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Abstract We study the arithmetic of complete intersections in projective space over
number fields. Our main results include arithmetic Torelli theorems and versions of
the Shafarevich conjecture, as proved for curves and abelian varieties by Faltings. For
example, we prove an analogue of the Shafarevich conjecture for cubic and quartic
threefolds and intersections of two quadrics.
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1 Introduction

An important finiteness statement in algebraic number theory is the theoremofHermite
and Minkowski: there are only finitely many number fields of bounded degree overQ
which are unramified outside of a given finite set S of finite places of Q. Shafarevich
was the first to notice that such finiteness statements occur elsewhere, and at the 1962
ICM in Stockholm [68] he formulated one of his most famous conjectures: given
g ≥ 2 and a finite set S of finite places of a number field K , the set of K -isomorphism
classes of smooth projective curves of genus g over K with good reduction outside of
S is finite. Faltings proved this conjecture in his paper on Mordell’s conjecture [30],
and also proved the analogous finiteness statement for abelian varieties.

It is natural to ask for which other classes of varieties such finiteness statements
hold. Analogous results have been proven in the following cases:

• Polarised K3 surfaces of bounded degree and cubic fourfolds [2].
• Del Pezzo surfaces [64].
• Flag varieties [41].
• Certain surfaces of general type [40].

Part of the aim of this paper is to illustrate that such statements should be rife in
arithmetic geometry. In particular, we prove an analogous finiteness result for certain
complete intersections in projective space.

Theorem 1.1 Let K be a number field, let S be a finite set of finite places of K , let
n ≥ 1 and let b ≥ 0. Then the set of K -linear isomorphism classes of n-dimensional
complete intersections over K with Hodge level at most 1, whose nth Betti number
equals b and with good reduction outside S, is finite.

Here by good reduction, we mean good reduction as a complete intersection; see
Definition 4.6. A linear isomorphism is an isomorphism which is induced by an
automorphism of the ambient projective space. The Hodge level is a certain element
of Z ∪ {−∞} that one associates to a smooth complete intersection, defined in terms
of its Hodge structure, which gives a roughmeasure of its geometrical complexity. The
complete intersections of Hodge level at most 1 have been completely classified, and
this classification, together with relevant definitions, can be found in Sect. 2.2. Note
that the classification implies that if n > 1, then there are only finitely many choices
for the nth Betti number, in particular, the assumption on the Betti number in Theorem
1.1 is only required when n = 1. Interesting new examples to which Theorem 1.1
applies include cubic and quartic threefolds and intersections of two quadrics. Many
of our results generalise from number fields to finitely generated fields of characteristic
zero; see Sect. 5 for our most general results.

Let us explain the ideas behind the proof of Theorem 1.1. The proof proceeds by
handlingvarious cases in turn, orderedby theirHodge level. The complete intersections
of Hodge level −∞ are quadric hypersurfaces. In particular, the result here follows
from our general result on flag varieties [41]; the key finiteness property required being
the finiteness of the Tate–Shafarevich set of a linear algebraic group over K .

In Hodge level 0 the key new case is that of intersections of two quadrics (Scholl’s
result [64] already handles the case of cubic surfaces). Here we use the associated
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Complete intersections: moduli, Torelli, and good reduction 1193

pencil of quadrics to reduce the problem to the finiteness of the set of solutions of
S-unit equations. The proofs of the Shafarevich conjecture for elliptic curves (see [56]
and [69, Thm. 6.1]), cyclic curves [22,42], and cubic surfaces [64] also reduce to such
finiteness statements.

The case of Hodge level 1 is the deepest. Here we use the theory of the intermediate
Jacobian, which is a higher-dimensional analogue of the Jacobian of a curve. This is
usually constructed complex analytically, however Deligne [24] has shown in our
case how to make this theory work over any field of characteristic 0, which is of
course crucial for arithmetic applications. Faltings used his finiteness result for abelian
varieties to deduce the Shafarevich conjecture for curves via a Torelli theorem (namely,
the fact that any curve of genus g ≥ 2 over K is uniquely determined up to K -
isomorphism by its Jacobian, see e.g. [21, Cor. VII.12.2]).We follow a similar strategy,
and use Faltings’s theorem to reduce to showing the following “arithmetic Torelli
theorem”.

Theorem 1.2 Let K be a field of characteristic 0 and let A be a principally polarised
abelian variety over K . Then the set of K -linear isomorphism classes of smooth
complete intersections X of Hodge level 1 over K , which are not intersections of two
quadrics nor curves of genus 1, and whose intermediate Jacobian is isomorphic to A
as a principally polarised abelian variety, is finite.

Note that our result is slightly weaker than the known Torelli theorem for curves.
This is due to the fact that one does not even know a full global Torelli overC in all the
cases of interest (e.g. this is unknown for quartic threefolds over C). Theorem 1.2 is
however sufficient for the proof of Theorem 1.1. The restriction to avoid intersections
of twoquadrics and curves of genus 1 is genuinely required;we show that the analogous
statement is false in these cases in Sect. 3.4.

The proof of Theorem 1.2 requires numerous inputs from geometry. The key ones
being an infinitesimal Torelli theorem overC due to Flenner [32], together with the fact
that the automorphism group of such a smooth complete intersection acts faithfully
on its cohomology (see Sect. 2.5). We in fact show stronger results than stated here,
namely Theorem 1.2 is proved by showing that the intermediate Jacobian gives rise to
a separated representable quasi-finite morphism of stacks; see Sect. 3 for our complete
results.

One knows full global Torelli theorems over C for cubic threefolds [19] and odd-
dimensional intersections of three quadrics [23, Cor. 4.5]. We are able to extend these
to any field of characteristic 0.

Theorem 1.3 Let K be a field of characteristic 0 and let X1 and X2 be either smooth
cubic threefolds or smooth odd-dimensional complete intersections of three quadrics
over K .

If J (X1) ∼= J (X2) as principally polarised abelian varieties, then X1 ∼= X2.

We emphasise that this does not follow formally from the Torelli theorem over C;
indeed, one knows a global Torelli theorem over C for odd-dimensional intersections
of two quadrics [28, Cor. 3.4], yet these do not satisfy a global Torelli theorem over
every field of characteristic 0, as we show in Sect. 3.4.
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1194 A. Javanpeykar, D. Loughran

The authors believe that Theorem 1.1 should be a special case of a more general
finiteness statement.

Conjecture 1.4 (Shafarevich conjecture for complete intersections) Let K be a num-
ber field, let S be a finite set of finite places of K and let T be a type. Then the set
of K -linear isomorphism classes of smooth complete intersections of type T over K
with good reduction outside S is finite.

Here a type is just a collection T = (d1, . . . , dc; n) which specifies the dimension
of the complete intersection and the degrees of its defining equations (see Sect. 2.1).
Note that Theorem 1.1 proves Conjecture 1.4 for complete intersections of Hodge
level at most 1.

Our last main theorem shows that Conjecture 1.4 follows from the Lang–Vojta con-
jecture inmany cases (see Sect. 6.1 for a discussion of this conjecture). To avoid certain
technical difficulties, we only prove it for hypersurfaces and complete intersections of
general type.

Theorem 1.5 The Lang–Vojta conjecture implies the Shafarevich conjecture for
hypersurfaces and complete intersections of general type.

The Lang–Vojta conjecture enters the picture via a relationship, which we often
exploit in this paper, between complete intersections with good reduction and integral
points on appropriate moduli stacks. To prove Theorem 1.5, we construct a finite
étale cover of these moduli stacks using a “level structure” (see Theorem 6.4 for a
precise statement). This uses the fact that the automorphism groups of many complete
intersections act faithfully on their cohomology groups (Proposition 2.16). Once we
attach level structure we obtain a scheme whose subvarieties are of log-general type
by a result of Zuo [77]; Theorem 1.5 then follows from the Lang–Vojta conjecture via
a descent argument, similar to the theorem of Chevalley–Weil [66, Sect. 4.2].

Outline of the paper In Sect. 2, we study the geometry of complete intersections,
in particular their moduli stacks, automorphism groups and Hodge theory. Our main
result here is Theorem 2.8, a “quasi-finite Torelli theorem” for smooth complete inter-
sections over C, under suitable assumptions.

In Sect. 3 we give arithmetic applications of these results by proving Theorems 1.2
and 1.3, together with results on the associated moduli stacks. In Sect. 4, we define the
notion of good reduction for complete intersections and study some of its basic prop-
erties. Our main result here is Theorem 4.10, which says that a complete intersection
admits only finitely many twists with good reduction, under suitable assumptions.

Section 5 is dedicated to the proof of Theorem 1.1, and in Sect. 6 we prove Theorem
1.5. We actually prove a stronger statement (Theorem 6.6) which applies over arith-
metic schemes. This proof requires various results on the moduli stack of complete
intersections of certain types, in particular we show in Theorem 6.4 how to attach a
level structure to these stacks.

Conventions For a number field K , we let OK denote its ring of integers. If S is a
finite set of finite places of K , we let OK [S−1] denote the ring of S-integers of K .

A variety over a field k is a finite type k-scheme. For a Noetherian scheme X , we
denote by X (1) the set of points of X of codimension 1.
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A Dedekind scheme is an integral normal Noetherian one-dimensional scheme. An
arithmetic scheme is an integral regular finite type flat scheme over Z. Note that if B
is a one-dimensional arithmetic scheme, then there exist a number field K and a finite
set of finite places S of K such that B ∼= SpecOK [S−1].

Let G be a smooth group scheme of finite type over a scheme B. We denote by
H1(B,G) the first Čech cohomology set of B with coefficients in G with respect to
the étale topology [50, Sect. III.2].

For a stack M and a scheme B, we denote by [M(B)] the set of B-isomorphism
classes of objects of the groupoidM(B). This is also sometimesdenotedbyπ0(M(B))

in the literature.
For g ∈ N, we denote by Ag,1 the moduli stack of principally polarised abelian

varieties of relative dimension g over Z.
We always consider complete intersections of codimension c in Pn+c of type

T = (d1, . . . , dc; n) (see Definition 2.1).

For such a complete intersection X , we denote by Lin X the group scheme of linear
automorphisms of X (i.e. those automorphismswhich are induced by an automorphism
of the ambient projective space).

