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Abstract The focus of this work is the smooth global solvability of a linear partial
differential operatorL associated to a real analytic closed non-exact 1-form b—defined
on a real analytic closed n-manifold—that may be naturally regarded as the first
operator of the complex induced by a locally integrable structure of tube type and
co-rank one. We define an appropriate covering projection ˜M → M such that the
pullback of b has a primitive ˜B and prove that the operator is globally solvable if and
only if the superlevel and sublevel sets of ˜B are connected. As a byproduct we obtain
a new geometric characterization for the global hypoellipticity of the operator. When
M is orientable we prove a connection between the global solvability of L and that of
L
n−1 which is the last non-trivial operator of the complex, in particular, we prove that

L is globally solvable if and only if Ln−1 is globally solvable. In the smooth category,
we are able to provide analogous geometric characterizations of the global solvability
and the global hypoellipticity when b is a Morse 1-form, i.e., when the structure is of
Mizohata type.
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1 Introduction

Let b be a real analytic closed non-exact 1-form defined on a real analytic closed (i.e.,
compact and without boundary) connected n-dimensional manifold M (n > 1). The
focus of this work is the differential operator L : C∞(M × S

1)→∧1 C∞(M × S
1)

defined by
Lu = dtu + ib(t) ∧ ∂xu, (1)

where x belongs to the unit circle S1 and dt : C∞(M)→ ∧1 C∞(M) is the exterior
derivative on M . Consider the vector fields

L j = ∂

∂t j
+ i

∂B

∂t j
(t)

∂

∂x
, j = 1, . . . , n,

where (t1, . . . , tn) are local coordinates on M and B is a local primitive of b. They
are local generators of the bundle V

.= (T ′)⊥ ⊂ C ⊗ T (M × S
1) where T ′ is the

line sub-bundle of C⊗ T ∗(M × S
1) generated by the 1-form dx − ib. Any involutive

structure defines in a natural way a complex of differential operators (see [10, Ch.VII],
[36]) which in the case of V is given by (1) when acting on functions. Thus, we have
a complex of differential operators

C∞(M × S
1)

L−→ U1(M × S
1)

L
1−→

L
1−→ U2(M × S

1)
L
2−→ · · · L

n−1−→ Un(M × S
1)

L
n−→ 0 (2)

analogous to the de Rham complex where the space U j (M × S
1), j = 1, . . . , n − 1,

is obtained by taking an appropriate quotient on the space of j-forms on M × S
1 (we

refer to [10, p.311] for details).
The global hypoellipticity of (1) was studied and completely characterized by

Bergamasco, Cordaro and Malagutti [3].
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Global solvability of real analytic involutive systems… 1179

Here, we will study the smooth global solvability of the equation Lu = f , i.e.,
the possibility of finding a globally defined solution u ∈ C∞(M × S

1) when f is
smooth. Of course, if f is in the range of L it must satisfy two obvious conditions
analogous to the fact that an exact form is both closed and orthogonal to the closed
cocyles: (i) L1 f = 0 (a consequence of the complex property L

1
L = 0), and (ii) f

must be orthogonal to the kernel of the dual operator L∗. They are usually referred
to as the compatibility conditions for f and they may be formulated in equivalent
different ways that turn out to be best suited for the operator under study.

Note that (i) is of local nature while the homology of M plays a role in (ii). In
general, given f satisfying the compatibility conditions, the equation Lu = f might
or might not have a solution.We say thatL is globally solvable if the equationLu = f
has a globally defined smooth solution whenever the right-hand side satisfies the
compatibility conditions.

We now recall some previous work. In his seminal paper [34], Treves studied
and characterized the semi-global solvability of a similar complex (defined in the
context of pseudo-differential operators) in terms of the homological properties of
the semilevel sets (sublevel sets and superlevel sets) of an appropriate locally defined
function associated to the complex (for the first operator of the complex this amounts
to the connectedness of the semilevel sets). This link between homological properties
of semilevel sets of an appropriate function and solvability led to several papers on
the local solvability of structures of co-rank 1, e.g., [13,15–20,28,35].

While the local solvability of structures of co-rank 1 has been extensively studied
and is well understood at all levels, much less is known about the global solvability of
the complex (2) except at the top level, a case thatwas extensively studied in [4].Hence,
we focus on the first level and start by mentioning some previous results. If g(x) ∈
C∞(S1), denote the Fourier coefficients of g(x) by ĝ(ξ) .= (2π)−1 ∫ 2π

0 e−iξ x g(x) dx ,
ξ ∈ Z. Suppose that M is a closed orientable manifold M and b is smooth and exact,
then define a primitive on M by B(t) = ∫ t

t0
b. The global solvability of the equation

Lu = f when b is exact was characterized in [12] as follows.

Theorem [12] If b is exact the following statements are equivalent:

(I) For every f ∈∧1 C∞(M × S
1) such that e−ξ B(t) f̂ (t, ξ) is exact for all ξ ∈ Z,

there exists u ∈ C∞(M × S
1) satisfying Lu = f .

(II) The semilevel sets {t ∈ M : B(t) < r} and {t ∈ M : B(t) > r} are connected
for every r ∈ R.

When b is smooth and closed but not exact we may pull back b to the universal
covering of M and consider the semilevel sets of a primitive B of the pullback of b.
In [6,7], the authors studied the case of a torus M = T

2 and proved

Theorem [6,7] The following statements are equivalent:

(I) For every f = f1(t, x)dt1 + f2(t, x)dt2 ∈∧1 C∞(T3) such that

L
1 f = 0 and

2π
∫

0

2π
∫

0

f1(t1, 0, x)dt1dx =
2π
∫

0

2π
∫

0

f2(0, t2, x)dt2dx = 0,
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1180 J. Hounie, G. Zugliani

there exists u ∈ C∞(T3) satisfyingLu = f , where (t, x) = (t1, t2, x) are global
coordinates in T3.

(II) The semilevel sets {t ∈ R
2 : B(t) < r} and {t ∈ R

2 : B(t) > r} are connected
for every r ∈ R.

We now state our main result and describe the organization of the paper. It involves
a covering space ˜M such that the pullback of b to ˜M has a primitive ˜B and isminimal in
the sense that any other coveringwith this property is above ˜M in the usual partial order
of covering projections (see Sect. 2 for details). The natural compatibility conditions
for the right-hand side of the equation are described in detail in Sect. 3.

Theorem 1 Assume that b is real analytic, closed and not exact. The following state-
ments are equivalent:

(I) For every f ∈∧1 C∞(M ×S
1) that satisfies the compatibility conditions, there

exists u ∈ C∞(M × S
1) satisfying Lu = f .

(II) For every r ∈ R, the semilevel sets {t ∈ ˜M : ˜B(t) < r} and {t ∈ ˜M : ˜B(t) > r}
are connected.

The proof of (I) �⇒ (II) involves a refinement of the ideas in [37] and a related
submitted work by Bergamasco, Parmeggiani, Zani and the second author, where
necessary conditions for global solvability are considered for closedorientable surfaces
M although someof the arguments are strictly twodimensional.We emphasize that this
implication remains valid when b is a smooth—not necessarily real analytic—closed
non-exact 1-form defined on a smooth closed connected n-dimensional manifold M .
The reverse implication is discussed in Sect. 6wherewe take advantage of some special
properties of real analytic functions proved in [24,27,33] and also make decisive use
of Lojasiewicz’s inequality (see, e.g., [11]) which states that if � is a real analytic
function on a neighborhood of the origin and �(0) = 0, then there exist C0 > 0 and
θ ∈ (0, 1) such that

‖∇�(s)‖ � C0|�(s)|θ

for every s sufficiently close to 0. Let us denote by � the set of the critical points of
b, that is,

�
.= {t ∈ M : b(t) = 0}.

In Sect. 6.1, we recall the existence shown in [3] of a primitive B† of b defined on a
neighborhood of � and prove what is a crucial ingredient in the proof of (II) �⇒ (I)
in Theorem 1, namely the fact that the connectedness of the semilevel sets of ˜B in ˜M
is equivalent to the following property:

Every connected component �0 of � contains a point p∗ such that a local primitive
of b is open at p∗. (�)

This geometric property was known [8] to provide a necessary condition for the global
solvability of (1) in the special case M = T

2 when b is real analytic. Furthermore, it
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Global solvability of real analytic involutive systems… 1181

is a theorem of Bergamasco, Cordaro and Malagutti [3] that holds in the real analytic
setup that, for general M , property (�) is equivalent to the global hypoellipticity of
(1). Hence we get

Corollary 2 Assume that b is real analytic, closed and not exact. The following state-
ments are equivalent:

(I) For every f ∈∧1 C∞(M ×S
1) that satisfies the compatibility conditions, there

exists u ∈ C∞(M × S
1) satisfying Lu = f .

(II) For every r ∈ R, the semilevel sets {t ∈ ˜M : ˜B(t) < r} and {t ∈ ˜M : ˜B(t) > r}
are connected.

(III) Property (�) holds.
(IV) L is globally hypoelliptic.

In particular, (II) furnishes a new geometric condition that may be used to characterize
the global hypoellipticity of L and it turns out that L is globally solvable if and only
if it is globally hypoelliptic. On the other hand, property (�) characterizes global
solvability in geometric terms that are formulated without recurring to any covering
of M . Note that the assumption that b is not exact is essential since when b ≡ 0
the operator L is globally solvable but not globally hypoelliptic. We recall that (1)
is defined by a real form b, and we observe that when dealing with general complex
forms the global solvability and the global hypoellipticity are also related to some
Diophantine conditions, as in [3,5,9], or in [14,21,25] for single vector fields.

