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Abstract The Ericksen–Lesliemodel for nematic liquid crystals in a bounded domain
with general Leslie and isotropic Ericksen stress tensor is studied in the case of a
non-isothermal and incompressible fluid. This system is shown to be locally strongly
well-posed in the L p-setting, and a dynamical theory is developed. The equilibria are
identified and shown to be normally stable. In particular, a local solution extends to
a unique, global strong solution provided the initial data are close to an equilibrium
or the solution is eventually bounded in the topology of the natural state manifold. In
this case, the solution converges exponentially to an equilibrium, in the topology of
the state manifold. The above results are proven without any structural assumptions
on the Leslie coefficients and in particular without assuming Parodi’s relation.

Mathematics Subject Classification 35Q35 · 76A15 · 76D03 · 35K59

1 Introduction: the Ericksen–Leslie model with general Leslie stress

In their pioneering articles, Ericksen [7] and Leslie [21] developed a continuum the-
ory for the flow of nematic liquid crystals. Their theory models nematic liquid crystal
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flow from a hydrodynamical point of view and describes the evolution of the under-
lying system under the influence of the velocity u of the fluid and the orientation
configuration d of rod-like liquid crystals. We already observe here that the modulus
|d|2 of the director field d must equal 1 pointwise, as d represents a direction field.
For more information see e.g. [1,3,5,35] or [15,27]. The original derivation [7,21] is
based on the conservation laws for mass, linear and angular momentums as well as on
constitutive relations given by Leslie in [21].

Following arguments from thermodynamics and employing the entropy principle,
we proposed in [14,15] thermodynamically consistentmodels ofEricksen–Leslie type,
even in the case of compressible fluids. Let us emphasize that these models contain
the classical Ericksen–Leslie model in its general form as a special case.

A related class of models also dealing with the non-isothermal situation was pre-
sented by Feireisl et al. [8] as well as by Feireisl, Frémond, Rocca and Schimperna in
[9]. Their models include stretching as well as rotational terms and are consistent with
the fundamental laws of thermodynamics. The equation for the director d is, however,
given in the penalized form, which does not seem to be physical. They show that the
presence of the term |∇d|22 in the internal energy as well as the stretching term d · ∇u
give rise, in order to respect the laws of thermodynamics, to two new non dissipative
contributions in the stress tensor S and in the flux q. It is interesting to note that these
two new contributions coincide with the extra terms derived by Sun and Liu [36] by
different methods. It seems that these extra terms are non physical and arise there for
purely mathematical reasons.

Given a bounded domain � ⊂ R
n , n ≥ 2, with smooth enough boundary, the

general Ericksen–Leslie model in the non-isothermal situation derived as in [14,15]
reads as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tρ + div(ρu) = 0 in �,

ρDt u + ∇π = div S in �,

ρDtε + div q = S : ∇u − πdiv u + div(ρ∂∇dψDt d) in �,

γDt d − μV V d = Pd
(
div(ρ ∂ψ

∂∇d ) − ρ∇dψ
) + μD Pd Dd in �,

u = 0, q · ν = 0 on ∂�,

ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in �.

(1.1)

Here the unknown variables ρ, u denote the density and velocity of the fluid, respec-
tively, ε the internal energy and d the so called director, which - we recall - must have
modulus 1. Moreover, D = 1

2 (∇u]T + ∇u) denotes the rate of deformation tensor,
the vorticity tensor V defined by V = 1

2 (∇u − [∇u]T ) is skew-symmetric, and q
denotes the heat flux. ByDt = ∂t + u · ∇ we denote the Lagrangian derivative and Pd

is defined as Pd = I − d ⊗ d.
Note that the condition |d|2 = 1 is preserved by smooth solutions, as Pdd = 0 as

well as (V d|d) = 0, hence Dt |d|22 = 0.
In addition,ψ denotes the free energy, which, following Oseen [29] and Frank [12],

see also Virga [38], is given by the Oseen-Frank functional ψ F (d,∇d) as

ψ F (d,∇d) := k1(div d)2 + k2(d · curl d)2 + k3|d × curl d|2
+(k2 + k4)(tr(∇d)2 − (div d)2), (1.2)
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Dynamics of the Ericksen–Leslie equations... 979

where k1, . . . , k4 are the so called Frank coefficients, which may depend on ρ and θ .
These equations have to be supplemented by the thermodynamical laws

ε = ψ + θη, η = −∂θψ, κ = ∂θ ε, π = ρ2∂ρψ, (1.3)

and by the constitutive laws

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S = SN + SE + Sstretch
L + Sdiss

L ,

SN = 2μs D + μbdiv u I,
SE = −ρ

∂ψ
∂∇d [∇d]T,

Sstretch
L = μD+μV

2γ n ⊗ d + μD−μV
2γ d ⊗ n, n = μV V d + μD Pd Dd − γDt d,

Sdiss
L = μP

γ
(n⊗d+d ⊗ n)+ γμL+μ2

P
2γ (Pd Dd ⊗ d+d ⊗ Pd Dd)+μ0(Dd|d)d⊗d,

(1.4)

and
q = −α̃0∇θ − α̃1(d|∇θ)d. (1.5)

Here all coefficients μ j , α̃ j and γ are functions of ρ, θ, d,∇d. For thermodynamical
consistency we require the conditions

μs ≥ 0, 2μs + nμb ≥ 0, α̃0 ≥ 0, α̃0 + α̃1 ≥ 0, μ0, μL ≥ 0, γ > 0. (1.6)

We also note that the natural boundary condition at ∂� for d becomes

νi∇∂i dψ = 0 on ∂�. (1.7)

Observe that this condition is fully nonlinear, in general. Physically, it means that the
boundary does not interact with the director field. Otherwise one would have to model
such interactions and it seems to be unclear whether this could be done in a physically
consistent way by simply imposing Dirichlet boundary conditions. For this reason we
employ the Neumann condition for d throughout this paper. Actually, we can prove
local well-posedness also in the case of Dirichlet boundary conditions, but the set of
equilibria becomes more complicated in this case. Our results on stability and long
time behaviour are only valid for constant equilibria.

