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Abstract We consider Schrödinger operators H = −�gε + V on a fibre bundle

M
π→ B with compact fibres and a metric gε that blows up directions perpendicular

to the fibres by a factor ε−1 � 1. We show that for an eigenvalue λ of the fibre-wise
part of H , satisfying a local gap condition, and every N ∈ N there exists a subspace
of L2(M) that is invariant under H up to errors of order εN+1. The dynamical and
spectral features of H on this subspace can be described by an effective operator on
the fibre-wise λ-eigenspace bundle E → B, giving detailed asymptotics for H .
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1 Introduction

The adiabatic limit of a fibre bundle, in which lengths in the fibres are of size ε � 1
compared to those in the base, is the stage of many interesting results on the Laplacian
of a Riemannian manifold. For instance the study of the Schrödinger equation [13,14]
or the heat equation [33,58] in thin tubes, with Dirichlet boundary conditions, reveals
a variety of interesting effects. These are also found in many works on the relation
of spectrum and geometry in these special spaces (see [6–8,10,15,19,21,23,26,35,
37,41] and references therein). A related question is the confinement of a system
to a submanifold of its configuration space by a scaled family of potentials [11,20,
44,47,57] that effectively force the system into a thin tubular neighbourhood of the
submanifold of the type studied in the works above. Tubular neighbourhoods of graphs
and boundary conditions other than Dirichlet are discussed in detail in [24,51]. The
discreteness of the entire spectrum on fibre bundles with closed fibres was investigated
in [1,3,5,32]. Kordyukov considers foliated manifolds [34] and other authors study
the Hodge Laplacian [42,43,46] or Dirac operators [4,12,22] in the adiabatic limit.

The aim of this paper is to study the structure behind many of the specific results
above and the various approximation techniques used to prove them. We will develop
a general method, inspired by ideas that were originally introduced in the analysis
of magnetic Schrödinger operators [28,29,49] and the Born-Oppenheimer approxi-
mation [45,50]. These will be cast into a new form suited to our geometric context.
We identify natural conditions on the geometry and the operator in question for the
validity of such approximations and refine them by deriving expansions to arbitrary
powers of ε. Our results will lead to generalizations of many specific results in the
literature, although here we will focus on the general reasoning behind these results,
rather than trying to emulate them in full technical detail. We show how the gen-
eral approximation scheme we derive here can be used to expand and unify the large
literature on thin tubes around submanifolds, often called ’quantum waveguides’, in
another work in collaboration with Haag [27]. There we also examine several new
examples. The strength of our method also allows for the study of nodal sets of eigen-
functions and their limits. The limiting behaviour of these sets is studied by the first
author in [39,40]. This addresses various questions on the nodal count and the relation
of the nodal set to the boundary, studied also in [18,25,30,31,38]. For small, simple
eigenvalues conditions are found under which the nodal set of an eigenfunction must
intersect the boundary and for B = S1 this set shown to be isotopic to a disjoint union
of fibres.

Better understanding of the underlying adiabatic structure should prove fruitful also
for those problems we do not explicitly treat here. In particular a generalisation of our
method to the Hodge Laplacian on differential forms is rather natural. We will discuss
the related literature in more detail at the end of Sect. 2, after stating our main results.

Let M
π→ B be a fibre bundle of smooth manifolds with boundary. We assume the

fibre F to be compact, with or without boundary, and the base B to be complete, so in
particular ∂B = ∅, but in general not compact. Denote by T F := ker π∗ the vertical
subbundle of T M . Let g and gB be Riemannian metrics on M and B such that π∗
induces an isometry T M/T F → T B. Then g is called a Riemannian submersion and
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The adiabatic limit of Schrödinger… 1649

can be written in the form

g = gF + π∗gB,

where gF vanishes on the horizontal subbundle NF := T F⊥. We will require that
(M, g) → (B, gB) be a fibre bundle of bounded geometry (see Sect. 3.1 for a precise
definition). The family of metrics

gε := gF + ε−2π∗gB

for ε � 1 is called the adiabatic limit of (M, g). In this limit we consider a Schrödinger
operator of the form

H := −�gε + V + εH1, (1)

where V is a potential and H1 is a second order differential operator, that may for
instance model a perturbation of the metric gε. Such perturbations arise naturally if
we think of M as being embedded in a, suitably rescaled, thin tubular neighbourhood
of B, which is embedded as a submanifold in R

k or some Riemannian manifold
(see [27]).

With Dirichlet conditions on ∂M this operator is self-adjoint on D(H) ⊂ H :=
L2(M, g) (the precise technical conditions on H will be stated in Sect. 3.2). The
Laplacian of gε decomposes with respect to horizontal and vertical directions as

�gε = �F + ε2�h,

where the fibre-wise action of �F is that of the Laplacian of the vertical metric gF
and

�h = trNF ∇2 − η,

with the Levi–Cività connection ∇ and the mean curvature vector η of the fibres of
(M, g) (for ε = 1). Hence we can write

H = −ε2�h + εH1 + HF ,

with the fibre-wise operator

HF := −�F + V .