When M is orientable, there is a natural pairing on Uk(M × S
1)×Un−k(M × S

1),
0 � k � n, which may be used to interpret the operators Lk and Lk−1, 0 � k � n, as
dual of each other (here U0(M × S

1) means C∞(M × S
1)). This duality is exploited

in [4] to show that Ln−1 is globally solvable if and only if L is globally hypoelliptic.
Since (I) and (IV) of Corollary 2 are equivalent properties we get

Corollary 3 Assume that M is orientable and b is real analytic, closed and not exact.
The following statements are equivalent:

(I) For every f ∈∧1 C∞(M ×S
1) that satisfies the compatibility conditions, there

exists u ∈ C∞(M × S
1) satisfying Lu = f .

(II) For every f ∈ Un(M × S
1) orthogonal to KerL, there exists u ∈∧n−1D ′(M ×

S
1) satisfying L

n−1u = f .

While (I) �⇒ (II) in Corollary 2 holds when b is just smooth, it is not clear
that the reverse implication remains true in general. In the smooth category, we prove
in Sect. 7 the equivalence of (I), (II), (III) and (IV) under the assumption that b is a
non-exact Morse form, which is equivalent to requiring that the structure V is a Mizo-
hata structure. Mizohata structures have deserved considerable attention. The local
integrability question for Mizohata structures was studied in [26,29] and completely
solved in [30]. Concerning global aspects of such structures, we mention [22,31]. For
further information and details we refer the reader to [10,36]. In Sect. 7.1 we compare
briefly the local solvability of our system with its global solvability when b is Morse.
Finally, in Sect. 8, we discuss examples of globally solvable systems and mention
some open questions.

We are thankful to the anonymous referee whose thorough review and comments
helped us improve the presentation of the paper.
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1182 J. Hounie, G. Zugliani

2 Preliminaries

Suppose we are given a closed manifold M where a real smooth closed and non-exact
1-form b is defined.

Recall that the group of deck transformations of the universal covering space of
M is isomorphic to the first homotopy group π1(M, p0) ([23, Prop. 1.39]). We will
construct a covering space ˜M of M with special properties, one of them being that the
pullback of b to ˜M is exact. More precisely, take the subgroup G of π1(M, p0) equal
to the kernel of the homomorphism T : π1(M, p0)→ R given by

γ �→
∫

γ

b.

By of [23, Theorem 1.38] there exists a covering space (˜M, p̃0) → (M, p0) such
that π1(˜M, p̃0) is isomorphic to G and for each pair of liftings of p0 in (˜M, p̃0)
there is a deck transformation mapping one to the other ([23, Prop. 1.39]). Because
of this, (˜M, p̃0) is called a normal covering space. Moreover, the group D of deck
transformations of (˜M, p̃0) isπ1(M, p0)/Gwhich is finitely generated.Wewill denote
a minimal set of generators of D by {σk}, k = 1, . . . , �.

Definition 4 We call (˜M, p̃0) the minimal covering of M (with respect to b).

It is minimal in the sense that G must contain a copy of the fundamental group
of any covering space on which a primitive of b is defined. The definition above is a
natural generalization of the concept of minimal covering considered in [5,7].

This covering space is unique up to homeomorphisms and the basepoints can be
omitted since G is normal.

Let us fix the projection � : ˜M → M and define a primitive ˜B of the pullback
�∗(b) in ˜M by integration from t0 ∈ ˜M . Note that, for each σ ∈ D, we have

˜B(σ (t)) =
σ(t)
∫

t0

�∗(b) =
σ(t0)
∫

t0

�∗(b)+
σ(t)
∫

σ(t0)

�∗(b) =
σ(t0)
∫

t0

�∗(b)+ B(t),

since � = � ◦ σ and, thus, �∗(b) = (� ◦ σ)∗(b) = σ ∗(�∗(b)).
The numbers

∫ σ(t0)
t0

�∗(b) do not depend on t0. Indeed, if t ′0 ∈ ˜M,

σ (t ′0)
∫

t ′0

�∗(b) =
t0

∫

t ′0

�∗(b)+
σ(t0)
∫

t0

�∗(b)+
σ(t ′0)
∫

σ(t0)

�∗(b)

= −
t ′0

∫

t0

�∗(b)+
σ(t0)
∫

t0

�∗(b)+
t ′0

∫

t0

σ ∗(�∗(b)) =
σ(t0)
∫

t0

�∗(b).

123



Global solvability of real analytic involutive systems… 1183

Thus, we may write
˜B(σ (t)) = ˜B(t)+ bσ , t ∈ ˜M, (3)

where the constant bσ is not 0 unless σ is the identity transformation.

Example 5 In Fig. 1 (page 12) we illustrate a case when M is an orientable surface of
genus 2. Assume that {ci , di }, i = 1, 2, are the canonical generators of the homology of

the tori whose connected sum is M . The 1-form b will be such that
∫

c2
b =

∫

d1
b = 0,

and
∫

c1
b and

∫

d2
b are linearly independent over Z. We cut along c1 and d2 and we

glue infinitelymany copies of this surface with boundary by identifying them properly,
in the sense that a primitive of b satisfying (3) is defined on the covering space.

We pick a complete Riemannian metric m on M and consider the induced Rie-
mannian metric m∗ on ˜M given by

m∗(X p̃,Yp̃)
.= m(Dp̃�(X p̃), Dp̃�(Yp̃)).

Recall that if σ( p̃) = q̃ then

m∗(Dp̃σ(X p̃), Dp̃σ(Yp̃)) = m(Dq̃�(Dp̃σ(X p̃)), Dq̃�(Dp̃σ(Yp̃)))

= m(Dp̃(� ◦ σ)(X p̃), Dp̃(� ◦ σ)(Yp̃)) = m∗(X p̃,Yp̃)

so we get the well known

Fact 1 For every σ ∈ D, Dp̃σ is an isometry.

3 Compatibility conditions and global solvability

Now we are ready to define the compatibility conditions for our system. The space of
plausible right-hand sides for the equation Lu = f will be denoted by E.

Definition 6 (Compatibility conditions) We say that a 1-form f ∈∧1 C∞(M × S
1)

belongs to E if

(i) for each ξ ∈ Z\{0} and each smooth closed curve γ in ˜M,

∫

γ

e−ξ˜B(s) f̂ (s, ξ) = 0,

(ii) and for each smooth closed curve γ in M,

∫

γ

f̂ (s, 0) = 0.

123



1184 J. Hounie, G. Zugliani

A few words about this definition. In (i), f̂ (s, ξ) denotes (with a slight abuse of
notation) the pullback to ˜M of the non-zero Fourier coefficients of f . For the sake of
simplicity, we will use the same notation for a form in M and its pullback to ˜M except
when doing so might lead to confusion. Also, note that this definition is independent
of the choice of a primitive ˜B. If we suppose that M is a covering space where a
primitive B ′ of b is defined and γ ∈ π1(M ), then γ ∈ G = π1(˜M), and

∫

γ

e−ξ˜B(s) f̂ (s, ξ) = 0 �⇒
∫

γ

e−ξ B′(s) f̂ (s, ξ) = 0

for ξ ∈ Z\{0}.
The conditions then say that

e−ξ B′(t) f̂ (t, ξ) is an exact 1-form on M for every ξ ∈ Z\{0}.

By taking Fourier coefficients, a candidate to a solution of Lu = f should satisfy, for
every ξ ∈ Z, the differential equation

dt û(t, ξ)− ξb(t)û(t, ξ) = f̂ (t, ξ) (4)

which can be rewritten as

dt (e
−ξ B′(t)û(t, ξ)) = e−ξ B′(t) f̂ (t, ξ). (5)

Definition 7 We say that the operator (1) is globally solvable if given any 1-form
f ∈ E there exists u ∈ D ′(M × S

1) such that Lu = f .
We say that the operator (1) is globally hypoelliptic if u ∈ C∞(M × S

1) whenever
Lu ∈∧1 C∞(M × S

1).

Recall that if f is in the range of L we must have L
1 f = 0 by involutivity, a

property that holds for any f ∈ E.

4 A necessary condition and auxiliary lemmas

In the proof of the part “(I) implies (II)” in Theorem 1 we will only need to assume
that M is a smooth closed manifold equipped with a Riemannian metric rather than
a real analytic one. Hence, in Sects. 4 and 5 no analyticity assumptions will be made
and b will be a smooth closed non-exact 1-form.

When b is exact, the connectedness of the semilevel sets of a primitive defined on
the manifold is a necessary and a sufficient condition for the global solvability in [12]
(in this case, the minimal covering is M itself). In [6,7], when M is the torus and b is
closed but not exact, the connectedness of the semilevel sets in the universal covering
space is a necessary and a sufficient condition for the global solvability. There, the
non-connectedness of a semilevel set in the universal covering space is equivalent to
the non-connectedness of a semilevel set in the minimal covering space which might
be the plane or the cylinder. Nevertheless, due to [37] one can construct examples

123



Global solvability of real analytic involutive systems… 1185

of globally solvable systems when b is non-exact and defined on a surface of genus
g > 1, where a primitive of the pullback of b to the universal covering possesses a
disconnected semilevel set. This shows the relevance of considering all coverings for
which the pullback of b has a primitive rather than focusing on the universal covering
alone.

Consider the minimal covering� : ˜M → M of M and for any r ∈ R denote byr

the superlevel set {t ∈ ˜M : ˜B(t) > r} and by r the sublevel set {t ∈ ˜M : ˜B(t) < r}.
One of the essential observations in the proof of Theorem1 is the fact that for any r ∈ R

each of the sets r and r have exactly one component as stated in the proposition
below. We will need a couple of lemmas in its proof. In the remainder of this section
we will focus on superlevel sets for the sake of simplicity but the corresponding claims
for sublevel sets are true as well. We now start preparing for the proposition below.

