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Abstract We shall study special regularity properties of solutions to some nonlinear
dispersive models. The goal is to show how regularity on the initial data is transferred
to the solutions. This will depend on the spaces where regularity is measured.
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1 Introduction

The aim of this work is to study special regularity properties of solutions to the initial
value problem (IVP) associated to somenonlinear dispersive equations ofKorteweg-de
Vries (KdV) type and related models.

The starting point is a result found by Isaza, Linares and Ponce [15] concerning the
solutions of the IVP associated to the k-generalized KdV equation

{
∂t u + ∂3x u + uk∂xu = 0, x, t ∈ R, k ∈ Z

+,

u(x, 0) = u0(x).
(1.1)
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798 F. Linares et al.

To state our result we first recall the following local well-posedness for the IVP (1.1)
established in [20]:

Theorem A1 [20] If u0 ∈ H3/4+
(R), then there exist T =T (‖u0‖ 3

4
+

,2
; k) > 0 and a

unique solution of the IVP (1.1) such that

(i)

u ∈ C([−T, T ] : H3/4+
(R)),

(ii)

∂xu ∈ L4([−T, T ] : L∞(R)), (Strichartz),

(iii)

sup
x

∫ T

−T
|Jr∂xu(x, t)|2 dt < ∞ for r ∈ [0, 3/4+], (1.2)

(iv)

∫ ∞

−∞
sup

−T≤t≤T
|u(x, t)|2 dx < ∞,

with J = (1−∂2x )
1/2. Moreover, the map data-solution, u0 → u(x, t) is locally

continuous (smooth) from H3/4+(R) into the class X3/4+
T defined in (1.2).

If k ≥ 2, then the result holds in H3/4(R).

We recall the definition of the Sobolev spaces Hs(R) for index s ≥ 0:

Hs(R) = { f ∈ L2(R) : ‖ f ‖s,2 = ‖J s f ‖2 < ∞}

where

‖J s f ‖2 =
(∫ ∞

−∞
(1 + ξ2)s | f̂ (ξ)|2dξ

)1/2

,

and f̂ denotes the Fourier transform of f . In particular, if s > s′ > 0, then

Hs(R) ⊂ Hs′(R) ⊂ L2(R).

Thus, H3/4(R) represents the Sobolev space of index 3/4 and

H3/4+
(R) =

⋃
s>3/4

Hs(R).
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On the regularity of solutions to a class… 799

For a detailed discussion on the best available local and global well-posedness results
of the IVP (1.1) we refer to [15,22].

Now we enunciate the result obtained in [15] regarding propagation of regularities
which motivates our study here:

Theorem A2 [15] If u0 ∈ H3/4+
(R) and for some l ∈ Z

+, l ≥ 1 and x0 ∈ R

‖ ∂ lx u0‖2L2((x0,∞))
=

∫ ∞

x0
|∂ lx u0(x)|2dx < ∞, (1.3)

then the solution u = u(x, t) of the IVP (1.1) provided by Theorem A1 satisfies that
for any v > 0 and ε > 0

sup
0≤t≤T

∫ ∞

x0+ε−vt
(∂

j
x u)2(x, t) dx < c, (1.4)

for j = 0, 1, . . . , l with c = c(l; ‖u0‖3/4+,2; ‖ ∂ lx u0‖L2((x0,∞)); v; ε; T ).
In particular, for all t ∈ (0, T ], the restriction of u(·, t) to any interval of the form

(a,∞) belongs to Hl((a,∞)).
Moreover, for any v ≥ 0, ε > 0 and R > 0

∫ T

0

∫ x0+R−vt

x0+ε−vt
(∂ l+1

x u)2(x, t) dxdt < c, (1.5)

with c = c(l; ‖u0‖3/4+,2
; ‖ ∂ lx u0‖L2((x0,∞)); v; ε; R; T ).

This tells us that the Hl -regularity on the right hand side of the data travels forward
in time with infinite speed. Notice that since the equation is reversible in time a gain
of regularity in Hs(R) cannot occur so at t > 0, u(·, t) fails to be in H j (R) due to
its decay at −∞. In fact, it follows from the proof in [15] that for any δ > 0 and
t ∈ (0, T ) and j = 1, . . . , l

∫ ∞

−∞
1

〈x−〉 j+δ
(∂

j
x u)2(x, t) dx ≤ c

t
,

with c = c(‖u0‖3/4+,2; ‖∂ j
x u0‖L2((x0,∞)); x0; δ).

The result in [15] (Theorem A2) has been extended to the generalized Benjamin–
Ono (BO) equation [16] and to the Kadomtsev–Petviashvili II equation [17]. Hence,
it is natural to ask if this propagation of regularity phenomenon is intrinsically related
to the integrable character of the model or as in the KdV equation is due to the form
of the solution of the associated linear problem. More precisely, to the structure of its
fundamental solution, i.e. the Airy function (see (3.3) below).

Indeed, for the so called k-generalized dispersive BO equation,

∂t u + uk∂xu − (−∂2x )
α/2∂xu = 0, k ∈ Z

+, 1 ≤ α ≤ 2,
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800 F. Linares et al.

which for α = 1 corresponds to the k-generalized BO equation and α = 2 to the
k-generalized KdV equation, one has that the propagation of regularities (as that pre-
sented in Theorem A2) is only known in the cases α = 1 and α = 2.

Our first result shows that this fact seems to be more general. In particular, it is
valid for solutions of the general quasilinear equation of KdV type, that is,

{
∂t u + a(u, ∂xu, ∂2x u) ∂3x u + b(u, ∂xu, ∂2x u) = 0,

u(x, 0) = u0(x).
(1.6)

where the functions a, b : R3 × [0, T ] → R satisfy:

(H1) a(·, ·, ·) and b(·, ·, ·) are C∞ with all derivatives bounded in [−M, M]3, for
any M > 0,
(H2) given M > 0, there exists κ > 1 such that

1/κ ≤ a(x, y, z) ≤ κ for any (x, y, z) ∈ [−M, M]3,

and

∂z b(x, y, z) ≤ 0 for (x, y, z) ∈ [−M, M]3.

To establish the propagation of regularity in solutions of (1.6) of the kind described
in (1.4) we shall follow the arguments and results obtained by Craig, Kappeler and
Strauss in [10].

Assuming the hypotheses (H1) and (H2), the local existence and uniqueness result
established in [10] affirms:

Theorem A3 [10] Let m ∈ Z
+, m ≥ 7. For any u0 ∈ Hm(R), there exist T =

T (‖u0‖7,2) > 0 and a unique solution u = u(x, t) of the IVP (1.6) satisfying,

u ∈ L∞([0, T ]; Hm(R)).

Moreover, for any R > 0

T∫
0

R∫
−R

(∂m+1
x u)2(x, t) dxdt < ∞.

For our purpose here we need some (weak) continuous dependence of the solutions
upon the data. Hence, we shall first prove the following “refinement” of Theorem A3.

Theorem 1.1 Let m ∈ Z
+, m ≥ 7. For any u0 ∈ Hm(R) there exist T =

T (‖u0‖7,2) > 0 and a unique solution u = u(x, t) of the IVP (1.6) such that

u ∈ C([0, T ] : Hm−δ(R)) ∩ L∞([0, T ] : Hm(R)), for all δ > 0, (1.7)
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On the regularity of solutions to a class… 801

with
∂m+1
x u ∈ L2([0, T ] × [−R, R]), for all R > 0. (1.8)

Moreover, the map data solution u0 → u(·, t) is locally continuous from Hm(R) into
C([0, T ] : Hm−δ(R)) for any δ > 0.

Since our objective here is to study propagation of regularities we shall not address
the problemof (strong) persistence (i.e. u0 ∈ X , then the corresponding solution u(·, t)
describes a continuous curve on X , u ∈ C([0, T ] : X)) and the (strong) continuous
dependence u0 → u(·, t), (i.e. the map data → solution from X into C([0, T ] : X)

is continuous), so that the solutions of (1.6) generate a continuous flow in Hm(R),
m ≥ 7.

Our main result concerning the solution of the IVP (1.6) is the following:

Theorem 1.2 Let n,m ∈ Z
+, n > m ≥ 7. If u0 ∈ Hm(R) and for some x0 ∈ R

∂
j
x u0 ∈ L2((x0,∞)) for j = m + 1, . . . , n,

then the solution of the IVP (1.6) provided by Theorem 1.1 satisfies that for any ε > 0,
v > 0, and t ∈ [0, T )

∞∫
x0+ε−vt

|∂ j
x u(x, t)|2 dx ≤ c(ε; v; ‖u0‖m,2; ‖∂ lx u0‖L2((x0,∞)) : l = m + 1, . . . , n),

(1.9)

for j = m + 1, . . . , n. Moreover, for any ε > 0, v > 0, and R > 0

T∫
0

x0+R+vt∫
x0+ε−vt

|∂n+1
x u(x, t)|2 dxdt

≤ c(ε; v; R; ‖u0‖m,2; ‖∂ lx u0‖L2((x0,∞)) : l = m + 1, . . . , n). (1.10)

Several direct consequences can be deduced from Theorem 1.2 for instance (for
further outcomes see [15])

Corollary 1.3 Let u ∈ C([0, T ] : Hm(R)), m ≥ 7, be the solution of the IVP (1.6)
provided by Theorem 1.1. If there exist n > m, a ∈ R and t̂ ∈ (0, T ) such that

∂nx u(·, t̂) /∈ L2((a,∞))

then for any t ∈ (0, t̂) and any β ∈ R

∂nx u(·, t) /∈ L2((β,∞)).
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802 F. Linares et al.

Theorem 1.2 tells us that the propagation phenomenon described in Theorem A2
still holds in solutions of the quasilinear problem (1.6). This result and those in KdV,
BO, KPII equations seem to indicate that the propagation of regularity phenomena
can be established in systems where Kato smoothing effect [18] can be proved by
integration by parts directly in the differential equation.

