation of ζA,oS (s) to the case that the minimal polynomial of A over k is a power
of an irreducible polynomial. In Sect. 3, we then further reduce to the case that A is
nilpotent. The heart of this article, Sect. 4, is then devoted to the explicit determination
of ζA,ov (s) for nilpotent A and almost all v ∈ Vk ; as a by-product, in Theorem 4.4, we
compute the ideal zeta function of the 2-dimensional ringZ[[X ]]. We then combine our
findings and derive Theorems A–D in Sect. 5. Finally, as an application, in Sect. 6, we
use Theorem A to compute the abscissae of convergence of some (largely unknown)
submodule and ideal zeta functions.

Notation

Throughout, N = {1, 2, . . . } and δi j denotes the Kronecker symbol. The symbol “⊂”
indicates not necessarily proper inclusion. We use ≈R to denote both the similarity
of matrices over R and the existence of an R-isomorphism. Matrices act by right-
multiplication on row vectors. Matrix sizes are indicated by single subscripts for
square matrices and double subscripts in general; in particular, 1n and 0m,n denote the
n × n identity and m × n zero matrix, respectively.

We say that a property depending on S holds for sufficiently large finite S ⊂ Vk ,
if there exists a finite S0 ⊂ Vk such that the property holds for all finite S ⊂ Vk

with S ⊃ S0. Given v ∈ Vk , we write |·|v for the v-adic absolute value on kv with
|π |v = q−1

v for π ∈ pv\p2v .
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398 T. Rossmann

By a p-adic field, we mean a finite extension K of the p-adic numbersQp for some
prime p. We letOK denote the valuation ring of K and write qK for the residue field
size of K . Furthermore, νK and |·|K denote the additive valuation and absolute value
on K , respectively, normalised such that any uniformiser π satisfies νK (π) = 1 and
|π |K = q−1

K . When the reference to K is clear, we occasionally omit the subscript
“K ”.

2 Reduction to the case of a primary minimal polynomial

By the following, up to enlarging S, we may reduce the computation of ζA,oS (s) to
the case where the minimal polynomial of A over k is primary (i.e. a power of an
irreducible polynomial).

Proposition 2.1 Let A ∈ Mn(k). Let f = f1 · · · fe be a factorisation of the minimal
polynomial f of A over k into a product of pairwise coprime monic polynomials
fi ∈ k[X ]. Let Ai ∈ Mni (k) denote the matrix of A acting onKer( fi (A)) with respect
to an arbitrary k-basis. Then for almost all v ∈ Vk ,

ζA,ov (s) =
e∏

i=1

ζAi ,ov (s).

Proof It is well-known that kn = Ker( f1(A)) ⊕ · · · ⊕ Ker( fe(A)) is an A-invariant
decomposition into subspaces of dimensions n1, . . . , ne, say, and fi is the minimal
polynomial of Ai . We may thus assume that A = diag(A1, . . . , Ae). By the Chinese
remainder theorem, for each i = 1, . . . , e, there exists gi ∈ k[X ]with gi ≡ δi j mod f j
for j = 1, . . . , e. Hence, gi (A) = diag(δi11n1 , . . . , δie1ne ) ∈ k[A]. Choose a finite
set S ⊂ Vk with Ai ∈ Mni (oS) and gi ∈ oS[X ] for i = 1, . . . , e.

Let v ∈ Vk\S. Write V := onv . The block diagonal shape of A yields an A-invariant
decomposition V = V1 ⊕ · · · ⊕ Ve into free ov-modules of ranks n1, . . . , ne. Note
that A acts as Ai on each Vi and that each gi (A) acts as the natural map V �
Vi ↪→ V . Let U � V be an ov-submodule. If U is A-invariant, then it decomposes
as U = U1 ⊕ · · · ⊕ Ue for Ai -invariant submodules Ui � Vi . We conclude that
(U1, . . . ,Ue) �→ U1 ⊕ · · · ⊕Ue defines a bijection from

{
(U1, . . . ,Ue) : Ui �ov Vi and Ui Ai � Ui for i = 1, . . . , e

}

onto the set of A-invariant submodules ofV whence ζA,ov (s) = ζA1,ov (s) · · · ζAe,ov (s).
��

3 Reduction to the case of a nilpotent matrix

Recall that C( f ) denotes the companion matrix of a polynomial f . Given a partition
λ = (λ1, . . . , λr ), let

N(λ) := diag(C(Xλ1), . . . ,C(Xλr )).
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Enumerating submodules invariant under an endomorphism 399

Suppose that the minimal polynomial of A ∈ Mn(k) is a power of an irreducible
polynomial f ; we then say that A is ( f -)primary. The elementary divisors of A are
f λ1 , . . . , f λr for a unique partition λ = (λ1, . . . , λr ) of n/ deg( f ). We call λ the type
of A.

For an extension k′/k of number fields and S ⊂ Vk , define

Dk′/k(S) = {w ∈ Vk′ : ∃v ∈ S.w | v}.

Hence, using the notation from Theorem B, #Dk′/k(S) = ∑
v∈S gv(k′).

In this section, we prove the following.

Theorem 3.1 Let f ∈ k[X ] be monic and irreducible. Let A ∈ Mn(k) be an f -
primary matrix of type λ. Let k′ = k[X ]/( f ), and let o′ be the ring of integers of k′.
Then for almost all v ∈ Vk ,

ζA,ov (s) =
∏

w∈Vk′
w|v

ζN(λ),o′
w
(s).

Hence, for all sufficiently large finite S ⊂ Vk , setting S′ = Dk′/k(S).

ζA,oS (s) = ζN(λ),o′
S′ (s).

Remark 3.2 In [22, §3], the study of the variety of subspaces invariant under an endo-
morphism of a finite-dimensional real or complex vector space is reduced to the case
of a nilpotent endomorphism. Shayman proceeds by first reducing to the case of a pri-
mary endomorphism ([22, Thm 2]) and our Proposition 2.1 proceeded along the same
lines. In his setting, the minimal polynomial of a primary endomorphism is a power of
a linear or quadratic irreducible and he considers these cases separately. His reasoning
is similar to arguments employed in our proof of Theorem 3.1 below. We may regard
the factorisation of ζA,ov (s) obtained by combining Proposition 2.1 and Theorem 3.1
as an arithmetic analogue of the factorisation of the space of A-invariant subspaces
in [22, Thm 3]. In [22, §4], Shayman then proceeds to study invariant subspaces of
nilpotent matrices in Jordan normal form. For our purposes, a slightly different normal
form, introduced in Sect. 4.1, will prove advantageous.

Our proof of Theorem 3.1 requires some preparation.