In the case of isotropic elasticy with constant density and temperature one has
k1 = k2 = k3 = 1 and k4 = 0 and so the Oseen-Frank energy reduces to the Dirichlet
energy, i.e.

ψ(d,∇d) := ψ F (d,∇d) = 1

2
|∇d|2,

and thus div (
∂ψ F

∂(∂∇d)
) = �d. Then the Ericksen stress tensor simplifies to

SE = −λ∇d[∇d]T, (1.8)
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980 M. Hieber, J. Prüss

where λ = ρ∂τψ , and the natural boundary condition at ∂� for d becomes the
Neumann condition ∂νd = 0 on ∂�.

It is the aim of this article to investigate the above Ericksen–Leslie system analyti-
cally, in the case of isotropic elasticity and for incompressible as well as compressible
fluids. To this end, Part I of this article will concentrate on the case of incompressible
fluids, whereas Part II will investigate the compressible case. Here incompressibility
means that the density ρ is constant and isotropy means that the free energy ψ is a
function of �, θ and τ = |∇d|22/2, only.

For the convenience of the reader, we rewrite the model in the incompressible and
isotropic case, which then reads as follows.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρDt u + ∇π = div S in �,

div u = 0 in �,

ρDtε + div q = S : ∇u + div(λ∇dDt d) in �,

γDt d − μV V d − div[λ∇]d = λ|∇d|2d + μD Pd Dd in �,

u = 0, q · ν = 0, ∂νd = 0 on ∂�,

ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in �.

(1.9)

These equations have to be supplemented by the thermodynamical laws for the internal
energy ε, entropy η, heat capacity κ given in (1.3), by Ericksen’s tension λ = ∂ρτψ ,
and by the constitutive laws (1.4) as above, with Ericksen stress of the form (1.8), and
with q satifying

q = −α∇θ. (1.10)

Note that all coefficients μ j , α and γ are functions of θ and τ , by the principle of
equi-presence.

For further purposes, it is convenient to write the equation for the internal energy
as an equation for the temperature θ . It reads as

ρκDtθ + div q = S : ∇u + div(λ∇)d · Dt d + (θ∂θλ)∇d∇Dt d.

Observe the appearance of unusual third order terms due to the presence of Dt d in
the Leslie stress SL as well as in the last term of the energy balance. This alludes a
peculiarity of the system, which has to be overcome in the analysis.

Let us emphasize that in the caseμV = γ , our parametersμs, μ0, μV , μD, μP , μL

are in one-to-one correspondence to the celebrated Leslie parameters α1, . . . , α6 given
in the Leslie stress σL defined by

σL := α1(d
T Dd)d ⊗ d +α2N ⊗ d +α3d ⊗ N +α4D +α5(Dd)⊗ d +α6d ⊗ (Dd),

(1.11)
where D denotes the deformation tensor as above and

N := N (u, d) := ∂t d + (u · ∇)d − V d,
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Dynamics of the Ericksen–Leslie equations... 981

with V as above. This shows that our model (1.9), (1.3), (1.4) contains the classical
isothermal and isotropic Ericksen–Leslie model given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut + (u · ∇)u − �u + ∇π =−div (∇d[∇d]T ) + div σL in (0, T ) × �,

div u =0 in (0, T ) × �,

dt + u∇d − V d + λ2
λ1

Dd =− 1
λ1

(�d + |∇d|2d) + λ2
λ1

(dT Dd)d in (0, T ) × �,

(u, ∂νd)=(0, 0) on (0, T ) × ∂�,

(u, d)|t=0=(u0, d0) in �.

(1.12)

as a special case; herewe haveλ1 = −γ /λ andλ2 = μD/λ. Note that in the simplified
model no third order terms appear, which considerably simplifies this problem.

It was shown by Parodi [30] in 1970 that, assuming Onsager’s reciprocal relation,
one is lead to the relation

α2 + α3 = α6 − α5, (1.13)

where the coefficients α j denote the Leslie coefficients introduced above.
The analysis of the Ericksen–Leslie system began by the pioneering work of Lin

[22,23] and Lin and Liu [24,25], who introduced and studied the nowadays called
isothermal simplified model. They studied the situation where the nonlinearity in the
equation for d is replaced by a Ginzburg-Landau energy functional and proved the
existence of global weak solutions under suitable assumptions on the intial data.Wang
proved in [39] global well-posedness for the simplified system for initial data being
small in B M O−1 × B M O in the case of a whole space � = R

n by combining
techniques of Koch and Tataru with methods from harmonic maps.

Concerning the situation of bounded domains, a rather complete understanding
of the well-posedness as well as the dynamics of the simplified system subject to
Neumann conditions for d was obtained in [13]. First results on the existence of global
weak solutions to the simplified system subject to Dirichlet boundary conditions in
two dimensions go back to Lin et al. [26]. Recently, considering the simplified system
in three dimensions subject to Dirichlet conditions d = db on ∂�, Huang et al. [17]
constructed examples of small initial data for which one has finite time blow up of
(u, d).

It seems that Coutard and Shkoller [4] were the first who considered so called
stretching terms analytically in the equation for d. More precisely, they replaced the
equation for d in the simplified model by a Ginzburg-Landau type approximation
including stretching of the form

γ (∂t d + u · ∇d + d · ∇u) = �d − 1

ε2
(|d|22 − 1)d in (0, T ) × �. (1.14)

They proved local well-posedness for (1.14) as well as a global existence result for
small data. Note, however, that in this case the presence of the stretching term d · ∇u
causes loss of total energy balance and,moreover, the condition |d|2 = 1 in (0, T )×�,
is not preserved anymore.