Consider the restriction HF (x) of this operator to the fibre Fx withDirichlet conditions
on ∂Fx , i.e. on the domain W 2,2(Fx ) ∩ W 1,2

0 (Fx ) (since we work exclusively in L2

we will drop the corresponding superscript from now on and write Wk,2 = Wk etc.).
This operator is self-adjoint and its spectrum consists of real eigenvalues of finite
multiplicity accumulating at infinity. An eigenband of HF is a function λ: B → R

with λ(x) ∈ σ(HF (x)) for every x ∈ B. For any such eigenband and x ∈ B let P0(x)
be the orthogonal projection to ker(HF (x) − λ(x)) in L2(Fx ). This projection P0 is
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1650 J. Lampart, S. Teufel

the starting point for our analysis. We will adopt two complementary points of view
of this operator and similar objects. The first is to view P0 as an operator on functions
defined on M , whose image consists exactly of those functions whose restrictions to
any fibre Fx are λ(x)-eigenfunctions of HF (x). The other view is that such fibre-wise
operators are sections of certain vector bundles of infinite rank over B induced by the
fibre bundle structure, as we will now explain.

Let HF be the vector bundle over B, with fibre L2(F), defined by the transition
functions

T	:U × L2(F) → U × L2(F), f �→ f ◦ 	,

where 	:U × F → U × F , 	(x, y) = (x, φx (y)) is a transition function between
different trivialisations of π−1(U ) ⊂ M . The fibre of this vector bundle is defined
by the topological vector space L2(F), which is isomorphic to the Hilbert space
L2(Fx , gFx ) for every x . Let D(HF ) be the vector bundle with fibreW 2(F)∩W 1

0 (F)

constructed in the same way. The latter implements Dirichlet conditions for HF on
∂M .

These bundles are hermitian vector bundles with the natural fibre-wise pairings
induced by the metric gF . The spaces of continuous fibre-wise maps between vector
bundles naturally have a bundle structure, and we can immediately observe that

HF ∈ L∞ (L (D(HF ),HF )) and P0 ∈ L∞(L (HF ))

are bounded sections of these bundles. Now if P0 is a continuous section of this
bundle, rank P0 = tr P0 is continuous, whence it is constant and E := P0HF ⊂ HF

is a subbundle of finite rank. Its fibre over x is exactly ker(HF (x) − λ(x)).
Since the space of L2-sections L2(HF ) is isomorphic to H (cf. [39, Appendix

B]), we can also view P0 as a bounded linear map onH . The image of this map then
consists exactly of the L2-sections of the λ-eigenspace bundle L2(E) ∼= P0H . This
gives a precise meaning to P0 as an operator on functions on M and we will now use
both of these views alongside each other, without distinguishing them by the notation.

We will consider eigenbands λ that have a spectral gap:

Condition 1 There exist δ > 0 and bounded continuous functions f−, f+ ∈ Cb(B)

with dist ( f±(x), σ (HF (x))) ≥ δ such that

∀x ∈ B : [ f−(x), f+(x)] ∩ σ(HF (x)) = λ(x).

If F is connected, this condition is always satisfied for the ground state band
λ0(x) := min σ(HF (x)) (see Proposition 4.1). We note that all previous works in our
list of references with the exception of [57] were solely concerned with the ground
state band and energies very close to its global minimum. Moreover, it is well known
that in regions of B near crossings of different eigenbands the adiabatic approxima-
tion breaks down (see e.g. Fermanian-Kammerer and Gérard [17]). Hence, the gap
condition is not a purely technical restriction, but a necessary ingredient for adiabatic
decoupling.
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The adiabatic limit of Schrödinger… 1651

Later we will prove that Condition 1 implies continuity of P0. In [39] it is shown
that E has a smooth structure such that �(E) ⊂ C∞(M, C), so we can think of any
smooth section of E as a smooth function φ on M satisfying HF (x)φ = λ(x)φ on
every fibre Fx . Since this condition is independent of ε we can define an ε-dependent
family of sections as a product φπ∗ψ , where only ψ ∈ C∞(B) depends on ε. Any
section of E may be written as a sum of such products involving a finite number of
generators φ (of �(E) over C∞(B)).

The adiabatic approximation with respect to such an eigenband λ consists in pro-
jecting H with P0. This approximation is good if we are concerned with states in (or
close to) the image of P0 and this space is approximately invariant under H . Since

(H − P0HP0)P0 = [H, P0]P0

this basically means that the commutator [H, P0] needs to be small. We can see, at
least heuristically, that P0H is invariant under H up to errors of order ε. Let φπ∗ψ
be a section of E with φ independent of ε as described above. Now if X is a horizontal
vector, then εX has length O(1) in (M, gε) but εXφ is of order ε. Hence we have

[εX, P0]φπ∗ψ = ε(1 − P0)X (φπ∗ψ) = (π∗ψ)ε(1 − P0)Xφ = O(ε).