Since our arguments follow closely those in [10] without lost of generality and for
the sake of simplicity of exposition we shall restrict the proofs of Theorems 1.1 and
1.2 to the case of the model equation

∂t u + (1 + (∂2x u)2)∂3x u = 0. (1.11)

However, we shall remark that combining the arguments below with those in [10]
the results in Theorem 1.2 can be extended to solution of the IVP associated to the
equation

∂t u + f (t, x, u, ∂xu, ∂2x u, ∂3x u) = 0,

under appropriate assumptions on the structure, regularity and decay of the function
f (·). These decay assumptions are quite strong, for example, one should assume
roughly that f (·, t, 0, 0, 0, 0) ∈ S(R), (see [10]). This fact seems to rule out the
possibility of having a propagation of regularity phenomenun of the kind described
here in models involving periodic coefficients.

Nextwe consider the question of the propagation of other type of regularities besides
those proved before i.e. for u0 ∈ Hn((x0,∞)) for some x0 ∈ R.

We recall that the next result can be obtained as a consequence of the argument
given by Bona and Saut in [3].

Theorem 1.4 Let k ∈ Z
+. There exists

u0 ∈ H1(R) ∩ C∞(R)

with ‖u0‖1,2 � 1 so that the solution u(·, t) of the IVP (1.1) is global in time if k ≥ 4
with u ∈ C(R : H1(R)) ∩ L1

loc(R : W 1,∞(R)) and satisfies

{
u(·, t) ∈ C1(R), t > 0, t /∈ Z

+,

u(·, t) ∈ C1(R\{0})\C1(R), t ∈ Z
+.

(1.12)

Here, W j,p(R) denotes the space of functions whose distributional derivatives up
to order j belong to L p(R).

The argument in [3] is based in a careful analysis of the asymptotic decay of the
Airy function and the well-posedness of the IVP (1.1) with data u0(x) in appropriate
weighted Sobolev spaces. This argument was simplified [for the case of two points
in (1.12)] for the modified KdV equation k = 2 in [23] without relying in weighted
spaces. Here we shall give a direct proof of Theorem 1.4 which follows the approach
in [23], i.e. it does not rely on the analysis of the decay of the Airy function and applies
to all the nonlinearities.
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On the regularity of solutions to a class… 803

Our method has the advantage that it can be extended to Ws,p-setting. More pre-
cisely, we shall show the following:

Theorem 1.5 (a) Fix k = 2, 3, . . . , let p ∈ (2,∞) and j ≥ 1, j ∈ Z
+. There exists

u0 ∈ H3/4(R) ∩ W j,p(R) (1.13)

such that the corresponding solution u(·, ·) of the IVP (1.1)

u ∈ C([−T, T ] : H3/4(R))

provided by Theorem A1 satisfies that there exists t ∈ (0, T ] such that

u(·, t) /∈ W j,p(R+) and u(·,−t) /∈ W j,p(R+). (1.14)

(b) For k = 1, the same result holds for j ≥ 2, j ∈ Z
+.

Remark It will follow from our proof that there exists u0 as in (1.13) such that (1.14)
holds in R

−. Hence, one can conclude that regularities in W j,p(R) for p > 2 do not
propagate forward or backward in time to the right or to the left.

Next we study the propagation of regularities in solutions to some related dispersive
models. First, we consider the IVP associated to the Benjamin–Bona–Mahony BBM
equation [2] {

∂t u + ∂xu + u∂xu − ∂2x ∂t u = 0, x, t ∈ R,

u(x, 0) = u0(x).
(1.15)

The BBM equation was proposed in [2] as a model for long surface gravity waves of
small amplitude propagating in one dimension. It was introduced as a “regularized”
version of the KdV equation. In most cases, the independent variable x characterizes
position in the medium of propagation whilst t is proportional to elapsed time. The
dependent variable u may be an amplitude, a pressure, a velocity or other measurable
quantity, depending upon the physical system and the modeling stance taken.

We recall the local well-posedness for the IVP (1.15) obtained by Bona and
Tzvetkov [5].

Theorem A4 [5] Let s ≥ 0. For any u0 ∈ Hs(R) there exist T = T (‖u0‖s,2) > 0
and a unique solution u of the IVP (1.15)

u ∈ C([0, T ] : Hs(R)).

Moreover, the map data-solution u0 → u(·, t) is locally continuous from Hs(R) into
C([0, T ] : Hs(R)).

In [5] it was also shown that Theorem A4 is optimal in an appropriate sense (see
[5] for details).

The following result describes the local propagation of regularities in solutions of
the IVP (1.15).
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804 F. Linares et al.

Theorem 1.6 Let u0 ∈ Hs(R), s ≥ 0. If for some k ∈ Z
+ ∪ {0}, θ ∈ [0, 1), and


 ⊆ R open

u0
∣∣



∈ Ck+θ ,

then the corresponding solution u ∈ C([0, T ] : Hs(R)) of the IVP (1.15) provided by
Theorem A4 satisfies that

u(·, t)∣∣



∈ Ck+θ for all t ∈ [0, T ].

Moreover,

u, ∂t u ∈ C([0, T ] : Ck+θ (
)).

Remark (1) Theorem 1.6 tells us that in the time interval [0, T ] in the Ck+θ setting
no singularities can appear or disappear in the solution u(·, t).

In particular, one has the following consequence of Theorem 1.6 and its proof:

Corollary 1.7 Let u0 ∈ Hs(R), s ≥ 0. If for a < x0 < b, k ∈ Z
+∪{0} and θ ∈ [0, 1)

u0
∣∣
(a,x0)

, u0
∣∣
(x0,b)

∈ Ck+θ and u0
∣∣
(a,b) /∈ Ck+θ ,

then the corresponding solution u ∈ Xs
T of the IVP (1.15) provided by Theorem A4

satisfies

u(·, t)∣∣
(a,x0)

, u(·, t)∣∣
(x0,b)

∈ Ck+θ and u(·, t)∣∣
(a,b) /∈ Ck+θ .

(2) TheoremsA2, 1.4, 1.6, and Corollary 1.7 show that solutions of the BBMequation
and the KdV equation exhibit a quite different behavior regarding the propagation
of regularities.

Next we consider the IVP associated to the Degasperis-Procesi (DP) equation (see
[11]): {

∂t u − ∂2x ∂t u + 4u∂xu = 3∂xu∂2x u + u∂3x u, x, t ∈ R,

u(x, 0) = u0(x).
(1.16)

The DP model was derived by Degasperis and Procesi as an example of an integrable
system similar to the Camassa–Holm (CH) equation ([8])

∂t u + 2κ∂xu − ∂2x ∂t u + 3u∂xu = 2∂xu∂2x u + u∂3x u, κ > 0. (1.17)

Like the CH equation it possesses a Lax pair formulation and a bi-Hamiltonian struc-
ture leading to an infinite number of conservation laws.
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On the regularity of solutions to a class… 805

Also, similar to the CH equation, the DP equation has been shown to exhibit multi-
peakons solutions

u(x, t) =
n∑
j=1

α j (t)e
−|x−x j (t)|

where (x j (t))nj=1 satisfies⎧⎪⎪⎨
⎪⎪⎩
dx j
dt

=
n∑

k=1
α j (t)e−|x−xk (t)|

dα j

dt
= 2α j

n∑
k=1

αk(t) sgn(x j − xk) e−|x−xk (t)|.
(1.18)

In [27] Yin shows that the IVP (1.16) is locally well-posed in Hs(R), s > 3/2. It
shall be remarked that in the Sobolev scale Hs(R) the result in [27] is the ”optimal”
possible for the “strong” local well-posedness. More precisely, it was established by
Himonas, Holliman and Grayshan [14] that for s < 3/2 solutions of the IVP (1.16)
exhibit an ill-posedness feature due to the so called norm inflection (see [14]).

One observes that the multi-peakons solutions barely fail to belong to these spaces
since e−|x | ∈ Hs(R) if and only if s < 3/2. So we shall construct first a space where
uniqueness and existence hold, where the “flow” (characteristics) is defined (see (1.21)
below) and which contains the multi-peakons.

Theorem 1.8 Given u0 ∈ H1+δ(R) ∩ W 1,∞(R), for some δ > 0. There exist T =
T (‖u0‖1+δ,2, ‖u0‖1,∞) > 0 and a unique strong solution (limit of classical solution)

u ∈ C([0, T ] : H1(R)) ∩ L∞([0, T ] : H1+δ(R)) ∩ L∞([0, T ] : W 1,∞(R)).

Moreover, if un0 → u0 in H1+δ(R) ∩ W 1,∞(R), then the corresponding solutions
un, u satisfy that un → u in C([0, T ] : H1(R)).

With Theorem 1.8 in hand we can show the following result regarding the propa-
gation of regularities in solutions of the DP equation.

Theorem 1.9 Suppose u0 ∈ H1+δ(R) ∩ W 1,∞(R), for some δ > 0, such that for
some open subset 
 ⊆ R

u0
∣∣



∈ C1. (1.19)

Then the local solution of the IVP (1.16) u = u(x, t) provided by Theorem 1.8 satisfies

u(·, t) ∈ C1(
t ), (1.20)

where 
t = �t (
) and �t (x0) = X (t; x0) is the map given by⎧⎨
⎩
dX

dt
= u(X (t), t)

X (0) = x0.
(1.21)
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806 F. Linares et al.

Remark (1) Notice that

u ∈ C([0, T ] : Hs(R)) ↪→ Cb(R × [0, T ])

and

u ∈ L∞([0, T ] : W 1,∞(R))

which guarantees that the flow in (1.21) is well defined (see for instance [9]).
(2) Theorem 1.9 describes the propagation of C1 singularities. In particular one has

the following consequence of Theorem 1.9.

Corollary 1.10 If u0 ∈ H1+δ(R) ∩W 1,∞(R), for some δ > 0, (and for some 
 ⊆ R

open) u0
∣∣



∈ C1(
\{x̃ j }Nj=1), then the corresponding solution u provides by Theorem
1.9 satisfies for t ∈ [0, T ]

u(·, t)∣∣

t

∈ C1(
t\{x j (t)}Nj=1)

where
t and x j (t) are defined by the flow�t (x0) = X (t; x0) as in (1.21),
t = �(
)

and x j (t) = �t (x̃ j ).

This tell us that all C1-singularities for data in H1+δ ∩Lip propagate with the flow as
in the case of multi-peakons see (1.18).