3.1 A generalised Jordan normal form for primary matrices

Let ⊗ denote the usual Kronecker product [ai j ] ⊗ B = [ai j B] of matrices. The
following result is a special case of the “separable Jordan normal form” in [14, §6.2];
it can also be obtained by restriction of scalars from the usual Jordan normal form of
an f -primary matrix over a minimal splitting field of f over k.
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400 T. Rossmann

Proposition 3.3 Let f ∈ k[X ] be monic and irreducible of degree d. Let A ∈ Mn(k)
be f -primary of type λ. Write m := n/d. Then A ≈k 1m ⊗ C( f ) + N(λ) ⊗ 1d .

Lemma 3.4 Let f ∈ k[X ] be monic and irreducible of degree d, λ 
 m > 0, and
A = 1m ⊗ C( f ) + N(λ) ⊗ 1d . Then 1m ⊗ C( f ) = diag(C( f ), . . . ,C( f )) ∈ k[A].
Proof Write γ := C( f ) and e := λ1; note that Xe is the minimal polynomial of
N(λ) over every field. We may naturally regard A as an m × m matrix over the
field k′ := k[γ ]. Moreover, we may identify k′ = k[1m ⊗ C( f )] as k-algebras.
Thus, k[A, 1m ⊗ C( f )] = k′[γ 1m + N(λ)] = k′[N(λ)] whence the k-dimension of
k[A, 1m ⊗ C( f )] is |k′ : k|e = de. As f e is the minimal polynomial of A over k, the
number de is also the k-dimension of k[A] whence the claim follows. ��

Regarding the transition from the number field k to the local ring ov , we note that
the enveloping algebras of companion matrices take the expected forms over UFDs.

Lemma 3.5 Let R be a UFD and let f ∈ R[X ] be monic. Then evaluation at C( f )
induces an isomorphism R[X ]/( f ) ≈R R[C( f )].
Proof Let K denote the field of fractions of R. The kernel of the natural map R[X ] →
R[C( f )] is I := R[X ] ∩ f K [X ] and, clearly, f R[X ] ⊂ I . Let h ∈ I so that h = f g
for some g ∈ K [X ]. By [4, Thm7.7.2], there exists a ∈ K× with a f, a−1g ∈ R[X ]. As
f is monic (hence primitive), a ∈ A whence g = a(a−1g) ∈ R[X ] and h ∈ f R[X ].

��

3.2 Properties of S-integers and their completions

Lemma 3.6 Let k′/k be an extension of number fields. Let o′ be the ring of integers
of k′. Let S ⊂ Vk be finite and S′ = Dk′/k(S). Then o′ ⊗o oS ≈o o′

S′ .

Proof The following argument is taken from [5]: if h is the class number of k and
a ∈ o generates the principal ideal

∏
v∈S phv , then oS = o[1/a]. We conclude that

o′ ⊗o oS = o′[1/a] = o′
S′ . ��

Lemma 3.7 Let f ∈ k[X ] be monic and irreducible. Let k′ = k[X ]/( f ) with ring of
integers o′. Then the following holds for all sufficiently large finite S ⊂ Vk:

(i) oS[X ]/( f ) ≈oS o′
S′ , where S′ = Dk′/k(S).

(ii) ov[X ]/( f ) ≈ov

∏
w∈Vk′
w|v

o′
w for v ∈ Vk \ S.

Proof We freely use the exactness of localisation and completion; see [10, Prop. 2.5,
Thm 7.2]. Let S0 ⊂ Vk be finite with f ∈ oS0 [X ]. If S ⊃ S0, then oS0 [X ]/( f ) ⊗oS0
oS ≈oS oS[X ]/( f ). As oS0 [X ]/( f ) and o′ both become isomorphic to k′ after base
change to k, for sufficiently large finite S ⊃ S0, oS[X ]/( f ) ≈oS o′

S′ by Lemma 3.6.
This proves the first part. For the second part, first note that, using (i) and Lemma 3.6,

ov[X ]/( f ) ≈ov oS[X ]/( f ) ⊗oS ov ≈ov o′
S′ ⊗oS ov ≈ov o′ ⊗o ov. (3.1)
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Write o(v) := ov ∩ k for the v-adic valuation ring of k. It is easy to see that we may
naturally identify o′ ⊗oo(v) with the integral closure of o(v) in k′. The key observation
here is that if a ∈ k′ is a root of a monic polynomial f (X) ∈ o(v)[X ], then there
exists m ∈ o with v(m) = 0 and ma ∈ o′. Indeed, as in the proof of Lemma 3.6,
we find m ∈ o such that for all w ∈ Vk , w(m) > 0 if and only if some coefficient c
of f (X) satisfies w(c) < 0. By replacing m by a suitable power, we can ensure that
all coefficients of m f (X) belong to o whence ma is integral over o and thus belongs
to o′.

We conclude (see [13, Ch. II, §8, Exerc. 4]) that the canonical isomorphism k′ ⊗k

kv ≈kv

∏
w|v k′

w ([13, Ch. II, Prop. 8.3]) induces an isomorphism o′ ⊗o ov ≈ov∏
w|v o′

w. Part (ii) thus follows from the latter isomorphism and (3.1). ��

3.3 Proof of Theorem 3.1

Recall that am(A, R) denotes the number of A-invariant R-submodules of Rn of
index m, where A ∈ Mn(R).

Proposition 3.8 Let R1, . . . , Rr be rings with polynomial submodule growth.

(i) R := R1 × · · · × Rr has polynomial submodule growth.
(ii) (Cf. [23, Lem. 1].) Let A ∈ Mn(R) and let Ai denote the image of A

under the map Mn(R) → Mn(Ri ) induced by the projection R → Ri . Then
am(A, R) = am(A1, R1) · · · am(Ar , Rr ) for each m ∈ N. Thus, ζA,R(s) =
ζA1,R1(s) · · · ζAr ,Rr (s).

Proof Decompose Rn = Rn
1×· · ·×Rn

r with R acting diagonally on Rn .Multiplication
by ei = (δ1i , . . . , δni ) ∈ R acts as the natural map Rn → Rn

i → Rn . Given an Ri -
submoduleUi � Rn

i for i = 1, . . . , r , we obtain an R-submoduleU = U1 ×· · ·×Ur

of Rn and it is easy to see that every R-submodule of Rn is of this form in a unique
way. Evidently, U has finite index in Rn if and only if each Ui has finite index in Rn

i .
Part (i) is immediate and (ii) follows since A acts as Ai on Rn

i . ��
Proof of Theorem 3.1 Assuming that the finite set S ⊂ Vk is sufficiently large, we can
make the following assumptions for all v ∈ Vk\S:

(NOR) A = 1m ⊗ C( f ) + N(λ) ⊗ 1d ∈ Mn(ov) for d = deg( f ) and λ 
 m
(Proposition 3.3).

(DIA) 1m ⊗ C( f ) ∈ ov[A] (Lemma 3.4).
(INT) ov[X ]/( f ) ≈ov

∏
w∈Vk′
w|v

o′
w (Lemma 3.7).