For recent results on the general Ericksen–Leslie model with vanishing Leslie and
general Ericksen stress we refer to the articles [16,28]. For results including stretching
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982 M. Hieber, J. Prüss

terms for d, we refer to the articles [14,15,18,26,40,41],which containwell-posedness
criteria for the general system under various assumptions on the Leslie coefficients.

The main new idea in investigating the general Ericksen–Leslie equations analyti-
cally in the strong sense is, similiarly to the situation of the simplified and isothermal
system treated in [13], to regard them as a quasilinear parabolic evolution equation.
Restricting ourselves in Part I to the case of incompressible fluids and to the case
of isotropic elasticity, we present in the following a rather complete dynamic theory
for the underlying equations. It seems to be the first well-posedness result for the
Ericksen–Leslie equations dealing with general Leslie stress SL without assuming
additional conditions on the Leslie coefficients.

The results given in the three main theorems below answer all questions concern-
ing well-posedness, stability and longtime behaviour for the general Ericksen–Leslie
system subject to Neumann boundary conditions for d in a very satisfactory way. It
is proved by means of techniques involving maximal L p-regularity and quasilinear
parabolic evolution equations. For these methods, we refer to the booklet by Denk,
Hieber, and Prüss [6], the articles [19,20,31,34] and to the monograph by Prüss and
Simonett [33]. For the convenience of the reader we have summarized the relevant
results from these papers in Sect. 3.

Let us also emphasize that for obtaining our well-posedeness results in the strong
sense no structural conditions on the Leslie coefficients are imposed and that in par-
ticular Parodi’s relation (1.13) on the Leslie coefficients is not being assumed.

Moreover, the equilibria of the system have been identified in our recent paper
[14]—which are zero velocities and constant density, temperature and director—and
there it also has been proved that these are thermodynamically stable. The negative
total entropy has been shown to be a strict Lyapunov functional; in particular, the
model is thermodynamically consistent.

We further mention at this point the series of articles [8–11], in which it is shown
that their particular systems admit a global weak solution for a natural class of initial
data.

For more information on modeling and analysis of the Ericksen–Leslie system, we
refer e.g. to [3,5] and to the survey articles [15,27].

2 Thermodynamical stability and consistency

In this short section we recall from [14,15] that the above model (1.9), (1.3), (1.4),
(1.10) has the following thermodynamical properties. To this end, we introduce the
following

Assumption (P):

μs > 0, α > 0, μ0, μL ≥ 0, κ, γ > 0, λ, λ + 2τ∂τ λ > 0. (2.1)

Theorem 2.1 ([14], Theorem 1) Assume that condition (P) holds. Then the incom-
pressible and isotropic model (1.9), (1.3), (1.4), (1.10) has the following properties:

123



Dynamics of the Ericksen–Leslie equations... 983

(i) Along smooth solutions the total energy

E :=
∫

�

[ρ

2
|u|22 + ρε

]
dx

is preserved.
(ii) Along smooth solutions the total entropy

N :=
∫

�

ρηdx

is non-decreasing.
(iii) The negative total entropy −N is a strict Lyapunov functional.
(iv) The condition |d|2 = 1 is preserved along smooth solutions.
(v) The equilibria of the system are given by the set of constants

E = {(0, θ∗, d∗) : θ∗ ∈ (0,∞), d∗ ∈ R
n, |d∗|2 = 1}. (2.2)

Here θ∗ is uniquely determined by the identity

ε(θ∗, 0) = E0/ρ|�|.

(vi) The equilibria are the critical points of the total entropy with prescribed energy.
(vii) The second variation of N with prescribed energy at an equilibrium is negative

semi-definite.

3 Background: quasilinear parabolic evolution equations

In this sectionwe briefly recall some results on abstract quasilinear parabolic problems

v̇ + A(v)v = F(v), t > 0, v(0) = v0, (3.1)

which are employed in the proofs of our main theorems. These results are due to Prüss
[31], Prüss and Simonett [32], Köhne et al. [19], and Prüss et al. [34]; a convenient
reference for this theory is the monograph by Prüss and Simonett [33], Chapter 5.

Assume that (A, F) : Vμ → L(X1, X0) × X0 and v0 ∈ Vμ. Here the spaces
X1, X0 are Banach spaces such that X1 ↪→ X0 with dense embedding and Vμ is an
open subset of the real interpolation space

Xγ,μ := (X0, X1)μ−1/p,p, μ ∈ (1/p, 1].

We are mainly interested in solutions v of (3.1) having maximal L p-regularity, i.e.

v ∈ H1
p(J ; X0) ∩ L p(J ; X1) =: E1(J ), where J = (0, T ).
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984 M. Hieber, J. Prüss

The trace space of this class of functions is given by Xγ := Xγ,1. However, to see and
exploit the effect of parabolic regularization in the L p-framework it is also useful to
consider solutions in the class of weighted spaces

v ∈ H1
p,μ(J ; X0) ∩ L p,μ(J ; X1) =: E1,μ(J ), which means t1−μv ∈ E1(J ).

The trace space for this class of weighted spaces is given by Xγ,μ. In our approach it
is crucial to know that the operators A(v) have the property of maximal L p-regularity.
Recall that an operator A0 in X0 with domain X1 has maximal L p-regularity, if the
linear problem

v̇ + A0v = f, t ∈ J, v(0) = 0,

admits a unique solution v ∈ E1(J ), for any given f ∈ L p(J ; X0) =: E0(J ). It has
been proved in [32] that in this case maximal regularity also holds in the weighted
spaces.