(3) Since m(x, t) = (1 − ∂2x )u(x, t) satisfies

∂tm + u∂xm + 3∂xu m = 0, (1.22)

the propagation at the C2 level and beyond follows directly from the equation
(1.22). Therefore, the result in Theorem 1.9 extends to Ck , k ∈ Z

+, in (1.19) and
(1.20).

(4) A result like that described in Theorem 1.8 (when uniqueness, existence and
the ”flow” is defined in a space containing the peakons) is unknown for the CH
equation (see [6,24,26]). Similarly for Theorem 1.9.

Finally, we consider the 1D version of the Brinkman model [7]

{
φ∂tρ + ∂x (ρv) = F(t, ρ),

(−μ̃∂2x + μ
κ

)
v = −∂x P(ρ).

(1.23)

This system models fluid flow in certain porous media. It has been useful to treat
high porosity systems and a rigidly bounded porous medium. It also has been used to
investigate different convective heat transfer problems in porous media (see [25] and
references therein). Here ρ is the fluid’s density, v its velocity, P(ρ) is the pressure and
F the external mass flow rate. The physical parameters μ, κ , μ̃, and φ represent the
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On the regularity of solutions to a class… 807

fluid viscosity, the porousmedia permeability, the pure fluid viscosity, and the porosity
of the media, respectively. To simplify we shall assume (without loss of generality)

φ = μ = κ = μ̃ = 1 and F ≡ 0,

and that P(ρ) = ρ2

It will be clear from our method of proof that these are not necessary restrictions.
Thus the equation in (1.23) becomes

∂tρ − ∂x (ρ(1 − ∂2x )
−1∂x (ρ

2)) = 0 x, t ∈ R. (1.24)

In [1] Arbieto and Iorio established the local well-posedness of the associated IVP to
(1.24) in Hs(R), s > 3/2.

Our first outcome in this regard shows that the result in [1] can be improved to
Hs(R), s ≥ 1.

Theorem 1.11 Let ρ0 ∈ Hs(R), s ≥ 1. There exist T = T (‖u0‖1,2) = c ‖u0‖−2
1,2 and

a unique solution ρ = ρ(x, t) such that

ρ ∈ C([0, T ] : Hs(R)) ∩ C1((0, T ) : Hs−1(R)).

Moreover, the map data solution is locally continuous from Hs to C([0, T ] : Hs(R)).

With this local well-posedness theory we establish the following result concerning
the propagation of regularities in solutions of the IVP associated to (1.24).

Theorem 1.12 Suppose ρ0 ∈ Hs(R), s ≥ 1, such that

ρ0
∣∣



∈ Ck(
) for some 
 ⊆ R open.

Then the corresponding solution ρ = ρ(x, t) of the IVP associated to (1.24) provided
by Theorem 1.11 satisfies that

ρ(·, t)∣∣

t

∈ Ck(
t ),

where 
t = �t (
) and �t (x0) = X (t; x0) is the map defined by

⎧⎨
⎩
dX

dt
= u(X (t), t),

X (0) = x0.

The rest of this work is organized as follows: Theorems 1.1 and 1.2 will be proven
in Sect. 2. Section 3 contains the proof of Theorems 1.4 and 1.5. Section 4 is concerned
with Theorem 1.6, Sect. 5 with Theorems 1.8 and 1.9 and Sect. 6 with Theorems 1.11
and 1.12.
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2 Quasilinear KdV type equations

For simplicity in the presentation and without loss of generality we will consider the
following IVP associated to a quasilinear KdV type satisfying the hypotheses (H1)-
(H2) in (1.6) {

∂t u + (
1 + (∂2x u)2

)
∂3x u = 0, x ∈ R, t > 0,

u(x, 0) = u0(x) ∈ Hm(R), m ≥ 7.
(2.1)

Proof of Theorem 1.1 For ε ∈ (0, 1) consider the parabolic problem

{
∂t u + (

1 + (∂2x u)2
)
∂3x u = −ε∂4x u,

u(x, 0) = u0(x) ∈ H7(R).
(2.2)

Denoting by

Kt ∗ f = e−εt∂4x f = (
e−εt (2πξ)4 f̂

)∨

using that

‖∂ lx (Kt ∗ f )‖2 ≤ cl
(εt)l/4

‖ f ‖2,

and writing the solution uε of (2.2) in its equivalent integral equation version

uε(t) = Kt ∗ u0 +
t∫

0

Kt−t ′ ∗ (
1 + (∂2x u

ε)2
)
∂3x u

ε(t ′) dt ′, (2.3)

one sees that there exist

Tε = Tε(ε; ‖u0‖m,2) > 0 with Tε ∼ O(ε3/4)

and a unique uε solution of (2.2) such that

uε ∈ C([0, Tε] : Hm(R)) ∩ C∞((0, Tε) : H∞(R)). (2.4)

Next we apply the argument in [10] to the IVP (2.2) to obtain a priori estimate
which allows us to extend the local solution uε(·) in a time interval [0, T ] with T =
T (‖u0‖m,2) > 0 independent of ε in the class described in (2.4). The only difference
with the argument provided in [10] is the term on the RHS of the equation in (2.2).
This can be easily handled using that
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− ε

∫
∂4+l
x uε∂ lx u

εχl(x, t) dx = −ε

∫
∂2+l
x uε∂2+l

x uεχl(x, t) dx

−2ε
∫

∂2+l
x uε∂1+l

x uε∂xχl(x, t) dx

−ε

∫
∂2+l
x uε∂ lx u

ε∂2xχl(x, t) dx

= −ε

∫
(∂2+l

x uε)2χl(x, t) dx

−2ε
∫

(∂2+l
x uε)(∂ lx u

ε)∂2xχl(x, t) dt

+ε

2

∫
(∂ lx u

ε)(∂ lx u
ε)∂4xχl(x, t) dt

= E1 + E2 + E3, (2.5)

with χl(u) such that

3

2
∂x [(1 + (∂2x u)2)χl ] − (l + 1)∂x (1 + (∂2x u)2)χl = 0, l ∈ Z

+, (2.6)

i.e.

χl = (1 + (∂2x u
ε)2)−cl , cl = 2

3
(l + 1) − 1.

Thus one sees that E1 has the appropriate sign,

E2 ≤ ε

2

∫
(∂2+l

x uε)2χl(x, t) dx + 2ε
∫

(∂ lx u
ε)2

(∂2xχl)
2

χl
(x, t) dx

= E2,1 + E2,2,

where E2,1 is absorbed by E1. Terms E2,2 and E3 are at the level of the estimate
involving derivatives of order l.

Hence, we can conclude that there exist T = T (‖u0‖7,2) > 0 and a unique solution

uε ∈ C([0, T ] : H7(R)) ∩ C((0, T ) : H∞(R))

of (2.2) with
sup

0<ε<1
sup

0≤t≤T
‖uε(t)‖7,2 ≤ M7 = M7(‖u0‖7,2). (2.7)

Moreover, if u0 ∈ Hm(R) with m ≥ 7, m ∈ Z
+, then

uε ∈ C([0, T ] : Hm(R)) ∩ C((0, T ) : H∞(R))

with

sup
0<ε<1

sup
0≤t≤T

‖uε(t)‖m,2 ≤ Mm = Mm(‖u0‖m,2).
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Next we want to show that (uε)ε>0 converges in L∞([0, T ] : H3(R)).
Thus we consider

∂t u
ε + (1 + (∂2x u

ε)2)∂3x u
ε = −ε∂4x u

ε

and

∂t∂
3
x u

ε + (1 + (∂2x u
ε)2)∂6x u

ε + 4∂x (1 + (∂2x u
ε)2)∂5x u

ε

+6∂2x u
ε∂4x u

ε∂4x u
ε + 12∂3x u

ε∂3x u
ε∂4x u

ε = −ε∂7x u
ε

Similarly for uε′
with 0 < ε′ < ε < 1. Now we write the equations for w = wε,ε′ =

uε − uε′
and ∂3xw, i.e.

∂tw + (1 + (∂2x u
ε)2)∂3xw + ∂3x u

ε′
(∂2x u

ε + ∂2x u
ε′
)∂2xw

= −ε′∂3xw − (ε − ε′)∂4x uε′
(2.8)

and

∂t∂
3
xw + (1 + (∂2x u

ε)2)∂6xw + (∂6x u
ε′
)(∂2x u

ε + ∂2x u
ε′
) ∂2xw

+8∂2x u
ε∂3x u

ε∂5xw + 4∂4x u
ε′

∂x
[
(∂2x u

ε + ∂2x u
ε′
)∂2xw

]
+6∂2x u

ε(∂4x u
ε + ∂4x u

ε′
)∂4xw + 6(∂4x u

ε′
)2∂2xw

+12(∂3x u
ε)2∂4xw + 12(∂4x u

ε′
)(∂3x u

ε + ∂3x u
ε′
)∂3xw

= −ε′∂7xw − (ε − ε′)∂7x uε′
. (2.9)

We multiply (2.8) by w and integrate the result to get

1

2

d

dt

∫
w2 + 3

2

∫
∂x ((∂

2
x u

ε)2)(∂xw)2 − 1

2

∫
∂3x ((∂

2
x u

ε)2)w2

−
∫

(∂3x u
ε)(∂2x u

ε + ∂2x u
ε′
)(∂xw)2 + 1

2

∫
∂2x

[
∂3x u

ε′
(∂2x u

ε + ∂2x u
ε′
)
]
w2

= −(ε − ε′)
∫

∂xu
ε′
w

and multiply (2.9) by ∂3xw χ and integrate the result to get (after some integration by
parts)

1

2

d

dt

∫
(∂3xw)2χ −

∫
(∂3xw)2∂xχ

+
∫ {3

2
∂x

[
(1 + (∂2x u

ε)2)χ
] − (3 + 1)∂x (1 + (∂2x u

ε)2) χ
}
(∂4xw)2

−1

2

∫
∂3x (1 + (∂2x u

ε)2χ)(∂3xw)2 + 4
∫

∂2x (∂
2
x u

ε∂3x u
εχ)(∂3xw)2
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−3
∫

∂x [∂xuε(∂4x u
ε + ∂4x u

ε′
)χ ](∂3xw)2 − 6

∫
∂x [(∂3x uε)2χ ](∂3xw)2

+
∫

∂6x u
ε′
(∂2x u

ε + ∂2x u
ε′
)∂2xw∂3xw + 4

∫
∂5x u

ε′
∂x

(
(∂2x u

ε + ∂2x u
ε′
)∂2xw

)
∂3xwχ

+6
∫

(∂4x u
ε′
)2∂2xw∂3xwχ + 12

∫
(∂3x u

ε + ∂3x u
ε′
)∂4x u

ε′
(∂3xw)2χ

= −ε′
∫

∂7xw∂3xwχ − (ε − ε′)
∫

∂7x u
ε′
∂3xwχ.