Fix a base point p0 ∈ M and a base point p̃0 ∈ ˜M such that �( p̃0) = p0.
Consider loops γ j ∈ π1(M, p0), j = 1, . . . , � at p0 such that their equivalence classes
[γ j ] ∈ π1(M, p0)/G make up a minimal set of generators of π1(M, p0)/G � D .
Let γ̃ j , j = 1, . . . , � be the lifting of γ j stemming from p̃0. Then γ̃ j connects p̃0 to
t j = σ j ( p̃0) where σ j ∈ D is the deck transformation corresponding to [γ j ]. We will
assume without loss of generality that β j

.= ∫ t j
t0
�∗(b) > 0, j = 1, . . . , �. Define

the set K
.= ∪�j=1γ̃ j ⊂ ˜M . Note that K is connected and t j ∈ γ̃ j ∩ σ j (γ̃ j ) ⊂

K ∩ σ j (K ) so K ∩ σ j (K ) is connected for any j = 1, . . . , � and, more generally,
⋃k0

k=0 σ
k
j (K ) is connected as well.

Lemma 8 Let r ∈ R, let O ⊂ r be a connected component of r and set

μ = ‖b‖L∞diam (M) = ‖b‖L∞ sup
t∈M

dist (t, p0).

Assume that there is a point ỹ0 ∈ O such that ˜B(ỹ0) > r + μ. Then we can find a
deck transformation τ ∈ D such that τ( p̃0) ∈ O .

Proof Set y0 = �(ỹ0), let γ be the minimal geodesic from y0 to p0 and consider the
lifting γ̃ that starts at ỹ0 and reaches a point τ( p̃0) ∈ �−1({p0}) for some τ ∈ D.
Thus

|˜B(τ ( p̃0))− ˜B(ỹ0)| =
∣

∣

∣

∣

∣

∫ τ( p̃0)

y0
�∗(b)

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

γ

b

∣

∣

∣

∣

� μ

and similarly |˜B(γ̃ (s))− ˜B(ỹ0)| � μ for any intermediate point γ̃ (s) in the lifting of
γ . It follows that ˜B > r on γ̃ so γ̃ ⊂ O and τ( p̃0) ∈ O . ��
Lemma 9 Set

ν = oscK
.= sup

t,t ′∈K
|˜B(t)− ˜B(t ′)|.

Assume that there is a point ỹ0 ∈ O such that ˜B(ỹ0) > r + μ+ ν. Then we can find
a deck transformation τ ∈ D such that τ(K ) ⊂ O .

123



1186 J. Hounie, G. Zugliani

Proof The proof of the previous lemma shows that we may find τ ∈ D such that
τ( p̃0) ∈ O and ˜B(τ ( p̃0)) > r+ν. Since the oscillation of ˜B is the same onK and on
τ(K ) and τ(K ) is connected, we conclude that ˜B > r on τ(K ) and τ(K ) ⊂ O . ��

The following proposition is crucial.

Proposition 10 For every r ∈ R, there is exactly one component of r on which ˜B
is unbounded.

Proof First we prove the existence of a component of r on which ˜B is unbounded.
As β1 > 0, ˜B(σ n

1 (t)) = ˜B(t) + nβ1 > r for t ∈ K and any integer n > n0 if n0
is chosen sufficiently large. Hence, K

.= ∪n>n0σ n
1 (K ) is a connected subset of r .

Since ˜B is unbounded on K , ˜B is unbounded a component O of r .
Now suppose that O and O ′ are components of r and ˜B is unbounded on both of

them. We must prove that O and O ′ coincide. Since ˜B assumes arbitrary large values
onO and O ′ we may apply Lemma 9 to find deck transformations τ, τ ′ ∈ D such that
τ(K ) ⊂ O and τ ′(K ) ⊂ O ′. We now write

τ ′(K ) = σ n1
1 · · · σ n�

� (τ (K ))

for some n1, . . . , n� ∈ Z\{0}, where, recall, σ1 = [γ1], . . . , σ� = [γ�] are the
generators of D and we assume β1, . . . , β� > 0. Moreover, we may assume that
{n1, . . . , n�} ∩ Z

+ = {n1, . . . , nk−1} since D is abelian. Thus, we have

σ
n1
1 · · · σ nk−1

k−1 (τ (K )) = σ−nkk · · · σ−n�� (τ ′(K )). (6)

The sets

A =
⋃

0�m j�n j
j=1,...,k−1

σ
m1
1 · · · σ

m j
j · · · σmk−1

k−1 (τ (K ))

and

A′ =
⋃

0�m j�−n j
j=k,...,�

σ
mk
k · · · σ

m j
j · · · σm�

� (τ ′(K ))

are connected. Since τ(K ) ⊂ A and τ ′(K ) ⊂ A′, ˜B is greater than r on A∪ A′. The
identity (6) shows that A ∩ A′ �= ∅. Therefore, O and O ′ are the same component of
r . ��
Remark 11 Let M be a covering space of M where a primitive B ′ of b is defined.
Notice that there exists r ∈ R and a component O of r = {t ∈M : ˜B(t) > r} such
that ˜B is bounded O if and only if B ′ is bounded on a component O ′ of {t ∈ ˜M :
B ′(t) > r ′} for some r ′ ∈ R. Therefore, the previous proposition shows that, when b
is non-exact, the non-connectedness of a semilevel set in the minimal covering space
is equivalent to the existence of a component O ′ of a semilevel set such that B ′ is
bounded on O ′.
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We now state two additional key lemmas. The first one is proved in [1] although
we include the proof, which is quite short. The second one is a standard variation of a
celebrated lemma of Hörmander’s. The version presented here is quite similar to the
one in [34] and need not be proved.

If X ⊂ ˜M and σ ∈ D, the set σ(X) is referred to as a translate of X.

Lemma 12 If ˜B is bounded on a component O of r , a translate σ(O), with σ �= 1,
is disjoint from O.

Proof Suppose that σ ∈ D is not the identity and let us show that O ∩ σ(O) = ∅.
Note that σ(O) is connected and contained in the (r + β)-superlevel set with β =
∫ σ(t)
t �∗(b) for any t ∈ ˜M . Recall that β �= 0 and assume first that β > 0. If
σ(O) ∩ O �= ∅ then σ(O) ⊂ O and therefore σ k(O) ⊂ O for k ∈ N contradicting
the boundedness of ˜B on O . The case β < 0 is analogous. ��
Lemma 13 If L is globally solvable, there exist constants C > 0 and m ∈ N such
that, for all f ∈ E (see Definition 6) and g ∈∧1 C∞c (˜M × S

1),

∣

∣

∣

∣

∫

˜M×S1
〈 f̃ , g〉

∣

∣

∣

∣

� C‖ f̃ ‖m‖L∗g‖m,

where f̃ = �∗( f ) and L
∗ is the adjoint operator of L.

Here ‖v‖m = sup
˜M×S1

∑

|β|�m |∂βv(t, x)|,where |β| denotes the order of a multi-
index β.

In the proof of “(I) implies (II)” of Theorem 1 we will construct sequences of 1-
forms fk ∈ E and gk ∈ ∧1 C∞c (˜M × S

1) that violate the inequality above when k
goes to infinity under the assumption that a semilevel set is disconnected.

5 Proof of Theorem 1: (I) implies (II)

Assume the presence of a disconnected superlevel set of ˜B (the proof for a disconnected
sublevel set is similar). Due to Proposition 10, in ˜M there exists a component O of a
superlevel set, say r , such that ˜B is bounded on O. Consider levels r1 and r2 both
smaller than the supremum K of ˜B on O, with r < r1 < r2.

Set �s .= {t ∈ O : ˜B(t) > s}.We have �r2 ⊂ �r1 ⊂ O, and all of these sets are
disjoint from their non-trivial translates by Lemma 12.

Let χ : ˜M → {0, 1} be the characteristic function of O:

χ(t) =
{

1, t ∈ O
0, t /∈ O.

Next let ψ : R→ [0, 1] be a smooth non-negative function on R satisfying

• ψ−1({1}) = [r2,∞);
• ψ−1({0}) = (−∞, r1].
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1188 J. Hounie, G. Zugliani

We then define a smooth function F : ˜M → [0, 1] by

F(t) = χ(t)ψ(˜B(t)).

Notice that F has support contained in �r1 .We deduce that

˜B(t) � r2, ∀t ∈ supp(dt F). (7)

Let P1 be a point in ∈ �r2 . Call P2 a translate σ−1(P1) of P1, with bσ < 0. Consider
small balls B1 and B2 respectively centered at P1 and P2, such that ˜B(t) > r2 + ε
on them, for some ε > 0. The covering space ˜M is path-connected, hence there exists
a simple smooth path α such that

• α([0, ε′]) ⊂ B1;
• α([1− ε′, 1]) ⊂ B2;
• α(ε′) = P1 and α(1− ε′) = P2.

Let U be a tubular neighborhood of α, with coordinates t1, . . . , tn (t1 being tangent
to α). Let θ be a function defined onU such that ∂1θ = 1 and ∂ jθ = 0, j = 2, . . . , n.
Take now g ∈ C∞c (R) with g(s) = 1 if θ(P1) < s < θ(P2) and with support lying
inside [θ(α(0)), θ(α(1))].

We construct the 1-form v0 by

v0(t) = h(t)g(θ(t))dt1,

where h is a function defined on U , which is strictly positive on a tubular neighbor-
hood U ′ ⊂ U of α, vanishes on U \U ′, and satisfies ∂1h = 0. Moreover, assume
that U is chosen so as to make the support of t �→ h(t)g′(θ(t)) lie inside B1 ∪B2.

Furthermore, since U is a tubular neighborhood of a simple arc with different end-
points, we may assume that U is orientable even if M is not. We will take advantage
of these observations later. We illustrate the construction in Fig. 1.

We define, for t ∈ ˜M and k ∈ N,

˜Fk(t) =
∑

σ∈D
ek(

˜B(σ (t))−˜B(t))F(σ (t)). (8)

Finally, define

fk(t, x) = eikx+k˜B(t)dt ˜Fk(t)

and

gk(t, x) = e−ikx−k˜B(t)v0(t).