2 The geometry of complete intersections

In this section we gather various facts we shall need about the geometry of com-
plete intersections, in particular, their Hodge theory, the intermediate Jacobian, their
automorphisms and the structure of their moduli spaces.

2.1 Complete intersections

2.1.1 Definitions

Let B be a scheme.

Definition 2.1 A type is a collection of integers

T = (d1, . . . , dc; n) with n ≥ 1, c ≥ 1, 2 ≤ d1 ≤ · · · ≤ dc.

A complete intersection of type T over B is a closed subscheme of codimension c in
Pn+c
B that is flat over B and which is the zero locus of c homogeneous polynomials of

degrees d1, . . . , dc over B, respectively. A complete intersection over B is a complete
intersection of unspecified type.

Here, a homogeneous polynomial of degree d over a scheme B means a global
section of the sheaf π∗OP

n+c
B

(d), where π is the projection to B. We reserve the
variables d1, . . . , dc and n for the above usage throughout this paper.

We will say that a type T = (d1, . . . , dc; n) is a hypersurface if c = 1. We will
say that T is of general type if d1 + · · · + dc ≥ n + c + 2 (this agrees with the
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1196 A. Javanpeykar, D. Loughran

usual definition, as the adjunction formula implies that such complete intersections
are exactly those with ample canonical bundle).

2.1.2 The moduli stack of smooth complete intersections

In this paper we will require various facts on the moduli stack of smooth complete
intersections. The relevant theory has beenworked out in great detail byOlivierBenoist
in his Ph.D. thesis [7]; many of the relevant results for us appear in [8].

We will assume that the reader is familiar with the basic theory of stacks, as can be
found for example in [46]. Among some of the basic definitions and results we need
are [46, Def. 3.9], [46, Def. 4.1], [46, Def. 4.7.1], [46, Def. 7.6], [46, Lem. 7.7], and
[46, Thm. 8.1].

Wefirst recall the construction of themoduli stack of smooth complete intersections.
Let T be a type and let HilbT denote the open subscheme of the Hilbert scheme of
Pn+c
Z

which parametrises smooth complete intersections of type T . We define the
moduli stack CT of smooth complete intersections of type T to be the quotient stack
[PGLn+c+1\HilbT ]. For a scheme B, we write CT,B for CT ×Z B.

Proposition 2.2 (Benoist) Let T be a type. Then

(1) CT is smooth and of finite type over Z with geometrically connected fibres.

Suppose that T 	= (2; n). Then

(2) CT is separated over Z.
(3) CT is Deligne–Mumford over Z[1/6].
(4) There exist a smooth quasi-projective Z[1/6]-scheme UT and an étale surjective

morphism UT → CT,Z[1/6].
Proof The schemeHilbT is smooth of finite type overZwith geometrically connected
fibres; see [24, Prop. 1.9] or [7, Prop. 2.2.1]. Therefore, as PGLn+c+1 is smooth of
finite type over SpecZ, we see that CT = [PGLn+c+1\HilbT ] is also smooth of finite
type over Z with geometrically connected fibres (see [7, Sect. 2.3.1]). If T 	= (2; n),
then (2) and (3) are [8, Thm. 1.6] and [8, Thm. 1.7], respectively. Finally, the last
statement follows from the definition of a smooth finite type Deligne–Mumford stack
[46, Def. 4.1]. ��

An explicit description of the functor of points of CT can be found in [7, Sect. 2.3.2].
For simplicity, we recall this only for points defined over a perfect field K . In which
case, the elements CT (K ) are pairs (Y,L) where Y is a smooth projective variety over
K equipped with an element L ∈ PicY/K (K ), such that after a finite extension of K
the element L becomes an ample line bundle which embeds Y as a smooth complete
intersection of type T . Here PicY/K denotes the Picard scheme of Y over K (see [10,

Ch. 8]); one has PicY/K (K ) = (Pic YK̄ )Gal(K̄/K ).
Let us emphasise that Y is not necessarily a complete intersection over K . The

obstruction to (Y,L) being isomorphic to some complete intersection of type T over
K lies in theBrauer groupBr K of K . Namely, theHochschild–Serre spectral sequence
(see [10, Ch. 8, p. 203])) yields an exact sequence

0 → Pic Y → (Pic YK̄ )Gal(K̄/K ) → Br K .
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Hence (Y,L) is a complete intersection of type T if and only if the image ofL in Br K
is trivial.

2.1.3 Isom-schemes of complete intersections

Wenextmoveonto a studyof the automorphismand isomorphismschemes of complete
intersections.

Let B be a scheme and let X and Y be smooth complete intersections of the same
type T over B. By the theory of Hilbert schemes [37], the sheaf on the category
of B-schemes which associates to a B-scheme Z the set of Z -linear isomorphisms
X×B Z → Y ×B Z is representable by a B-scheme, whichwe denote by IsomB(X,Y )

(here by a linear isomorphism, we mean an isomorphism which is induced by an
automorphismof the ambient projective space).Wedenote byLinB X = IsomB(X, X)

the group scheme of B-linear automorphisms of X . We shall often omit the subscript
if B is clear from the context.

Lemma 2.3 Let B be a scheme and let T 	= (2; n) be a type. If X and Y are smooth
complete intersections of type T over B, then the morphism of schemes

IsomB(X,Y ) → B

is finite.

Proof By Proposition 2.2 the stack CT is separated over Z. Therefore, the diagonal

� : CT,B → CT,B ×B CT,B

is proper [46, Def. 7.6]. There is a Cartesian diagram of stacks

IsomB(X,Y ) B

CT,B
�

CT,B × CT,B

where B → CT,B × CT,B is the moduli map associated to X and Y . As proper mor-
phisms are stable by base-change, we see that IsomB(X,Y ) → B is proper. Since we
are considering linear isomorphisms, the morphism IsomB(X,Y ) → B is affine. As
proper affine morphisms of schemes are finite [47, Lem. 3.3.17], this concludes the
proof. ��

Remark 2.4 In this paper, we only consider linear isomorphisms between complete
intersections. This is not a serious restriction in general; the only smooth complete
intersections which can admit a non-linear automorphism are curves and K3 surfaces
(see [8, Thm. 3.1]).
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2.2 Hodge theory of complete intersections

In this section we explain the necessary Hodge theory of complete intersections over
C required in this paper. For basic Hodge theory see [16] and [73]. Results particular
to complete intersections can be found in [24] and [60].

Let X be a smooth complete intersection of dimension n over C. For each 0 ≤ i ≤
2n with i 	= n, we have

Hi (X,C) =
{
0, if i is odd,
C, if i is even.

In particular, the only “interesting” cohomology group of X is Hn(X,C). By Hodge
theory, there is a decomposition Hn(X,C) = ⊕

p+q=n H
p,q(X). The Hodge level of

X is defined to be the supremum

�(X) = sup{|p − q| : p + q = n, Hp,q(X) 	= 0}.

If the above set is empty, then by convention we define the Hodge level to be −∞.
The Hodge level of X is then a well-defined element of Z≥0 ∪ {−∞}, and should
be thought of as a rough measure of the geometrical complexity of X . Note that
�(X) ≡ n mod 2, where by convention −∞ ≡ 1 mod 2.

Two smooth complete intersections of the same type T overC have the sameHodge
level, as the Hilbert scheme HilbT is irreducible. Hence we define the Hodge level of
T to be the Hodge level of some (hence any) smooth complete intersection X of type
T over C. This allows us to define the Hodge level of a smooth complete intersection
over any field K to be the Hodge level of its type.

The group Hn(X,Z) is torsion free, which we view as a sublattice of Hn(X,C).
The primitive cohomology Hn

prim(X,C) of X is defined as the kernel of the Lefschetz

operator L : Hn(X,C) → Hn+2(X,C) (see [73, Sect. 6.2.3]). The lattice Hn
prim(X,Z)

is defined to be Hn(X,Z) ∩ Hn
prim(X,C). If n is odd then Hn

prim(X,Z) = Hn(X,Z),
otherwise rank Hn

prim(X,Z) = rank Hn(X,Z) − 1.

2.2.1 Classification

The classification of smooth complete intersections of Hodge level at most 1 was
performed by Deligne and Rapoport [60, Sect. 2]. We record this classification here,
together with the type and the nth Betti number bn in relevant cases.
Hodge level −∞:

• Quadric hypersurfaces of odd dimension, (2; n), n odd, bn = 0.

Hodge level 0:

• Quadric hypersurfaces of even dimension, (2; n), n even, bn = 1.
• Cubic surfaces, (3; 2), b2 = 7.
• Even-dimensional intersections of two quadrics, (2, 2; n), n even, bn = n + 4
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Hodge level 1:

• One-dimensional non-rational smooth complete intersections.
• Cubic threefolds, (3; 3), b3 = 10.
• Intersections of a quadric and cubic in P5, (2, 3; 3), b3 = 40.
• Cubic fivefolds, (3; 5), b5 = 42.
• Quartic threefolds, (4; 3), b3 = 60.
• Odd-dimensional intersections of two quadrics, (2, 2; n), n odd, bn = n + 1.
• Odd-dimensional intersections of three quadrics, (2, 2, 2; n), n odd, bn = n2 +
5n + 4

In the sequel, for a type T of Hodge level 1, we let g(T ) = bn(T )/2. We shall freely
use that the types which give rise to curves of genus 1 are (3; 1) and (2, 2; 1), and that,
for each g ≥ 2, there are only finitely many types which give rise to smooth curves of
genus g.

2.3 Intermediate Jacobians

Let X be a smooth complete intersection of odd dimension n over C. The (analytic)
intermediate Jacobian J (X) of X is defined to be the manifold

J (X) = Hn(X,R)/Hn(X,Z),

equipped with its natural structure as a complex torus (see [73, Sect. 12.1.1]). This
should be thought of as an analogue of the Jacobian of a curve (unlike the case of
curves however, this is just a complex torus in general). Crucial to this paper is that
if X has Hodge level 1, then J (X) is in fact a principally polarised abelian variety
of dimension bn(X)/2. The polarisation on J (X) is induced by the cup-product on
Hn(X,Z) (see [24]).