As in [10] one chooses χ = χ3 (see (2.6)) such that

3

2
∂x [(1 + (∂2x u

ε)2)χ ] − (3 + 1)∂x
(
1 + (∂2x u

ε)2
)
χ ≡ 0,

i.e.

cl = 2

3
(l + 1) − 1 > 0

and

χ3 = (1 + (∂2x u
ε)2)−c3,

which by hypothesis and previous results in (2.7) it follows that

sup
[0,T ]

‖(uε − uε′
)(t)‖3,2 ≤ c

(‖u0‖7,2)[‖uε
0 − uε′

0 ‖3,2 + (ε + ε′)
]
.

Hence

(uε)ε ⊆ C([0, T ] : H7(R))

(uniformly bounded) converges as ε ↓ 0 in L∞([0, T ] : H3(R)) to u ∈ C([0, T ] :
H3(R)).

Moreover, from (2.7) it follows that for any δ > 0

uε → u in C([0, T ] : H7−δ(R))

and

u ∈ L∞([0, T ] : H7(R))

is a solution of the IVP (2.1). But by the uniqueness established in [10] this solution
is unique so it agrees with that provided in Theorem A3.
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In particular, for any R > 0

T∫
0

R∫
−R

|∂8x u(x, t)|2 dxdt ≤ c = c(T ; R; ‖u0‖7,2). (2.10)

Moreover, the previous argument applied to two solutions

u, v ∈ C([0, T ] : H7−δ(R)) ∩ L∞([0, T ] : H7(R))

with data u0, v0 respectively, shows that

sup
[0,T ]

‖(u − v)(t)‖3,2 ≤ c
(
M(‖u0‖7,2, ‖v0‖7,2)

)‖u0 − v0‖3,2.

Hence, the map data solution from H7(R) into C([0, T ] : H7−δ(R)) is locally con-
tinuous for any δ > 0.
Proof of Theorem 1.2 As in the previous section we will consider the following IVP

{
∂t u + (

1 + (∂2x u)2
)
∂3x u = 0, x ∈ R, t > 0,

u(x, 0) = u0(x) ∈ Hm(R), m ≥ 7.
(2.11)

Without loss of generality we shall assume that m = 7 and that x0 = 0. Thus we have
that the solution u(·) of the IVP (2.11) provided by Theorem 1.1 satisfies

u ∈ C([0, T ] : H7−δ(R)) ∩ L∞([0, T ] : H7(R)), for all δ > 0 (2.12)

and (2.10).
As in [15] we define the family of cut off functions: for ε > 0 and b ≥ 5ε, let

χ
ε,b ∈ C∞(R) such that

χ
ε,b =

{
0, x ≤ ε,

1, x ≥ b,
(2.13)

suppχ
ε,b ⊆ [ε,∞), suppχ ′

ε,b
⊆ [ε, b], (2.14)

χ ′
ε,b

(x) ≥ 0 with χ ′
ε,b

(x) ≥ 1

b − 3ε
1[3ε, b−2ε](x). (2.15)

Thus,
χ ′

ε/3,b+ε
(x) ≥ c j |χ( j)

ε,b
(x)|, x ∈ R, j = 1, 2, 3. (2.16)

Next we follow the argument in [10]. Thus we formally apply ∂
j
x , j = 8, . . . ,m to

the equation in (2.11) and multiply the result by

∂
j
x u ∂

j
x ψ j = ∂

j
x u ψ j,v,ε,b, (2.17)
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with ψ j,v,ε,b(x, t) to be determine below, to get (after some integration by parts)

1

2

d

dt

∫
(∂

j
x u)2ψ j (x, t) dx − 1

2

∫
(∂

j
x u)2∂tψ j (x, t) dx

+
∫

(∂
j+1
x u)2

{3
2
∂x

(
(1 + (∂2x u)2

)
ψ j

) − j
[
∂x (1 + (∂2x u)2)ψ j

]
−[

∂x (1 + (∂2x u)2)ψ j
]}

dx

+
∫

Q j
(
(∂ lx u)|l|≤ j ; (∂rxψ j )|r |≤3

)
(x, t) dx

≡ 1

2

d

dt

∫
(∂

j
x u)2ψ j (x, t) dx + E1, j + E2, j + E3, j . (2.18)

where Q j (·, ·) is a polynomial in its variables, linear in the components (ψ j , ∂xψ j ,

∂2xψ j , ∂
3
xψ j ), and at most quadratic in the highest derivatives of u, i.e. (∂ j

x u), involving
at most 7 + 2 j derivatives of u.

First we consider E2, j which determines the choices of ψ j = ψ j,v,ε,b. As in [10]
we choose ψ j = ψ j,v,ε,b such that for v > 0

3

2
∂x

(
(1 + (∂2x u)2

)
ψ j

) − ( j + 1)∂x
(
1 + (∂2x u)2

)
ψ j = χ ′

ε,b
(x + vt) (2.19)

with
ψ j (x, t) → 0 as x ↓ −∞, (2.20)

i.e.

(1 + (∂2x u)2)∂xψ j −
(
1 − 2

3
( j + 1)

)
∂x

(
1 + (∂2x u)2

)
ψ j = 2

3
χ ′

ε,b
(x + vt). (2.21)

Hence if

d j ≡ 1 − 2

3
( j + 1), (2.22)

then

ψ j = ψ j,v,ε,b ≡ 2

3
(1 + (∂2x u)2)−d j (x, t)

x∫
−∞

(1 + (∂2x u)2)d j−1(s, t)χ ′
ε,b

(s + vt) ds.

We observe that

ψ j (x, t) = ψ j,v,ε,b(x, t) ≥ 0 (2.23)

with

suppψ j,v,ε,b(·, t) ⊆ [ε − vt,∞), t ∈ [0, T ] (2.24)
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and

ψ j,v,ε,b(·, t) ∈ L∞(R) (2.25)

with

‖ψ j,v,ε,b(·, t)‖∞ ≤ c = c(v, ε, b; ‖u0‖7,2). (2.26)

With this choice of ψ j (·) = ψ j,v,ε,b(·), E2, j becomes

E2, j =
∫

(∂
j+1
x u)2(x, t)χ ′

ε,b
(x + vt) dx . (2.27)

Also one sees [using (2.10)–(2.12) and (H2)] that for any T > 0, v > 0, j ∈ Z
+,

j ≥ 8, there exists c = c(T ; v; j; k) ∈ (1,∞) such that for any (x, t) ∈ R × [0, T ]

c−1χ
ε,b(x + vt) ≤ ψ j,v,ε,b(x, t) ≤ c χ

ε,b (x + vt). (2.28)

Moreover (with c as above)

|∂xψ j,v,ε,b(x, t)| ≤ (
χ

ε,b (x + vt) + χ ′
ε,b

(x + vt)
)

≤ c
(
ψ j,v,ε,b(x, t) + χ ′

ε,b
(x + vt)

)
, (2.29)

|∂2xψ j,v,ε,b(x, t)| ≤ (
(χ

ε,b + χ ′
ε,b

)(x + vt)
)

+|χ ′′
ε,b

(x + vt)|), (2.30)

and

|∂3xψ j,v,ε,b(x, t)| ≤ ((
χ

ε,b + χ ′
ε,b

)(x + vt)

+|χ ′′
ε,b

(x + vt)| + |χ(3)
ε,b

(x + vt)|), (2.31)

Therefore, combining (2.28) and (2.16) one has that

|∂rxψ j,v,ε,b(x, t)| ≤ c
(
ψ j,v,ε,b(x, t) + χ ′

ε,b
(x + vt) + χ

ε/3,b+ε
(x + vt), (2.32)

r = 2, 3, for any (x, t) ∈ R × [0, T ].
Also using the Eqs. (2.12), and (2.28) it follows that

|∂tψ j,v,ε,b(x, t)| ≤ c
(
χ

ε,b (x + vt) + χ ′
ε,b

(x + vt)
)

≤ c
(
ψ j,v,ε,b(x, t) + χ ′

ε,b
(x + vt)

)
. (2.33)

We now turn to the estimate of E1, j in (2.18). First, we consider the case j = 8. In
this case using (2.33) we have that
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|E1,8| ≤ c

2

∫
(∂8x u)2ψ j,v,ε,b(x, t) dx

+c
∣∣ ∫ (∂8x u)2χ ′

ε,b
(x + vt) dx

∣∣ = E1,8,1 + E1,8,2. (2.34)

We notice that E1,8,1 is a multiple of the term we are estimating, so it will be part of
the Gronwall’s inequality. For the term E1,8,2 we observe that given T > 0 and v > 0,
there exists R > 0 such that

χ ′
ε,b

(x + vt) ≤ 1(−R,R)(x) (2.35)

for all (x, t) ∈ R × [0, T ]. Therefore, the bound of E1,8,2 follows from (2.10) after
integrating in time in the estimate. So at the level j = 8 it only remains to consider
E3,8 in (2.18).

Using the structure of E3,8 commented after (2.18) and the bounds in (2.28)–(2.32)
it follows that in this case j = 8, the term E3,8 can be written as a sum of terms of the
form ∫

P3,8,1
(
(∂ lx u)|l|≤4

)
(∂8x u)2 ψ8,v,ε,b(x, t) dx (≡ E3,8,1), (2.36)

∫
P3,8,2,r

(
(∂ lx u)|l|≤4−r

)
(∂8x u)2 χ(r)

ε,b
(x + vt) dx (≡ E3,8,2) (2.37)

with r = 1, 2, 3, or terms involving lower order derivatives l = 0, . . . , 7,∫
P3,8,3

(
(∂ lx u)|l|≤7

)
χ(r)

ε,b
(x + vt) dx (≡ E3,8,3), (2.38)∫

P3,8,4
(
(∂ lx u)|l|≤7

)
ψ8,v,ε,b(x, t) dx (≡ E3,8,4), (2.39)

where

P3,8,1(·) and P3,8,2,r (·) are polynomials of degree at most 2,

and

P3,8,3(·) and P3,8,4(·) are polynomials of degree at most 4.