Claim ˜Fk ∈ C∞(˜M) and fk ∈ E.
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Global solvability of real analytic involutive systems… 1189

Fig. 1 Construction of v0

Proof Notice that, if t0 ∈ ˜M is such that ˜Fk(t0) �= 0, then there is only one σ ∈ D
such that t ∈ supp(F ◦ σ) for t close to t0. Hence, ˜Fk is indeed well-defined and
smooth on

⋃

σ∈D σ(O).
Now suppose that t0 is in

⋃

σ∈D σ(�r1)\
⋃

σ∈D σ(�r1) (in particular, ˜Fk(t0) = 0).
Let us show that

|ek(˜B(σ (t))−˜B(t))F(σ (t))| → 0 (9)

when t → t0, uniformly with respect to σ ∈ D. Indeed, if t ∈ ˜M and σ ∈ D are such
that F(σ (t)) �= 0, then ˜B(σ (t)) < K . Hence, ek(˜B(σ (t))−˜B(t)) � K1 for t close to t0.

Moreover, if ϕ is a local chart defined on a neighborhood W of t0, and ϕ(W ) is a
ball centered at ϕ(t0) = 0,

|F(σ (ϕ−1(s)))| � ‖s‖supλ∈[0,1]‖Dλs F ◦ σ ◦ ϕ−1‖.

Now, using that b is defined on M and Fact 1, we finish the proof of (9).
Therefore, the convergence in (8) is uniform on W and we conclude that ˜Fk is

continuous everywhere. Applying the same procedure to the derivatives of the terms
in (8) we obtain the smoothness of ˜Fk .

We have defined fk on ˜M × S
1 and in order to prove that fk defines a function

on M × S
1 (that we will denote again by fk) it suffices to notice that it is invariant

in the t variable under any deck transformations σ ∈ D, which follows from the
expression
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1190 J. Hounie, G. Zugliani

̂fk(t, k) = ek
˜B(t)

∑

σ∈D
ek(

˜B(σ (t))−˜B(t))dt F(σ (t))

=
∑

σ∈D
ek

˜B(σ (t))dt F(σ (t)). (10)

��
We are in a position to apply the inequalities of Lemma 13. Since U is orientable
there is no loss of generality in assuming that the restriction to U of the Riemannian
metric given on ˜M is the Hodge metric, i.e.,

(ρ, φ) =
∫

U
ρ ∧ ∗φ, ρ, φ ∈

∧1
C∞c (U ),

where ∗ denotes the Hodge star operator onU . OnU × S1 the integral in Lemma 13
becomes

∫

fk ∧∗gk ∧ dx and the adjoint L∗ may be expressed as L∗gk = ∗Ln−1 ∗ gk
[recall that Ln−1 is the previous to last operator in the complex (2)]. We have

L
n−1(∗gk)(t, x) = e−ikx−k˜B(t)dt (∗v0)(t),

and a computation gives

dt (∗v0)(t) = h(t)g′(θ(t))dt1 ∧ · · · ∧ dtn .

By (7) and (10),
‖ fk‖m � Cmk

mekr2 . (11)

Hence, in view of the construction of v0, we have ‖ fk‖m‖L∗gk‖m � C ′mk2me−kε,
which goes to 0 when k goes to infinity. However, by Stokes’ Theorem,

∣

∣

∣

∣

∫

fk ∧ ∗gk ∧ dx

∣

∣

∣

∣

= 2π

∣

∣

∣

∣

∫

dt ˜Fk ∧ ∗v0
∣

∣

∣

∣

= 2π

∣

∣

∣

∣

∫

˜Fk(t)h(t)g
′(θ(t))dt1 ∧ · · · ∧ dtn

∣

∣

∣

∣

.

By choosing conveniently the functions h and g, one obtains the latter value arbi-
trarily close to 2π |˜Fk(P1)− ˜Fk(P2)|.

Recall that we have taken P1 and P2 satisfying F(P1) = 1 and ˜Fk(P2) = ekbσ ,
with bσ < 0. Therefore, 2π |˜Fk(P1)− ˜Fk(P2)| can be made strictly positive.

This contradiction leads us to conclude that there is f ∈ E so that the equation
Lu = f does not have solution on M × S

1. ��
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6 Proof of Theorem 1: (II) implies (I)

The proof of the remaining implication is constructive and it will involve several steps.
In this part the analyticity assumptions will be essential in the arguments and we will
work in the analytic category.

First notice that, given f belonging to the space E of compatible right-hand sides,
we can compute the Fourier coefficients of a candidate to a solution of (1) on ˜M by
solving a differential equation as in (5) for each ξ ∈ Z, which yields

û(t, ξ) =
t

∫

t0

υ + Kξ e
ξ˜B(t),

where υ(s, ξ) = e−ξ [˜B(s)−˜B(t)] f̂ (s, ξ).
In order to have a solution on M we need that û(σ (t), ξ) = û(t, ξ), σ ∈ D, which

uniquely determines Kξ and the coefficients of the sought-after solution for ξ �= 0,
namely

û(t, ξ) = ρ(ξ)
σ(t)
∫

t

υ, υ(s, ξ) = e−ξ [˜B(s)−˜B(t)] f̂ (s, ξ), (12)

where ρ(ξ) = (e−ξbσ − 1)−1, and σ ∈ D is such that bσ �= 0.
On the other hand, we also obtain

û(t, ξ) = ρ(−ξ)
σ−1(t)
∫

t

υ, υ(s, ξ) = e−ξ [˜B(s)−˜B(t)] f̂ (s, ξ). (13)

For ξ = 0, we have

û(t, 0) =
t

∫

t0

f̂ (s, 0), (14)

which is well-defined on M due to Definition 6.
We know that ̂f (t, ξ) is rapidly decreasing in ξ ∈ Z, i.e., for every N ∈ Z

+, there
is a constant CN > 0 such that

|̂f (t, ξ)| � CN

(1+ |ξ |)N

and we wish to prove that {̂u(t, ξ)}ξ∈Z defined by (12) when ξ > 0, and by (13) when
ξ < 0, decays rapidly as well. Since we are free to choose the path joining t to σ(t) (or
to σ−1(t)), the idea is to select a convenient path, which becomes possible provided
thatr and inr are connected in ˜M . The path will depend on t and the sign of ξ ∈ Z,
in particular, for each fixed t there will be two paths, one for ξ > 0 and another one
for ξ < 0. The choice will further obey the following rules: (i) the exponential term
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e−ξ [˜B(s)−˜B(t)] will remain bounded on each path with a bound independent of |ξ |;
(ii) the path will be of finite length; (iii) the previous bounds will be locally constant
with respect to t . The detailed construction will be carried out in Sect. 6.3 and, as a
preparation, the next two subsectionswill be dedicated to some useful technical results.
The real analyticity of b allows us to prove a key ingredient in Sect. 6.1—which is
the equivalence between the connectedness of the semilevel sets of ˜B and property
(�)—and Sect. 6.2 deals with special paths.

6.1 A semi-global primitive and property (�)

We consider here the following property:

Every connected component �0 of � contains a point p∗ such that a local
primitive of bis open at p∗. (�)

Note that since b is closed it has a local primitive around a small neighborhood of
any given point but since it is not exact it does not have a primitive defined throughout
M . Yet it may have primitives defined on large proper open subsets of M . We will
make use of a primitive of b defined on a neighborhood of the singular set of b whose
existence was originally proved in [3]. We recall that we denote by � ⊂ M the set of
the critical points of b, that is,

�
.= {t ∈ M : b(t) = 0}.

Proposition 14 [3, Proposition 3.1] There exist an open set U such that� ⊂ U ⊂ M
and a real analytic function B† on U satisfying

dt B
† = b on U and B† ≡ 0 on �.

We will need also a strengthened version of Proposition 10 that holds in the real-
analytic setup and is due to Arnol’d.

Proposition 15 [1, Theorem1′, p. 4]Every semilevel set has exactly one non relatively
compact component.

We may now prove

Proposition 16 The sets r and r are connected for every r ∈ R if and only if
property (�) holds.

Proof First we suppose that property (�) fails, which means that there is a component
�0 of � such that B† is not an open map at any of its points. Thus, for every x ∈ �0,

there exists a ball B(x) ⊂ U, with U as in Proposition 14, such that B† � 0 on
B(x) or B† � 0 onB(x). By the compactness of �0, the radius of such balls can be
assumed equal. Set U1

.=⋃

x∈�0
B(x). Define the function

f (x) = infB(x)B
†, x ∈ �0.
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Now f is continuous on �0, and the set S
.= {x ∈ �0 : f (x) = 0} is both closed and

open on �0. Indeed, if x0 ∈ S and x ∈ �0 ∩B(x0), then B† � 0 onB(x) ∩B(x0).
If B† � 0 on B(x), then we would have B† ≡ 0 on B(x) ∩ B(x0), which is a
contradiction. Therefore, x ∈ S. As �0 is connected, we have that B† � 0 or B† � 0
on U1.

We will assume first that B† � 0 on U1. Due to the compactness of � we may
assume that

� ∩U1 = �0.

By taking ballsB′(x), withB′(x) ⊂ U1, we also define the set U2
.=⋃

x∈�0
B′(x).

Thus,�0 ⊂ U2, andU 2 ⊂ U1 ⊂ U. Notice that, if s ∈ ∂U2, then B†(s) > 0. Indeed,
s would be a regular point and then, if B†(s) = 0, there would be arbitrary close
points to s where B† is negative.

Set m
.= minB†|∂U2 , and consider r ∈ (0,m). Then {s ∈ U1 : B†(s) < r} has

a non-empty component O† ⊂ U2. Take a component W of �−1(U1) containing a
component O of �−1(O†). For the sake of simplicity, assume that ˜B(s0) = 0 with
s0 ∈ W and �(s0) ∈ �0.We then have

B† ◦� ≡ ˜B on W.

Claim The component O is a component of r on which ˜B is bounded.