Let v ∈ Vk\S. First note that as an ov-module, ov[C( f )] is freely generated by
(1d ,C( f ), . . . ,C( f )d−1). It follows easily that onv is free of rank m as an ov[C( f )]-
module, where C( f ) acts as 1m ⊗ C( f ).

Using Lemma 3.5,(INT) allows us to identify ov[C( f )] = ov[X ]/( f ) =∏
w|v o′

w =: Rv . Thanks to (DIA), we may then regard A as an m × m matrix over
Rv . Moreover, the A-invariant ov-submodules of onv coincide with the A-invariant Rv-
submodules of Rm

v . By (NOR), the latter Rv-submodules are precisely those invariant
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under A − C( f ) · 1m = N(λ). Therefore, ζA,ov (s) = ζN(λ),Rv
(s). Noticing that the

(0, 1)-matrix N(λ) is preserved by each projection Rv → o′
w, Proposition 3.8 shows

that ζN(λ),Rv
(s) = ∏

w|v ζN(λ),o′
w
(s) which concludes the proof. ��

4 The case of a nilpotent matrix

Let λ 
 n. Recall the definitions of λ−1( j) from the introduction and of N(λ) from
Sect. 3.

Definition Wλ(X,Y ) = 1/
∏n

j=1

(
1 − X j−1Y λ−1( j)

) ∈ Q(X,Y ).

Equivalently, Wλ(X,Y ) = 1/
∏len(λ)

i=1

∏λi
j=1

(
1 − Xσi−1(λ)+ j−1Y i

)
. This section is

devoted to proving the following.

Theorem 4.1 Let λ 
 n and let K be a p-adic field. Then

ζN(λ∗),OK (s) = Wλ(qK , q−s
K ).

Prior to giving a proof of Theorem 4.1, we record a few consequences.

Corollary 4.2 Let A ∈ Mn(k) be nilpotent of type λ (see Sect. 3). Then for all suffi-
ciently large finite sets S ⊂ Vk ,

ζA,oS (s) =
n∏

j=1

ζoS

(
(λ∗)−1

( j) · s − j + 1
)
.

If A ∈ Mn(o) and A ≈o N(λ), then we may take S = ∅.

As an application, we can determine the ideal zeta function of Z[X ]/(Xn). Recall
that ζ(s) denotes the Riemann zeta function.

Corollary 4.3 For every prime p,

ζZp[X ]/(Xn)(s) = 1/
n∏

j=1

(1 − p j−1− js).

In particular,

ζZ[X ]/(Xn)(s) =
n∏

j=1

ζ( js − j + 1).

Proof The matrix of multiplication by X acting on Z[X ]/(Xn) with respect to the
basis (1, X, . . . , Xn−1), i.e. the companion matrix of Xn , is precisely N((n)). ��
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Remark The subalgebra zeta functions of Zp[X ]/(Xn) are known only for n � 4 and
sufficiently large primes p. Moreover, the author’s computation of these zeta functions
for n = 4 relied on fairly involved machine calculations; see [18, §9.2]. (The formula
for ζZp[X ]/(X4)(s) in [18] takes up about a page in total.)

Subobject zeta functions over rings other than oS or ov have received little attention
so far. We obtain the following.

Theorem 4.4 (i) Z[[X ]] has polynomial submodule growth.
(ii) ζZ[[X ]](s) = ∏∞

j=1 ζ( js − j + 1) for Re(s) > 1.

Proof It is well-known that the maximal ideals of Z[[X ]] are precisely of the form
(X, p) for a rational prime p. It follows that X acts nilpotently on every Z[[X ]]-
module of finite length. Hence, if U �Z[[X ]] Z[[X ]]d has finite index, then U contains
XnZ[[X ]]d for some n � 1. As Z[[X ]] is Noetherian, U thus corresponds to a Z[X ]-
submodule of Z[X ]d/XnZ[X ]d . In particular, (i) follows since Z[X ] has polynomial
submodule growth by Theorem 1.1. Moreover, Corollary 4.3 implies the identity in
(ii) on the level of formal Dirichlet series.

In order to establish (absolute) convergence, let s > 1 be real. By well-known facts
on infinite products,

∏∞
j=1 ζ( js − j + 1) converges (absolutely) if and only if the

same is true of F(s) := ∑∞
j=1(ζ( js − j + 1) − 1). Using the non-negativity of the

coefficients of each Dirichlet series ζ( js − j + 1), we obtain

F(s) =
∞∑

j=1

∞∑

n=2

n j−1(n j )−s =
∞∑

n=2

gnn
−s,

where

gn := n ·
∑

m�2, j�1
n=m j

1

m
.

We see that for N � 2,

N∑

n=2

gn � N
∑

m�2, j�1
m j�N

1

m
� N

N∑

m=2

2 log N

m
= O(N (log N )2) = O(N 1+ε)

for every ε > 0. In particular, F(s) and ζZ[[X ]](s) both converge for Re(s) > 1. ��
Remark 4.5 (i) Note, in particular, that ζZ[[X ]](s) has an essential singularity at s = 1

and therefore does not admit meromorphic continuation beyond its abscissa of
convergence. This illustrates that Theorem 1.2 (ii) does not carry over to general
ground rings with polynomial submodule growth.

(ii) In view of Theorem 1.1, it is natural to investigate the ideal growth of uni-
variate polynomial rings over suitable 1-dimensional ground rings. Segal [20]
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showed that if R is a Dedekind domain which is not a field and which has only
finitely many ideals of a given finite index, then ζR[X ](s) = ∏∞

j=1 ζR( js − j)
is an identity of formal Dirichlet series. We note that despite the close similarity
between Segal’s formula andTheorem4.4 (ii), our approach is quite different from
his.

In order to prove Theorem 4.1, we employ the p-adic integration machinery from
[11]. For a ring R, let Trn(R) denote the R-algebra of upper triangular n× n-matrices
over R. Recall that an element of a ring is regular if it is not a zero divisor. Write
Trregn (R) = {x ∈ Trn(R) : det(x) ∈ R is regular}. For a p-adic field K , let μK denote
the Haar measure on Kn with μK (On

K ) = 1.