The commutator [H, P0] can be expressed by such derivatives, so it is also of order ε.
This is an instance of themore general principle that horizontal derivatives of quantities
associated with the fibres, which are independent of ε, should be small on (M, gε) as
ε → 0.Wewill use this intuition to construct a projection Pε with [Pε, H ] = O(εN+1)

by eliminating commutators order by order in ε.
The image of Pε is then almost-invariant under H . Spaces with this property were

constructed for different problems in [28,29,45,49,50], using pseudo-differential cal-
culus. Ourmethod is based on similar ideas, but we develop a new technical framework
to implement them, for two reasons. First, the required calculus of operator-valued
pseudo-differential operators on manifolds, that must allow for complete symbol
expansions, is not well established to date. Second, the presence of the boundary
poses an additional difficulty, that is more easily controlled using special classes of
differential operators (see Sect. 3.2).

2 Main results

Before going into the details of the construction we state our main results and derive
some corollaries. All of the statements here require that (M, g) → (B, gB) is of
bounded geometry (see Condition 2) and that H , given by (1) with domain D(H) =
W 2(M, g) ∩ W 1

0 (M, g), satisfies Condition 3. If not mentioned otherwise, they hold
for any eigenband λ with a spectral gap (Condition 1), so if HF has multiple such
bands the theorems can be applied to the same operator in a variety of ways, yielding
for example results for different energies. If all of the eigenvalues of HF belong to
such bands, we can in principle apply the construction to every one of them and obtain
a total decomposition of H into operators Hj , labeled by the different bands.
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1652 J. Lampart, S. Teufel

Theorem 2.1 For every � > 0 and N ∈ N there exists an orthogonal projection
Pε ∈ L (H ) ∩ L (D(H)) that satisfies

‖[H, Pε] �(H)‖L (H ) = O(εN+1)

for every Borel function �: R → [0, 1] with support in (−∞,�]. Furthermore Pε −
P0 = O(ε) inL (D(H)) and there exists a unitaryUε onH thatmaps P0H = L2(E)

to the image of Pε.

The step-by-step constructionof this projectionwillmakeup a large part of Sect. 3.2.
Once this is achieved, the unitary may be defined by the Sz.-Nagy formula

Uε := (PεP0 + (1 − Pε)(1 − P0)) (1 − (P0 − Pε)
2)−1/2, (2)

since 1 − (P0 − Pε)
2 is positive for ε small enough.

Though this theorem seems rather technical, it is convenient for the derivation
of statements on the dynamical and spectral properties of H . Firstly one can show
that the image of Pε is almost-invariant under e−iHt using standard time-dependent
perturbation theory (see e.g. Wachsmuth and Teufel [57, Section 3.1]).

Corollary 2.2 For every N ∈ N and � > 0 there exist constants C and ε0 > 0 such
that if Pε and � are as in Theorem 2.1 we have

‖[e−iHt , Pε]�(H)‖L (H ) ≤ CεN+1|t |

for all ε ∈ (0, ε0) and t ∈ R

It is of high interest to provide an effective description of H on L2(E), for which
this dynamical invariance is a necessary requirement. Such a description is provided
by the effective operator

Heff := U∗
ε PεHPεUε.

Whenever E is a trivial line-bundle, in particular for the ground state band λ0, this is
an operator on L2(B). As such it provides a description of H on M by an operator
on the lower dimensional space B. Since [Pε, H ] = [P0, H ] + O(ε) = O(ε), one
easily checks that Heff is self-adjoint on Deff = U∗

ε PεD(H) ⊂ L2(E) using the Kato–
Rellich theorem. Because of the invariance of PεH , the solutions to the Schrödinger
equation with initial data in the image of Pε can be approximated using this operator.

Corollary 2.3 Let � > 0, N ∈ N and Pε be the corresponding projection of Theo-
rem 2.1. There exist constants C and ε0 > 0 such that

∥
∥
∥

(

e−iHt −Uεe
−iHeff tU∗

ε

)

Pε1(−∞,�](H)

∥
∥
∥
L (H )

≤ CεN+1|t |

for every ε ∈ (0, ε0) and t ∈ R.
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The adiabatic limit of Schrödinger… 1653

Proof Application of Duhamel’s formula gives

e−iHt −Uεe
−iHeff tU∗

ε = −i
∫ t

0
Uεe

−iHeff (t−s)U∗
ε (H −UεHeffU

∗
ε )e−iHs ds

and since UεHeffU∗
ε = PεHPε commutes with Pε we have

(

e−iHt −Uεe
−iHeff tU∗

ε

)

Pε1(−∞,�](H)

=
(

Pε

(

e−iHt −Uεe
−iHeff tU∗

ε

)

+ [e−iHt , Pε]
)

1(−∞,�]

=
(

− iPε

∫ t

0
Uεe

−iHeff (t−s)U∗
ε (H − PεHPε)e

−iHs ds

+ [e−iHt , Pε]
)

1(−∞,�]

= −i
∫ t

0
Uεe

−iHeff (t−s)U∗
ε (PεH − PεHPε)

︸ ︷︷ ︸

=−Pε[H,Pε]
1(−∞,�]e−iHs ds

+ [e−iHt , Pε]1(−∞,�].

This is of order εN+1|t |, since the integrand of the first term is of order εN+1 by
Theorem 2.1 with � = 1(−∞,�], and the second term is of this order by Corollary 2.2.

��
Clearly such techniques can also be used to derive properties of the heat semigroup.