In this case, j = 8, the terms in E3,8,3 and E3,8,4 are bounded since one has (2.12)
and the fact that

3∑
r=3

‖χ(r)
ε,b

‖∞ + ‖ψ8,v,ε,b‖L∞(R×[0,T ]) ≤ c,

with c = c(v, ε, b, sup[0,T ] ‖u(t)‖7,2).
The term E3,8,2 can be estimated using (2.10) as in (2.35).
Finally, the term in (2.36) is the one we are estimating and will be handled by

Gronwall.
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Hence, gathering the above information we conclude in the case j = 8 that

sup
[0,T ]

∫
(∂8x u)2(x, t) ψ8,v,ε,b(x, t) dx +

T∫
0

∫
(∂9x u)2(x, t) χ ′

ε,b
(x + vt) dxdt

≤ c = c(‖u0‖7,2; ‖∂8x u0‖L2((0,∞)); v; ε; b). (2.40)

We notice that by (2.28) that (2.40) implies that for ε > 0, b > 5ε, v > 0,

sup
[0,T ]

∫
(∂8x u)2(x, t) χ

ε,b (x + vt) dx +
T∫

0

∫
(∂9x u)2(x, t) χ ′

ε,b
(x + vt) dxdt

≤ c = c(‖u0‖7,2; ‖∂8x u0‖L2((0,∞)); v; ε; b). (2.41)

Once we have established the desired result (2.41) for the case j = 8 we sketch the
iterative argument for the general case j = 8, . . . ,m.

Assuming the step j = m0 ∈ {8, . . . ,m}, i.e. for j = 8, . . . ,m0,

sup
[0,T ]

∫
(∂

j
x u)2(x, t) χ

ε,b (x + vt) dx +
T∫

0

∫
(∂

j+1
x u)2(x, t) χ ′

ε,b
(x + vt) dxdt

≤ c = c(‖u0‖7,2; ‖∂m0
x u0‖L2((0,∞)); v; ε; b), (2.42)

we shall prove it for j = m0 + 1.
We repeat the argument in (2.17) and (2.18) to get E1,m0+1, E2,m0+1, and E3,m0+1.
The estimate for E2,m0+1 is similar to that given in (2.19)–(2.27).
To handle the term E1,m0+1 we observe that from (2.33) (with j = m0 + 1) one

has an estimate as in (2.33), (2.34) with m0 + 1 instead of 8, i.e. the terms E1,m0+1,1
and E1,m0+1,2. As in the previous case E1,m0+1,1 is a multiple of the term we are
estimating and E1,m0+1,2 can be bounded, after time integration, by the second term
in the right hand side of (2.42) by taking there an appropriate value of ε and b. So it
only remains to consider the terms in E3,m0+1, where (see (2.18))

E3,m0+1 =
∫

Qm0+1
(
(∂ lx u)2|l|≤m0+1; (∂rxψm0+1)|r |≤3

)
dx .

where Qm0+1(·, ·) is a polynomial in its variables, linear in the (ψm0+1, ∂xψm0+1,
∂2xψm0+1, ∂3xψm0+1) components and at most quadratic in the highest derivatives of
u, i.e. (∂m0+1

x u) involving at most 7 + 2(m0 + 1) derivatives of u.
To handle E3,m0+1 one combines the global (in space) estimate in (2.12) with that

in (2.10) and those obtained in the previous estimates j = 8, . . . ,m0, i.e. (2.42) with
j = 8, . . . ,m0 to obtain the desired estimate. The proof follows the argument provided
in details in [15] Sect. 3. Therefore it will be omitted.
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Finally, to justify the previous formal computation we recall that the argument in
the proof of Theorem 1.1 shows that u in (2.12)–(2.10) is the limit in the C([0, T ] :
H7−δ(R))-norm (for any δ > 0) of smooth solutions (weak form of the continuous
dependence upon the data). In particular, we have that u is the uniform limit of smooth
solutions in R × [0, T ]. Hence, by performing the above (formal) argument in the
smooth solutions one obtains a uniform bounded sequence in the norms described in
(1.7) and (1.8). Hence, considering the uniform boundedness, the weak convergence
and passing to the limit we obtain the desired result.

3 Dispersive Blow-up

Consider the IVP associated to the k-generalized Korteweg–de Vries equation,

{
∂t u + ∂3x u + uk∂xu = 0, k = 1, 2, 3, . . . , x ∈ R, t > 0,

u(x, 0) = u0(x).
(3.1)

Proof of Theorem 1.4 Let φ(x) = e−2|x | and consider the linear IVP,

{
∂tv + ∂3x v = 0, x ∈ R, t > 0,

v(x, 0) = v0
(3.2)

whose solution is given by

v(x, t) = V (t)v0(x) = e−t∂3x v0 = St ∗ v0(x) (3.3)

where

St (x) = 1√
33t

Ai

(
x√
33t

)

and Ai (·) denotes the Airy function.
Define

u0(x) =
∞∑
j=1

α j V (− j)φ(x), α j > 0. (3.4)

If

∞∑
j=1

α j � 1,

we have that u0 ∈ H1(R), in fact in u0 ∈ H3/2−(R). This in particular guarantees the
global existence of solutions in H1(R) for the IVP (3.1).
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Step 1. Reduction to linear case.

Case k = 2, 3, . . .
Since the nonlinear part of the solution u of (3.1), i.e.

z(t) =
t∫

0

V (t − t ′) uk∂xu(t ′) dt ′

is in C([0,∞) : H2(R)) (see [23] for the proof in the case k = 2, since our solution
is C([0, T ] : H1(R)), the argument works for all k ≥ 2). It suffices to consider the
linear part, V (t)u0.

Case k = 1
We observe that from (3.3), (3.4) it follows that u0 ∈ H3/2−

(R).
Next we recall the identity deduced in [12]: for β ∈ (0, 1) and t ∈ R

|x |βV (t) f = V (t)(|x |β f ) + V (t){�t,β( f̂ )}∨ (3.5)

with
‖�t,β( f̂ )‖2 ≤ c(1 + |t |)‖ f ‖2β,2. (3.6)

Hence, for β ∈ (0, 3/4)

|x |βu0 ∈ L2(R) if
∞∑
j=1

α j j
β < ∞.

Assuming the last inequality we have that for u0 as above the corresponding solutions
of the IVP for the KdV equation satisfies for any T > 0

u ∈ C([0, T ] : H3/2−
(R) ∩ L2(|x |3/4−ε dx)), (3.7)

J 3/2
−
∂xu ∈ L∞

x (R : L2([0, T ])), (smoothing effect) (3.8)

and

T∫
0

‖Dαθ/2 J su(·, t)‖qp dt < ∞ for 0 < s < 3/2, (Strichartz)

(q, p) = (6/θ(α + 1), 2/(1 − θ)), θ ∈ (0, 1), 0 ≤ α ≤ 1/2. (3.9)

As in the previous case k = 2, 3, . . . we shall show that for any t ∈ [0, T ]

z(t) =
t∫

0

V (t − t ′)u∂xu(t ′) dt ′ ∈ C1(R) (3.10)
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by proving that

z(t) ∈ C([0, T ] : H3/2−+1/6(R)). (3.11)

Using the inequality (see [21])

sup
0≤t≤T

‖∂x
t∫

0

V (t − t ′)F(·, t ′) dt ′‖2 ≤ c‖F‖L1
x L

2
T

(3.12)

one has that

sup
0≤t≤T

‖D3/2−+1/6

t∫
0

V (t − t ′)u∂xu(t ′) dt ′‖2 ≤ ‖D1/2−+1/6(u∂xu)‖L1
x L

2
T

≤ (‖u‖
L6/5
x L3

T
‖D3/2−+1/6u‖L6

x L
6
T

+ E1
)

where the terms in E1 are easy to control by considering the commutator estimates in
the Appendix of [21] and interpolated norms of the previous terms to be considered
below, so we omit this proof.

Now

‖D3/2−+1/6u‖L6
x L

6
T

< ∞

from (3.9) with p = q = 6, θ = 2/3, α = 1/2 and using the inequality (2.11) in [13],

‖J γ a(〈x〉(1−γ )b f )‖2 ≤ c‖〈x〉b f ‖1−γ
2 ‖Ja f ‖γ

2 , a, b > 0, γ ∈ (0, 1),

we deduce

‖u‖
L6/5
x L3

T
≤ c‖〈x〉1/2+u‖L3

T L
3
x

≤ cT 1/3‖〈x〉1/2+u‖L∞
T L3

x

≤ cT 1/3‖J 1/6(〈x〉1/2+u)‖L∞
T L2

x

≤ cT 1/3‖J 3/2−u‖1−γ

L∞
T L2

x
‖〈x〉3/4−u‖γ

L∞
T L2

x

with γ such that γ 3/4− = 1/2+ (i.e. γ > 2/3) and (1 − γ )3/2− > 1/6.
As in the case k = 2, 3, . . . we have reduced ourselves to consider the linear

associated problem so the nonlinearity after Step 1 is not relevant for our purposes.

Step 2. Estimate for V (t)φ, (t > 0).
Assume that v0 ∈ L2(R) and exv0 ∈ L2(R)

Now consider w(x, t) = exv(x, t). Following Kato [18] we set v(x, t) =
e−xw(x, t) where w is solution of{

∂tw + (∂x − 1)3w = 0,

w(x, 0) = exv0(x).
(3.13)
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Since

(∂x − 1)3 = ∂3x − 3∂2x + 3∂x − 1

one has that

w(x, t) = V (t)e3t∂
2
x e−3t∂x et

(
exv0(x)

)
= V (t)e3t∂

2
x e−3t∂x

(
ex+tv0(x)

)
and

V (t)v0 = v(x, t) = e−x V (t)e3t∂
2
x
(
ex−2tv0(x − 3t)

)
.

We notice using the heat kernel properties that

∂mx V (t)v0 ∼ e−x V (t)
(
∂mx e

3t∂2x
)(

ex−2tv0(x − 3t)
)
.