Proposition 4.6 ([11, §3]) Let K be a p-adic field and A ∈ Mn(OK ). Define
VK (A) := {

x ∈ Trregn (OK ) : On
K xA ⊂ On

K x
}
to be the set of upper-triangular

n × n matrices over OK whose rows span an A-invariant OK -submodule of finite
index of On

K . Then

ζA,OK (s) = (1 − q−1
K )−n

∫

VK (A)

|x11|s−1
K |x22|s−2

K · · · |xnn|s−n
K dμK (x). (4.1)

Strategy. In order to prove Theorem 4.1, we proceed as follows. First, in Sect. 4.1,
we define a matrix A(λ) which is similar (over Z) to N(λ∗) so that ζN(λ∗),OK (s) =
ζA(λ),OK (s). As we will see in Sect. 4.2, the advantage of A(λ) over N(λ∗) is that the
sets VK (A(λ)) in Proposition 4.6 exhibit a natural, recursive structure. Specifically, we
will define dλ := (λ2, . . . , λlen(λ)) and find that VK (A(λ)) can be described in terms
of VK (A(dλ)) and membership conditions for generic vectors in generic sublattices.
In Sect. 4.3, the geometry of such membership conditions is elucidated by means of
suitable (birational) changes of coordinates. Finally, in Sect. 4.4, we combine all these
ingredients and prove Theorem 4.1.

4.1 A dual normal form for nilpotent matrices

Definition Let λ = (λ1, . . . , λr ) 
 n � 0. Define dλ := (λ2, . . . , λr ). We recursively
define A(λ) ∈ Mn(Z) as follows:

(i) If r � 1, define A(λ) = 0n .
(ii) If r > 1, define

A(λ) =

⎡

⎢⎢⎢⎢⎣

0λ1
1λ2

0λ1−λ2,λ2

0λ1,λ3+···+λr

A(dλ)

⎤

⎥⎥⎥⎥⎦
. (4.2)
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In other words,

A(λ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0λ1

1λ2

0λ1−λ2,λ2

0λ2

1λ3

0λ2−λ3,λ3

. . .
. . .

. . .
1λr

0λr−1−λr ,λr

0λr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.3)

By the following, the A(λ) parameterise similarity classes of nilpotent matrices.

Proposition 4.7 A(λ∗) and N(λ) are conjugate by permutation matrices.

Proof Let T (λ) be the Young diagram of λ and let V (λ) be the Z-module freely
generated by the cells of T . We use “English notation” for Young diagrams—that is,
T (λ) consists of precisely len(λ) left-justified rows, indexed as 1, . . . , len(λ) from
top to bottom, such that the i th row contains precisely λi cells. (See below for an
example.)

Define�(λ) to be the endomorphism of V (λ) (acting on the right) which sends each
cell to its right neighbour if it exists and to zero otherwise. We consider two orderings
on the cells of T (λ) and describe the associated matrices representing �(λ). The
horizontal order is defined by traversing the cells of T (λ) from left to right within each
row, proceeding from top to bottom. For example, by labelling the cells of T ((2, 2, 1))
as 1, . . . , 5 according to the horizontal order, we obtain

1 2
3 4
5 .

Clearly, N(λ) is the matrix of �(λ) with respect to the horizontal order.
The vertical order is obtained by traversing the cells of T (λ) from top to bottom

within each column, proceeding from left to right. In the case of T ((2, 2, 1)) from
above, the vertical order is thus given by

1 4
2 5
3 .

Writeμ := λ∗, sayμ = (μ1, . . . , μ�). We now show by induction on � that the matrix
of �(λ) with respect to the vertical order is A(μ)—it then follows, in particular, that
A(μ) and N(λ) are conjugate as claimed.

If � � 1, then �(λ) = 0 and A(μ) = 0 so let � > 1. Let t1, . . . , tn be the cells
of T (λ) according to the vertical order. Then ti�(λ) = tμ1+i for 1 � i � μ2 and
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ti�(λ) = 0 for μ2 < i � μ1. Let λ̃ := (dμ)∗ and Ṽ := Ztμ1+1 ⊕ · · · ⊕ Ztn . We
may naturally identify the endomorphism of Ṽ induced by �(λ) with �(λ̃) acting on
V (λ̃); the defining basis of Ṽ is then ordered vertically. By induction, the matrix of
�(λ) acting on Ṽ with respect to the basis (tμ1+1, . . . , tn) is therefore A(dμ) whence
the claim follows from the recursive description of A(μ) in (4.2). ��

For |λ| > 0, let B(λ) ∈ M|λ|,|dλ|(Z) denote the matrix obtained by deleting the first
λ1 columns of A(λ). The following consequence of (4.3) will be useful below.

Lemma 4.8 B(λ) contains preciselyλ1 zero rows and by deleting these, the |dλ|×|dλ|
identity matrix is obtained.

4.2 Recursion

In this subsection, we give a recursive description of VK (A(λ)) (see Proposition 4.6).

Lemma 4.9 Let λ = (λ1, . . . , λr ) 
 n and let X be the generic upper triangular
n × n matrix. Partition X in the form

X =
⎡

⎢⎣
X I

λ2
∗

0λ1−λ2,λ2 X II
λ1−λ2

X̄λ1,|dλ|

0 X ′
|dλ|

⎤

⎥⎦ ,

where subscripts are added to denote block sizes. Then

XA(λ) =
⎡

⎣0λ1

X I

0
X̄B(dλ)

0 X ′A(dλ)

⎤

⎦ .

Proof This follows easily from (4.2). ��

By Lemmas 4.8–4.9, the λ1 × |dλ| submatrix obtained by considering the first λ1
rows of XA(λ) and then deleting the first λ1 columns is of the form

Xλ :=

⎡

⎢⎢⎢⎢⎢⎢⎣

x1,1 . . . x1,λ2 ∗ . . . ∗
. . .

...
...

. . .
...

xλ2,λ2 ∗ . . . ∗
...

. . .
...

∗ . . . ∗

⎤

⎥⎥⎥⎥⎥⎥⎦
, (4.4)

where the entries marked “∗” indicate unspecified but distinct variables taken from X̄ .
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Corollary 4.10 Let λ 
 n and let K be a p-adic field. For x ∈ Trn(K ), define x′ and
xλ by specialising X ′ and Xλ from Lemma 4.9 and (4.4), respectively, at x. Then

VK (A(λ)) =
{
x ∈ Trregn (OK ) : (i) each row of xλbelongs to O|dλ|

K x′and

(ii) x′ ∈ VK (A(dλ))
}
. (4.5)

Proof Let x ∈ Trregn (OK ). Clearly, x ∈ VK (A(λ)) if and only if every row of xA(λ) is
contained in theOK -span of the rows of x. By Lemma 4.9 and since det(x) �= 0, the
first λ1 rows of xA(λ) satisfy this condition if and only if every row of xλ is contained
in theOK -span of the rows of x′. Similarly, the rows numbered λ1+1, . . . , n of xA(λ)

are contained in the OK -span of x if and only if each row of x′A(dλ) is contained in
the OK -span of x′ or, equivalently, if x′ ∈ VK (A(dλ)). ��

4.3 Characterising submodule membership

Condition (i) in (4.5) leads us to investigate pairs (x, y) ∈ Rn × Trn(R) (where R is
a ring) such that x is contained in the row span of y over R. In this subsection, we
study the set of all such pairs (x, y) in the case that R = OK for a p-adic field K .