A first result on the spectrum of H is also obtained in a straightforward manner.

Corollary 2.4 For arbitrary but fixed� > 0 and N ∈ N let Heff be the corresponding
effective operator. Then for every δ > 0 there exist constants C and ε0 > 0 such that
for every μ ∈ σ(Heff) with μ ≤ � − δ:

dist(μ, σ (H)) ≤ CεN+1

for every ε ∈ (0, ε0).

Proof Let (ψk)k∈N ⊂ L2(E) be a Weyl sequence for μ (i.e. ‖ψk‖ = 1 for every
k ∈ N and limk→∞‖(Heff − μ) ψk‖ = 0). We can even choose the ψk in the image
of 1(−∞,D](Heff), with D = � − δ/2, because μ is in the spectrum of Heff restricted
to this space. Then because ψk ∈ P0H we have

‖(H − μ)Uεψk‖H
= ‖(H − μ) PεUε1(−∞,D](Heff)ψk‖
≤ ‖Uε (Heff − μ) ψk‖ + ‖P⊥

ε HPεUε1(−∞,D](Heff)ψk‖. (3)

123



1654 J. Lampart, S. Teufel

Letχ ∈ C∞
0 ((−∞,�], [0, 1]) be equal to one on a set containing σ(Heff)∩(−∞, D]

(and sufficiently regular, see Definition 3.18). Then by the functional calculus
(cf. Lemma 3.19)

Uε1(−∞,D](Heff) = χ(PεHPε)Uε1(−∞,D](Heff)

= Pεχ(H)PεUε1(−∞,D](Heff) + O(εN+1)

= χ(H)PεUε1(−∞,D](Heff) + O(εN+1).

Hence Theorem 2.1 with � = χ gives a bound on the second term

P⊥
ε HPεUε1(−∞,D](Heff) = [H, Pε]χ(H)PεUε1(−∞,D](Heff) + O(εN+1)

= O(εN+1).

For the first term we can then simply choose k large enough for it to be smaller than
the second one. This shows that for ϕ = Uεψk

‖(H − μ)ϕ‖H ≤ CεN+1.

So either (H − μ)ϕ = 0 and μ is an eigenvalue of H , or the vector ‖(H −
μ)ϕ‖−1(H − μ)ϕ is normalised and

dist(μ, σ (H))−1 = ‖(H − μ)−1‖L (H )

≥ 1

‖(H − μ)ϕ‖‖(H − μ)−1(H − μ)ϕ‖H

≥ 1

CεN+1 .

��
In this proof we used the functionsUεψk as quasi-modes for H . If we have μ ∈ σ(H)

with aWeyl sequence (ϕk)k∈N the natural choice of quasi-modes for Heff isU∗
ε Pεϕk . If

the normof this sequence is bounded below,we can easily reproduce the proof to obtain
dist(μ, σ (Heff)) = O(εN+1). Of course if μ is associated with a different eigenband
λ̃ than the one we used for the construction of Pε this will not be the case. If however
� is small, the only contribution should be that of the ground state band λ0(x). To be
more precise, let λ1(x) := min (σ (HF (x))\{λ0}) be the second eigenvalue of HF (x)
and put �1 := infx∈B λ1(x). Let Pε be the super-adiabatic projection constructed for
λ0 and some � and N . Then the quadratic form of H on P⊥

ε H satisfies, for every
normalised ψ ∈ P⊥

ε D(H),

〈ψ, P⊥
ε HP⊥

ε ψ〉 =〈P⊥
0 ψ, HP⊥

0 ψ〉+O(ε)

= 〈P⊥
0 ψ, (−ε2�h+εH1)P

⊥
0 ψ〉+〈P⊥

0 ψ, HF P
⊥
0 ψ〉

︸ ︷︷ ︸

≥�1

+O(ε). (4)
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Now if −ε2�h + εH1 is positive (or bounded below by a term of order ε), then the
operator P⊥

ε HP⊥
ε is bounded below by�1−O(ε) and thus has no spectrumbelow this

threshold. In a sense, this implies that eigenvalues of H below �1 must be associated
with the effective operator of the ground state band λ0. This can be formalised in the
following way:

Proposition 2.5 Assume F is connected and that −ε2�h + εH1 is bounded below by
−Cε. Let Heff be the effective operator for λ0 and some � > 0 and N ∈ N. Then for
every regular cut-off χ ∈ C∞

0 ((−∞,�1), [0, 1]) (cf. Definition 3.18) we have

‖Hχ(H) −UεHeffχ(Heff)U
∗
ε ‖ = O(εN+1).

In particular for every δ > 0

dist (σ (H) ∩ (−∞,�1 − δ], σ (Heff) ∩ (−∞,�1 − δ]) = O(εN+1),

where dist denotes the Hausdorff distance between compact subsets of R.