We postpone the proof of the claim and take it for granted. Now we may invoke
Proposition 10 to assert that r is not connected.

Similarly, if B† � 0 on U1, we may find that some r that is not connected. This
ends the first half of the proof.

Suppose now that r is not connected for some r ∈ R. By Proposition 15, there
exists a relatively compact component O of r and ˜B(t) assumes a minimum value
on O . This minimum cannot be attained on ∂O where ˜B ≡ r , so there exists t0 ∈ O
such that ˜B(t0) � ˜B(t) for every t ∈ O. Thus, p

.= �(t0) ∈ �, and we denote by �0
the component of� containing p.Wemay assume that ˜B(t0) = 0. If there were some
p∗ ∈ �0 such that B† is open at p∗, then there would exist p′ sufficiently close to p∗
with B†(p′) < B†(p∗). Since�0 is path-connected (see, e.g., Proposition 20 below),
we would have t ′ ∈ �−1({p′}) ∩O such that ˜B(t ′) = B†(p′) < B†(p∗) = B†(p) =
˜B(t0), which is a contradiction. We proceed similarly if r is not connected. This
shows that property (�) does not hold and finishes the proof. ��

Next, to complete the proof of the proposition, we prove the claim.

Proof (of the Claim) It is clear that 0 � ˜B|O < r. Let O ′ be the component of r

containingO. Take t ∈ O and t ′ ∈ O ′, and β a path inO ′ connecting t to t ′. It suffices
to show that �(β) ⊂ O†. Indeed, if not, as �(t) ∈ O†, there would exist a first
s ∈ �(β) with s ∈ ∂O†. Hence, s = �(t̄) with t̄ in W, and then ˜B(t̄) = B†(s) = r,
which contradicts the fact that t̄ ∈ r . ��
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6.2 Paths and estimates

In this subsection we state three key results from the literature that we will be crucial
in Sect. 6.3. The first one is a result by Teissier that we will need it in the following
form.

Proposition 17 [33, Proposition 3] Let U and B† be as in Proposition 14. Given a
compact setK ⊂ U, there exists C1

.= C1(K ) > 0 such that, for every r ∈ B†(K ),

any two points in a component of (B†)−1(r) ∩K can be joined by a piecewise real
analytic path ς in (B†)−1(r) ∩K whose length is less than C1.

The second one is due to Maire.

Lemma 18 [27, Lemma 25] Let O be an open set in Rm and� ∈ C∞(O) satisfying

‖∇�(s)‖ � C0|�(s)|θ

for constants C > 0 and θ ∈ [0, 1), and every s ∈ O. For s ∈ O with ∇�(s) �= 0,
the maximal solution γs : [0, δ(s))→ O of

⎧

⎨

⎩

y′ = ∇�(y)
‖∇�(y)‖

y(0) = s.

satisfies

�(γs(τ )) � �(s)+ C0τ
1

1−θ ,

for τ ∈ [0, δ(s)).
The last one follows from the work of Hironaka [24]. We denote by Br the ball of
radius r and centered at 0 ∈ R

n .

Definition 19 A set E ⊂ Br0 is said to be semi-analytic at s ∈ E if there exist an
open neighborhood O of s and a finite number of real analytic functions {gi j , fi j } on
O such that

E ∩ O = ∪i {s′ ∈ O : gi j (s′) = 0, fi j (s
′) > 0,∀ j}.

Proposition 20 [24, p. 462] Let a∗ be a non-isolated point belonging to the closure
of a semi-analytic set E ⊂ Br0 . Then, for every a ∈ E\{a∗} sufficiently close to
a∗, there exists a real analytic map γ ∗ : (−1, 1) → Br0 such that γ ∗(0) = a∗ and
a ∈ γ ∗(0, 1) ⊂ E .
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6.3 Construction of the global solution

Here we obtain the needed decay of the Fourier coefficients (12) when ξ > 0 and (13)
when ξ < 0. Given t0 ∈ ˜M, set p

.= �(t0), and let ϕ : V → Br0 be a local chart of
M, with p ∈ V and ϕ(p) = 0. Assume that �−1(V ) consists of sets diffeomorphic
to V by �. Take a component U ′ containing t0. Our goal is to select a path γ t that
connects t in a neighborhood U ⊂ U ′ of t0 to σ(t) or σ−1(t) in a convenient way.

Consider σ ∈ D with bσ > 0. First let us state an auxiliary lemma. We can assume
that

supU ′˜B(t) < infU ′˜B(σ (t)).

Lemma 21 If t and m̃ j are in U ′ and ˜B(m̃ j ) > ˜B(t), j = 0, . . . , N , we can select
paths γ j connecting m̃ j to σ(t), with ˜B(t ′) > ˜B(t) for t ′ ∈ γ j . If |γ j | stands for the
length of γ j , then

|γ j | � C ′ .= C ′(m0, . . . ,mN ).

Indeed, in this case, as ˜B(σ (m̃ j )) > ˜B(m̃ j ), both m̃ j and σ(m̃ j ) belong to ˜B(t),

which is connected by hypothesis. Now it only remains to connect σ(m̃ j ) to σ(t).
This can be achieved by the lifting starting at σ(m̃ j ) of the path ϕ−1(�), where � is
the segment connecting ϕ(m j ) to ϕ(�(t)). If necessary, we can modify the obtained
path in order to have a smooth path γ j such that ˜B(t ′) > ˜B(t) for t ′ ∈ γ j .

We will now construct γ t by composing paths, some of which are local. Let then
B : V → R be a local primitive of b, with B(p) = 0.We have the following

Proposition 22 Consider σ ∈ D with bσ > 0. Then, for every t in a certain neigh-
borhood of t0 ∈ ˜M, there exists a piecewise smooth path γ t connecting t to σ(t)
satisfying:

(i) ˜B(t) � ˜B(t ′), t ′ ∈ γ t ;
(ii) |γ t | � C = C(t0).

Proof Case I First we suppose that p is a regular point of b. Take a local chart
ϕ : V → Br0 such that B ◦ ϕ−1(t1, . . . , tn) = t1.

Let Q′,Q be open squares inside Br0 , both centered at 0, with Q′ ⊂ Q and Q′
having side-length equal to 2A.

Let � : [0, 1] → Q′ be the segment joining ϕ(�(t)) = (t1, . . . , tn) ∈ Q′ to
m

.= (A, 0, . . . , 0).We have, for λ ∈ [0, 1],

�(λ) = (1− λ)ϕ(�(t))+ λm = ((1− λ)t1 + λA, (1− λ)t2, . . . , (1− λ)tn),

and

B ◦ ϕ−1(�(λ)) = (1− λ)t1 + λA.
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Since A � t1, we have B ◦ ϕ−1(�(λ)) � t1 = B ◦�(t). Now join t ∈ Q to σ(t) by
the path following the lifting of ϕ−1(�), and γ0 given by Lemma 21. We then obtain
the estimate (i).

As for the estimate (ii), set

2A
√
2supQ′ ‖Dϕ−1‖ + C

.= C(t0).

Case II Suppose p is a critical point of b. Take a local chart ϕ : V → Br0 . Call U a
component of (ϕ ◦�)−1(Br ), with r < r0, containing t0.

Step 1 We suppose that t ∈ U is such that �(t) = q and B(q) > 0. We apply
Lojasiewicz’s inequality to B ◦ ϕ−1. Hence, Lemma 18 says that the solution γϕ(q)
necessarily encounters ∂Br . Consider then s ∈ ∂Br with s = γϕ(q)(τ ). Notice that

τ �
(

2

C0
supBr

|B ◦ ϕ−1|
)1−θ

.

Denote by �′ the critical points of ϕ∗b|∂Br .We write �′j for the components of �′,
j in a finite set J. Fix a regular point ϕ(m j ) ∈ �′j if ϕ−1(�′j ) is not contained in �.

If s is not in �′, we apply now Lemma 18 for ∂Br (with constant C�
0) to obtain

γ
�
s : [0, δ(s)] → ∂Br such that

limτ→δ(s)γ
�
s (τ ) = s′ ∈ �′.

If s ∈ � j for some j ∈ J, we put s′ .= s.

We connect ϕ(q) to s and s to s′ respectively by using γϕ(q) and γ
�
s . Notice that,

since B◦ϕ−1(s′) > 0, Proposition 20 implies that ϕ−1(s′) /∈ �, hencewe can connect
ϕ−1(s′) to m j by a path ς in ϕ−1(�′j ), with |ς | � C�

1 thanks to Proposition 17.
Therefore, we have a path γ+, connecting q tom j ,with B ◦γ+ greater than B(q).

If C̃0
.= min{C0,C

�
0}, put

C̃
.=

(

2

C̃0
supBr

|B ◦ ϕ−1|
)1−θ

,

and then the lifting of γ+ to ˜M, starting at t, has length less than or equal to

2C̃supBr
‖Dϕ−1‖ + C�

1.

Now join t ∈ U to σ(t) by the path γ t following the lifting of γ+ (starting at t) and
γ j is given by Lemma 21. It is clear that we have constructed γ t satisfying (i) and

|γ t | � 2C̃supBr
‖Dϕ−1‖ + C�

1 + C ′. (15)

Step 2 Now we will deal with those points t ∈ U such that�(t) = q and B(q) � 0.
According to Lemma 18, a possibility for the solution γϕ(q) is that there is τ satisfying
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γϕ(q)(τ ) = s ∈ ∂Br . Keeping the notation as in Step 1, if ϕ−1(s′) /∈ �, we follow
exactly the same proof there.

The second possibility is that

limτ→δ(ϕ(q))γϕ(q)(τ ) is a critical point of B ◦ ϕ−1.

Therefore, it suffices to assume that we have a path γ− (consisting of orbits in Br )
connecting q to a critical point q∗ of B, with B ◦ γ− greater than or equal to B(q)
and

|γ−| � 2C̃supBr
‖Dϕ−1‖.