Let T be a type of Hodge level 1. Then Deligne [24, Sect. 2] has constructed a
certain principally polarised abelian schemeoverHilbT,Q (see Sect. 2.1.2 for notation).
In particular, this gives rise to a morphism HilbT,Q → Ag(T ),1,Q of stacks, where
g(T ) = bn(T )/2. It follows from [24, Lem. 2.11] that this morphism is PGLn+c+1-
invariant, hence descends to a morphism of stacks

J : CT,Q → Ag(T ),1,Q (2.1)

over Q. Thus, given a smooth complete intersection X of type T over a field K of
characteristic 0, we may associate to X a principally polarised abelian variety J (X)

over K , the (algebraic) intermediate Jacobian of X . As it arises from a morphism
of stacks, this construction is functorial and respects base-change. We record the
cohomological properties of this construction here.

Lemma 2.5 Let n be an odd integer, let m = (n − 1)/2 and let X be a smooth n-
dimensional complete intersection of Hodge level 1 over a field K of characteristic
zero.
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(1) If K = C, then the analytification of J (X) is canonically isomorphic to the
(analytic) intermediate Jacobian of X.

(2) If K = C, then there is a canonical isomorphism

H1(J (X),Z) ∼= Hn(X,Z(m))

of polarised Z-Hodge structures.
(3) Let K → K̄ be an algebraic closure and � a prime number. Then there is a

canonical isomorphism

Hn(XK̄ ,Z�(m)) ∼= H1(J (X)K̄ ,Z�),

of Gal(K̄/K )-representations.

Proof This follows from the results of [24, Sect. 2] (e.g. [24, Thm. 2.12]). ��
The separatedness of CT implies that the intermediate Jacobian defines a separated

morphism of stacks.

Lemma 2.6 Let T be a type of Hodge level 1. Then the morphism of stacks

J : CT,Q → Ag(T ),1,Q

is separated.

Proof The stack CT,Q is separated (Proposition 2.2.(2)), and Ag(T ),1,Q has separated
diagonal. Hence the separatedness of J follows from [70, Tag 050M]. ��
Remark 2.7 Deligne has conjectured [24, Sect. 3.3] that the intermediate Jacobian of
a smooth complete intersection of Hodge level 1 may also be defined over any field
of positive characteristic. We will not require such constructions in this paper (see
however Lemma 5.8).

2.4 A Torelli theorem

In their famous paper [19], Clemens and Griffiths proved the global Torelli theorem
for cubic threefolds. This work started a flurry of activity, with other Torelli theo-
rems now known for odd-dimensional intersections of two quadrics [28, Cor. 3.4] and
odd-dimensional intersections of three quadrics [23, Cor. 4.5]. The state-of-the-art
concerning global Torelli theorems for cubic fivefolds, quartic threefolds and inter-
sections of a quadric with a cubic is however currently much less advanced.

Nowadays, there are many different types of Torelli theorems in the literature (see
e.g. [18]). Themain result in this section is what we have dubbed a “quasi-finite Torelli
theorem”, which states that there are only finitely many smooth complete intersections
(excluding some special cases) with a given polarised Z-Hodge structure. Szendrői
has proved a similar finiteness statement for Calabi–Yau threefolds [71, Thm. 4.2].
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Theorem 2.8 (Quasi-finite Torelli theorem) Let H be a polarised Z-Hodge structure
and T a type. Assume that T 	= (3; 2) nor (2, 2; n) if n is even. Then the set of linear
isomorphism classes of smooth complete intersections X of type T over C for which
there is an isomorphism of polarised Z-Hodge structures

Hn
prim(X,Z) ∼= H,

is finite.

Proof Wemay assume that T 	= (2; n) (as all smooth quadrics of the same dimension
over C are isomorphic). By Proposition 2.2, there exist a smooth quasi-projective
varietyU overC and a polarised family f : Y → U of smooth complete intersections
of type T over U such that the induced moduli map U → CT,C is étale and, for all
smooth complete intersections X of type T over C, the set

{u ∈ U (C) : Yu ∼= X}

is non-empty and finite. Explicitly, we choose UT over Z[1/6] as in Proposition 2.2,
take U to be UT,C and let f : Y → U be the pull-back of the universal family over
the stack CT,C. Let p : U an → �\D be the period map associated to f and to some
base-point u ∈ U (C), where D is the period domain defined by the polarised Z-
Hodge structure Hn

prim(Yu,Z) and � is the monodromy group of the polarised family
of complete intersections f : Y → U ; see [16, Sect. 4.3–4.4] or [73, Ch. 10] for a
detailed treatment of the construction of D and p. To prove the theorem, it suffices to
show that the fibres of p are finite.

By Selberg’s lemma (see [17, Thm. II] or [65, Lem. 8]), replacing U by an étale
covering if necessary, we may assume that � acts freely on D.

Since � acts freely on D, by the infinitesimal Torelli theorem for smooth complete
intersections of type T [32, Thm. 3.1], the periodmapU an → �\D is an immersion of
complex analytic spaces (here we use that T 	= (3; 2), (2, 2; n) with n even, and that
U → CT,C is étale). By a theorem of Griffiths (see [15, p. 122] or [16, Cor. 13.4.6]),
there exist a smooth quasi-projective variety U ′ over C, an open immersion U →
U ′ of schemes and a proper morphism of complex analytic spaces p′ : U ′,an →
D/� extending the period map p : U an → D/�. By Stein factorization for proper
morphisms of complex analytic spaces [35, Ch. 10.6.1], there exist a proper surjective
morphism of complex analytic spaces p0 : U ′,an → U0 with connected fibres, and a
finite morphism of complex analytic spaces U0 → D/� such that p′ factorises as

U ′,an p′

p0

D/�

U0.

As the restriction of p′ toU an is an immersion, we conclude that p0 is an isomorphism
when restricted toU an. In particular, the period map p factors asU an ⊂ U0 → D/�,
hence has finite fibres. ��
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We now specialise this result to the case of complete intersections of Hodge level
1, where we have the theory of the intermediate Jacobian (see Sect. 2.3).

Corollary 2.9 Let T be a type of Hodge level 1, let K be an algebraically closed field
of characteristic 0 and let A be a principally polarised abelian variety over K . Then
there are only finitely many K -isomorphism classes of smooth complete intersections
over K of type T , whose intermediate Jacobian is isomorphic to A as a principally
polarised abelian variety.

Proof By a standard Leftschetz principle type argument, it suffices to prove the result
when K = C. Let H = H1(A,Z) viewed as a polarised Z-Hodge structure. If J (X)

is isomorphic to A, then Lemma 2.5 implies that there is an isomorphism of polarised
Z-Hodge structures

Hn(X,Z(m)) ∼= H1(J (X),Z) ∼= H,

where m = (n − 1)/2. Therefore, by the well-known correspondence between
polarisedZ-Hodge structures of type (−1, 0)+(0,−1) and polarised abelian varieties,
the result follows from Theorem 2.8 on noting that

H(−m) ∼= Hn(X,Z) = Hn
prim(X,Z).

��
Remark 2.10 Note that Theorem 2.8 is “sharp”, as any two cubic surfaces or any two
intersections of two quadrics of the same even dimension over C have isomorphic
Hodge structures, respectively.

2.5 Induced automorphisms on cohomology

The aim of this section is to show that the automorphism group of a smooth complete
intersection acts faithfully on its cohomology, under suitable conditions. Analogues of
this result are known formanyother classes of varieties; for example for curves of genus
at least two, abelian varieties [53, Thm. 3, p. 176], K3 surfaces [3, Prop. VIII.11.3],
varieties with very ample canonical bundle [59, p. 37], certain hyperkähler manifolds
[5, Prop. 10] and certain surfaces [57].

We begin with a lemma on actions of inertia groups of stacks on tangent spaces.
For the definition of the inertia group Ix of a geometric point x of an algebraic stack
C, see [70, Tag 036X], [70, Tag 050P] or [54, Sect. 2.1]. The following lemma is a
minor variant of [29, Prop. 4.4] and is presumably known to the authors of loc. cit.;
we give a proof for completeness.

Lemma 2.11 Let k be a field of characteristic 0. Let C be a smooth irreducible finite
type separated Deligne–Mumford stack over k whose generic inertia group is trivial.
Let x ∈ C be a geometric point with inertia group Ix . Then Ix acts faithfully on the
tangent space of C at x.
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Proof We may assume that k is algebraically closed. By [29, Prop. 4.4], the group Ix
acts faithfully on the r th jet space Jrx of C at x , for some r ≥ 1. To prove the lemma,
it suffices to show that one may take r = 1 in loc. cit. when char(k) = 0 (this does
not hold in positive characteristic; see [29, Ex. 4.5]).

By [55, Thm. 2.12] there exist a smooth affine scheme U over k endowed with an
action of Ix and a representable étale morphism ιx : [U/Ix ] → C such that the image
of ιx contains x . The morphism ιx induces natural Ix -equivariant isomorphisms of jet
spaces. Therefore, to prove the lemma, we may assume that C = [U/Ix ].

The morphism U → C is representable and étale, thus induces Ix -equivariant
isomorphisms on jet spaces. So let P be a point ofU lying over x , letm be themaximal
ideal ofOU,P , and let σ ∈ Ix . As char(k) = 0 andOU,P is regular, by [39, Lem. 7.1]
and [39, Rem. 7.2] there exists a system of uniformising parameters x1, . . . , xs ∈ m
and roots of unity ζ1, . . . , ζs such that σ(xi ) = ζi xi . As σ acts non-trivially on Jrx ,
it acts non-trivially on m/mr+1. In particular, there is some i ∈ {1, . . . , s} for which
ζi 	= 1. It follows that σ acts non-trivially on m/m2 = 〈x1, . . . , xs〉, as required. ��

Wenext obtain a simple criterion for the automorphism group of a smooth complete
intersection to act faithfully on its cohomology. To prove this, we use Lemma 2.11
and Flenner’s infinitesimal Torelli theorem (as used already in Sect. 2.4).

Proposition 2.12 Let T be a type such that there exists a smooth complete intersection
of type T over C with no non-trivial linear automorphisms. Then for all smooth
complete intersections X of type T over C, the homomorphism

Lin(X) → Aut(Hn(X,C))

is injective.