Proposition 3.1 Let p ∈ (1,∞), v0 ∈ Vμ be given and suppose that (A, F) satisfies

(A, F) ∈ C1(Vμ;L(X1, X0) × X0), (3.2)

for some μ ∈ (1/p, 1]. Assume in addition that A(v0) has maximal L p-regularity.
Then there exist a = a(v0) > 0 and r = r(v0) > 0 with B̄Xγ,μ(v0, r) ⊂ Vμ such

that problem (3.1) has a unique solution

v = v(·, v1) ∈ E1,μ(0, a) ∩ C([0, T ]; Vμ),

on [0, a], for any initial value v1 ∈ B̄Xγ,μ(v0, r). In addition,

t∂tv ∈ E1,μ(0, a),

in particular, for each δ ∈ (0, a) we have

v ∈ H2
p((δ, a); X0) ∩ H1

p((δ, a); X1) ↪→ C1([δ, a]; Xγ ) ∩ C1−1/p([δ, a]; X1),

i.e. the solution regularizes instantly.

The next result provides information about the continuation of local solutions.

Corollary 3.2 Let the assumptions of Theorem 3.1 be satisfied and assume that A(v)

has maximal L p-regularity for all v ∈ Vμ. Then the solution v of (3.1) has a maximal
interval of existence J (v0) = [0, t+(v0)), which is characterized by the following
alternatives:

(i) Global existence: t+(v0) = ∞;
(ii) lim inf t→t+(v0) distXγ,μ(v(t), ∂Vμ) = 0;

(iii) limt→t+(v0) v(t) does not exist in Xγ,μ.
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Dynamics of the Ericksen–Leslie equations... 985

Next we assume that there is an open set V ⊂ Xγ such that

(A, F) ∈ C1(V,L(X1, X0) × X0). (3.3)

Let E ⊂ V ∩ X1 denote the set of equilibrium solutions of (3.1), which means that

v ∈ E if and only if v ∈ V ∩ X1 and A(v)v = F(v).

Given an element v∗ ∈ E , we assume that v∗ is contained in anm-dimensionalmanifold
of equilibria. This means that there is an open subset U ⊂ R

m , 0 ∈ U , and a C1-
function � : U → X1, such that

• �(U ) ⊂ E and �(0) = v∗,
• the rank of � ′(0) equals m, and

• A(�(ζ ))�(ζ ) = F(�(ζ )), ζ ∈ U.

(3.4)

We suppose that the operator A(v∗) has the property of maximal L p-regularity, and
define the full linearization of (3.1) at v∗ by

A0w = A(v∗)w + (A′(u∗)w)v∗ − F ′(v∗)w for w ∈ X1. (3.5)

After these preparations we can state the following result on convergence of solutions
starting near v∗ which is called the generalized principle of linearized stability.

Proposition 3.3 Let 1 < p < ∞. Suppose v∗ ∈ V ∩ X1 is an equilibrium of (3.1),
and suppose that the functions (A, F) satisfy (3.3). Suppose further that A(v∗) has
the property of maximal L p-regularity and let A0 be defined in (3.5). Suppose that v∗
is normally stable, which means

i) near v∗ the set of equilibria E is a C1-manifold in X1 of dimension m ∈ N,
ii) the tangent space for E at v∗ is isomorphic to N(A0),

iii) 0 is a semi-simple eigenvalue of A0, i.e. N(A0) ⊕ R(A0) = X0,
iv) σ(A0)\{0} ⊂ C+ = {z ∈ C : Re z > 0}.
Then v∗ is stable in Xγ , and there exists δ > 0 such that the unique solution v of (3.1)
with initial value v0 ∈ Xγ satisfying |v0 − v∗|γ ≤ δ exists on R+ and converges at an
exponential rate in Xγ to some v∞ ∈ E as t → ∞.

The next result contains information on bounded solutions in the presence of compact
embeddings and of a strict Lyapunov functional.

Proposition 3.4 Let p ∈ (1,∞), μ ∈ (1/p, 1), μ̄ ∈ (μ, 1], with Vμ ⊂ Xγ,μ open.
Assume that (A, F) ∈ C1(Vμ;L(X1, X0) × X0), and that the embedding Xγ,μ̄ ↪→
Xγ,μ is compact. Suppose furthermore that v is a maximal solution which is bounded
in Xγ,μ̄ and satisfies

distXγ,μ(v(t), ∂Vμ) ≥ η > 0, for all t ≥ 0. (3.6)
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986 M. Hieber, J. Prüss

Suppose that � ∈ C(Vμ ∩ Xγ ;R) is a strict Lyapunov functional for (3.1), which
means that � is strictly decreasing along non-constant solutions.

Then t+(v0) = ∞, i.e. v is a global solution of (3.1). Its ω-limit set ω+(v0) ⊂ E
in Xγ is nonempty, compact and connected. If, in addition, there exists v∗ ∈ ω+(v0)

which is normally stable, then limt→∞ v(t) = v∗ in Xγ .

4 Main results

In order to formulate the main well-posedness result for the Ericksen–Leslie system in
the incompressible and isotropic case and to have access to the tools presented in Sect.
3, we introduce a functional analytic setting as follows. Denote the principal variable
by v = (u, θ, d) and let us rewrite system (1.9), (1.3), (1.4), (1.10) as a quasi-linear
evolution equation of the form

v̇ + A(v)v = F(v), t > 0, v(0) = v0, (4.1)

replacing Dt d appearing in the the equations for u and θ by the equation for d. We
also apply the Helmholtz projection P to the equation for u. Then v belongs to the
base space X0 defined by

X0 := Lq,σ (�) × Lq(�;R) × H1
q (�;Rn),

where 1 < p, q < ∞ and σ indicates solenoidal vector fields. The regularity space
will be

X1 := {u ∈ H2
q (�;Rn) ∩ Lq,σ (�) : u = 0 on ∂�} × Y1,

with

Y1 := {(θ, d) ∈ H2
q (�) × H3

q (�;Rn) : ∂νθ = ∂νd = 0 on ∂�}.