We write An = Spec(Z[X1, . . . , Xn]) and Trn = Spec(Z[Yi j : 1 � i � j � n]).
Let

En(R) := {
(x, y) ∈ Rn × Trn(R) : x ∈ Rn y

}
. (4.6)

We identify An × Trn = Spec(Z[X1, . . . , Xn,Y11, . . . , Y1n,Y22, . . . ,Ynn]). Define

Cn := {
(α, ω) ∈ Rn

�0 × Trn(R�0) : ωi i � αi for 1 � i � n
}
. (4.7)

For a p-adic field K , we extend νK to families of elements of K via νK (a1, . . . , am)

= (νK (a1), . . . , νK (am)) and write

Cn(K ) :=
{
(x, y) ∈ Kn × Trn(K ) : (νK (x), νK ( y)) ∈ Cn

}
⊂ On

K × Trregn (OK ).

The following lemma will play a key role in our proof of Theorem 4.1. It shows that
away from sets of measure zero, a suitable Z-defined change of coordinates (defined
independently of K ) transforms En(OK ) into Cn(K ).

Lemma 4.11 There exist

• closed subschemes Vn, V ′
n ⊂ An×Trn of the form fn = 0 and f ′

n = 0, respectively,
where fn, f ′

n ∈ Z[X,Y ] are non-zero non-units, and
• an isomorphism ϕn : (An × Trn)\Vn → (An × Trn)\V ′

n

such that the following conditions are satisfied:

(i) For each p-adic field K , ϕK
n (En(OK ) \ Vn(OK )) = Cn(K )\V ′

n(OK ), where ϕK
n

denotes the map induced by ϕn on K -points.
(ii) The Jacobian determinant of ϕn is identically 1.
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(iii) ϕn commutes with (the appropriate restrictions of) the projection of An × Trn
onto Trn and (the restrictions of) the projection onto the first coordinate of An.

Example (n = 2) Let K be a p-adic field; we drop the subscripts “K ” in the following.
Let x, y, a, b, c ∈ O and suppose that x(ay − bx)abc �= 0. Define y′ := y − x

a b ∈ K
and note that y′ �= 0. Then (x, y) ∈ O2 · [ a b

0 c

]
if and only if ν(a) � ν(x) and

(x, y)− x
a (a, b) = (0, y′) ∈ O(0, c); the latter condition is equivalent to ν(c) � ν(y′)

and implies that y′ ∈ O. We see that the map ((x, y),
[
a b
0 c

]
) �→ ((x, y′),

[
a b
0 c

]
) has

the properties of ϕ2 stated in Lemma 4.11.

Proof of Lemma 4.11 We proceed by induction. For n = 1, we let f1 = f ′
1 = X1Y11

and define ϕ1 to be the identity. Clearly, (i)–(iii) are satisfied.
Let n > 1 and suppose that ϕn−1 with the stated properties has been defined. Let K

be a p-adic field and let (x, y) ∈ Kn × Trn(K ) with x1y11 �= 0. We again drop the
subscripts “K ”. Gaussian elimination shows that (x, y) ∈ En(O) if and only if the
following conditions are satisfied:

(a) xi , yi j ∈ O for 1 � i � j � n,
(b) x1

y11
∈ O, and

(c)
(
x2 − x1

y11
y12, . . . , xn − x1

y11
y1n

) ∈ On−1 ·
[
yi j

]

2�i� j�n
.

We will now simplify (c) using a change of coordinates. For 2 � j � n, let
x ′
j := x j − x1

y11
y1 j . Write x ′

1 := x1 and x′ := (x ′
1, . . . , x

′
n). Note that (x, y) �→ (x′, y)

is an automorphism of the complement of Y11 = 0 in An × Trn and that the Jacobian
determinant of this map is identically 1.

Assuming that yi j ∈ O for 1 � i � j � n and x1
y11

∈ O, we see that x j ∈ O if
and only if x ′

j ∈ O. Hence, (x, y) ∈ En(O) if and only if (b) and the following two
conditions are satisfied:

(a’) x ′
i , yi j ∈ O for 1 � i � j � n,

(c’) (x ′
2, . . . , x

′
n) ∈ On−1 ·

[
yi j

]

2�i� j�n
.

After excluding suitable hypersurfaces, our inductive hypothesis allows us to perform
another change of coordinates, replacing x ′

2, . . . , x
′
n by x ′′

2 , . . . , x ′′
n , say, such that

(x, y) ∈ En(K ) if and only if the following conditions are satisfied:

(a”) x ′′
i , yi j ∈ O for 1 � i � j � n (where x ′′

1 := x ′
1 = x1) and

(c”) ν(yii ) � ν(x ′′
i ) for 1 � i � n;

note that (b) is implied by the case i = 1 of (c”).
For (i), assuming that the product of all x ′′

i and yi j is non-zero, conditions (a”) and
(c”) are both satisfied if and only if (x′′, y) ∈ Cn(K ), where x′′ := (x ′′

1 , . . . , x ′′
n ).

The change of coordinates x �→ x′′ is defined over Z, does not depend on K , and,
does not modify the x1- or y-coordinate, as required for (iii); part (ii) follows since
ϕn is defined as a composite of maps, the Jacobian determinant of each of which is
identically 1. ��
Remark 4.12 It follows from Lemma 4.11(ii) that the change of variables afforded
by ϕn does not affect p-adic measures. Moreover, it is well-known that if 0 �= f ∈
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OK [X1, . . . , Xn], then the zero locus of f inOn
K has measure zero. We conclude that

Vn and V ′
n in Lemma 4.11 are without relevance for the computation of the integral in

Proposition 4.6.

4.4 Final steps towards Theorem 4.1

By combining Corollary 4.10 and Lemma 4.11, we may reduce the computation of
the integral in Proposition 4.6 for A = A(λ) to a purely combinatorial problem.

Proposition 4.13 Let λ = (λ1, . . . , λr ) 
 n and let K be a p-adic field. Then

ζA(λ),OK (s) = (1 − q−1
K )−n

∫

Vλ(OK )

n∏

i=1

|xi |s−i
K dμK (x), (4.8)

where Vλ(OK ) consists of those x ∈ O
n(n+1)/2
K satisfying the following divis-

ibility conditions, where the yi, j,� below denote distinct variables among the
xn+1, . . . , xn(n+1)/2:

• For 2 � i � r and 1 � j � λi ,

xσi−1(λ)+ j

∣∣∣ xσi−2(λ)+ j , yi, j,1, . . . , yi, j, j−1.

• For 3 � i � r and σi−1(λ) < j � n,

x j
∣∣∣ yi, j,n+1, . . . , yi, j,n+λi−2 .

Remark Since the yi, j,� do not appear in the integrand in the right-hand side of (4.8),
it is of no consequence precisely which of the xn+1, . . . , xn(n+1)/2 each yi, j,� refers
to provided that distinct triples (i, j, �) yield different yi, j,�.