Proof Note that the hypothesis cannot hold if T = (2; n), (3; 1) or (2, 2; n), as such
X always have a non-trivial linear automorphism group (in the latter case this follows
from the fact that we can simultaneously diagonalise both quadrics, see e.g. the proof
of Proposition 3.4). Moreover, the result is well-known when T = (3; 2) (see e.g. [27,
Prop. 8.2.31]). We may therefore assume that T is none of these types.

By Flenner’s infinitesimal Torelli theorem [32, Thm. 3.1], for a smooth complete
intersection X of type T the natural Lin(X)-equivariant homomorphism

H1(X,	X ) → Hom(Hp,q(X),Hp−1,q+1(X))

is injective for some p, q, where 	X denotes the tangent bundle of X . Therefore to
prove the proposition, it suffices to show that the homomorphism

Lin(X) → Aut(H1(X,	X ))

is injective.
To do this, recall that Lin(X) is the inertia group of CT,C at X , and that, by deforma-

tion theory, the tangent space to CT,C at X is some vector subspace V ⊂ H1(X,	X )

which is stable under the action of Lin(X). Under our assumptions on T , the stack
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CT,C is a smooth irreducible finite type separated Deligne–Mumford stack (Proposi-
tion 2.2) with trivial generic inertia group. Hence Lemma 2.11 implies that Lin(X)

acts faithfully on V ⊂ H1(X,	X ), as required. ��
In order to apply Proposition 2.12, we now show that the assumptions hold in some

special cases.

Lemma 2.13 Let T = (d1, . . . , dc; n) be a type with 3 ≤ d1 < d2 ≤ · · · ≤ dc and
T 	= (3; 1). Then the general smooth complete intersection of type T over C has no
non-trivial linear automorphisms.

Proof In the case of hypersurfaces the result is well-known, see e.g. [58, Thm. 1.5] or
[48]. So assume that c ≥ 2 and let Z be a smooth hypersurface of type (d1; n+1)with
no non-trivial linear automorphisms. If Y is a general smooth complete intersection
of type (d2, . . . , dc; n+1), then X = Z ∩Y is a smooth complete intersection of type
T .

We claim that Lin X is trivial. Indeed, let σ ∈ Lin X . By our assumption on T ,
the vector space H0(X, IX (d1)) is one-dimensional and is generated by the equation
defining Z , where IX denotes the ideal sheaf of X . Hence σ induces an automorphism
of Z . However by construction Lin Z is trivial, thus this induced automorphism is
trivial, as required. ��
Lemma 2.14 Let T = (2, 2, 2; n) and n ∈ N. Then the general smooth complete
intersection of type T over C has no non-trivial automorphisms.

Proof We prove the result using work of Beauville [4]. Let X be a smooth complete
intersection of type (2, 2, 2; n) over C and let C be the discriminant curve of the
associated net of quadrics (see [4, Sect. 6]). If X is chosen generically, then C will be
an irreducible plane curve of degree n + 4. In which case, [4, Prop. 6.19] implies that
the natural map Lin X → AutC is injective. However, by [4, Prop. 6.23] (see also [27,
Sect. 4.1.3]) every smooth irreducible plane curve of degree n + 4 is the discriminant
curve for some smooth complete intersection of type (2, 2, 2; n). Hence, choosing
such a curve with trivial automorphism group (using Lemma 2.13, say) yields the
result. ��

In the special case of a smooth intersection of a quadric with a cubic in P5
C
, we

verify directly that the automorphism group acts faithfully on the cohomology. To
do this, note that Lemma 2.5 implies that for any smooth complete intersection X of
Hodge level 1 over C we have a commutative diagram

Lin X Aut J (X)

Aut Hn(X,Z(m)).

(2.2)

Lemma 2.15 Let X be a smooth complete intersection of type (2, 3; 3) over C. Then
Lin X → Aut H3(X,Z) is injective.
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Proof As the morphism on the right in (2.2) is injective, it suffices to show that the
morphism Lin X → Aut J (X) is injective. We do this using the method of Beauville
given in [6]. Namely, let X be a smooth complete intersection of type (2, 3; 3) equipped
with a linear automorphism σ . Choose a faithful representation V of σ which realises
the action on X ⊂ P(V ) and such that σ has at least one trivial eigenvalue. As in the
proof of [6, Lemma], there is a short exact sequence

0 → V → V ⊕ Sym2V/〈Q〉 → T0(J (X)) → 0

which is equivariantwith respect to the actionofσ .HereSym2V denotes the symmetric
square of V , Q is a choice of quadratic form which vanishes on X and T0(J (X)) is
the tangent space of J (X) at the origin. To prove the result, it suffices to show that
T0(J (X)) is not the trivial representation. To do this we may consider the associated
character, which, as characters are additive on short exact sequences, is non-trivial if
σ acts on Sym2V with at least 2 non-trivial eigenvalues. However, this easily follows
from the fact that V is a faithful representation of σ with at least one trivial eigenvalue,
as required. ��

We now come to the main result of this section.

Proposition 2.16 Let T = (d1, . . . , dc; n) be a type. Assume that one of the following
holds.

(1) T is of general type, i.e. the inequality d1 + · · · + dc ≥ n + c + 2 holds.
(2) 3 ≤ d1 < d2 ≤ · · · ≤ dc and T 	= (3; 1).
(3) T has Hodge level 1, T 	= (3; 1) and T 	= (2, 2; n) with n an odd integer.

If X is a smooth complete intersection of type T over C, then the group of linear
automorphisms Lin X of X acts faithfully on Hn(X,C).

Proof For part (1), the canonical bundle

ωX = OX (d1 + · · · + dc − n − c − 1)

is very ample and thus the argument of [59, p. 37] applies. We give a brief sketch
of this proof to illustrate why it only applies when T has general type. As Lin X
acts faithfully on H0(X,OX (1)) it also acts faithfully on H0(X, ωX ). However, since
H0(X, ωX ) ⊂ Hn(X,C) by Hodge theory, we conclude that Lin X also acts faithfully
on Hn(X,C), as required.

Part (2) follows from Proposition 2.12 and Lemma 2.13. For part (3), by the clas-
sification (see Sect. 2.2.1), the only types not covered by part (2) are (2, 2, 2; n) and
(2, 3; 3). These types are handled by Proposition 2.12, Lemma 2.14 and Lemma 2.15,
respectively. This completes the proof. ��
Remark 2.17 Quadrics and curves of genus 1 are easily seen to not satisfy Proposition
2.16. Indeed the group scheme of (not necessarily linear) automorphisms has a non-
trivial identity component in this case, which by continuity must act trivially on the
lattice Hn(X,Z) ⊂ Hn(X,C). This component always contains non-trivial linear
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automorphisms (e.g. translation by a 3-torsion point of the Jacobian when X is a
cubic curve). The exception (2, 2; n) with n odd is also genuinely required; we give
counter-examples in Sect. 3.4.

Other examples of varieties for which the automorphism group does not act faith-
fully on the cohomology have been studied in the case of surfaces of general type [12]
and Enriques surfaces [52].

Remark 2.18 We have only proved Proposition 2.16 for the cases which will be
required in this paper. It is quite likely that Proposition 2.16 holds in greater gen-
erality, with the only exceptions being curves of genus 1, quadric hypersurfaces and
odd-dimensional complete intersections of two quadrics.

3 Arithmetic Torelli theorems

The aim of this section is to prove Theorems 1.2 and 1.3, and to also show that the
analogues of these results fail for intersections of two quadrics.

3.1 Twists, torsors and cohomology

We begin with some remarks on the relationship between twists, torsors and cohomol-
ogy.

3.1.1 Torsors and cohomology

Let G be a smooth affine group scheme over a scheme B. Recall that a faithfully flat
finite type B-scheme E is a G-torsor if it is endowed with a left action of G such that
the morphism

E ×B G → E ×B E, (x, g) �→ (x, x · g)

is an isomorphism. Note that, by [50, Thm. III.4.3.a)] and [50, Prop. III.4.6], the first
Čech cohomology set H1(B,G)with respect to the étale topology classifies G-torsors
over B.

3.1.2 Twists of complete intersections

Let now T be a type and suppose that X is a smooth complete intersection of type T
over B.

Let Y be a smooth complete intersection of type T over B.We say that Y is a twist of
X if Y is B-linearly isomorphic to X , locally for the étale topology of B. The scheme
Y corresponds to some element [Y ] of the pointed set H1(B,LinB X); explicitly [Y ]
is the class of the LinB(X)-torsor IsomB(X,Y ), with two such twists having the same
class if and only if they are B-linearly isomorphic.

Not every element of H1(B,LinB X) is represented by such a twist in general. It is
possible however to give a geometric description of this set, which for simplicity we
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only do when B = Spec K and K is a perfect field. In which case, a simple descent
argument, using for example the explicit description of CT (K ) given in Sect. 2.1.2,
shows that H1(K ,LinK X) classifies those elements of [CT (K )] which become iso-
morphic to X over K̄ .

3.2 Complete intersections of Hodge level 1

We first prove the following stack-theoretic version of the arithmetic Torelli theorem.

Proposition 3.1 Let T be a type of Hodge level 1 with T 	= (3; 1) and T 	= (2, 2; n).
Then the morphism of stacks

J : CT,Q → Ag(T ),1,Q

is separated, representable by schemes, unramified, and quasi-finite.

Proof Write C = CT,Q and A = Ag(T ),1,Q. The separatedness of J : C → A
is Lemma 2.6. By Lemma 2.5, Proposition 2.16 and (2.2), for all smooth complete
intersections X of type T over C the homomorphism Lin X → Aut J (X) is injective.
Therefore, by [70, Tag 04Y5], the geometric fibres of J are algebraic spaces. Hence,
by [20, Cor. 2.2.7], the morphism J is representable by algebraic spaces.

By Corollary 2.9 we see that for all schemes S and all morphisms S → A, the
induced morphism of algebraic spaces C ×A S → S is quasi-finite. Thus, since J
is separated, it follows from Knutson’s criterion [44, Cor. II.6.16] that C ×A S is a
scheme. Hence J is representable by schemes and quasi-finite.