We consider solutions v within the class

v ∈ H1
p,μ(J ; X0) ∩ L p,μ(J ; X1) = E1,μ(J ),

where J = (0, a) with 0 < a ≤ ∞ is an interval and μ ∈ (1/p, 1]. The time trace
space of this class is given by

Xγ,μ := {u ∈ B2(μ−1/p)
qp (�)n ∩ Lq,σ (�) : u = 0 on ∂�} × Yγ,μ, (4.2)

where

Yγ,μ = {(θ, d) ∈ B2(μ−1/p)
qp (�) × B1+2(μ−1/p)

qp (�;Rn) : ∂νθ = ∂νd = 0 on ∂�},
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Dynamics of the Ericksen–Leslie equations... 987

whenever the boundary traces exist. Note that

Xγ,μ ↪→ B2(μ−1/p)
qp (�)n+1 × B1+2(μ−1/p)

qp (�)n ↪→ C(�)n+1 × C1(�)n,

provided
1

p
+ n

2q
< μ ≤ 1. (4.3)

For brevity we set Xγ := Xγ,1. Finally, the state manifold of the problem is defined
by

SM = {v ∈ Xγ : θ(x) > 0, |d(x)|2 = 1 in �}.

We assume the following regularity on the parameter functions:

Regularity assumption (R)
The parameter functions are assumed to satisfy

μ j , α, γ ∈ C2((0,∞) × [0,∞)) for j = S, V, D, P, L , 0, and

ψ ∈ C4((0,∞) × [0,∞)). (4.4)

The fundamental well-posedness results regarding the general isotropic incom-
pressible Ericksen–Leslie system reads as follows.

Theorem 4.1 (Local Well-Posedness) Let � ⊂ R
n be a bounded domain with

boundary of class C3− and assume conditions (R) and (P). Assume that J = (0, a),
1 < p, q,< ∞ and μ ∈ (1/p, 1] are subject to (4.3) and v0 ∈ Xγ,μ. Then for some
a = a(v0) > 0, there is a unique solution

v ∈ H1
p,μ(J, X0) ∩ L p,μ(J ; X1),

of (4.1), i.e. of (1.9), (1.3), (1.4), (1.10) on J . Moreover,

v ∈ C([0, a]; Xγ,μ) ∩ C((0, a]; Xγ ),

i.e. the solution regularizes instantly in time. It depends continuously on v0 and exists
on a maximal time interval J (v0) = [0, t+(v0)). Moreover,

t∂tv ∈ H1
p,μ(J ; X0) ∩ L p,μ(J ; X1), a < t+(v0).

Furthermore,

|d(·, ·)|2 ≡ 1, E(t) ≡ E0, t ∈ J,

and −N is a strict Lyapunov functional. In addition, problem (4.1) generates a local
semi-flow in its natural state manifold SM.
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Below, we denote by Ē the set

Ē = {(0, θ∗, d∗) : θ∗ > 0, d∗ ∈ R
n}

of constant equilibria of the systemwhen ignoring the constraints |d|2 = 1andE = E0.
The next result concerns stability of equilibria.

Theorem 4.2 (Stability of Equilibria) Assume conditions (R) and (P). Then any equi-
librium v∗ ∈ E of (4.1) is stable in Xγ . Moreover, for each v∗ ∈ E there is δ > 0
such that if |v0 − v∗|Xγ,μ ≤ δ, then the solution v of (4.1) with initial value v0 exists

globally in time and converges at an exponential rate in Xγ to some v∞ ∈ E .

The third result concerns global existence and convergence of solutions to equilibria
in the topology of the state manifold SM.

Theorem 4.3 (Long-Time Behaviour) Assume conditions (R) and (P) and let v be the
solution of equation (4.1) with v0 ∈ SM. Then the following assertions hold.

(a) Suppose that for some μ̄ ∈ (1/p + n/2q + 1/2, 1] we have

sup
t∈(0,t+(v0))

[|v(t)|Xγ,μ
+ |1/θ(t)|L∞] < ∞. (4.5)

Then t+(v0) = ∞ and v is a global solution.
(b) If v is a global solution, bounded in Xγ,μ̄ and with 1/θ bounded, then v

converges exponentially in SM to an equilibrium v∞ ∈ E of (4.1) as t → ∞.
(c) If v is global solution of (4.1) which converges to an equilibrium in SM, then
(4.5) valid.

Remark 4.4 Let us emphasize that the above theorem holds truewithout any structural
assumptions besides condition (P) on the Leslie coefficients. In particular, the above
well-posedness results hold true without assuming Parodi’s relation (1.13).

Remarks 4.5 (a) Wu, Xu and Liu considered in [41] the isothermal penalized
Ericksen–Leslie model and gave a formal physical derivation of the Ericksen–
Leslie model based on an energy variational approach assuming Parodi’s relation.
Then they prove that, under certain assumptions on the data and the Leslie coeffi-
cients, the isothermal penalized Ericksen–Leslie system admits a unique, global
solution provided the viscosity is large enough and study as well its longtime
behaviour. Moreover, assuming Parodi’s relation, but not largeness of the vis-
cosity, they show global well-posedness and Lypunov stability for the penalized
Ericksen–Leslie system near local energy minimizers.