The projection Pε has an explicit recursive construction that allows for an expansion
of the effective operator. This expansion involves differential operators of increasing
order, so uniform estimates can only hold after cutting off high energies. Up to order
ε3 this expansion consists of the adiabatic operator

Ha := P0HP0 = −ε2P0�h P0 + λ + εP0H1P0

and the first super-adiabatic correction

M := P0[H, P0]RF (λ)[H, P0]P0,

where RF (λ) denotes the reduced resolvent (HF − λ)−1P⊥
0 of the eigenband λ. The

expansion is accurate to order ε3 in the sense that

‖Heffχ
2(Heff) − χ(Heff) (Ha + M) χ(Heff)‖L (H ) = O(ε3),

for a sufficiently regular functionχ ∈ C∞
0 ((−∞,�], [0, 1]). Aproof of this statement

can be found in [39, Section 2.2.1]. Here we will not give the details of this proof, but
the form of the expansion will become clear from the construction of Pε.

We may observe here that M is a fourth-order differential operator, which is the
reason why energy cut-offs were needed in the statements of all the previous theorems.
This also suggests that at small energies the super-adiabatic corrections might be of
less importance and the adiabatic operator Ha already provides a good description.
This is true under some additional assumptions on H1 (see Sect. 4.2, Condition 4).
Our main results on the spectrum at energies of order εα above �0 := inf x∈B λ0(x)
are (the precise statements are given in Sect. 4.2):

1. dist (σ (H) ∩ (−∞,�0 + Cεα], σ (Ha) ∩ (−∞,�0 + Cεα]) = O(ε2+α/2).
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1656 J. Lampart, S. Teufel

2. If Ha has K + 1 eigenvalues μ0 < μ1 ≤ · · · ≤ μK < Cεα below the essential
spectrum, then the bottom of σ(H) also consists of eigenvalues λ0 < λ1 ≤ · · · ≤
λK and for 0 ≤ j ≤ K :

|μ j − λ j | = O(ε2+α).

The result on low lying eigenvalues is relevant also if B is not compact, as it has been
stressed in the literature [7,8,10,15,23,26,41] that such eigenvalues exist in interest-
ing applications. In Sect. 4.2 we will also derive some results on the approximation
of eigenfunctions. These are relevant for the application to nodal sets [40] where it is
shown that, for certain low lying eigenvalues, the behaviour of the nodal set is essen-
tially determined by the nodal set of the eigenfunction of Ha with the corresponding
eigenvalue.

A large portion of the literature on the adiabatic limit of Schrödinger operators
is concerned with quantum waveguides. There, one starts with some sort of tubular
neighbourhood of an embedded submanifold of R

m . This leads to a fibre bundle M
with base diffeomorphic to that submanifold, as we describe in detail in [27] (see
also [39, Chapter 3]).

The most commonly treated case is B = R or B = I ⊂ R an interval [6,7,10,13–
15,19,21,23]. The fibre of such a tube is a compact domain whose dimension is
the codimension of B. Topologically M is the product of a finite or infinite interval
and a compact domain. This seemingly simple situation already allows for several
different effects that depend on the codimension of B and manifest themselves in the
metric of M , both in the choice of horizontal bundle NF (see Example 3.7) and as
corrections to the submersion metric gε that we treat in form of the perturbation H1.
The authors of [7,19] treat a tubular neighbourhood of varying width of the x-axis
in R

2. In [10,15,23] the emphasis is put on the effect of ‘bending’, i.e. the exterior
curvature of the submanifold. The similar case with an embedding into a complete,
non-compact surface �, in which also the curvature of � plays a role, was treated by
Krejčiřík [36]. Additionally the effect of ‘twisting’, which is present when NF is not
tangent to ∂M , is discussed in [6,13,14,21].

The results for bases of higher dimensions are far less detailed. In [8] and earlier
works Carron, Exner and Krejčiřík study embeddings of surfaces into R

3, while Lin
and Lu [41] consider special submanifolds of R

k of arbitrary dimension and codi-
mension. The induced metrics on the base are assumed to be geodesically complete
and asymptotically flat, and M is taken as a neighbourhood of zero in N B, whose
fibre is a metric ball of fixed radius. Wittich [58] treats tubular neighbourhoods of
compact manifolds in a Riemannian manifold (A, gA) whose fibres are geodesic balls
in the normal directions. The emphasis of these works are the effects of extrinsic and
intrinsic curvature on the spectrum and the resolvent of the Laplacian.

More general manifolds have been considered with metrics that are of a simpler
structure than those arising from embeddings. In this context one is usually concerned
with closed fibres. Baider [1] works with warped products, Kleine [32] treats more
general metrics on manifolds of the form R+ × F and the authors of [3,5] study
Riemannian submersions with some additional assumptions on the mean curvature
vector of the fibres. Theworks [1,3,5,32] derive conditions for the Laplacian on a non-
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compact M to have discrete spectrum. These will not be satisfied under our technical
assumptions (Sect. 3.1), since they require non-uniform behaviour of the geometry.
But although our uniform estimates do not hold for these spaces, the effective operators
can be formally calculated and give good intuition both for understanding such results
and for possible choices of trial functions to prove them.