To conclude, note that Flenner’s infinitesimal Torelli theorem [32, Thm. 3.1] implies
that the morphism JC is injective on tangent spaces. As it is representable by schemes,
it follows that J is unramified [70, Tag 0B2G]. ��

Proof of Theorem 1.2 The classification given in Sect. 2.2.1 implies that there are only
finitely many types with the same Betti numbers. Hence we may assume that the type
T is fixed. In which case the result follows from Proposition 3.1, which implies that
every fibre of the induced map [CT,K (K )] → [Ag(T ),1,K (K )] is finite. ��

3.3 Global arithmetic Torelli

We now show that in some special cases, we can say even more by combining known
globalTorelli theoremswith the representability of themorphismof stacks J : CT,Q →
Ag(T ),1,Q.

To state our result in its most general form, recall that a morphism of stacks f :
X → Y is universally injective if it is representable by schemes, and for any scheme
S and any morphism S → Y , the induced morphism of schemes X ×S Y → Y is
universally injective [70, Tag 01S3].
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Proposition 3.2 Let T = (3; 3) or (2, 2, 2; n) with n odd. Then the morphism of
stacks

J : CT,Q → Ag(T ),1,Q

is separated, representable by schemes, unramified, and universally injective.

Proof By Proposition 3.1, it suffices to show that J is universally injective. To do
this, by [70, Tag 03MU], it suffices to show that the non-empty geometric fibres of J
are singletons. However, for the special types we are considering, one knows a global
Torelli theorem over C, due to Clemens and Griffiths [19, (0.11)] and Debarre [23,
Cor. 4.5], respectively. This proves the result. ��
Proof of Theorem 1.3 The theorem follows easily from Proposition 3.2. ��

3.4 Intersections of two quadrics

In this section, we show that the analogues of Theorem 1.2, Proposition 2.16 and
Proposition 3.1 fail for intersections of two quadrics of odd dimension, so that the
hypotheses in these statements are genuinely required. That these results fail for curves
of genus 1 iswell-known; though it also follows from applying our results to the special
type (2, 2; 1). Throughout this section K is a field of characteristic 0.

Lemma 3.3 Let n be odd and (a0, . . . , an+2) ∈ Kn+3 be such that

X : x20 + · · · + x2n+2 = 0, a0x
2
0 + · · · + an+2x

2
n+2 = 0 ⊂ Pn+2 (3.1)

is a smooth complete intersection. For 0 ≤ i ≤ n + 2, let σi be the automorphism of
X given by σi (xi ) = −xi and σi (x j ) = x j for j 	= i . Then σi induces multiplication
by (−1) on J (X).

Proof This result is proven in [75]. We are grateful to Olivier Wittenberg for allowing
us to reproduce this proof here.

We may assume that K = C. Let m = (n − 1)/2. We shall use the explicit
description of the intermediate Jacobian provided by Reid [61, Ch. 4] (see also [28]).
Let I denote the variety parametrising pairs (p, q), where q is a quadric in Pn+2

containing X and p is an (m + 1)-plane in q. Denote by I → C
π→ P1 the Stein

factorisation of the projection onto the second coordinate. Then C is a hyperelliptic
curve of genus m + 1, whose Jacobian J (C) is canonically isomorphic to J (X) (see
[61, Thm. 4.14(c′)]).

Let now σ = σi , for some i . Then σ leaves invariant each quadric containing X ,
hence induces an automorphism σC of C which respects π . To see that σC is non-
trivial, let Q be a smooth quadric hypersurface containing X . This contains exactly
two families of (m+1)-planes, and it suffices to show that σ permutes these. As in the
proof of [28, Lem. 1.2], one may apply induction to reduce to the case where n = −1,
i.e. where Q has the form

c0x
2
0 + ci x

2
i = 0,
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for some c0, ci ∈ C∗. In which case, the result is clear. Therefore σC is non-trivial and
respectsπ , hencemust be the hyperelliptic involution onC . However, the hyperelliptic
involution acts as multiplication by (−1) on J (C), which proves the result. ��

We obtain the following, which, on using (2.2), is easily seen to imply that the
analogue of Proposition 2.16 fails in this case.

Proposition 3.4 Let X be an odd-dimensional smooth complete intersection of two
quadrics over K . Then the natural morphism of group schemes

Lin X → Aut J (X)

has non-trivial kernel.

Proof To prove the result, we may assume that K = C. In which case, we may
simultaneously diagonalise both quadrics (see [61, Prop. 2.1]), so that X has the form
(3.1). By Lemma 3.3, the automorphism σ0σ1 induces the trivial automorphism of
J (X), as required. ��

Wenowshow that the analogueofTheorem1.2 fails for intersections of twoquadrics
over suitable fields (this applies to number fields, or, more generally, to Hilbertian
fields).

Proposition 3.5 Let n be odd and assume that K ∗/K ∗2 is infinite. Then there exist
infinitely many non-K -linearly isomorphic smooth complete intersections {Xi }i∈I of
type (2, 2; n) over K such that

J (Xi ) ∼= J (X j ) ∀ i, j ∈ I,

as principally polarised abelian varieties.

Proof We prove the result by constructing explicit counter-examples. Let
(a0, . . . , an+2) ∈ Kn+3 be such that

X : x20 + · · · + x2n+2 = 0, a0x
2
0 + · · · + an+2x

2
n+2 = 0,

is a smooth complete intersection. By the functoriality of the intermediate Jacobian,
the twists with the same intermediate Jacobian as X are classified by the kernel of the
map

H1(K ,Lin X) → H1(K ,Aut J (X)) (3.2)

of pointed sets. We will show that this kernel is infinite.
Let σi be as in Lemma 3.3 and let A be the subgroup scheme of Lin X generated

by σ0σ1. By Lemma 3.3 we have A ⊂ ker(Lin X → Aut J (X)), hence the image of
H1(K , A) in H1(K ,Lin X) lies inside the kernel of (3.2).

However H1(K , A) ∼= K ∗/K ∗2 is infinite by assumption, and the fact that its
image in H1(K ,Lin X) is also infinite follows from a standard twisting argument [67,
Cor. I.5.4.2], as Lin X is finite (Lemma 2.3).
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The twists of X obtained this way are explicitly given by

bx20 + bx21 + x22 + · · · + x2n+2 = 0, ba0x
2
0 + ba1x

2
1 + a2x

2
2 + · · · + an+2x

2
n+2 = 0,

for b ∈ K ∗. Our proof shows that they all have the same intermediate Jacobian J (X),
yet give rise to infinitely many K -linear isomorphism classes. ��

We now show that the analogue of Proposition 3.1 fails for intersections of two
quadrics.

Corollary 3.6 Let T = (2, 2; n) with n an odd positive integer. Then the morphism
of stacks

J : CT,Q → Ag(T ),1,Q

is not representable by algebraic spaces.

Proof This follows immediately from Proposition 3.4 and the implication (3) �⇒
(1) in [70, Tag 04Y5]. ��
Remark 3.7 Corollary 3.6 gives a “conceptual explanation” for why the arithmetic
Torelli theorem fails for odd-dimensional complete intersections of two quadrics.
Namely that the intermediate Jacobian, viewed as a morphism of stacks, is not repre-
sentable.

4 Good reduction of complete intersections

In this section we define the notion of good reduction for complete intersections and
study its basic properties. The main result (Theorem 4.10) states that, under suit-
able conditions, a complete intersection admits only finitely many twists with good
reduction. This allows one to reduce to showing that there are only finitely many K̄ -
isomorphism classes (rather than K -isomorphism classes) with good reduction over
B, when considering problems of Shafarevich-type for complete intersections.

4.1 Preliminary finiteness theorems

We begin by gathering some classical finiteness results.

Definition 4.1 Let B be an integral schemewith function field K and let X be a proper
variety over K . A model for X over B is a flat proper B-scheme X → B together
with a choice of isomorphism XK ∼= X . We say that

(1) X has smooth reduction at a point v if X has a smooth model over the localisation
Bv of B at v.

(2) X has smooth reduction over B if X has smooth reduction at all points of codi-
mension one of B.
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Let B be an arithmetic scheme with function field K and structure sheaf OB . For
example, K is a number field and B = SpecOK [S−1]with S a finite set of finite places
of K . The first finiteness result we state is a generalisation of the Hermite–Minkowski
theorem for number fields to arithmetic schemes.

Theorem 4.2 (Hermite–Minkowski) Let d be an integer. Then there are only finitely
many field extensions L/K of degree d such that, for all v in B of codimension one,
the field extension L/K is unramified over the discrete valuation ring OB,v .

Proof We may assume that B is affine and smooth over Z. By a well-known con-
sequence of Hermite’s classical finiteness theorem [31, p. 209] the scheme B has
only finitely many finite étale covers of degree d. The result therefore follows from
Zariski–Nagata purity of the branch locus [36, Cor. X.3.3]. ��
Theorem 4.3 (Siegel) Suppose that K is a number field and let S be a finite set of
finite places of K . Then the equation

x + y = 1

has only finitely many solutions with x, y ∈ OK [S−1]∗.
Proof See e.g. [69, Thm. IX.4.1]. ��
Theorem 4.4 (Faltings) Let g ∈ N. Then the set of K -isomorphism classes of g-
dimensional principally polarised abelian varieties over K with smooth reduction
over B is finite.

Proof If dim B = 1, this theorem is the subject of [30]. In its full generality, the
theorem is proven in [31, p. 205, Thm. 2]. ��

The next lemma is a consequence of the theorem of Hermite–Minkowski.

Lemma 4.5 Let G be a finite étale group scheme over B with generic fibre G. Then
the set

⋂
v∈B(1)

Im
(
H1(Bv,Gv) → H1(K ,G)

)

is finite.