(b) Wang et al. [40] proved local well-posedness of the isothermal general Ericksen–
Leslie system as well as global well-posedness for small initial data under various
conditions on the Leslie coefficients, which ensure that the energy of the system
is dissipated.
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(c) It is interesting to compare our above resultswith a recent result due toHuang et al.
[17], where they considered the simplified system subject to Dirichlet boundary
conditionsd = db on ∂� andwhere they constructed examples of small initial data
for which one has finite time blow up of (u, d) for the solution of the simplified
system.

5 Maximal L p-regularity of the linearization

The main task to apply the results in Sect. 3 is to establish maximal L p-regularity of
the linearized problem. To prove this, we linearize Eq. (1.9) at an initial value v0 =
(u0, θ0, d0) and drop all terms of lower order. This yields the principal linearization

⎧
⎨

⎩

Lπ (∂t ,∇)vπ = f in J × �,

u = ∂νθ = ∂νd = 0 on J × ∂�,

u = θ = d = 0 on {0} × �.

(5.1)

Here J = (0, a), vπ = (u, π, θ, d) is the unknown, and f = ( fu, fπ , fθ , fd) are
the given data. Denote the spatial co-variable by ξ and by z that in time. Assume
that z ∈ �φ := {z ∈ C\{0} : 0 ≤ |argz| < π}. Then the differential operator
L = Lπ (∂t ,∇) is defined via its symbol Lπ (z, iξ), which is

Lπ (z, iξ) :=

⎡

⎢
⎢
⎣

Mu(z, ξ) iξ 0 i z R1(ξ)T

iξT 0 0 0
0 0 mθ (z, ξ) −i zθ0ba(ξ)

−i R0(ξ) 0 −iba(ξ) Md(z, ξ)

⎤

⎥
⎥
⎦ , ξ ∈ R

n, z ∈ �φ,

(5.2)
with b = ∂θλ, and λ1 = ∂τλ. We also introduce the parabolic part of this symbol by
dropping pressure gradient and divergence, i.e.

L(z, iξ) =
⎡

⎣
Mu(z, ξ) 0 i z R1(ξ)T

0 mθ (z, ξ) i zθ0ba(ξ)

−i R0(ξ) iba(ξ) Md(z, ξ)

⎤

⎦ , ξ ∈ R
n, z ∈ �φ. (5.3)

The entries of these matrices are given by

mθ (z, ξ) := ρκz + α|ξ |2,
a(ξ) := ξ · ∇d0,

Md(z, ξ) := γ z + λ|ξ |2 + λ1a(ξ) ⊗ a(ξ) = md(z, ξ) + λ1a(ξ) ⊗ a(ξ),

R0(ξ) := μD + μV

2
P0ξ ⊗ d0 + μD − μV

2
(ξ |d0)P0,

R1(ξ) :=
(

μD + μV

2
+ μP

)

P0ξ ⊗ d0 +
(

μD − μV

2
+ μp

)

(ξ |d0)P0,

Mu(z, ξ) := ρz + μs |ξ |2 + μ0(ξ |d0)2d0 ⊗ d0 + a1(ξ |d0)P0ξ ⊗ d0

+ a2(ξ |d0)2P0 + a3|P0ξ |2d0 ⊗ d0 + a4(ξ |d0)d0 ⊗ P0ξ.
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Here P0 = Pd0 = I − d0 ⊗ d0, and a j are certain coefficients. Note that the above
coefficients depend on x through the dependence of the parameter functions on the
initial value v0(x). The maximal regularity result for (5.1) employed below reads as
follows.

Theorem 5.1 Let J = (0, a), 1 < p, q < ∞, and assume condition (R) and (P).
Then Eq. (5.1) admits a unique solution vπ = (u, π, θ, d) satisfying

(u, θ) ∈ 0H1
p(J ; Lq(�))n+1 ∩ L p(J ; H2

q (�))n+1,

π ∈ L p(J ; Ḣ1
q (�)),

d ∈ 0H1
p(J ; H1

q (�))n ∩ L p(J ; H3
q (�))n,

if and only if

( fu, fθ ) ∈ L p(J ; Lq(�))n+1,

fd ∈ L p(J ; H1
q (�))n,

fπ ∈ 0H1
p(J ; H−1

q (�)) ∩ L p(J ; H1
q (�)).

Further, the solution map f �→ vπ is continuous between the corresponding spaces.

Let us remark that if we replace ∂t by ∂t + ω, where ω > 0 is a sufficiently large
constant, then the assertion of Theorem 5.1 holds true also for J = (0,∞).

Proof We subdivide the proof into 5 steps.

Step 1: The Principal Symbol with Constant Coefficients in � = R
n .

To extract the structure of L, we introduce the symbols

R(ξ) := (ξ |d0)P0 + P0ξ ⊗ d0, Rμ(ξ) := μ−(ξ |d0)P0 + μ+ P0ξ ⊗ d0,

μ± := μD ± μV + μP .

Then Mu simplifies to

Mu = mu + μ0(ξ |d0)2d0 ⊗ d0 + μL

4
RTR + 1

4γ
RT

μ Rμ + μPμV

2γ
(ξ |d0)(R − RT),

and we also have

R1 = Rμ − R0 and mu(z, ξ) = ρz + μs |ξ |2.

Next, we let v = (u, w), vπ = (v, π,w) and w = (θ, d). Then, setting

J = diag(I, 1/θ0, z I ),

and multiplying the second of L by 1/θ0 as well as the last line with z̄, we obtain the
estimate

123



Dynamics of the Ericksen–Leslie equations... 991

Re(Lv|Jv) = Remu |u|22 + Remθ |θ |2 + Re z(λ0|ξ |2|d|22 + λ1|(a(ξ)|d)|2)
+ μL

4
|Ru|22 + 1

4γ
|Rμu|22 + Re[i z(d|Rμu) + γ |z|2|d|22

≥ c[Re z(|u|22 + |θ |2 + |ξ |2|d|22) + |ξ |2(|u|22 + |θ |2)
+ (2γ |z||d|2 − |Rμu|2)2],

provided

ρ,μs, κ, γ, α, λ, λ + 2τ∂τ λ > 0 and μ0, μL ≥ 0.