Proof of Proposition 4.13 If r � 1, the claim is trivially true so let r � 2.
As our first step, we combine Corollary 4.10 and Lemma 4.11 in order to transform

the membership condition (i) in (4.5). Recall that the non-zero entries of Xλ in (4.4)
are distinct variables from X I or X̄ ; in particular, none of the variables in Xλ occurs
in X ′. We may therefore use Lemma 4.11 to transform the membership condition for
any fixed row of xλ to be contained in O

|dλ|
K x′. Condition (iii) in Lemma 4.11 now

ensures that the coordinates corresponding to the variables in X ′ remain unchanged
by each such transformation. By applying Lemma 4.11 to each row of xλ in turn,
we thus obtain the given divisibility conditions for i = 2 and i = 3, respectively;
here, x1, . . . , xn correspond to the diagonal entries x11, . . . , xnn in Proposition 4.6.
Condition (iii) in Lemma 4.11 further ensures that the coordinates corresponding to the
diagonal entries of X remain unchanged. Condition (ii) in Lemma 4.11 thus implies
that the preceding transformations do not affect the integrand in (4.1).

Having transformed condition (i) in (4.5), subsequent steps then recursively apply
the same procedure in order to express the condition x ′ ∈ VK (A(dλ)) in Corollary 4.10
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in terms of the stated divisibility conditions, taking into account the evident shifts of
variable indices. Crucially, in doing so, none of the diagonal coordinates will ever be
modified, again thanks to condition (iii) in Lemma 4.11. Therefore, the divisibility
conditions obtained during earlier steps will never be altered by subsequent ones. The
claim thus follows by induction. ��
Proof of Theorem 4.1 We once again omit subscripts “K ” in the following.Moreover,
we will make repeated use of the identity

∫

{(x,y)∈O2:x |y}
|x |r |y|sdμ(x, y) =

∫

O2

|x |r+s+1|y|sdμ(x, y) (4.9)

which follows by performing a change of variables y = xy′ on the left-hand side. We
will furthermore use the well-known identity

∫
O|x |sdμ(x) = (1−q−1)/(1−q−s−1).

By repeatedly applying (4.9), we can eliminate all the yi, j,� variables and
rewrite (4.8) as an integral over On . In order to record the effect of this procedure
on the integrand, we use λ to index x1, . . . , xn as follows. Let f (i, j) := σi−1(λ) + j
and, for x = (x1, . . . , xn), write xi j := x f (i, j). Define

Uλ(O) :=
{
x ∈ On : xi, j | xi−1, j for 2 � i � r and 1 � j � λi

}
.

Proposition 4.7 and repeated applications of (4.9) to (4.8) show that

ζN(λ∗),O(s) = ζA(λ),O(s) = (1 − q−1)−n
∫

Uλ(O)

Fλ(x)dμ(x),

where

Fλ(x) =
r∏

i=1

λi∏

j=1

|xi j |s− f (i, j) ×
r∏

i=2

λi∏

j=1

|xi j | j−1 ×
r∏

a=3

r∏

i=a

λi∏

j=1

|xi j |λa−2

=
λ1∏

j=1

|x1 j |s− j ×
r∏

i=2

λi∏

j=1

|xi j |s−(λi−1+1);

the second equality follows since s − f (i, j) + j − 1+ ∑i
a=3 λa−2 = s − (λi−1 + 1)

for 2 � i � r and 1 � j � λi . Another sequence of applications of (4.9) can be used
to remove the divisibility conditions in Uλ(O), yielding

(1 − q−1)nζA(λ),O(s) =
∫

On

λ1∏

j=1

|x1 j |s− j ×
r∏

i=2

λi∏

j=1

|xi j |
s− j+i−1+

i−1∑
a=1

(s−(λa+1))
dμ(x)

=
∫

On

r∏

i=1

λi∏

j=1

|xi j |is−(σi−1(λ)+ j)dμ(x)

123



Enumerating submodules invariant under an endomorphism 411

= (1 − q−1)n ·
r∏

i=1

λi∏

j=1

(
1 − q−is+σi−1(λ)+ j−1

)−1

= (1 − q−1)n ·Wλ(q, q−s).

��

5 Proofs of Theorems A–D

At the heart of our proofs of Theorems A–D lies the following local version of Theo-
rem A.

Theorem 5.1 Let S ⊂ Vk be finite and A ∈ Mn(oS). Let (( f1,λ1), . . . , ( fe,λe)) be
an elementary divisor vector of A over k. Write ki = k[X ]/( fi ). Let oi denote the ring
of integers of ki . Then for almost all v ∈ Vk ,

ζA,ov (s) =
e∏

i=1

|λi |∏

j=1

∏

w∈Vki
w|v

ζoi,w
(
(λ∗

i )
−1( j) · s − j + 1

)
. (5.1)

Proof Combine Proposition 2.1, Theorem 3.1, and Theorem 4.1. ��
The following is a consequence of Proposition 4.6 and well-known rationality

results from p-adic integration.

Proposition 5.2 (Cf. [11, §3]) Let K be a p-adic field and let A ∈ Mn(OK ). Then
ζA,OK (s) ∈ Q(q−s

K ). Hence, ζA,OK (s) admits meromorphic continuation to all of C.

In order to deduce parts (ii)–(iii) of Theorem A, we will use the following corollary
to the detailed analysis of analytic properties of subobject zeta functions in [7].

Lemma 5.3 Let S′ ⊂ Vk be finite, S ⊂ S′, and let A ∈ Mn(oS). Then αA,oS = αA,oS′
and βA,oS = βA,oS′ .

Proof We first argue that αA,ov < αA,oS for each v ∈ Vk\S. The zeta function
ζA,oS (s + n) is an Euler product of cone integrals (cf. Proposition 4.6) in the sense of
[7, Def. 4.2]; cf. [7, Cor. 5.6]. Using the notation from [7], by [7, Cor. 3.4] (which is
correct despite a minor, fixable mistake in [7, Prop. 3.3], see [1, Rem. 4.6]), it follows
that each αA,ov for v ∈ Vk\S is a number of the form n − Bj/A j for j = 1, . . . , q.
Hence, by combining [7, Cor. 4.14, Lem. 4.15], for each v ∈ Vk\S,

αA,ov < n + max
k=1,...,q

1 − Bk

Ak
= αA,oS .