Proof As G is finite, only finitely many elements of H1(K ,G) trivialise over any
given finite extension of K . In particular by inflation-restriction (see [67, I.5.8(a)]),
we may assume that the action of Gal(K̄/K ) on G(K̄ ) is trivial. In which case, for
v ∈ B(1) we have

H1(K ,G) = Homcts(Gal(K̄/K ),G(K ))/ InnG(K ),

H1(Bv,G) = Homcts(π1(Bv),G(Bv))/ Inn G(Bv).
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In particular, the elements of

⋂
v∈B(1)

Im
(
H1(Bv,Gv) → H1(K ,G)

)

may be represented by certain isomorphism classes of finite field extensions of K of
bounded degree which are moreover unramified at all points of codimension one of
B. Hence the required finiteness follows Theorem 4.2. ��

4.2 Good reduction: definitions and basic properties

We now define good reduction and study its basic properties.

Definition 4.6 Let B be an integral scheme with function field K . Let T be a type
and let X be a complete intersection of type T over K . A good model for X over B is
a smooth complete intersection X → Pn+c

B of type T over B together with a choice
of K -linear isomorphism XK ∼= X . If v is a point of B, a good model for X at v is a
good model for X over the localisation Bv of B at v. We say that

(1) X has good reduction at v if X has a good model at v.
(2) X has good reduction over B if X has good reduction at all points of codimension

one of B.

We emphasise that having good reduction (in the sense of Definition 4.6) is stronger in
general than having smooth reduction (in the sense of Definition 4.1). Good reduction
behaves better than smooth reduction, in part due to its relationshipwithmoduli stacks.
These points are nicely illustrated by Lemmas 4.8 and 4.9 below.

We now record a consequence of Lemma 2.3 for the unicity of good models.

Lemma 4.7 Let T 	= (2; n) be a type and let B be an integral Noetherian regular
scheme with function field K . If X and Y are smooth complete intersections of type T
over B such that XK and YK are K -linearly isomorphic, then X and Y are B-linearly
isomorphic.

Proof By Lemma 2.3, the morphism IsomB(X,Y ) → B is finite. Therefore any
K -rational point of its generic fibre extends to a section over B. This follows from
Zariski’s main theorem, but also themuch stronger statement proven in [33, Prop. 6.2].

��
The next result shows that having good reduction is closely related to being an

integral point on the moduli stack. This interplay between good reduction and stacks
will occur throughout this paper.

Lemma 4.8 Let B be a Dedekind scheme with function field K . Let T be a type and
let X be a smooth complete intersection of type T over K which has good reduction
over B. Then
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(1) The K -linear isomorphism class of X lies in the image of the map of sets

[CT (B)] → [CT (K )].

(2) If Pic(B) = 0, then X has a good model over B.

Proof By assumption X admits a good model at each point of B. Wemay spread these
models out to obtain a Zariski open cover {Bi }i∈I of B such that X admits a good
modelXi over each Bi . The generic fibres of eachXi are pairwise linearly isomorphic,
hence, refining the cover if necessary, we may glue these to obtain a smooth proper
model h : X → B of X , together with a line bundle OX (1) which is flat over B and
which induces the hyperplane bundle on each fibre. It is now easy to see that (1) holds,
using for example the explicit description of the functor of points of CT given in [7,
Sect. 2.3.2].

For (2), by [7, Lem. 1.1.8] the line bundle OX (1) is relatively very ample hence
induces an embedding

X ↪→ P(h∗(OX (1))),

which is Zariski locally on B a complete intersection of type T . The sheaf h∗(OX (1))
is locally free on B, and since B is a Dedekind scheme with Pic B = 0, we find that
it is actually free. Therefore P(h∗(OX (1))) ∼= Pn+c

B .
Letπ : Pn+c

B → B denote the structuremorphism. To complete the proof, it suffices
to show that X ⊂ Pn+c

B is a complete intersection over B. This follows from the fact
that kernel of the epimorphism

h∗(OX (k)) → π∗(OP
n+c
B

(k))

is locally free, hence free, for all k ∈ Z (see the proof of [7, Prop. 2.1.12] or [24,
Prop. 1.9]). ��

If one would like finiteness results of Shafarevich-type (as in Theorem 1.1) to hold,
one needs to use the “right” notion for good reduction. Here we present an example
to illustrate this point, which is a variant of an example considered by Scholl [64,
Rem. 4.6]. Recall that we say that a smooth cubic surface over a field is split if all 27
lines are defined over that field.

Lemma 4.9 Let B be an integral scheme with function field K . Any split cubic sur-
face over K has smooth reduction over B. In particular, if K is infinite, then there
are infinitely many pairwise non K̄ -isomorphic cubic surfaces over K with smooth
reduction over B.

Proof Let v ∈ B(1). Any split cubic surface X over K is a blow-up of P2
K in a

collection of 6 rational points P1, . . . , P6 in general position. These points uniquely
extend to Bv-points of P2

Bv
. Blowing-up these Bv-points successively, we obtain a

smooth projective model for X at v. Thus, as v was arbitrary, the cubic surface X has
smooth reduction over B. As K is infinite, it is clear from this construction that there
are infinitely many K̄ -isomorphism classes amongst split cubic surfaces. ��
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1214 A. Javanpeykar, D. Loughran

Lemma4.9 shows that in ourmain result (Theorem1.1), thewords “good reduction”
cannot be replaced by “smooth reduction”. Let us emphasise that Lemma 4.9 does not
contradict Theorem 1.1, as the fibres of the smooth morphisms constructed in the
lemma will not all be smooth cubic surfaces in general, but only “weak” del Pezzo
surfaces.

4.3 Twists and good reduction

We now show that a complete intersection admits only finitely many twists with good
reduction (see Sect. 3.1), provided the type is not (2; n). Our proof of this makes use
of Hermite–Minkowski for arithmetic schemes, and the separatedness of the moduli
stack.

Theorem 4.10 Let B be an arithmetic scheme with function field K and let X be a
smooth complete intersection over K of type T 	= (2; n). Then the set of K -linear
isomorphism classes of complete intersections Y of type T with good reduction over
B and which are twists of X, is finite.

Proof To prove the result, replacing B by a dense open subscheme if necessary, we
may assume that X has a good model X → B. By Lemma 2.3, since T 	= (2; n), we
know that LinB(X ) is finite over B. In particular, replacing B again by a dense open
subscheme if necessary, we may assume that LinB(X ) is finite étale.

Let Y be a complete intersection of type T which is a twist of X over K and which
has good reduction over B. Let v ∈ B(1), let Yv be a good model for Y over Bv and let
Xv = X ×B Bv . We claim that IsomBv (Xv,Yv) is an LinBv (Xv)-torsor for the étale
topology. To prove this, consider the natural left LinBv (Xv)-action

LinBv (Xv) ×Bv IsomBv (Xv,Yv) → IsomBv (Xv,Yv).

Let L/K be a finite field extension such that YL is isomorphic to XL over L and let
Cv → Bv be the normalisation of Bv in L (see [47, Def. 4.1.24]). As IsomBv (Xv,Yv)

contains an L-point, it contains a Cv-point by Lemma 4.7. Thus it trivializes over Cv ,
hence is a Bv-torsor under LinBv (Xv) for the fppf topology. Since LinBv (Xv) is finite
étale, by fppf descent it is also a torsor for the étale topology, thus proving the claim.

Hence the class [Y ] ∈ H1(K ,LinK (X)) lies in the image of the natural map

H1(Bv,LinBv (Xv)) → H1(K ,LinK (X)).

As v were arbitrary, we conclude that [Y ] lies in
⋂

v∈B(1)

Im
(
H1(Bv,LinBv (Xv)) → H1(K ,LinK (X))

)
.

The finiteness of this set now follows from Lemma 4.5. The result is proved. ��
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We now give a simple application of Theorem 4.10. We say that a hypersurface X
over K is geometrically diagonalisable if XK̄ is K̄ -linearly isomorphic to a hypersur-
face of the form xd0 + · · ·+ xdn+1 = 0 in Pn+1

K̄
. Examples include hypersurfaces of the

shape a0xd0 + · · · + an+1xdn+1 = 0.

Corollary 4.11 Let B be an arithmetic scheme with function field K , let n ≥ 1 and let
d ≥ 3. Then the set of K -linear isomorphism classes of geometrically diagonalisable
hypersurfaces over K of dimension n and degree d with good reduction over B, is
finite.

Proof This follows immediately from Theorem 4.10. ��

5 The Shafarevich conjecture for complete intersections

In this section we prove Theorem 1.1, together with various generalisations to arith-
metic schemes, by bringing together the results of the previous sections. As should be
clear from these results, it will be necessary for us to consider different cases from the
Deligne–Rapoport classification separately (see Sect. 2.2), depending on the different
properties of the stack CT and the different cases covered by our arithmetic Torelli
theorem.

5.1 Quadrics

We begin with quadric hypersurfaces. The result here is a special case of our more
general result on good reduction of flag varieties [41, Thm. 1.4]. For completeness
however, we give a sketch of a proof in order to illustrate the difficulties arising in the
generalisation to arithmetic schemes.

Proposition 5.1 Let K be a number field, let B ⊂ SpecOK be a dense open sub-
scheme, and let n ∈ N. Then the set of K -isomorphism classes of n-dimensional
quadric hypersurfaces over K with good reduction over B is finite.

Proof Let X0 ⊂ Pn+1
B be a smooth quadric hypersurface over B (this exists for any

B). Let POn+1 denote the automorphism group scheme of X0 over B.
Let X be a quadric hypersurface of dimension n over K with good reduction over

B. Note that the K -isomorphism class of X corresponds to some element [X ] ∈
H1(K ,POn+1). Moreover X admits a smooth proper model X → B whose fibres are
isomorphic to smooth quadric hypersurfaces. A general result of Demazure (see the
remark on page 186 of [25]) implies that X is a twist of X0, hence [X ] lies in the
image of the map H1(B,POn+1) → H1(K ,POn+1). However the cohomology set
H1(B,POn+1) is finite by a general result of Gille and Moret-Bailly [34, Prop. 5.1]. ��
Remark 5.2 It does not seem to be possible to prove an analogue of Proposition 5.1
over general arithmetic schemeswith current tools. The crucial lacking ingredient is the
finiteness of the image Im(H1(B,POn+1) → H1(K ,POn+1)) when dim B > 1. This
is closely related to the finiteness of Tate–Shafarevich sets of linear algebraic groups,
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1216 A. Javanpeykar, D. Loughran

which is not known over finitely generated field extensions of Q in general. Note that
the analogue of the result [34, Prop. 5.1] used in Proposition 5.1 is even false over
higher dimensional arithmetic schemes, e.g. the set H1(P1

Z
,PO3) = H1(P1

Z
,PGL2) is

infinite, as there are infinitely many non-equivalent P1-bundles over P1
Z
(Hirzebruch

surfaces).