It follows that

‖ ex ∂mx V (t)v0‖2 ∼ cm
(3t)m/2 ‖ex−2tv0(x − 3t)‖2 ∼ cm

(3t)m/2 e
t ,

since

‖ex−2tv0(x − 3t)‖2 = et‖ex−3tv0(x − 3t)‖2 = c et .

Similarly, if t < 0, we have an IVP analogous to the one in (3.13) the operator
−(∂x + 1)3 instead of (∂x − 1)3. Thus

V (t)v0 = exV (t)e−3t∂2x e−3t∂x (e−t e−xv0)

= exV (t)e−3t∂2x e−3t∂x
(
e−x−tv0(x)

)
= exV (t)e−3t∂2x

(
e−x−4tv0(x − 3t)

)
.

and so we have

∂mx V (t)v0 ∼ exV (t)
(
∂mx e

−3t∂2x
)(

ex−4tv0(x + 3t)
)

and

‖ e−x ∂mx V (t)v0‖2 ∼ cm
(3t)m/2 e

−t . (3.14)
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Step 3. Next we prove that

∞∑
j=1

α j V (− j)φ ∈ C∞(R)

or equivalently

∞∑
j=1

α j e
−x V (− j)φ ∈ C∞(R).

To do this, it suffices to show that

∞∑
j=1

α j e
−x

(
∂mx V (− j)φ

)
∈ L2(R) for all m

or equivalently

∞∑
j=1

α j
cm

(3 j)m/2 e j < ∞.

Step 4. For each t > 0, t /∈ Z
+, we claim that

V (t)u0 =
∞∑
j=1

α j V (t − j)φ ∈ C1(R).

Combining (3.14) and the assumption

∞∑
j=1

α j
1

3|t − j |e
|t− j | < ∞

one has V (t)u0 ∈ H2
loc(R) ⊆ C1(R).

Step 5. For t = n ∈ Z
+ we affirm that

V (n)u0 = αnφ +
∞∑
j=1
j �=n

α j V (n − j)φ ≡ αnφ + �n (3.15)

with �n ∈ C1.
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As before using (3.14) and taking

∞∑
j=1
j �=n

α j
1

3|n − j |e
|n− j | < ∞

it follows that �n ∈ H2
loc(R) which yields (3.15).

By setting α j = c e− j2 with c small enough we obtain the desired result.

Proof of Theorem 1.5

(a) First we consider the case k = 2, 3, . . . . We recall the Strichartz estimates for
solutions of the linear IVP (3.2) established in [20]

⎛
⎝ ∞∫

−∞
‖Dαθ/2V (t) f ‖qp dt

⎞
⎠

1/q

≤ c‖ f ‖2, (3.16)

with (q, p) = (6/θ(α + 1), 2/(1 − θ)), 0 ≤ θ ≤ 1 and 0 ≤ α ≤ 1/2.
In particular for p ∈ (2,∞) and α = 1/2, the estimate (3.16) becomes

⎛
⎝ ∞∫

−∞
‖D(p−2)/4pV (t) f ‖4p/(p−2)

p dt

⎞
⎠

(p−2)/4p

≤ c‖ f ‖2. (3.17)

We take ũ0 ∈ Hs(R) with s = j − p−2
4p = j − p̂ > 3/4 with ũ0 /∈ W j,p(R+).

From (3.17) it follows that there exists t̂ ∈ (0, T/2) such that

V (±t̂ )ũ0, V (±2t̂ )ũ0 ∈ Wr,p with r = s + p − 2

4p
= j.

Thus we consider the initial data

u0 = V (t̂ )ũ0 + V (−t̂ )ũ0. (3.18)

Observe that u0 ∈ Hs(R), so since

u(t) = V (t)u0 −
t∫

0

V (t − t ′)uk∂xu(t ′) dt ′ = V (t)u0 + z(t),

from the argument in [23] one has that

z ∈ C([−T, T ] : Hs+1(R)) ↪→ C([−T, T ] : W j,p(R)).
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Also one sees that

V (t̂ )u0 = V (2t̂ )ũ0 + ũ0 /∈ W j,p(R+).

Similarly for V (−t̂ )u0. Gathering this information we obtain the desired result.

(b) Nowwe turn to the proof of the case k = 1.We observed that the argument of proof

inTheorem1.4 (Step 1) shows that in the case k = 1 if ũ0 ∈ Hĵ (R)∩L2(|x | j/2 dx)
with ĵ = j + 1/2− 1/p − 1/12 (thus Hĵ ↪→ W j,p) with ũ0 /∈ W j,p(R) one has
that

z(t) =
t∫

0

V (t − t ′)u∂xu(t ′) dt ′ ∈ C([−T, T ] : H j+ 1
2− 1

p − 1
12 (R)) ↪→ W j,p(R).

Once this has been established the rest of the proof follows the argument provided for
the case k = 2, 3, . . . .

4 BBM equation

Proof of Theorem 1.6 We shall restrict ourselves to consider the most general case
s = 0, i.e. u0 ∈ L2(R). Thus, from the local well-posedness theory in Theorem A4
([5]) there exist T = T (‖u0‖2) > 0 and a unique solution u = u(x, t) of the IVP
(1.15) such that

u ∈ C([0, T ] : L2(R)). (4.1)

We rewrite the BBM equation in (1.15)

∂t u + ∂xu + u∂xu − ∂2x ∂t u = 0

as the integro-differential equation

∂t u = −∂x J
−2(u + u2/2) (4.2)

where

J−2 f = (1 − ∂2x )
−1 f = 1

2
e−|x | ∗ f.

We observe that

∂2x J
−2 = J−2 − I. (4.3)

Since u ∈ C([0, T ] : L2(R)) Sobolev embedding theorem guarantees that

∂x J
−2u ∈ C([0, T ] : H1(R)) ↪→ C([0, T ] : C∞(R)), (4.4)
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where

C∞(R) = { f : R → R : f continuous with lim|x |→∞ f (x) = 0}.

Also, since

u2 ∈ C([0, T ] : L1(R)),

one has that

∂x J
−2(u2) = −1

2
sgn(x)e−|x | ∗ u2 ∈ C([0, T ] : Cb(R)), (4.5)

where Cb(R) = C(R) ∩ L∞(R). Hence, combining (4.2), (4.4) and (4.5) it follows
that

u(x, t) = u0(x) −
t∫

0

∂x J
−2(u + u2/2)(x, τ ) dτ

= u0(x) + z(x, t), (4.6)

with

z(x, t) = z ∈ C([0, T ] : Cb(R)).

Thus, if for some open 
 ⊂ R, u0
∣∣



∈ C(
), then

u
∣∣

×[0,T ] ∈ C([0, T ] : C(
)). (4.7)

Moreover, using (4.3) one has that

∂x z(x, t) = −
t∫

0

∂2x J
−2(u + u2/2)(x, τ ) dτ

=
t∫

0

((u + u2/2) − J−2(u + u2/2))(x, τ ) dτ. (4.8)

Thus, from (4.7)

(u + u2/2)
∣∣

×[0,T ] ∈ C([0, T ] : C(
)),

and by (4.1) and an argument similar to that in (4.4)–(4.5)

J−2(u + u2/2) ∈ C([0, T ] : Cb(R)),

123



On the regularity of solutions to a class… 825

therefore we conclude that if u0
∣∣



∈ C(
), then

z
∣∣

×[0,T ] ∈ C([0, T ] : C1(
)).

Hence, from (4.6) : if for some 
 ⊂ R open, u0
∣∣



∈ Cθ (
) with θ ∈ (0, 1], then

u
∣∣

×[0,T ] ∈ C([0, T ] : Cθ (
)). (4.9)

Now using the previous step (4.9) with θ = 1, i.e. if for 
 ⊂ R open, u0
∣∣



∈ C1(
),
then

u
∣∣

×[0,T ] ∈ C([0, T ] : C1(
)). (4.10)

This combined with (4.8) implies that

z(x, t) = z ∈ C([0, T ] : C2(
)).

Therefore, if u0
∣∣



∈ C1+θ (
) for some θ ∈ (0, 1], then from (4.6) it follows that

u
∣∣

×[0,T ] ∈ C1([0, T ] : C1+θ (
)). (4.11)

It is clear that by reapplying this argument one gets the desired result.

5 Degasperis–Procesi equation

In this section we shall consider the IVP associated to the Degasperis–Procesi (DP)
equation

{
∂t u − ∂t∂

2
x u + 4u∂xu = 3∂xu∂2x u + u∂3x u, x ∈ R, t > 0,

u(x, 0) = u0(x).
(5.1)

The equation in (5.1) can be rewritten in the integro-differential form

∂t u + u∂xu + 3

2
(1 − ∂2x )

−1∂x (u
2) = 0, (5.2)

where

(1 − ∂2x )
−2 f = J−2 f = 1

2
e−|x | ∗ f.

Notice that

∂2x J
−2 = J−2 − I.
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Proof of Theorem 1.8 In [27] it was shown that the IVP associated to the Eq. (5.2) is
locally well-posed in Hs(R) for s > 3/2.

Let uε be the solution corresponding to the initial data ρε ∗ u0 = uε
0, with u0 ∈

H1+δ(R) ∩ W 1,∞(R), δ > 0, and ρε denoting the usual mollifiers. Thus,

uε ∈ C([0, Tε] : H∞(R)) ∩ ... (5.3)

To estimate Tε we recall that using the commutator estimates in [19], see (5.8)–(5.9),
and simpler inequalities as those below one obtains the formal energy estimate: for
any v0 ∈ Hs(R) with s > 3/2 the corresponding solution to the DP equation in (5.2)
v ∈ C([0, T ] : Hs(R)) with T = T (‖v0‖s,2) > 0 obtained in [27] satisfies:

d

dt
‖v(t)‖s,2 ≤ cs(‖v(t)‖∞ + ‖∂xv(t)‖∞) ‖v(t)‖s,2. (5.4)

The estimate (5.4) implies the following continuation principle : given v0 ∈
Hs(R), s > 3/2, then the corresponding solution v ∈ C([0, T ] : Hs(R)) of the
IVP associated to (5.2) can be extended in the time interval [0, T ∗] with T ∗ > T
satisfying that v ∈ C([0, T ∗] : Hs(R)) whenever

∫ T ∗

0
(‖v(t)‖∞ + ‖∂xv(t)‖∞) dt < ∞. (5.5)

A priori estimate We shall show that if u0 ∈ H1+δ(R) ∩ W 1,∞(R), δ > 0, then Tε

defined above can be estimated independently of ε, i.e. Tε = T, ∀ε > 0, with

T = O((‖u0‖1,2 + ‖u0‖1,∞)−1) as (‖u0‖1,2 + ‖u0‖1,∞) ↓ 0.