In [20,57] localisation to submanifolds is achieved using potentials rather than
boundary conditions. The localisation is used to reformulate the problemon the normal
bundle N B, so the structure is very similar to our problem, with M = N B and a
potential V �= 0 of a form that gives localised eigenfunctions of HF = −�F + V .
Froese and Herbst [20] assume that B is a compact, complete submanifold of R

m ,
while in [57] the base and the ambient space in which it is embedded are, apart
from technical assumptions, basically arbitrary complete Riemannian manifolds. The
leading order of the metric on N B arising in this situation is the Sasaki metric, which
is a Riemannian submersion with totally geodesic fibres.

Our approach considerably generalises the geometries that have been considered
in the literature. On the one hand we consider very general fibre bundles without
reference to an embedding, while on the other hand we include the flexibility needed
to deal with the complicated metrics such an embedding may induce. This shows that
a large class of problems have the sufficient structure for adiabatic techniques to be
applicable. Our results also complement the previously studied quantum waveguides
by allowing for generic deformations of the fibres, as opposed to scaling and twisting
only. For example, one may think of deforming a disk into an elliptic cross-section
along the waveguide. The concept of a ‘quantum waveguide’ may also be generalised
to hypersurfaces that are boundaries of such tubular neighbourhoods. In [27] several
such examples are analysed in detail. By our present work these problems are reduced
to the calculation of the induced metric as well as the effective operator. Similarly, the
treatment of submanifolds of Riemannian manifolds is possible using the techniques
of Wittich [58] (see also [39, Chapter 3]).

An effective operator is derived in [6,13,14,19,58] in the sense of resolvent con-
vergence. In the works [6,13,58] this is convergence of ε−2(H − λ0) to (the leading
order of) ε−2(Ha − λ0) for the ground state band λ0. The validity of these results
hence depends on the fact that the limiting object is independent of ε. This means
that the typical energy scale of Ha must be ε2, which is generally only the case in
λ0 ≡ const (see also the discussion of small energies in Sect. 4.2). De Oliveira and
Verri [14] treat the situation where λ0 has a unique, non-degenerate minimum and this
scaling is of order ε. We see an advantage of our approach in the fact that a priori we
do not place any restrictions on the behaviour of λ, and that we can treat also bands
different from the ground state. Since our statements are all asymptotic in nature we
can naturally establish approximations beyond the leading order determined by the
resolvent limit. So far such refinements were given only by Duclos and Exner [15],
for a special case where [�h, P0] = 0 and the error is purely due to εH1, and in [57]
for simple eigenbands and with errors of order ε3.
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3 Adiabatic theory on fibre bundles

3.1 Riemannian submersions of bounded geometry

In this section we spell out the conditions we pose on the geometry and establish their
key consequences. All of our manifolds will satisfy some form of bounded geometry,
adapted to their respective structures. The following definition of bounded geometry
for manifolds with boundary (or ∂-bounded geometry) was introduced by Schick [54].

Definition 3.1 A Riemannian manifold (M, g) with boundary ∂M is a ∂-manifold of
bounded geometry if the following hold:

• Normal collar Let ν be the inward pointing unit normal of ∂M . There exists rc > 0
such that the map

b: ∂M × [0, rc) → M, (p, t) �→ expp(tν)

is a diffeomorphism to its image.
• Injectivity radius of the boundary The injectivity radius of ∂M with the induced
metric is positive, ri (∂M, g|∂M ) > 0.

• Injectivity radius in the interior There is ri > 0 such that for p ∈ M with
dist(p, ∂M) > rc/3 the exponential map restricted to B(ri , 0) ⊂ TpM is a dif-
feomorphism onto its range.

• Curvature bounds The curvature tensor of M and the second fundamental form
S of ∂M are C∞-bounded tensors on M and ∂M respectively. That is, for every
k ∈ N their covariant derivatives of order k have g-norms bounded by a constant
C(k).

If the boundary of M is empty, so are all the conditions on it and the definition
reduces to the usual one as given by Eichhorn [16]. A (vector-) bundle of bounded
geometry is usually defined by requiring bounds on trivialisations or transition func-
tions.Weadapt this idea here to definemoregeneral fibre bundles of boundedgeometry.

Definition 3.2 Let (B, gB)be ageodesically completemanifold of boundedgeometry.
ARiemannian submersion F → (M, g)

π→ (B, gB) is uniformly locally trivial if there
exists a metric g0 on F such that for every x ∈ B and metric ball B(r, x) of radius
r < ri (B) there is a trivialisation

	:(π−1(B(r, x)), g) → (B(r, x) × F, gB × g0) ,

with 	∗ and 	∗ bounded with all their covariant derivatives, uniformly in x and r .

We say that such a fibre bundle is of bounded geometry if (F, g0) is of ∂-bounded
geometry, which will always be the case since we consider compact fibres. Of course
a fibre bundle is also a manifold and the two conflicting notions of bounded geometry
are reconciled by:
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Lemma 3.3 Let (M, g)
π→ (B, gB) be uniformly locally trivial fibre bundle whose

fibre (F, g0) is of bounded geometry. Then the total space is a manifold of bounded
geometry in the sense of Definition 3.1.

The proof of this statement can be found in [39]. The curvature bounds are a
straightforward consequence of the definition, while the bounds on injectivity radii
can be proved by a technique reminiscent of Cheeger’s lemma [9].