Since property (�) holds, we can connect q∗ to p∗ by a path ς in a component �0 of
� such that the semi-global primitive B† is open at p∗.Moreover, due to Proposition
17, we can require that |ς | � C1.

As B† is open at p∗, Proposition 20 allow us to connect p∗ to a sufficiently close
point p+ by a path γ ∗ on which B† is greater than or equal to 0 and B†(p+) > 0.

Hence, we have a path η∗ in U connecting q∗ to p+ such that B† ◦ η∗ is greater
than or equal to 0 and

|η∗| � C1 + |γ ∗|.

Consider a path η by following the lifting of γ− to ˜M, starting at t, and then a lifting
of η∗. For the final point t+ of η (�(t+) = p+), we can apply Step 1 and obtain path
γ t+ .

Then we will join t ∈ U to σ(t) by a path γ t following η, γ t+ , and σ(η−1).We
have that γ t satisfies (i). Since

|η| � 2C̃supBr
‖Dϕ−1‖ + C1 + |γ ∗|,

and |γ t+| is estimated in (15), we put C̃1
.= max{C1,C

�
1} and

C(t0)
.= 6C̃supBr

‖Dϕ−1‖ + 3C̃1 + 2|γ ∗| + C ′.

Then, after Step 1 and Step 2, the estimate (ii) holds and the proof is complete. ��
Similarly, we have

Proposition 23 Consider σ ∈ D with bσ < 0. Then, for every t in a certain neigh-
borhood of t0 ∈ ˜M, there exists a piecewise smooth path γ t connecting t to σ(t)
satisfying:

(i) ˜B(t ′) � ˜B(t), t ′ ∈ γ t ;
(ii) |γ t | � C = C(t0).
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Recall that, as f ∈ E, each integral that defines the Fourier coefficients does not
depend on the path. Take σ ∈ D with bσ > 0. By using the path of Proposition 22 in
(12), we conclude for ξ > 0 and t ∈ U that

|̂u(t, ξ)| � (1− e−bσ )−1Csupγ t |̂f (s, ξ)|.

Therefore, for every N ∈ Z
+ and t ∈ U , there exists C ′N > 0 such that

|̂u(t, ξ)| � C ′N
(1+ |ξ |)N .

For ξ < 0, we use σ−1 and the path of Proposition 23 in (13), which means that we
have the uniform decay of the Fourier coefficients on a neighborhood of t0 ∈ ˜M . Set
now

u(t, x)
.=

∑

ξ∈Z
û(t, ξ)eixξ

and note that u(t, x) is continuous since the series is absolutely and uniformly con-
vergent. Since the coefficients satisfy

dt (û(t, ξ))− ξb(t )̂u(t, ξ) = ̂f (t, ξ),

in any local charts of M we have

∂ j û(t, ξ) = ξ∂ j B(t )̂u(t, ξ)+ ̂f (t, ξ) (16)

for j = 1, . . . , n showing that we have found a continuous function that satisfies
the equation Lu = f in the weak sense and it remains to be shown that u(t, x) is
smooth. This will follow by proving the appropriate decay for the derivatives of the
coefficients, which will involve and induction argument on the differentiation order.
We recall that we denote the order of a multi-index α by |α| and suppose that we have
|α| � 0 such that, for every N ∈ Z

+, there is C|α|,N > 0 with

max{|∂α′ ̂f (t, ξ)|, |∂α′ û(t, ξ)|} � C|α|,N
(1+ |ξ |)N

for |α′| � |α| and every ξ ∈ Z. If we consider a derivative of order |β| = |α| + 1,
then, by (16), we have, for some j = 1, . . . , n, that

∂α∂ j û(t, ξ) = ξ∂α[∂ j B(t )̂u(t, ξ)] + ∂α ̂f (t, ξ).

Each term in ∂α[∂i B(t )̂u(t, ξ)] is ∂α′∂i B(t)∂α′′ û(t, ξ) for some α′, α′′ with |α′| +
|α′′| = |α|, and since M is compact there is a constantC|β| � 0 such that |∂β ′Bk(t)| �
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C̃|β| for every t ∈ M and 0 < |β ′| � |β|. Hence, for every N ∈ Z
+, ξ ∈ Z, and

t ∈ V,

|∂β û(t, ξ)| � |ξ |C̃|β|
C ′|α|,N+1

(1+ |ξ |)N+1 +
C|α|,N+1

(1+ |ξ |)N+1 .

This allows us to conclude the infinite differentiability of u on M × S
1. ��

Remark 24 An alternative way to prove that the continuous solution u(t, x) is actually
smooth is to invoke the global hypoellipticity of (1) given by Corollary 4.8 in [3].

7 Global solvability for Mizohata structures

In this sectionweabandon the analyticity assumptions, assume thatb is a smooth closed
non-exact 1-form defined on a smooth closed connected manifold M of dimension
n > 1 anddiscuss the global solvability of the differential operatorL : C∞(M×S1)→
∧1 C∞(M × S

1) defined by

Lu = dtu + ib(t) ∧ ∂xu,

where x belongs to the unit circle S1 and dt : C∞(M)→ ∧1 C∞(M) is the exterior
derivative on M . We will impose additional restrictions on b that we describe now.
Recall that the vector fields

L j = ∂

∂t j
+ i

∂B

∂t j
(t)

∂

∂x
, j = 1, . . . , n,

where (t1, . . . , tn) are local coordinates on M and B is a local primitive of b, are local
generators of the bundle V ⊂ C⊗T (M×S

1) orthogonal to the line sub-bundle T ′ ⊂
C⊗T ∗(M×S

1) generated by the 1-form dx− ib. Denote by T 0 = T ′ ∩T ∗(M×S
1)

the characteristic set of V . A point η =∑n
j=1 η j dt j + η0 dx ∈ T ∗(t,x)(M × S

1)\{0}
belongs to T 0

(t,x) if and only if
∂B

∂t1
(t) = · · · = ∂B

∂tn
(t) = 0 and η = η0 dx, with

η0 ∈ R\{0}. Hence the set of critical points of b, �, is the image of the characteristic
set under the canonical projection T ∗(M × S

1)→ M. Recall that

Definition 25 The Levi form of an involutive (or formally integrable) structure V at
the characteristic point η ∈ T 0

(t,x), η �= 0, is the hermitian form on Vp, p = (t, x),
defined by

L(p,η)(v,w) = 1

2i
η

([X, Y ]p
)

,

where X and Y are smooth sections of V defined in a neighborhood of p = (t, x)
and satisfying X p = v, Yp = w. A non-elliptic formally integrable structure of
codimension 1 with non-degenerate Levi form is called a Mizohata structure.
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From now on we will assume that our structure V is a Mizohata structure. Thus, if
X = v1L1+· · ·+vnLn and Y = w1L1+· · ·+wnLn,with v j , w j ∈ C, j = 1, . . . n,
we have

L(p,η)(X,Y ) = 1

2i
η

⎛

⎝

n
∑

j,k=1
v jwk[L j , Lk]

⎞

⎠

= 1

2i
η

⎛

⎝

n
∑

j,k=1
v jwk(−2i) ∂

2B

∂t j∂tk
(t)∂x

⎞

⎠

= −η0 (v1, . . . , vn)Hesst B(w1, . . . , wn)
t .

Hence, requiring that the Levi form is non-degenerate at any η ∈ T 0
(t,x), η �= 0, is

equivalent to considering a system defined by a Morse 1-form b, i.e., a smooth closed
1-form whose local primitives have only non-degenerate critical points (the primitives
defined on a covering space have the same property). The set� is finite since there is a
local chart in a neighborhood of p ∈ � such that B ◦ϕ−1(t1, . . . , tn) = ±t21 ±· · ·± t2n .

Our goal is to prove the following theorem, where ˜M is the minimal covering of M ,
˜B a primitive of the pullback of b to ˜M and property (�) was defined at the beginning
of Sect. 6.1:

Theorem 26 Assume that b is a non-exact Morse 1-form. The following statements
are equivalent:

(I) For every f ∈∧1 C∞(M×S
1) that satisfies the compatibility conditions, there

exists u ∈ C∞(M × S
1) satisfying Lu = f .

(II) For every r ∈ R, the semilevel sets {t ∈ ˜M : ˜B(t) < r} and {t ∈ ˜M : ˜B(t) > r}
are connected.

(III) Property (�) holds.
(IV) The Levy form ofV is neither positive definite nor negative definite at any critical

point.
(V) L is globally hypoelliptic.

The index of p ∈ � will be the number of negative eigenvalues of Hessp B. Note
that (IV), i.e., the non-existence of critical points of index 0 or n—which are points
of a local maximum or a local minimum of a local primitive—is clearly equivalent to
(III).

Proof (of (I) ⇐⇒ (II)) The implication (I) �⇒ (II) was proved in Theorem 1.
To prove the converse we will exploit the connectedness of the semilevel sets to we
construct some paths that allow us estimate the decay of the Fourier coefficients as in
Sect. 6.3. We maintain the notation used there.

Proposition 27 Fix σ ∈ D with bσ < 0 and t0 ∈ ˜M. There exists a neighborhood V
of t0 such that for every t ∈ V there exists a piecewise smooth path γ t connecting t
to σ(t) satisfying:
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(i) ˜B(t ′) � ˜B(t), t ′ ∈ γ t ;
(ii) |γ t | � C = C(t0).

Proof (of Proposition 27) Case I If p = �(t0) is a regular point we may argue as in
Case I of Proposition 22.

Case II Suppose p ∈ � (with index s ∈ {1, . . . , n − 1}). Take a local chart ϕ : V →
Br0 such that B ◦ϕ−1(t1, . . . , tn) = −t21 − · · ·− t2s + · · ·+ t2n .We introduce A < r0,
ϕ(m1)

.= (A, 0, . . . , 0), and ϕ(m2)
.= (−A, 0, . . . , 0).