5.2 Intersections of two quadrics

In this section we prove the Shafarevich conjecture for intersections of two quadrics.
To do so, we will use pencils of quadrics; for geometric background, see [38, Sect. 22],
[61] and [76, Sect. 3.3].

Let n be a positive integer and let A be an integral domain in which 2 is invertible.
Let

X : Q1(x) = Q2(x) = 0 ⊂ Pn+2
A

be a smooth complete intersection of two quadrics Q1 and Q2 over A. Let

�(X) : det(λQ1 + μQ2) = 0 ⊂ P1
A

denote thediscriminant of the associated pencil of quadrics. This is a closed subscheme
of P1

A of degree n + 3 which parametrises the degenerate quadrics in the pencil.
Note that here we are committing some (common) abuses of notation. Firstly, in the
definition of �(X), we identify each Qi with the corresponding symmetric matrix
over A. Secondly, the definition of the discriminant depends on the choice of the Qi ,
however different choices within the same pencil give rise to A-linearly isomorphic
subschemes of P1

A, which will be sufficient for our purposes. Here, as usual, by a
linear isomorphismwemean onewhich is induced by an automorphism of the ambient
projective space.

Lemma 5.3 Let K be a field in which 2 is invertible. Let X and Y be smooth complete
intersections of two quadrics over K with K -linearly isomorphic discriminants. Then
Y is a twist of X over K .

Proof We may assume that K is algebraically closed. In which case, the result is
well-known; see [38, Thm. 22.41]. ��
Definition 5.4 Let B be an integral scheme with function field K . We shall say that
a closed subscheme of P1

B that is finite étale over B is split if it is B-isomorphic to a
disjoint union of copies of B. A closed subscheme� in P1

K has good reduction over B
if there exists a closed subscheme of P1

B that is finite étale over B and whose generic
fibre is K -linearly isomorphic to �.

Lemma 5.5 Let B be an integral affine scheme with function field K such that 2 is
invertible in B. Let X be a smooth complete intersection of two quadrics over K . If X
has a good model over B, then the discriminant of X has good reduction over B.
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Proof Let (Q1, Q2) be a pair of quadrics over B defining a good model for X over
B. To prove the lemma, it suffices to show that the polynomial

det(λQ1 + μQ2)

is separable over all residue fields of B. This follows from [76, Prop. 3.26]. ��

For d ∈ Nwe let Md(B) (resp. Md(B)split) denote the set of K -linear isomorphism
classes of closed subschemes (resp. split closed subschemes) of degree d in P1

K that
are finite étale over K and have good reduction over B.

Lemma 5.6 Let K be a number field and let B ⊂ SpecOK be a dense open sub-
scheme. Then the set �∞

d=1Md(B)split of K -linear isomorphism classes of split closed
subschemes of P1

K with good reduction over B is finite.

Proof Let � be a split finite étale closed subscheme of P1
K with good reduction over

B, and let X be a finite étale subscheme of P1
B whose generic fibre is K -linearly

isomorphic to � (note that X is also split). As PGL2(B) acts transitively on triples
of disjoint B-points of P1

B , we may assume that X contains 0, 1 and ∞. However, a
simple application of Theorem 4.3 shows that the set (P1

B\{0, 1,∞})(B) is finite, thus
there are only finitely many choices for X up to B-linear isomorphism. Therefore,
there are only finitely many choices for � up to K -linear isomorphism, as required.

��

We are now ready to prove the Shafarevich conjecture (Conjecture 1.4) for inter-
sections of two quadrics.

Proposition 5.7 Let K be a number field, let B ⊂ SpecOK be a dense open sub-
scheme, and let n ≥ 1. Then the set of K -linear isomorphism classes of n-dimensional
complete intersections of two quadrics over K with good reduction over B is finite.

Proof To prove the proposition, we may assume that 2 is invertible on B and that
Pic(B) = 0. By Lemma 4.8, it suffices to show that the set Qn(B) of K -linear
isomorphism classes of n-dimensional complete intersections of two quadrics over K
with a good model over B is finite. To do so, note that by Lemma 5.5 the assignment
of the discriminant of an intersection of two quadrics gives rise to a well-defined map
of sets Qn(B) → Mn+3(B). By Hermite–Minkowski (Theorem 4.2), there exist an
integral scheme B ′ and a finite étale morphism B ′ → B such that each element of
Mn+3(B) splits over B ′. Consider the composed map of sets

Qn(B) −→ Mn+3(B) −→ Mn+3(B
′)split

By Lemma 5.6, the set Mn+3(B ′)split is finite. On combining Theorem 4.10 with
Lemma 5.3 , we see that the composed map has finite fibres. The result is proved. ��
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5.3 Complete intersections of Hodge level 1

We now handle the case of complete intersections of Hodge level 1, for which we use
the intermediate Jacobian (see Sect. 2.3 for the relevant properties). Here we use the
notion of smooth reduction (Definition 4.1).

Lemma 5.8 Let B be an integral normal Noetherian scheme with function field K
and let X be a complete intersection of Hodge level 1 over K with smooth reduction
over B. Then the intermediate Jacobian J (X) of X has smooth reduction over B.

Proof To prove the result, we may assume that B is a local Dedekind scheme. The
proof in this case is very similar to the proof of [24, Lem. 3.2], so we shall be brief. Let
X be an n-dimensional complete intersection of Hodge level 1 with smooth reduction
over B and letm = (n−1)/2. As X has smooth reduction over B, the inertia group at
the closed point v ∈ B acts trivially on the Gal(K̄/K )-module H1(XK̄ ,Z�(m)) for all
primes � different from the residue characteristic of v. The Néron–Ogg–Shafarevich
criterion [10, Thm. 7.4.5] and Lemma 2.5 now give the result. ��

We now combine this with Faltings’s theorem and our arithmetic Torelli theorem
to deduce the Shafarevich conjecture in the remaining cases.

Proposition 5.9 Let B be an arithmetic scheme with function field K and T a type of
Hodge level 1. Assume that T 	= (3; 1) and T 	= (2, 2; n). Then the set of K -linear
isomorphism classes of complete intersections of type T over K with smooth reduction
over B is finite.

Proof Let X be a complete intersection of type T over K with smooth reduction over
B. Note that the dimension of the intermediate Jacobian J (X) is determined by T .
By Lemma 5.8, the abelian variety J (X) has smooth reduction over B. Faltings’s
finiteness theorem (Theorem 4.4) therefore implies that the set of K -isomorphism
classes of all principally polarised abelian varieties J (X), where X runs over all
smooth complete intersections of type T with smooth reduction over B, is finite.
However by Theorem 1.2 (proven in Sect. 3.2), only finitely many such complete
intersections have isomorphic intermediate Jacobians over K , whence the result. ��
Remark 5.10 It is possible to prove a slightly weaker variant of Proposition 5.9, using
Corollary 2.9, Theorem 4.10 and Lemma 5.8, which avoids the need to appeal to
Theorem 1.2. This gives the same finiteness statement over arithmetic schemes but
with smooth reduction replaced by good reduction; it has the advantage however of
also working for odd-dimensional intersections of two quadrics.

5.4 Proof of Theorem 1.1

In order to prove Theorem 1.1, we follow the classification (see Sect. 2.2.1). For
quadrics the result is Proposition 5.1. For cubic surfaces the result follows from Scholl
[64]. For intersections of two quadrics this is Proposition 5.7. The remaining types
with Hodge level 1, aside from cubic curves, follow from Proposition 5.9, as by the
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classification there are only finitely many types with the same dimension and same
Betti numbers.

It therefore remains to handle the case of plane cubics. If X is a smooth plane cubic
with good reduction outside of S, then the Jacobian J (X) has smooth reduction outside
of S by Lemma 5.8. Hence as X runs over all smooth plane cubics, Faltings’s theorem
implies that there are only finitely many K -isomorphism classes amongst the J (X).
Moreover if Y is another smooth plane cubic with J (Y ) ∼= J (X), then one easily sees
that Y is a twist of X as cubic curves. The result then follows from Theorem 4.10.

Remark 5.11 Note that the Shafarevich conjecture actually fails for the collection of
all curves of genus 1 (see [49, p. 241]). Nevertheless, Theorem 1.1 shows that it holds
for the class of smooth plane cubic curves, for example.

6 The Lang–Vojta conjecture implies the Shafarevich conjecture

The aim of this section is to prove Theorem 1.5. Our general result for arithmetic
schemes is Theorem 6.6, which gives Theorem 1.5 as a special case.

6.1 The Lang–Vojta conjecture

We first recall the Lang–Vojta conjecture on integral points. The original versions of
this conjecture appeared in [45] and [21, Conj. XV.4.3] (see also [1, Sect. 0.3] for
a version over arithmetic schemes). Its first striking consequence was obtained by
Caporaso–Harris–Mazur [14].

A quasi-projective schemeU over a field K of characteristic zero is of log-general
type if for any irreducible componentU ′ of (UK )red, there is a resolution of singularities
V → U ′ together with a smooth proper variety X and an open immersion of V into
X such that D = X\V is a simple normal crossings divisor and KX + D a big divisor
on X .

Conjecture 6.1 (Lang–Vojta conjecture) Let B be an arithmetic scheme with function
field K and let U be a smooth quasi-projective scheme over B. If every subvariety of
UK is of log-general type, then the set U (B) is finite.

Note that the Lang–Vojta conjecture usually states that ifUK has log-general type,
thenU (B) is not Zariski dense. By considering the Zariski closure ofU (B) inU , one
easily sees that this implies Conjecture 6.1 in the case where every subvariety of UK

is also of log-general type.