One could even relax the assumptions on μ0 and μL to 2μs + μ0 > 0 and 2μs +
μL > 0, but we will not do this here. This means that the symbol J̄L is accretive for
Re z > 0, i.e. it is strongly elliptic.

Let us emphasize that we do not need any structural conditions on the coefficients
μD, μV , μP , ∂θλ.

Step 2: Schur Reductions.
In this step we perform a Schur reduction to reduce the above symbol to a symbol
only for u. To this end, we consider the subsystem for w, i.e. the equation

[
mθ (z, ξ) −i zθ0ba(ξ)T

−iba(ξ) md(z, ξ) + λ1a(ξ) ⊗ a(ξ)

] [
θ

d

]

=
[

fθ
fd + i R0(ξ)u

]

.

To solve this system, we follow the strategy developed in [14] and introduce the new
variable δ = (a(ξ)|d). Then, multiplying the second equation with a(ξ)we obtain the
system

[
mθ (z, ξ) −i zθ0b

−ib|a(ξ)|2 md(z, ξ) + λ1|a(ξ)|2
] [

θ

δ

]

=
[

fθ
( fd |a(ξ)) + i(R0(ξ)u|a(ξ))

]

.

This system is easily solved to the result

[
θ

δ

]

= 1

det (z, ξ)

[
md(z, ξ) + λ1|a(ξ)|2 i zθ0b

ib|a(ξ)|2 mθ (z, ξ)

] [
fθ

( fd + i R0(ξ)u|a(ξ))

]

,

where

det (z, ξ) = mθ (z, ξ)(md(z, ξ) + λ1|a(ξ)|2) + zθ0b2|a(ξ)|2.

Note that this symbol behaves like (z + |ξ |2)2 as soon as ρ, κ, λ, λ + 2τ∂τ λ > 0.
Knowing δ = (a(ξ)|d) and θ , we are now able to determine d. As a result we obtain

d = m−1
d [ fd + i R0u + iba(ξ)θ − λ1a(ξ)δ].

Following the arguments given in [14], we see that θ and d belong to the right regularity
classes, whenever fθ , fd and u are so.
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In order to extract the Schur complement for u, we set fθ = fd = 0 and compute
d. This yields

d = i

[
1

md
(I − a0 ⊗ a0) + mθ

det
a0 ⊗ a0

]

R0u = i

[
1

md
Pa0 + mθ

det
Qa0

]

R0u.

(5.4)
with a0(ξ) = a(ξ)/|a(ξ)| if a(ξ) �= 0 and a0(ξ) = 0 otherwise. This is the represen-
tation of d needed for the Schur complement of u.

Step 3: The Generalized Stokes Symbol.
We insert (5.4) into the equation for u to obtain the generalized Stokes symbol for
(u, π) and obtain

M(z, iξ) = Mu(z, ξ) − z RT
1 (ξ)[ 1

md(z, ξ)
Pa0(ξ) + mθ (z, ξ)

det (z, ξ)
Qa(ξ)]R0(ξ) (5.5)

As the Schur reduction preserves accretivity, even with the same accretivity constant,
we obtain

Re(M(z, iξ)u|u) ≥ Remu(z, ξ)|u|2 = (
ρRe z + μs |ξ |2)|u|2.

This shows that M is strongly elliptic. For this reason we may now apply the method
developed by Bothe and Prüss [2] or Prüss and Simonett [33], Section 7.1, to prove
maximal L p-regularity of the resulting generalizedStokes problem. In these references
we need to replace λ by z and the symbol z + A(ξ) by M(z, iξ). We will not do this
here in detail and refer the reader to Section 7.1 of [33] for this analysis.

Step 4: The Lopatinskii-Shapiro Condition.
In order to guarantee the solvability of the above problem in a half-space, we need to
replace the co-variable ξ by the one-dimensional differential operator ξ − iν∂y , where
(ξ |ν) = 0. The Lopatinskii-Shapiro condition then means that the problem

L(z, iξ + ν∂y)v = 0, y > 0, (5.6)

u(0) = ∂yθ = ∂yd = 0,

admits only the zero solution in L2(R+)2n+1, for all (z, ξ) �= (0, 0).
In order to prove this condition, suppose that v(y) is a solution of the ODE system

(5.6), which belongs to L2(R+)2n+1. Taking the inner product with v in L2(R+) ,
taking real parts, integrating by parts with respect to y and employing the boundary
conditions, we obtain the estimate

cRe(L(z, iξ + ν∂y)v|v)L2 ≥ Re z[|u|2L2
+ |θ |2L2

+ |ξ |2|d|2L2
+ |∂yd|2L2

] + |z|2|d|2L2

+ |ξ |2(|u|2L2
+ |θ |2L2

) + |∂yu|2L2
+ |∂yθ |2L2

.

This shows that the Lopatinskii-Shapiro is valid. Hence, to prove maximal L p-
regularity in the half space case, we may proceed in the following way. First we
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perform the same Schur reductions as in Step 2 and as in [14]. This yields the unique
existence of θ and d in the right regularity class. We then employ the half-space theory
for the generalizedStokes symbol M by themethods inBothe andPrüss [2] or Prüss and
Simonett [33], Section 7.2, to obtain maximal L p-regularity for the half-space case.