Step 1 (s = 1) Let �1 : [0, 1] → BA be the segment joining ϕ(�(t)) = (t1, . . . , tn) ∈
BA to ϕ(m1) and �2 : [0, 1] → BA be the segment joining ϕ(�(t)) to ϕ(m2). We
have, for λ ∈ [0, 1],

�1(λ) = λm1 + (1− λ)ϕ(�(t))

and

∇(B ◦ ϕ−1)(�1(λ)) · �′1(λ) = ∇(B ◦ ϕ−1)(�1(λ)) · (m1 − ϕ(�(t)))
= (−2[(λA + (1− λ)t1)], 2(1− λ)t2, . . . , 2(1− λ)tn) · (A − t1,−t2 . . . ,−tn)
= 2(−λA(A − t1)+ (λ− 1)t1(A − t1)− (1− λ)t22 − · · · − (1− λ)t2n ).

If t1 � 0, then B ◦ ϕ−1(�1(λ)) � B ◦�(t) for λ ∈ [0, 1]. Otherwise, we conclude
that B ◦ ϕ−1(�2(λ)) � B ◦�(t) for λ ∈ [0, 1].
Step 2 (s > 1) Here we write −t21 − · · · − t2s = N .

We connect ϕ(�(t)) = (t1, . . . , ts, ts+1, . . . , tn) to (
√−N , 0, . . . , 0, ts+1, . . . , tn)

by the path

ζ(λ) = (C (λ), ts+1, . . . , tn),

where C (λ) is in an arc of a circle of radius
√−N (and length at most π

√−N ).
Clearly B ◦ ϕ−1(ζ(λ)) = ˜B(t) for λ ∈ [0, 1].
Now we apply Step 1 in order to connect (

√−N , 0, . . . , 0, ts+1, . . . , tn) to m j

(where j = 1, 2) by a segment � j such that B ◦ ϕ−1(� j (λ)) � ˜B(t).
Finally, join t to σ(t) by the path following liftings of ϕ−1(ζ ) and ϕ−1(� j ), and γ j

(given by Lemma 21). We then obtain the estimate (i).
As for estimate (ii), since

√−N � A, put

(π + 2)AsupBA
‖Dϕ−1‖ + C

.= C(t0).

��
Similarly, we have

Proposition 28 Consider σ ∈ D with bσ > 0. Then, for every t in a certain neigh-
borhood of t0 ∈ ˜M, there exists a piecewise smooth path γ t connecting t to σ(t)
satisfying:
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(i) ˜B(t ′) � ˜B(t), t ′ ∈ γ t ;
(ii) |γ t | � C = C(t0).

In view of Propositions 27 and 28 we may reason as we did in Sect. 6.3 to one
obtain a smooth solution on M × S

1, showing that (II) implies (I). ��
Proof (of (II) ⇐⇒ (III)) If (III) fails, (IV) also fails and then it is plain by Proposition
10 that r or r is not connected for some r ∈ R. Hence (II) �⇒ (III).

Assume now thatr is disconnected (the proof is analogue ifr is disconnected).
By Proposition 10, there would exist a component O of r on which ˜B is bounded
(and also disjoint from its non-trivial translates by Lemma 12).

Take a sequence { p̃n}n∈N of points in O such that ˜B(p1) = r + ε0, ε0 > 0, and
˜B(pn) ↗ K

.= supO ˜B(t). Set pn
.= �( p̃n); we may suppose that pn → q ∈ M.

Choose a sufficiently small connected neighborhood N of q evenly covered by �
such that, if x̃ and ỹ belong to a component of �−1(N ) (thus isometric to N ), then
|˜B (̃x) − ˜B(ỹ)| < ε0. This shows that the components of �−1(N ) which intercept
{ p̃n}n∈N are in O.

Note that for any q̃1, q̃2 ∈ �−1({q}) there is some σ ∈ D such that σ(q̃1) = q̃2.
Hence, only one component of �−1(N ) intercepts { p̃n}n∈N. Denote by q∗ the point
in this component such that �(q∗) = q. Therefore, ˜B(q∗) = K , which implies that
(III) fails. ��
Proof (of (I) �⇒ (V)) Suppose that there exists v ∈ D ′(M × S

1) satisfying Lv =
f ∈ ∧1 C∞(M × S

1). Then f ∈ E and by (I) there exists u ∈ C∞(M × S
1) such

that L(u − v) = 0. From the computation at the beginning of Sect. 6, we conclude
that the Fourier coefficients of u− v are 0 if ξ �= 0, and then u− v is constant. Hence
v ∈ C∞(M × S

1) and (V) holds. ��
Proof (of (V) �⇒ (III)) If (III) fails, there exists t0 ∈ M and a neighborhood
U0 of t0 such that a local primitive B of b is defined on U0 and B(t0) < B(t) or
B(t0) > B(t) for t ∈ U0\{t0}. Assume that B(t0) < B(t).We can define the function
(t, x) �→ (1 − eB(t0)−B(t)−i x )1/2 on U0, denoted by u, which satisfies Lu = 0 on
U0 in the weak sense. By using a smooth function χ ∈ C∞c (U0) equals 1 on a
neighborhood V0 ⊂ U0 containing t0, we have that χu is singular at (t0, (1, 0)) and
L(χu) ∈ ∧1 C∞(M × S

1). If we assume B(t0) > B(t) on U0, the proof is similar.
Therefore, (V) does not hold. ��

The proof of Theorem 26 is now complete.

7.1 Local solvability versus global solvability

We now compare the properties of local and global solvability for L = dt + ib(t)∧ ∂x
when the closed non-exact form b has only non-degenerate critical points {t j }. Recall
that L is (smoothly) locally solvable at p = (t, x) ∈ M × S

1 if every neighborhood
U of p contains a neighborhood V of p such that for every f ∈ U1(U ) satisfying
L
1 f = 0 there exists u ∈ C∞(V ) satisfying Lu = f in V . If L is elliptic at p it is

fairly easy to prove that it is locally solvable at p. Furthermore, the local solvability
at each non elliptic point (t j , x) is characterized by the results of Treves [34]:
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Theorem [34] The operator L is locally solvable at (t j , x) if and only if the index of
the critical point t j is neither 1 nor n − 1.

We see from Example B below that the system can be both globally solvable and
not locally solvable at (t j , x), for every j. Example C below, in turn, shows that the
system can be globally solvable but locally solvable at (t j , x), for some j, and not
locally solvable at (tk, x), for some k. Other combinations are possible by examples
similar to this.

In fact, the case n = 2 is a special case since when M has dimension 2 the system
is globally solvable if and only if it is not locally solvable at (t j , x), for every j. In
particular, if M = T

2, the Euler characteristic χ(M) is 0, and if there are critical
points, there are always critical points of index 0 (or n) and index 1, hence there exists
a point (t j , x) such thatL is not locally solvable at (t j , x) and the system is not globally
solvable. Now if M is an orientable surface of genus g > 1, χ(M) < 0, and there
always exists a point (t j , x) such that L is not locally solvable at (t j , x).

7.2 Global solvability of Ln−1

Here we want to prove the version of Corollary 3 for a Morse 1-form b, that is,

Corollary 29 Assume that M is orientable and b isMorse and not exact. The following
statements are equivalent:

(I) For every f ∈∧1 C∞(M ×S
1) that satisfies the compatibility conditions, there

exists u ∈ C∞(M × S
1) satisfying Lu = f .

(II) For every f ∈ Un(M×S1)orthogonal toKerL there exists u ∈∧n−1D ′(M×S1)
satisfying L

n−1u = f .

Proof (of (I) �⇒ (II)) We know that (I) implies the global hypoellipticity of L by
Theorem 26. That the global hypoellipticity of L implies (II) is a general result of
functional analysis and details can be found in [4]. ��
Proof (of (II) �⇒ (I)) If (I) does not hold, there exists a disconnected semilevel set
by Theorem 26. The proof is then complete after the following proposition. ��
Proposition 30 If r or r is not connected, then (II) does not hold.

We point out that the proof of Proposition 30 holds for a smooth closed non-exact
1-form b.

Proof (of Proposition 30) The proof follows the ideas in [4]. As in Lemma 13, we
have the following a priori estimates:

Lemma 31 If (II) holds, there exist constants C > 0 and m ∈ N such that, for all
f ∈ Un(M × S

1) orthogonal to KerL and g ∈ C∞(M × S
1),

∣

∣

∣

∣

∫

M×S1
f ∧ g ∧ dx

∣

∣

∣

∣

� C‖ f ‖m‖Lg‖m . (17)
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Here ‖v‖m = supM×S1
∑

|β|�m |∂βv(t, x)|. We will violate this a priori estimate
by defining sequences fk , gk , plugging them in (17) and checking that, as in Sect. 5,
the left hand side is bounded below by a positive constant while the right hand side
tends to zero as k →∞.

Assume the presence of a disconnected superlevel set of ˜B (the proof for a discon-
nected sublevel set is similar). Due to Proposition 10, in ˜M there exists a componentO
of a superlevel set, sayr , such that ˜B is bounded on O. By Lemma 12, O is disjoint
from their non-trivial translates and then a primitive B of b is defined on �(O).We
assume that ˜B ≡ B ◦� on O.

Let χ : M → {0, 1} be the characteristic function of �(O). Consider ε > 0 such
that r + 3ε < K , where K is the supremum of ˜B on O. Define smooth non-negative
functions ψ1, ψ2 : R→ [0, 1] satisfying
• ψ−11 ({1}) = [r + 2ε,∞);
• ψ−11 ({0}) = (−∞, r + ε];
• supp(ψ2) ⊂ (r + 3ε,∞).

We then define smooth functions ϕ, θ : M → [0, 1] by

ϕ(t) = χ(t)(ψ1 ◦ B)(t),
θ(t) = χ(t)(ψ2 ◦ B)(t).

Notice that

B(t) � r + 2ε, ∀t ∈ supp(dtϕ).