When dealing with the rescaled family (M, gε) it is crucial to note that the esti-
mates on geometric quantities required in Definition 3.1 can only become better as ε

decreases. The curvatures for example are completely fixed when they only concern
the vertical directions, while they converge to zero (in g-norm) if they are associated
with at least one horizontal direction. We thus have:

Lemma 3.4 Let M
π→ B be uniformly locally trivial and F compact. Then

(M, gε) = (M, gF + ε−2π∗gB) satisfies Definition 3.1 with the same constants
{rc, ri (∂M), ri ,C(k) : k ∈ N} as (M, g).

From now on we will always assume the following:

Condition 2 • F is compact,
• (B, gB) is of bounded geometry and geodesically complete,
• M

π→ B is uniformly locally trivial.

We will call tensors C∞-bounded on M if all their g-covariant derivatives have
bounded g-norm. Because of the uniformity of the trivialisations this is equivalent to
having bounded derivatives locally on U × F .

Since (B, gB) is of bounded geometry and complete, we can choose r < ri (B)

and an open cover U = {Uν : ν ∈ N} of B by geodesic balls of radius r in such a
way that any one of these balls intersects at most N (U) others. For every such ball
we have geodesic coordinates, an orthonormal frame of C∞-bounded vector fields
{Xν

i : 1 ≤ i ≤ d} onUν , obtained by radial parallel transport of the basis defining the
coordinates, and a trivialisation	ν ofπ−1(Uν), bounded as required byDefinition 3.2.
We may also choose a partition of unity {χν : ν ∈ N} subordinate to U in such a way
that all of these objects are C∞-bounded uniformly in ν. We fix this data related to
the cover and will later refer to it simply as U (for the details of these constructions
see [16]).

We can use this cover to define (L2-) Sobolev spaces on M adapted to the bundle
structure and the scaled metric gε. For this, first define Sobolev spaces on (F, g0)
using a fixed finite cover and, for x ∈ Uν , let ρ2

ν,x be the density (	ν∗volFx )/volg0 on
F .

Definition 3.5 For ψ ∈ C∞(Fx ) and k ∈ N put

‖ψ‖Wk
ν (Fx ) := ‖(	ν∗ψ)ρν,x‖Wk (F,g0).
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Denote multiindices by α ∈ N
d and define the norm

‖ψ‖2Wk
ε (M)

:=
∑

ν

∑

|α|≤k

∫

Uν

∥
∥
∥
∥
∥
∥

ε|α| ∏

i≤d

(	∗
νX

ν
i )

αi χνψ

∥
∥
∥
∥
∥
∥

2

Wk−|α|
ν (Fx )

volgB (dx) (5)

and the Sobolev space Wk
ε as the completion of C∞

0 (M) under this norm. Define
Wk

0,ε(M) as the closure of C∞
0 (M\∂M) in Wk

ε (M).

Sobolev spaces on manifolds of ∂-bounded geometry were introduced by Schick
[53] using normal coordinates of the metric. The virtue of our definition is that the
same coordinate maps are used for every ε and that the different scaling of vertical
and horizontal directions is incorporated in an explicit way. However since (M, gε) is
of bounded geometry uniformly in ε these definitions are essentially equivalent, apart
from a factor εd relating the volume measures of gB and ε−2gB . That is, there is a
constant C(k,U) > 0 such that

C−1‖ψ‖Wk
ε (M) ≤ εd‖ψ‖Wk (M,gε)

≤ C‖ψ‖Wk
ε (M).

In particular we haveW 0
ε (M) = L2(M, g), with ε-independent and equivalent norms.

An important consequence of Lemma 3.4 and the work of Schick is that the Lapla-
cians �gε , with Dirichlet conditions on the boundary, satisfy elliptic inequalities on
the spaces Wk

ε in a uniform way.

Theorem 3.6 [53] For every k ∈ N there is a constant C > 0 such that for every
ψ ∈ W 2

ε (M) ∩ W 1
0,ε(M) with �gεψ ∈ Wk

ε (M) we have ψ ∈ Wk+2
ε (M) and

‖ψ‖2
Wk+2

ε
≤ C(‖�gεψ‖2Wk

ε
+ ‖ψ‖2H ).

3.2 Adiabatic and super-adiabatic projections

In this section we will give an explicit construction of the projections Pε of Theo-
rem 2.1. Again denote by H the operator

H = −�gε + V + εH1,

with domain D(H) = W 2
ε (M) ∩ W 1

0,ε(M). More precisely this is an ε-dependent
family, since −�gε explicitly depends on ε and so may V and H1, although we do not
make this explicit in the notation. We assume these satisfy:

Condition 3 • The potential V ∈ C∞
b is smooth and bounded with all its deriva-

tives, uniformly in ε.
• H1 is a smooth differential operator of second order and symmetric on D(H). It
is bounded independently of ε as a map from Wm+2

ε to Wm
ε , for every m ∈ N.
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Under these conditions H is self-adjoint on D(H) and bounded below uniformly
in ε by the Kato–Rellich theorem (see Reed and Simon [52, Theorem X.12]). From
now on H will always denote this self-adjoint operator, while expressions like �gε or
H1 may also stand for a differential operator without reference to a specific domain.
We also denote by λ an eigenband of HF satisfying Condition 1 and by P0 the corre-
sponding fibre-wise spectral projection.