Clearly, 0 < αA,oS′ � αA,oS . Define F(s) = ∏
v∈S′\S ζA,ov (s) so that ζA,oS (s) =

F(s)ζA,oS′ (s) for all s ∈ C with Re(s) > αA,oS − δ and some constant δ > 0
(see Theorem 1.2). By the above, every real pole of F(s) is less than αA,oS . Since
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F(s) is a non-zero Dirichlet series with non-negative coefficients, we conclude that
F(αA,oS ) > 0. In particular, since ζA,oS (s) has a pole at αA,oS , the same is true of
ζA,oS′ (s) whence αA,oS′ � αA,oS . Moreover, F(αA,oS ) > 0 clearly also implies that
βA,oS = βA,oS′ . ��
Remark 5.4 (i) The corresponding statement for subalgebra and submodule zeta

functions (proved in the same way) is certainly well-known to experts in the area.
Unfortunately, it does not seem to have been spelled out in the literature. For a
similar statement in the context of representation zeta functions, see [2, Thm 1.4].

(ii) While in [7] only the case k = Q, S = ∅ is discussed, their arguments carry over
to the present setting in the expected way (cf. [1] and [9, §4]).

Proof of Theorem A Part (i) follows fromTheorem5.1 and Proposition 5.2. Letμ 
 n.
We now determine the largest real pole, α say, and its multiplicity, β say, of

Z(s) :=
n∏

j=1

ζoS (μ
−1( j) · s − j + 1).

Write r = len(μ). Since ζoS (s) has a unique pole at 1 (with multiplicity 1) and
ζoS (s0) �= 0 for real s0 > 1,

α = max
1� j�n

j

μ−1( j)
= max

1�i�r
max

1� j�λi

σi−1(μ) + j

i
= max

1�i�r

σi (μ)

i
= μ1 = len(μ∗),

where the penultimate equality follows since iμi+1 � σi (μ) and thus σi (μ)
i � σi+1(μ)

i+1

for 1 � i � r − 1. Next, β is precisely the number of i ∈ {1, . . . , r} with μ1 = σi (μ)
i

or, equivalently, the largest � � 1 with μ1 = · · · = μ�. In other words, β = μ∗−1.
Parts (ii)–(iii) of Theorem A now follow from Lemma 5.3 and the observation that

Z(s) > 0 for s > α. ��
Example 5.5 The presence of the exceptional factors Wu(q−s

wu
) in Theorem A is in

general unavoidable. For a simple example, let a ∈ o be non-zero and define A =[
0 a
0 0

]
. Using Proposition 4.6, a simple computation reveals that for v ∈ Vk ,

ζA,ov (s) = 1 − q1−2s
v + q(1−s)(v(a)+1)

v · (q−s
v − 1)

1 − q1−s
v

· ζov (s)ζov (2s − 1); (5.2)

note that ζA,ov (s) = ζov (s)ζov (2s − 1) whenever v(a) = 0. We further note that the
exceptional factor in (5.2) in fact belongs to Z[q−s

v ] and is thus regular at s = 1;
this is consistent with the general fact that for subobject zeta functions, each local
abscissa of convergence is strictly less than the associated global one (see the proof
of Lemma 5.3). Finally note the failure of (1.2) for the finitely many v ∈ Vk with
v(a) > 0.

Remark 5.6 In view of a conjecture of Solomon proved by Bushnell and Reiner [3], it
is natural to ask if theWu ∈ Q(X) in Theorem A are in fact always elements of Z[X ].
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Proof of Theorem B The claim follows by combining Theorem 5.1 and the following
simple observation. Let k′/k be an extension of number fields, let o′ be the ring of
integers of k′, and let v ∈ Vk be unramified in k′. If w ∈ Vk′ divides v, define f(w/v)

by qw = qf(w/v)
v . Define

Zv(s) =
∏

w∈Vk′
w|v

ζo′
w
(s) =

∏

w∈Vk′
w|v

(
1 − q−f(w/v)s

v

)−1
.

Then, recalling the definition of gv(k′) from p.5 and using
∑

w|v f(w/v) = |k′ : k|,

Zv(s)
∣∣∣
qv→q−1

v

= (−1)gv(k′)q−|k′:k|s
v ·Zv(s).

��
Lemma 5.7 Let S ⊂ Vk be finite. Let Z(s) and Z′(s) be two Dirichlet series with
finite abscissae of convergence. Suppose that Z(s) = ∏

v∈Vk\S Zv(s) and Z′(s) =∏
v∈Vk\S Z

′
v(s), where each Zv(s) and Z′

v(s) is a series in q
−s
v with non-negative real

coefficients. Suppose that Z(s) = Z′(s) and that W (X,Y ),W ′(X,Y ) ∈ Q(X,Y )

satisfy Zv(s) = W (qv, q−s
v ) and Z′

v(s) = W ′(qv, q−s
v ) for almost all v ∈ Vk \ S. Then

W (X,Y ) = W ′(X,Y ).

Proof Let S0 be the set of rational primes which are divisible by at least one element
of S. For a rational prime p /∈ S0, define Zp(s) = ∏

v∈Vk ,v|p Zv(s) and define Z′
p(s)

in the same way. Assuming that Z(s) = Z′(s), it is well-known that the coefficients
of the Dirichlet series Z(s) and Z′(s) coincide. We conclude that Zp(s) = Z′

p(s) for
p /∈ S0. By Chebotarev’s density theorem, there exists an infinite set of rational primes
P such that each p ∈ P splits completely in k. Writing d = |k : Q|, for almost all
p ∈ P , we thus have W (p, p−s)d = Zp(s) = Z′

p(s) = W ′(p, p−s)d which easily
implies W (X,Y )d = W ′(X,Y )d . Thus, W (X,Y )/W ′(X,Y ) is a dth root of unity in
R(X,Y ) and hence in R, for the latter is algebraically closed in the former (see [4,
Prop. 11.3.1]). The non-negativity assumptions on the coefficients of Zv(s) and Z′

v(s)
as series in q−s

v now imply W (X,Y ) = W ′(X,Y ). ��
Proof of Theorem C The implications “(i)⇒(ii)⇒(iii)” in Theorem C are obvious.
Suppose that (iii) holds. Let λ andμ be the types of the matrices A and B, respectively.
By Theorem 5.1 and the preceding lemma, Wλ(X,Y ) = Wμ(X,Y ). It is easy to see
that the binomials 1 − XaY b for a � 0 and b � 1 freely generate a free abelian
subgroup of Q(X,Y )×. Hence, λ = μ and A and B are similar. ��
Remark 5.8 If A is nilpotent and α ∈ k×, then A and A + α1n give rise to the same
local and global zeta functions without A and A + α1n being similar. In general,
equality of local and global zeta functions associated with non-nilpotent matrices A
and B does not suffice to even conclude that the algebras k[A] and k[B] are similar.
We give two examples to illustrate this behaviour, the first being arithmetic and the
second of combinatorial origin.
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(i) By [15], there are monic irreducible polynomials f, g ∈ Z[X ] of the same degree
such that the number fields Q[X ]/( f ) and Q[X ]/(g) are non-isomorphic but
have the same Dedekind zeta functions; moreover, as explained in [15, §1], every
rational prime has the same “splitting type” in each of these two number fields.
Consequently, ζC( f ),Zp (s) = ζC(g),Zp (s) for almost all primes p

(ii) Recall the definition of Wλ from Sect. 4. A simple calculation shows that

W(2,2,1) ·W(3,1) = W(2,2) ·W(3,1,1).