Applying energy estimates we have that

d

dt
‖uε(t)‖2 ≤ c ‖uε(t)‖∞‖uε(t)‖2 (5.6)

after using that

‖∂x J−2(uε)2‖2 = c‖ sgn(x)e−|x | ∗ (uε)2‖2 ≤ ‖(uε)2‖2 ≤ ‖uε‖∞‖uε‖2.

Also, as far as the characteristics flow is defined, i.e. X ε(t; x0),⎧⎪⎪⎨
⎪⎪⎩
dX ε

dt
(t) = uε(X ε(t), t),

X ε(0) = x0,

one has that

d

dt
uε(X ε(t; x0), t) = −3

2
∂x J

−2((uε)2).
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Since

‖∂x J−2(uε)2‖∞ ≤ ‖(uε)2‖1 ≤ ‖uε‖22,

it follows that
d

dt
‖uε(t)‖∞ ≤ c ‖uε(t)‖22. (5.7)

Next, we recall the following estimates deduced in [19]: for any r > 0

‖[Jr ; f ]g‖2 ≤ cr (‖∂x f ‖∞‖Jr−1g‖2 + ‖g‖∞‖Jr f ‖2), (5.8)

and
‖Jr ( f g)‖2 ≤ cr (‖ f ‖∞‖Jr g‖2 + ‖g‖∞‖Jr f ‖2). (5.9)

Combining (5.8), (5.9) one gets that

d

dt
‖uε(t)‖1+δ,2

≤ c(‖∂xuε(t)‖∞‖uε(t)‖δ,2 + c‖uε(t)‖∞‖uε(t)‖1+δ,2). (5.10)

Finally, since

∂t (∂xu
ε) + uε∂x (∂xu

ε) + (∂xu
ε)(∂xu

ε) + 3

2

(
J−1(uε)2 − (uε)2

)
= 0, (5.11)

then

d

dt
(∂xu

ε(X ε(t; x0), t))

+
(

(∂xu
ε)2 + 3

2
(J−1(uε)2 − (uε)2)

)
(X ε(t; x0), t) = 0.

Thus, using that

‖J−2(uε)2 − (uε)2‖∞ ≤ c ‖uε‖2∞,

we conclude that if u0 ∈ H1+δ(R)∩W 1,∞(R) (actually Hs(R) with s > 1/2 instead
of 1+ δ will suffice for this step), there exists T = T (‖u0‖1+δ,2; ‖u0‖1,∞) > 0 such
that

sup
[0,T ]

(
‖uε(t)‖1+δ,2 + ‖uε(t)‖1,∞

)
≤ M

(
‖u0‖1+δ,2 + ‖u0‖1,∞

)
. (5.12)
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We recall that if v ∈ C(R× [0, T ]) ∩ L∞([0, T ] : W 1,∞(R)), then the characteristic
flow Xv(t; x0) = X (t; x0) solution of⎧⎨

⎩
dX

dt
(t) = v(X (t), t),

X (0) = x0,
(5.13)

is well-defined. Thus, combining these facts with the continuation principle in (5.4)–
(5.5) we conclude that

(uε)ε>0 ⊂ C([0, T ] : H∞(R)),

with T as in (5.12). As it was remarked above for this step one just needs u0 ∈
Hs(R) ∩ W 1,∞(R), s > 1/2.
Convergence asε ↓ 0 Defining w = uε − uε′

one gets the equation

∂tw + uε∂xw + w∂xu
ε + 3

2
∂x J

−2((uε + uε′
)w

) = 0. (5.14)

Thus

d

dt
‖w(t)‖2 ≤ c

(
‖∂xuε‖∞ + ‖∂xuε′ ‖∞

)
‖w(t)‖2

+c
(
‖uε‖∞ + ‖uε′ ‖∞

)
‖w(t)‖2. (5.15)

Hence

uε → u in C([0, T ] : L2(R)) as ε ↓ 0,

and consequently from (5.12)

uε → u in C([0, T ] : H1(R)). (5.16)

Moreover,
u ∈ C([0, T ] : H1(R)) ∩ L∞([0, T ] : H1+δ(R)), (5.17)

with

∂t u
ε → ∂t u in C([0, T ] : L2(R)) as ε ↓ 0.

This tells us that u = u(x, t) is the solution of the DP equation (5.2) with data
u(x, 0) = u0(x) ∈ H1+δ(R)∩W 1,∞(R), where the equation is realized in C([0, T ] :
L2(R)). Furthermore, since u ∈ C([0, T ] : Cb(R)) (5.12) and (5.16) imply that u ∈
L∞([0, T ] : W 1,∞(R)) with norm bounded by M as in (5.12), thus the characteristic
flow Xu(t; x0), see (5.13), is defined.

Notice that (5.15) implies uniqueness and a weak continuous dependence of the
solutions upon the data, i.e. if u0n → u0 in H1 with u0n , u0 ∈ H1+δ(R) uniformly
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bounded, then the corresponding solutions un converges to u in theC([0, T ] : H1(R))-
norm.

It is clear form our proof above that a weaker version of the Theorem 1.8 holds for
u0 ∈ H1+δ(R) ∩ W 1,∞(R), with s > 1/2. However we fixed s = 1 + δ, δ > 0, such
that the equation is realized in C([0, T ] : L2(R)).

Proof of Theorem 1.9 Here we establish the propagation of regularity at the C1 level
since at the C2 level and beyond it follows by writing m = (1− ∂2x )u and considering
the equation

∂tm + u∂xm + 3∂xu m = 0.

Notice first that if f = 3
2∂x J

−2(u2) with u as in (5.17) one has that

f ∈ C([0, T ] : H2(R)). (5.18)

Therefore, if u0
∣∣∣



∈ C1 with 
 ⊆ R open, then

u(·, t)
∣∣∣

t

∈ C1, 
t = �t (
)

where �t (x0) = Xu(t; x0) = X (t; x0) defined as the solution of

⎧⎨
⎩
dX

dt
= u(X (t), t),

X (0) = x0.

Since the solution u(·, ·) satisfies
{

∂t u + u∂xu + f = 0

u(x, 0) = u0,
(5.19)

with f = f (x, t) as in (5.18) one sees that

d

dt
u(X (t; x0), t) = f (X (t; x0), t)

and

u(X (t; x0), t) = u0(x) +
t∫

0

f (X (τ ; x0), τ ) dτ.

This yields the desired result.
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6 Brinkman model 1-D case

This section is concerned with the IVP associated to the Brinkman model,

{
∂tρ = ∂x

(
ρ(1 − ∂2x )

−1∂x (ρ
2)

)
, x ∈ R, t > 0,

ρ(x, 0) = ρ0(x).
(6.1)

We shall use that

J−2 f = (1 − ∂2x )
−1 f = 1

2
e−|x | ∗ f (6.2)

and
∂2x J

−2 = J−2 − I. (6.3)

Proof of Theorem 1.11 Let ρε be the solution corresponding to initial data ρε
0(x) =

Gε ∗ ρ0(x), with Gε(x) = ε−1G
(
x/ε

)
, G ∈ C∞

0 (R), G(x) ≥ 0,
∫
G(x)dx = 1, and∫

x G(x)dx = 0. We recall that in [1] the local well-posedness of the IVP (6.1) in
Hs(R), s > 3/2 was established.
A priori estimate inH1(R) To simplify the notation we shall use ρ instead of ρε in
(5.3), (5.4) and (6.8).

Energy estimates show that

d

dt
‖ρ(t)‖22 =

∫
∂xρ(1 − ∂2x )

−1∂x (ρ
2)ρ dx

+
∫

ρ(1 − ∂2x )
−1∂2x (ρ

2)ρ dx

= 1

2

∫
ρ(1 − ∂2x )

−1∂2x (ρ
2)ρ dx

≤ 1

2
‖(J−2 − I )(ρ2)‖∞‖ρ(t)‖22

≤ c‖ρ‖2∞‖ρ(t)‖22. (6.4)

since ‖J−2(ρ2)‖∞ ≤ c‖ρ2‖∞, and

d

dt
‖∂xρ(t)‖22 =

∫
∂2x

(
ρ(1 − ∂2x )

−1∂x (ρ
2))∂xρ dx

=
∫

∂2xρ(1 − ∂2x )
−1∂x (ρ

2)∂xρ dx

+2
∫

∂xρ(1 − ∂2x )
−1∂2x (ρ

2)∂xρ dx

+
∫

ρ(1 − ∂2x )
−1∂3x (ρ

2)∂xρ dx

≤ c‖ρ‖2∞‖∂xρ(t)‖22. (6.5)

123



On the regularity of solutions to a class… 831

Notice that from Sobolev embedding theorem and (6.4)–(6.5) one gets that

d

dt
‖ρε(t)‖1,2 ≤ c‖ρε(t)‖31,2.