As M is orientable, take  ∈∧n C∞(M) nowhere vanishing. Finally, set for k ∈ N

fk(t, x) = e−ikx−kB(t)θ(t)(t)

and

gk(t, x) = eikx+kB(t)ϕ(t).

Each fk is orthogonal to KerL ∼= C. Since

Lgk(t, x) = eikx+kB(t)dtϕ(t)

and

∫

fk ∧ gk ∧ dx = I0 �= 0,

we may conclude the proof by reasoning as in Sect. 5. ��
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8 Examples, comments and open problems

Example AConsider the torusTn and identifyS1 withR/(2πZ).The functions defined
on Tn are identified with the functions in Rn 2π -periodic on each variable.

Now consider the real analytic function B� : Rn → R given by

B�(t1, . . . , tn) = α1
∫ t1

0
sin2 θdθ + · · · + αn

∫ tn

0
sin2 θdθ,

where α1, . . . , αn are linearly independent over Z. Therefore, b
.= dt B� is a closed

non-exact 1-form defined on Tn and ˜M = R
n .

In this case� = (πZ)n, and we have only degenerate critical points. Nevertheless,
B� is open at every point of �. Then property (�) holds, and the system defined by b
is globally solvable.

Example B We will construct a smooth Morse 1-form b without critical points of
index 0 or n on the connected sum of closed n-manifolds M1 and M2. In particular,
the corresponding operator L will be globally solvable. This example is inspired by
[2] and a similar one, as well as more examples of Morse forms, can be found in [37].

Start by taking two Morse 1-forms ω1 and ω2 respectively defined on M1 and
M2. Assume that ω1 and ω2 do not have critical points of index 0 or n, and consider
sufficiently small open sets N1 " p1 and N2 " p2, which are neighborhoods of regular
points pk ∈ Mk for k = 1, 2.

In R
N (with (t1, . . . , tN ) as the canonical global coordinates, N > n), set Q

.=
[−2, 2]N , and let ϕk be a diffeomorphism between N �

k and Nk , where

• N �
1 is the intersection of Q with {(t1, . . . , tn,−1, 0, . . . , 0)},

• and N �
2 is the intersection of Q with {(t1, . . . , tn, 1, 0, . . . , 0)}.

We apply the Local Submersion Theorem to choose diffeomorphisms ϕk between
N �
k and Nk satisfying

ϕ∗k (ωk) = dt1 for k = 1, 2.

Consider now disjoint n-manifolds M�
1 and M�

2, both embedded on R
N , respectively

diffeomorphic to M1 and M2, such that M�
k ∩ Q = N �

k . We will obtain a connected

sum of M�
1 and M�

2 and define a closed 1-form b on it.
In order to do this, take a smooth concave function h : [1, 1+ε] → [0, ε] satisfying:
• h(r) = 2(r − 1) for r close to 1;
• h(r) = ε for r close to 1+ ε.

Now let T ⊂ Q be the set consisting of the points (t1, . . . , tn+1, 0, . . . , 0) such that

1 � ‖(t1, . . . , tn, 0, . . . , 0)‖ � 1+ ε and εt2n+1 = h(‖(t1, . . . , tn, 0, . . . , 0)‖).
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Then T is diffeomorphic to Sn−1 × [−1, 1]. Take open disks D′k ⊂ Dk ⊂ N �
k , such

that T ∩ M�
k = Dk\D′k, and remove D′k (k = 1, 2).

By choosing orientation preserving diffeomorphisms ϕk, Theorem 5.5 of [32]
allows us extended them to diffeomorphisms ϕk : M�

k → Mk .We put

b|T = dt1, b|
M�

k\D′k = ϕ
∗
k (ωk), for k = 1, 2.

Notice that b has only two critical points on T, namely (1, 0, . . . , 0), of index n − 1
and (−1, 0, . . . , 0), of index 1. In particular, b is non-exact.

Example C In this example, we will construct a Morse 1-form b on T4 � R
4/(2πZ)4

without critical points of index 0 or 4. Define

f (x, y) = (sin x)(2− cos y), x, y ∈ R.

The critical points of f in T2 � R
2/(2πZ)2 are:

• P1 = (3π/2, π), f (P1) = −3 (minimum);
• P2 = (3π/2, 0), f (P2) = −1 (saddle);
• P3 = (π/2, 0), f (P3) = 1 (saddle);
• P4 = (π/2, π), f (P4) = 3 (maximum).

Define now a function B� : R4 → R by

B�(u, v, x, y) = b1u + b2v + f (x, y)− ψ( f (x, y))(sin u + sin v)/2,

where the numbers 0 < b1, b2 < 1/2 are linearly independent over Z, and ψ ∈
C∞(R) satisfies:
• ψ(1) = 1;
• ψ(s) = 0 for s = −3,−1, 3;
• |ψ ′(s)| < 1 for s ∈ R.

Note that b
.= dt B� defines a closed non-exact 1-form on T

4. It is easily seen that
˜M = R

2 × T
2 and D is generated by two deck transformations.

Let ε j ∈ (0, π/2) be the two roots of the equation 2b j = cos t, 0 < t < π/2,
j = 1, 2, and λ j ∈ (3π/2, 2π) the roots of the equation 2b j = cos t, 3π/2 < t < 2π,
j = 1, 2.

Claim If P = (u, v, x, y) ∈ R
2 × [−π, π ] × [−π, π ] is a critical point of B�, then

(x, y) = P3 and, for some k ∈ Z, u = ε1+ 2kπ or u = λ1+ 2kπ, and v = ε2+ 2kπ
or v = λ2 + 2kπ . In all these cases the index is neither 0 nor 4.

Indeed, we have

∂u B
�(P) = b1 − ψ ◦ f (x, y)(cos u)/2;

∂vB
�(P) = b2 − ψ ◦ f (x, y)(cos v)/2;

∂x B
�(P) = (1− ψ ′ ◦ f (x, y)(sin u + sin v)/2)∂x f (x, y);

∂y B
�(P) = (1− ψ ′ ◦ f (x, y)(sin u + sin v)/2)∂y f (x, y).
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Suppose that b(P) = 0. Since 1−ψ ′ ◦ f (x, y)(sin u+sin v)/2 �= 0,we conclude that
(x0, y0) is a critical point of f , hence (x0, y0) = Pj for some 1 � j � 4. However,
if j �= 3, then ∂u B�(P) = b1 �= 0. Therefore, (x0, y0) = P3, and we have

∂u B
�(P) = b1 − (cos u)/2 = 0 and ∂vB

�(P) = b2 − (cos v)/2 = 0.

Finally, we have

HessP B
� =

⎛

⎜

⎜

⎝

(sin u)/2 0 0 0
0 (sin v)/2 0 0
0 0 ∂2xx f (P3) ∂

2
xy f (P3)

0 0 ∂2xy f (P3) ∂
2
yy f (P3).

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

(sin u)/2 0 0 0
0 (sin v)/2 0 0
0 0 −1 0
0 0 0 1.

⎞

⎟

⎟

⎠

.

This proves the claim.
The four possibilities of critical points yield four determinants of HessP B�, two

positives and two negatives (recall that the Euler characteristic χ(T4) is 0).
A similar example can be constructed by taking f defined on T

4 and having a
critical point of index 2 in order to have a globally solvable system (in ˜M = R

2×T
4)

which is locally solvable at (t j , x), for every j.

Open problems

While Theorem 1 and Corollary 2 give satisfactory characterizations of the global
solvability ofL = dt+ib(t)∧∂x onM×S1 when the coefficients of the closed and non-
exact 1-form b are real analytic, our knowledge is not as complete in the general smooth
case. Historically, several results concerning the link between geometric properties of
the operator symbol and solvability (or hypoellipticity) properties of the operator itself
where proved first in the real analytic case and later extended to the technically harder
smooth setup. It is in this spirit that we state below some open problems that aim at the
solution of this question. In the sequel b will always be a smooth, closed, non-exact
1-form on a compact, connected, n-dimensional smooth manifold M of dimension
n > 1.

Open Problem 1 Assume that the primitive of b defined on the minimal covering
of M × S

1 has connected semilevel sets (i.e., property (II) of Theorem 1 holds). Is it
true that L = dt + ib(t) ∧ ∂x is globally solvable?

This is known to be true when M = T
2 [6,7] and there are additional partial results

for M = T
n in [5].

Open Problem 2 If L = dt + ib(t) ∧ ∂x is (smoothly) globally solvable then L is
globally hypoelliptic because we can find a particular smooth solution for any smooth
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form in the range of L and any two solution differ by a constant. We have seen that
the converse is also true in the real analytic case and when b is a smooth Morse form
(Theorems 1 and 26). Is the converse true in the general case?

Note that the converse holds when M = T
2 because the proofs of (V) �⇒ (III)

and (III) �⇒ (II) in Theorem 26 hold when b is a smooth closed non-exact form
on a smooth closed connected manifold and Problem 1 has a positive answer when
M = T

2.

Open Problem 3 Let O ⊂ ˜M be a component of a semilevel set and suppose that
˜B is bounded on O . Is then O relatively compact?

It was conjectured by Arnol’d [1] that this is true and he proved it in the real analytic
setup and in the case M = T

2. A weaker version of the conjecture goes as follows.
Let O ⊂ ˜M be a component of the superlevel set r and suppose that ˜B is bounded
on O . Does there exist s > r such that s possesses a relatively compact component
contained in O? (Similar question for sublevel sets.)

It is not difficult to answer this version once it is proved for Morse forms. Since
when M is n-dimensional and b is a Morse form it follows from the proof of (III)
�⇒ (II) in Theorem 26, the weaker version has a positive answer.

Open Problem 4While property (�)—originally proposed in [3] to deal with global
hypoellipticity in the real analytic case—is relevant and quite useful when the form b
is eitherMorse or real analytic, its present form does not seem adequate for the general
smooth case. How should property (�) be formulated in the general case?
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