Let a, b ∈ k× be distinct and choose A, B ∈ M9(k) to have elementary divisor
vectors ((X−a, (3, 2), (X−b, (2, 1, 1))) and ((X−a, (2, 2)), (X−b, (3, 1, 1))),
respectively. Then k[A] and k[B] are not similar but ζA,ov (s) = ζB,ov (s) for
almost all v ∈ Vk .

Remark 5.9 We further note that even for nilpotent A, the family of associated func-
tional equations (1.2) in Theorem B does not determine A up to similarity; an example
is given by two nilpotent 7 × 7-matrices with types (3, 1, 1, 1, 1) and (2, 2, 2, 1),
respectively.

Proof of Theorem D ByTheorem 5.1, ζA,ov (s) has a pole at zero for almost all v ∈ Vk .
Moreover, again for almost all v ∈ Vk , this pole is simple if and only if e = 1 and
almost all places of k remain inert in k[X ]/( f1); the latter condition is equivalent to
f1 being linear. ��

6 Applications

6.1 Submodules for unipotent groups

Let S ⊂ Vk be finite, letM be a finitely generated oS-module, and let 	 ⊂ EndoS (M).
We let α	�M denote the abscissa of convergence of ζ	�M(s). As a special case (cf.
[17, Rem. 2.2 (ii)])), given a possibly non-associative oS-algebra A whose underlying
oS-module is finitely generated, we let αA denote the abscissa of convergence of
its ideal zeta function ζA(s), as defined in the introduction. We now illustrate how
Theorem A can sometimes be used to determine α	�M or αA without computing the
corresponding zeta function. The key observation is that ifω ∈ 	, thenα	�M � αω,o;
by Theorem A(ii), the latter number can be easily read off from an elementary divisor
vector of ω ⊗oS k.

We let Un denote the group scheme of upper unitriangular n × n matrices. For
λ = (λ1, . . . , λr ) 
 n, we regard Uλ := Uλ1 × · · · × Uλr as a subgroup scheme of
Un via the natural diagonal embedding. The case len(λ) = 1 of the following has
consequences for the ideal growth of nilpotent Lie algebras, see [18, §9.4].

Proposition 6.1 Let λ 
 n. Then αUλ(o)�on = len(λ).

Proof Using the characterisation of Um(k) as the centraliser of a maximal flag of
subspaces of km , we see that on contains a Uλ(o)-invariant submodule N such that
Uλ(o) acts trivially on on/N and on/N ≈o olen(λ). We conclude that αUλ(o)�on �

123



Enumerating submodules invariant under an endomorphism 415

len(λ). For an upper bound, note that (1 + N(λ)) ∈ Uλ(o) whence αUλ(o)�on �
αN(λ),o = len(λ). ��

For |λ| � 5 and almost all v ∈ Vk , explicit formulae for ζUλ(ov)�onv (s) have been
obtained by the author (see [18, §9.4] and the database included with [19]); the only
unknown case for len(λ) = 6, namely λ = (6), seems out of reach at present. In
addition to their global abscissae of convergence, the ζUλ(ov)�onv (s) are known to
generically satisfy local functional equations under inversion of qv by [25, §5.2].

6.2 Lie algebras of maximal class

Let g be a finite-dimensional Lie k-algebra. For finite S ⊂ Vk , by an oS-form of g, we
mean a Lie oS-algebra gwhose underlying module is free and such that g⊗oS k ≈k g.

Let g = g1 ⊃ g2 ⊃ · · · be the lower central series of g. Recall that g has maximal
class if g is nilpotent of class dimk(g) − 1. Equivalently, g has maximal class if and
only if dimk(g

1/g2) = 2 and dimk(g
i/gi+1) = 1 for 1 � i � dimk(g) − 1.

Proposition 6.2 LetgbeanoS-formof a non-abelian finite-dimensional Lie k-algebra
of maximal class. Then αg = 2.

A proof of Proposition 6.2 using Theorem A will be given below.
We note that Proposition 6.2 is consistent with explicit calculations carried out

for specific Z-forms of the Lie algebras M3,M4,M5, and Fil4 of maximal class and
dimension at most 5 over the rationals; see [8, Ch. 2].

Lemma 6.3 Let S ⊂ Vk be finite. Let g be an oS-form of a nilpotent Lie k-algebra of
finite dimension n. Let A be the enveloping unital associative algebra of ad(g) within
EndoS (g).

(i) For each ϕ ∈ A, there exists c ∈ oS with (ϕ−c1g)n = 0; thus, ϕ⊗oS k is primary.
(ii) Let ϕ ∈ A have type λ over k. Then αg � len(λ).

Proof The first part follows from Engel’s theorem and the second part is then an
immediate consequence of Theorem A(ii). ��
Lemma 6.4 Let g be an (n + 2)-dimensional non-abelian Lie k-algebra of maximal
class. Then there exists a k-basis (x1, x2, y1, . . . , yn) of g such that [x1, x2] = y1,
[x1, yi ] = yi+1 for 1 � i � n − 1, and [x1, yn] = 0.

Proof Consider the graded Lie algebra
⊕

i�1 g
i/gi+1 associated with g. We claim

that there exists an element a ∈ g/g2 such that [a, · ] maps gi/gi+1 onto gi+1/gi+2

for each i � 1. To see that, first note that [g/g2,gi/gi+1] = gi+1/gi+2 for each
i � 1. Let (u, v) be a k-basis of g/g2. Then [u, v] spans g2/g3. Moreover, if wi

spans gi/gi+1, then the image of at least one of [u, wi ] and [v,wi ] spans gi+1/gi+2.
Consequently, we may take a = u + cv for almost all c ∈ k.

Given a as above, choose b ∈ g/g2 such that (a, b) is a basis ofg/g2. Let x1, x2 ∈ g
be preimages of a and b, respectively. Then, if we define y1 = [x1, x2] and yi+1 =
[x1, yi ], we obtain a basis (x1, x2, y1, . . . , yn) of the desired form. ��
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Proof of Proposition 6.2 By Lemma 5.3 and Remark 5.4(i), we are free to enlarge S
as needed. In particular, we may assume that g/g2 ≈oS o2S whence αg � 2 follows.
Moreover, we may assume that g possesses an oS-basis (x1, x2, y1, . . . , yn) as in by
Lemma 6.4. The matrix of [x1, · ] with respect to the basis (x2, y1, . . . , yn, x1) is
precisely N((n + 1, 1)) whence αg � 2 follows from Theorem A. ��
Acknowledgements I would like to thank Christopher Voll for interesting discussions.
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