Therefore, there exists

T = T (‖ρε
0‖1,2) = T (‖ρ0‖1,2) = c ‖ρ0‖−2

1,2, (6.6)

such that

sup
[0,T ]

‖ρε(t)‖1,2 ≤ 2‖ρ0‖1,2. (6.7)

Similarly,

d

dt
‖∂2xρ(t)‖2 ≤ c‖ρ‖2∞‖∂2xρ(t)‖2. (6.8)

Combining (6.7), (6.8) it follows that if ρ0 ∈ H1(R), then

sup
[0,T ]

‖∂2xρε(t)‖2 = O(ε−1). (6.9)

Convergence as ε ↓ 0. Let ρ and ρ̃ be solutions of (6.1). Thus, w = ρ − ρ̃ satisfies
the equation

∂tw − ∂x (w(1 − ∂2x )
−1∂x (ρ

2)) − ∂x (ρ̃(1 − ∂2x )
−1∂x (ρ

2 − ρ̃2)) = 0. (6.10)

Multiplying (6.10) by w and integrating in x we have

d

dt
‖w(t)‖22 =

∫
∂x (w(1 − ∂2x )

−1∂x (ρ
2))w dx

+
∫

∂x (ρ̃(1 − ∂2x )
−1∂x (ρ

2 − ρ̃2))w dx

= W1 + W2. (6.11)

By integration by parts

W1 =
∫

∂xw(1 − ∂2x )
−1∂x (ρ

2)w dx

+
∫

w(1 − ∂2x )
−1∂2x (ρ

2)w dx

≤ c ‖ρ2‖∞‖w(t)‖22 (6.12)
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and

W2 =
∫

∂x ρ̃(1 − ∂2x )
−1∂x ((ρ + ρ̃)w)w dx

+
∫

ρ̃(1 − ∂2x )
−1∂2x ((ρ + ρ̃)w))w dx

≤ ‖∂x ρ̃‖2‖(1 − ∂2x )
−1∂x ((ρ + ρ̃)w)‖∞‖w‖2

+‖ρ̃‖∞‖(ρ + ρ̃)w‖2‖w‖2. (6.13)

Since

‖(1 − ∂2x )
−1∂x ((ρ + ρ̃)w)‖∞ ≤ ‖(ρ + ρ̃)w)‖1 ≤ ‖ρ + ρ̃‖2‖w‖2, (6.14)

combining (6.11)–(6.14) we obtain that

d

dt
‖w(t)‖22 ≤ c( sup

[0,T ]
‖ρ(t)‖1,2; sup

[0,T ]
‖ρ̃(t)‖1,2)‖w(t)‖22.

Thus, if 0 < ε′ < ε, then

sup
[0,T ]

‖(ρε − ρε′
)(t)‖2 ≤ c(‖ρ0‖1,2)‖ρε

0 − ρε′
0 ‖2 = o(ε), as ε ↓ 0. (6.15)

Similarly, for any two strong solutions ρ, ρ̃ ∈ C([0, T ] : H1(R)) one has

sup
[0,T ]

‖(ρ − ρ̃)(t)‖2 ≤ c(‖ρ0‖1,2; ‖ρ̃0‖1,2) ‖ρ0 − ρ̃0‖2.

Next, we shall estimate for ‖∂x (ρε − ρε′
)(t)‖2. Let w = ρε − ρε′

, so w satisfies the
equation

∂tw − ∂x (w(1 − ∂2x )
−1∂x ((ρ

ε)2))

−∂x (ρ
ε′
(1 − ∂2x )

−1∂x ((ρ
ε + ρε′

)w)) = 0.

Thus

d

dt
‖∂xw(t)‖22 =

∫
∂2x (w(1 − ∂2x )

−1∂x ((ρ
ε)2))∂xw dx

+
∫

∂2x (ρ
ε′
(1 − ∂2x )

−1∂x ((ρ
ε + ρε′

)w))∂xw dx

= W̃1 + W̃2. (6.16)
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But

W̃1 =
∫

∂2xw(1 − ∂2x )
−1∂x ((ρ

ε)2))∂xw dx

+2
∫

∂xw(1 − ∂2x )
−1∂2x ((ρ

ε)2))∂xw dx

+
∫

w(1 − ∂2x )
−1∂3x ((ρ

ε)2))∂xw dx

and so

|W̃1| ≤ c‖ρε‖2∞‖∂w(t)‖22 + c‖ρε‖21,2‖w(t)‖1/22 ‖∂xw(t)‖3/22 ,

after integrating by parts and using that

∫
w(1 − ∂2x )

−1∂3x ((ρ
ε)2)∂xw dx = −

∫
w(∂x − ∂x J

−2)((ρε)2)∂xw dx .

Also,

W̃2 =
∫

∂2xρ
ε′
(1 − ∂2x )

−1∂x ((ρ
ε + ρε′

)w)∂xw dx

+2
∫

∂xρ
ε′
(1 − ∂2x )

−1∂2x ((ρ
ε + ρε′

)w)∂xw dx

+
∫

ρε′
(1 − ∂2x )

−1∂3x ((ρ
ε + ρε′

)w)∂xw dx

= W̃2,1 + W̃2,2 + W̃2,3.

Then

|W̃2,1| ≤ ‖∂2xρε′ ‖2‖(ρε + ρε′
)w‖1‖∂xw‖2

≤ ‖∂2xρε′ ‖2‖ρε + ρε′ ‖2‖w‖2‖∂xw‖2,
|W̃2,2| ≤ ‖∂xρε′ ‖2‖(ρε + ρε′

)w‖∞‖∂xw‖
≤ ‖∂xρε′ ‖2‖ρε + ρε′ ‖∞‖w‖∞‖∂xw‖,

and

|W̃2,3| ≤ ‖ρε′ ‖∞‖∂x ((ρε + ρε′
)w)‖2‖∂xw‖2

≤ ‖ρε′ ‖∞(‖ρε + ρε′ ‖∞‖∂xw‖2 + ‖∂x (ρε + ρε′
)‖2‖w‖∞)‖∂xw‖2.

We observe that considering (6.7), (6.9), and (6.15) one sees that

|W̃2,1| ≤ c o(1) ‖∂xw‖2 as ε ↓ 0.
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Inserting the above estimates in (6.16), and then using (6.9)–(6.15) it follows that
ρε → ρ with ρ ∈ C([0, T ] : H1(R)) ∩ C1((0, T ) : L2(R)) and T as in (6.6). The
continuous dependence of the solution upon the data can be proved in a similar manner
(see [4] or [22] Chapter 9). This basically completes the proof of Theorem 1.11.

Proof of Theorem 1.12 Using (6.3) we write the equation in (6.1) as

∂tρ − (1 − ∂2x )
−1∂x (ρ

2)∂xρ = (J−2 − I )(ρ2)ρ.

Hence, formally one has that

∂t∂xρ − (1 − ∂2x )
−1∂x (ρ

2)∂x∂xρ

= 2(J−2 − I )(ρ2)∂xρ − 2ρ2∂xρ + ∂x J
−2(ρ2)ρ, (6.17)

∂t∂
2
xρ − (1 − ∂2x )

−1∂x (ρ
2)∂x∂

2
xρ

= 3(J−2 − I )(ρ2)∂2xρ − 2ρ2∂2xρ + 3∂x (J
−2 − I )(ρ2)∂xρ

+∂2x J
−2(ρ2)ρ − [

∂2x (ρ
2)ρ − 2ρ2∂2xρ], (6.18)

and for the general case k ∈ Z
+

∂t∂
k
xρ − (1 − ∂2x )

−1∂x (ρ
2)∂x∂

k
xρ

= (k + 1)(J−2 − I )(ρ2)∂kxρ − 2ρ2∂kxρ

+akk−1∂x (J
−2 − I )(ρ2)∂k−1

x ρ

+akk−2∂
2
x (J

−2 − I )(ρ2)∂k−2
x ρ

+ · · · + ak1∂
k−1
x (J−2 − I )(ρ2)∂xρ

+∂kx J
−2(ρ2)ρ − [

∂kx (ρ
2)ρ − 2ρ2∂kxρ]. (6.19)

From Theorem 1.11 given ρ0 ∈ H1(R), there exist T > 0 (as in (6.6)) and a unique
strong solution ρ ∈ C([0, T ] : H1(R)) of the IVP (6.1). We introduce the notation

a(x, t) ≡ J−2∂x (ρ
2) ∈ C([0, T ] : H1(R)) ↪→ C([0, T ] : C1

b(R)), (6.20)

and

(J−2 − I )ρ2, ρ2 ∈ C([0, T ] : H1(R)) ↪→ C([0, T ] : C1
b(R)). (6.21)

In particular, from (6.20) it follows that the flow �t (x0) = X (t; x0) given by the
solution of {

d
dt X = a(X, t),

X (0) = x0,
(6.22)

123



On the regularity of solutions to a class… 835

is well defined for t ∈ [0, T ]. For 
 ⊂ R we define AT

 as

AT

 = {(x, t) : x ∈ �t (
), t ∈ [0, T ]}.

Setting μk = ∂kxρ, k = 1, . . . ,m, the equations in (6.17)–(6.19) can be written as

∂tμk + a(x, t)∂xμk = bk(x, t)μk + ck(x, t), (6.23)

with a(x, t) as (6.20),

bk(x, t) ≡ (k + 1)(J−2 − I )(ρ2) − 2ρ2 ∈ C([0, T ] : C1
b(R)),

(see (6.21)) and

ck(x, t) ≡ akk−1∂x (J
−2 − I )(ρ2)∂k−1

x ρ

+akk−2∂
2
x (J

−2 − I )(ρ2)∂k−2
x ρ

+ · · · + ak1∂
k−1
x (J−2 − I )(ρ2)∂xρ

+∂kx J
−2(ρ2)ρ − [

∂kx (ρ
2)ρ − 2ρ2∂kxρ]. (6.24)

Thus, for k = 1, if ρ0
∣∣



∈ C1 for some open set 
 ⊆ R, since

c1(x, t) = ∂x J
−2(ρ2)ρ ∈ C([0, T ] : C1

b(R)),

then using the Eq. (6.23) with k = 1, it follows that

μ1
∣∣
AT



= ∂xρ(·, ·)∣∣AT



∈ C.

If ρ0
∣∣



∈ C2, by combining the previous case k = 1 and the fact that ρ ∈ C([0, T ] :
H1(R)) it follows that

c2(x, t) = 3∂x (J
−2 − I )(ρ2)∂xρ + ∂2x J

−2(ρ2)ρ

−
[
∂2x (ρ

2)ρ − 2ρ2∂2xρ
]

(6.25)

satisfies that

c2(·, ·)
∣∣
AT



∈ C,

then using the equation (6.23) with k = 2, one concludes that

μ2
∣∣
AT



= ∂2xρ(·, ·)∣∣AT



∈ C.
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For the general case k ∈ Z
+, this iterative argument will yield the result if assuming

that

∂
j
x ρ(·, ·)∣∣AT



∈ C, j = 1, 2, . . . , k,

one can show that

ck+1(·, ·)
∣∣
AT



∈ C.

But this follows directly by the explicit form of ck+1(·, ·) in (6.24).
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