Step 5: General Domains and Variable Coefficients.
The results of Step 3 and Step 4 extend by a perturbation argument to a bent half-space,
and to the case of variable coefficients with small deviation from constant ones. We
then may apply a localization procedure to cover the case of general domains with
smooth boundaries and variable coefficients. For details we refer at this point e.g. to
Sections 6.3 and 7.3. of the monograph [33] by Prüss and Simonett. This completes
the proof of Theorem 5.1. ��

6 Proofs of the main results

In this section we present the proofs of the above three main results. They are based
on the theory of quasilinear parabolic evolution equations, see Sect. 3.

Proof of Theorem 4.1 As already discussed above, we rewrite the system (1.3), (1.4),
(1.9), (1.10) as a quasi-linear evolution equation of the form

v̇ + A(v)v = F(v), t > 0, v(0) = v0, (6.1)

replacing Dt d appearing in the the equations for u and θ by the equation for d. Here
v = (u, θ, d). We further apply the Helmholtz projection P to the equation for u and
recall the base space

X0 = Lq,σ (�) × Y0,

with Y0 = Lq(�) × H1
q (�;Rn) as well as the regularity space X1 as above, i.e.

X1 = {u ∈ H2
q (�;Rn) ∩ Lq,σ (�) : u = 0 on ∂�} × Y1,

with

Y1 = {(θ, d) ∈ H2
q (�) × H3

q (�;Rn) : ∂νθ = ∂νd = 0 on ∂�}.

In order to prove local well-posedness of the system (1.3), (1.4), (1.9), (1.10) we may
now resort to the abstract theory presented in Sect. 3.

Note first that byTheorem5.1 the quasi-linear part A(v) hasmaximal L p-regularity.
A result by Prüss and Simonett [32], Theorem 2.4, implies that A(v) also admits max-
imal regularity in L p,μ(J ; X0), hence also in the situation of time weights. Recalling
the solution space E1,μ(J ) = H1

p,μ(J ; X0)∩ L p,μ(J ; X1), we see that the time-trace
space Xγ,μ of E1,μ(J ) is given as in (4.2), and the embedding

Xγ,μ ↪→ B2(μ−1/p)
qp (�)n+1 × B1+2(μ−1/p)

qp (�)n ↪→ C1(�)n+1 × C2(�)n, (6.2)
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holds, provided
1

p
+ n

2q
+ 1/2 < μ ≤ 1.

Here Bs
pq(�) denote as usual the Besov spaces; see e.g. Triebel [37]. Therefore, the

mappings A and F satisfy the assumptions of the local existence theorem Theorem
3.1, as well as of Corollary 3.2, hence we obtain local well-posedness for (6.1) and
strong solutions on a maximal time interval.

Even more, if only

1

p
+ n

2q
< μ ≤ 1

holds, also the results in LeCrone et al. [20], Theorem 2.1, apply, and we obtain local
strong solutions if the initial values only satisfy

(u0, θ0, d0) ∈ B2(μ−1/p)
qp (�)n+1 × B1+2(μ−1/p)

qp (�)n

plus compatibility conditions, which means that it is enough to assume that
u0, θ0, d0,∇d0 are Hölder continuous, choosing μ close to 1/p which is possible
if q is large enough.

Recalling that the state manifold of (6.1) is given by

SM = {(u, θ, d) ∈ Xγ : θ > 0, |d|2 = 1},

where Xγ := Xγ,1, we see by these results that SM is locally positive invariant for
the semi-flow, the total energy E is preserved and the negative total entropy −N is
a strict Lyapunov functional for the semi-flow on SM. This completes the proof of
Theorem 4.1. ��
Proof of Theorems 4.2 and 4.3 The linearization of the system (1.3), (1.4), (1.9) at
an equilibrium v∗ = (0, θ∗, d∗) is given by the operator A∗ = A(v∗) defined in the
base space X0 with domain D(A∗) = X1. This operator has maximal L p-regularity.
Moreover, A∗ is the negative generator of a compact analytic C0-semigroup having
compact resolvent, due to the compact embedding of X1 = D(A∗) into X0. Hence,
its spectrum consists only of countably many eigenvalues of finite multiplicity.

Lemma 6.1 Let z �= 0 be an eigenvalue of A∗. Then Re z < 0.

Proof Suppose that z ∈ C\{0} is an eigenvalue of A∗ with Re z ≥ 0. Then

Lπ (z,∇)vπ = 0 in �,

u = ∂νθ = ∂νd = 0 on ∂�.

where (vπ ) = (u, θ, d) as above. Multiplying the equation for d with z̄ and taking
the inner product of this equation with vπ in L2(�) yields by integration by parts the
estimate
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0 = Re(Lπ (z,∇)vπ |vπ)L2 ≥ c
[
Re z(|u|2L2

+ |θ |2L2
+ |∇d|2L2

)

+ |z|2|d|L2 + |∇u|2L2
+ |∇θ |2L2

]
.

This implies u = θ = d = 0. Hence A∗ does not have eigenvalues in the L2-setting
with nonnegative real parts, except for z = 0. Due to elliptic regularity, eigenvalues
are independent of p, and so the assertion follows for A∗ defined in X0. ��

The above lemma states that all eigenvalues of A∗ expect for 0 are stable. In addition,
the eigenvalue 0 is semi-simple. Its eigenspace is given by

N(A∗) = {(0, ϑ,d) : ϑ ∈ R,d ∈ R
n},

and hence coincides with the set of constant equilibria Ē determined in Theorem 2.1
when ignoring the constraint |d|2 = 1 and conservation of energy. Therefore each
such equilibrium is normally stable. Hence, the assertion of Theorem 4.2 follows by
means of the generalized principle of linearized stability, Proposition 3.3.

Finally, we note that the assertion of Theorem 4.3 follows from Proposition 3.4.,
as we have compact embeddings and −N serves as a strict Lyapunov functional. ��
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