6.2 A finite étale atlas

A morphism U → C of Deligne–Mumford stacks is an (étale) atlas of C if U is an
algebraic space and U → C is étale and surjective. Note that, as the diagonal of a
Deligne–Mumford stack is representable by algebraic spaces, themorphismU → C is
representable by algebraic spaces.We emphasise that an atlasU of C is not necessarily
a scheme.
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For example, if g ≥ 1 and k ≥ 3, then themoduli stackA[k]
g,1 of principally polarised

g-dimensional abelian varieties with level k structure is a finite étale atlas of themoduli
stack Ag,1 over Z[1/k]. In [51, Ch. VII, Thm. 3.2] Moret-Bailly proved that A[k]

g,1 is
a quasi-projective scheme (and not merely an algebraic space). Similarly, the moduli
stack of polarised K3 surfaces admits a finite étale atlas over some arithmetic curve
(see [62, Thm. 6.1.2]).

The aim of this section is to prove similar results for complete intersections (see
Theorem 6.4). Our proof uses Proposition 2.16, which allows us to add level-structure
to CT,C in a naive way. This approach is based on Popp’s paper [59].

We start with a criterion for an algebraic space over a field to be quasi-projective.
This result is well-known; for lack of reference we include a proof.

Lemma 6.2 Let k ⊂ L be a field extension and let X be an algebraic space over k. If
XL is a quasi-projective scheme over L, then X is a quasi-projective scheme over k.

Proof There exists some finitely generated field extension k1 of k over which X
becomes a quasi-projective scheme. Decomposing the extension k ⊂ k1 into a tower
of extensions, we are reduced to proving the lemma in the two cases:

(1) k ⊂ L is finite.
(1) L = k(t) with t transcendental over k.

In the first case, the canonicalmorphism XL → X identifies the algebraic space X with
the quotient of XL by a finite locally free equivalence relation. As explained in [26,
Rem. V.5.1], the result then follows from [26, Thm. V.4.1]. In the second case, there
exist a dense open subscheme U ⊂ A1

k and a quasi-projective scheme X over U such
thatX is generically isomorphic to XL . TheU -algebraic spaces XU = X ×k U andX
are generically isomorphic. Replacing U by a dense open if necessary, by spreading
out [46, Prop. 4.18], we see that XU is U -isomorphic to X . Hence on choosing some
closed point u ∈ U with residue field K , we see that XK is isomorphic to the quasi-
projective K -scheme Xu . We have therefore reduced to case (1), which proves the
result. ��

We will require results of Griffiths and Zuo on period maps. We gather these in the
next lemma.

Lemma 6.3 Let f : X → U be a polarised family of smooth projective connected
varieties over C, where U is a smooth quasi-projective variety. If i ≥ 0 is an integer
such that the period map associated to Ri

prim f∗Z is an immersion of complex analytic
spaces, then every subvariety of U is of log-general type. Moreover U an is Brody
hyperbolic, i.e. every holomorphic map C → U an is constant.

Proof If Z is a subvariety of U and Z ′ → Z is a resolution of singularities, then the
period map on Z ′,an is generically immersive. In particular, by Zuo’s theorem [77],
the variety Z ′ is of log-general type (this result has been further generalised in [11,
Thm. 3.3]). Hence Z is of log-general type. Next, asC is simply-connected, a result of
Griffiths [74, Thm. 3.1] implies that any polarisable variation of Hodge structures over
C is trivial. In particular, as U an is a complex manifold which admits an immersive
period map, we see that any holomorphic map C → U an is constant, so that U an is
Brody hyperbolic, as required. ��

123



Complete intersections: moduli, Torelli, and good reduction 1221

We now attach level structure to the moduli stack CT .
Theorem 6.4 Let T = (d1, . . . , dc; n) be a type. Assume that one of the following
holds.

(1) T is of general type.
(2) 3 ≤ d1 < d2 = · · · = dc and T 	= (3; 1).
(3) T has Hodge level 1, T 	= (3; 1) and T 	= (2, 2; n).

Then there exist

(a) a number field K and a dense open subscheme B ⊂ SpecOK ,
(b) a smooth quasi-projective scheme U over B, and
(c) a finite étale B-morphism U → CT,B of stacks

such that any subvariety of UK is of log-general type, and the complex manifold U an
C,σ

is Brody hyperbolic with respect to any embedding σ : K → C.

Proof Let N = n + c+ 1. For all smooth complete intersections X of type T over C,
with T as in the statement of the theorem, the canonical map

Lin(X) → Aut(Hn(X,Z))

is injective byProposition 2.16 and the groupLin(X) is finite byLemma2.3.Therefore,
we can apply [59, Prop. 2.17] to see that there exist a finite étale Galois morphism
HC → HilbT,C of schemes, where HilbT is the Hilbert scheme of smooth complete
intersections of type T , and a PGLN -action on HC such that

• the morphism HC → HilbT,C is PGLN -equivariant, and
• the action of PGLN on HC is proper and without fixed points.

By spreading out and specialising, we see that there exist a number field K , a dense
open subscheme B of SpecOK , a finite étale Galois morphism H → HilbT,B , and a
PGLN -action on H such that the morphism H → HilbT,B is PGLN -equivariant and
the action of PGLN on H is proper and without fixed points.

Consider the induced finite étale morphism U → CT,B where U = [PGLN\H ] is
the quotient stack. AsU has trivial stabilisers, the stackU is a smooth algebraic space
over B by [20, Thm. 2.2.5.(1)] (see also [46, Cor. 8.1.1]).

Replacing B by a dense open if necessary, Proposition 2.2 implies that CT,B is
separated and Deligne–Mumford over B. Let CT,B → CcoarseT,B be the coarse moduli
space. The existence of the algebraic space Ccoarse

T,B was proved by Keel–Mori [43].
Note that the morphism CT,B → CcoarseT,B is quasi-finite and proper [63, Thm. 6.12].

We now use results of Viehweg [72, Thm. 1.11] in case (1) and Benoist [9,
Cor. 1.2] in cases (2) and (3) to deduce that CcoarseT,C

is a quasi-projective scheme
over C (that the result of [9] applies in case (3) follows from the classification given
in Sect. 2.2.1). Since K ⊂ C is flat, the algebraic spaces (CcoarseT,K )C and CcoarseT,C

are
naturally isomorphic. Hence by Lemma 6.2, the algebraic space CcoarseT,K is a quasi-
projective scheme over K . Moreover, since the morphism UK → CT,K is finite
and the morphism CT,K → CcoarseT,K is quasi-finite and proper, the composed mor-
phism UK → CT,K → CcoarseT,K of algebraic spaces is finite. As finite morphisms are

123



1222 A. Javanpeykar, D. Loughran

quasi-finite separated and CcoarseT,K is a scheme, the algebraic space UK is a scheme
by Knutson’s criterion [44, Cor. II.6.16]. Furthermore, as UK → CcoarseT,K is a finite
morphism of schemes and CcoarseT,K is quasi-projective, we can use spreading out [46,
Prop. 4.18] to see that U is a smooth finite type algebraic space over B which is
generically quasi-projective. Replacing B by a dense open if necessary, we conclude
that U is a smooth quasi-projective scheme over B.

To finish the proof, fix an embedding K → C and considerUC. It suffices to show
that all subvarieties Z of UC are of log-general type, and that the complex manifold
U an
C

is Brody hyperbolic. By Flenner’s infinitesimal Torelli theorem [32, Thm. 3.1] (as
used already in Sects. 2.4 and 2.5), the period map of the polarised variation of Hodge
structures on U an

C
associated to the pull-back f : X → UC to UC of the universal

family over CT,C is an immersion of complex analytic spaces. Therefore, the result
follows from Lemma 6.3. ��
Remark 6.5 If T is of general type, then to deduce that every subvariety of UK is of
log-general type in the proof of Theorem 6.4 one can also appeal to the theorem of
Campana–Păun (quondam Viehweg’s conjecture) [13, Cor. 4.6].

6.3 Lang–Vojta implies Shafarevich

The aim of this section is to prove Theorem 1.5, via the following stronger result for
arithmetic schemes.

Theorem 6.6 Let T = (d1, . . . , dc; n) be a type and let B be an arithmetic scheme
with function field K . Assume that one of the following holds.

(1) T is of general type.
(2) 3 ≤ d1 < d2 = · · · = dc and T 	= (3; 1).
Assume Conjecture 6.1. Then the set of B-linear isomorphism classes of smooth com-
plete intersections of type T over B is finite.

Proof By the uniqueness of good models (Lemma 4.7), to prove the theorem we are
free to replace B by any non-empty open subset. Moreover, given any finite map
of arithmetic schemes B ′ → B and a smooth complete intersection X of type T
over B ′, Lemma 4.7 and Theorem 4.10 imply that there are only finitely many B-
linear isomorphism classes of smooth complete intersections of type T over B which
become B ′-linearly isomorphic to X over B ′. Hence, on replacing B by a finite cover
if necessary, by Theorem 6.4 we may assume that there exists a finite étale atlas
U → CT,B , where U → B is a smooth quasi-projective B-scheme whose generic
fibre has the property that all its subvarieties are of log-general type.

We now apply a descent argument in the spirit of the proof of the theorem of
Chevalley–Weil [66, Sect. 4.2]. By pull-back, any B-point of CT,B induces a B̃-point
of U , where B̃ → B is some finite étale morphism whose degree is at most the
degree of U → CT,B . As B̃ → B is finite étale, the connected components of the
scheme B̃ are arithmetic schemes. Therefore, the set U (B̃) is finite by Conjecture
6.1. Moreover, the set of B-isomorphism classes of finite étale morphisms B̃ → B of
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bounded degree is finite byHermite–Minkowski (Theorem4.2). Hence the set [CT (B)]
is finite. In particular, there are only finitely many B-linear isomorphism classes of
smooth complete intersections of type T over B, as required. ��

Proof of Theorem 1.5 Let T be a type which is either of general type or is a hyper-
surface. Let K be a number field and let B ⊂ SpecOK be a dense open subset. By
Theorem 1.1, we may assume that T has Hodge level at least 2. Moreover, replacing
B by a dense open if necessary, we may assume that Pic(B) = 0. In particular, by
Lemma 4.8, any smooth complete intersection of type T over K with good reduction
over B has a good model over B. However, assuming the Lang–Vojta conjecture, The-
orem 6.6 implies that the set of B-linear isomorphism classes of such models is finite,
which proves the result.
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