A first step in the construction of Pε consists in proving that [H, P0] = O(ε) in a
suitable sense. Since P0 commutes with HF , and εH1 is itself of order ε, this amounts
to proving that

[−ε2�h, P0] = O(ε).

Since P0 is fibre-wise and �h is local we can examine this operator over an open
set U ∈ U (defined in Sect. 3.1) using a local expression for �h . For a vector field
X ∈ �(T B) let X∗ denote the unique horizontal vector field, a section of NF ⊂ T M ,
satisfying π∗X∗ = X . We call this the horizontal lift of X . Given the orthonormal
frame of vector fields (Xi )i≤d overU , (X∗

i )i≤d is an orthonormal frame of NF |π−1(U )

and we can express �h as

�h |π−1(U ) =
d

∑

i=1

X∗
i X

∗
i − ∇X∗

i
X∗
i − gB(π∗η, Xi )X

∗
i ,

where again η denotes the mean curvature vector of the fibres. Thus for our purposes
it is sufficient to control commutators of the form [X∗, P0] for vector fields X on B
of bounded length. One might think of calculating such an object by first calculating
[X∗, HF ] and then using functional calculus. We must warn here however, that due to
the presence of the boundary this commutator is ill-defined. Since if X∗ is not tangent
to the boundary, its application destroys the Dirichlet condition. For this reason we
need to use vector fields that are adapted to the boundary. These are naturally obtained
from local trivialisations, taking for X ∈ �(TU ) the field 	∗X on π−1(U ), which is
tangent to the boundary ofM (because	 also provides a trivialisation ∂M∩π−1(U ) ∼=
U × ∂F). Since this projects to X we have that

X∗ − 	∗X = Y ∈ ker π∗

is a vertical vector field. By the boundedness of the geometry of M , both X∗ and	∗X
are C∞-bounded if X is, and then so is their difference Y . Now the basic idea is to
calculate [	∗X, P0] using functional calculus and to control [Y, P0] using the fact that
P0 is a spectral projection of HF .

Example 3.7 To illustrate the objects we have just discussed we calculate them in a
simple example. Let h ∈ C∞

b (R) be a positive function and let M = R×[0, 1+h] ⊂
R
2, with B = R and F = [0, 1]. Let gε = ε−2dx2 + dy2 be the restriction of the

rescaled metric on R
2 and H = −�gε = −ε2∂2x − ∂2y on D(H). The horizontal lift

of ∂x ∈ �(TR) is trivial ∂∗
x = ∂x , so on C∞(M) we have [∂x , ∂2y ] = 0. A global

trivialisation of M is given by
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	: M → R × [0, 1]; (x, y) �→ (x, z) = (x, y/(1 + h(x))) .

For f ∈ C∞(M) one easily calculates

	∗∂x f = ∂x f (x, (1 + h(x))z) = ∂x f + h′z∂y f = ∂x f + h′y/(1 + h)∂y f,

so we can identify Y := ∂∗
x − 	∗∂x = − log(1 + h)′y∂y . Clearly 	∗∂x is tangent to

∂M , so for any f ∈ C∞(M) that vanishes on ∂M , 	∗∂x f is also zero on ∂M . On
such functions we thus have

[	∗∂x , ∂2y ] = −[	∗∂x , HF ] = [log(1 + h)′y∂y, ∂2y ] = −2 log(1 + h)′∂2y .

We can observe here that [	∗∂x , HF ] is bounded relatively to HF , which will hold in
general.

Since we want to use functional calculus to calculate [	∗X, P0], control of the
resolvent is crucial. The commutator estimate of the following lemma relies on the
fact that [	∗Xi ,Y ] is a vertical field, so that [	∗Xi , HF ] is bounded by HF just as in
Example 3.7.

Lemma 3.8 Let U ∈ U, take z ∈ C with dist(z, σ (HF |U )) ≥ δ > 0 and set

RF (z) := (HF − z)−1.

Let (Xi )i≤d be the orthonormal frame corresponding to U (cf. page 15). Then

[	∗Xi , RF (z)] ∈ L∞(L (HF , D(HF ))|U )

is bounded uniformly in U and i .

Proof We use the trivialisation 	 to perform the calculations on U × F . For this
purpose, endow this set with the metric g̃ = 	∗gF + gB , induced by 	 and choosing
the canonical lift to the product as the horizontal direction. Then the map W : L2(U ×
F, g̃) → L2(π−1(U ), g) given by f �→ f ◦ 	 is unitary. By definition of the vector
bundles D(HF ) and HF and the bounds on 	, W also induces isomorphisms

L∞(L (HF , D(HF ))|U ) → L∞ (

U,L (L2(F),W 2(F) ∩ W 1
0 (F))

)

L∞(L (D(HF ),HF )|U ) → L∞ (

U,L (W 2(F) ∩ W 1
0 (F), L2(F))

)

,

by conjugation. We have WXiW ∗ = 	∗Xi and W ∗�FW = �gF , where the latter is
defined as the operator-valued function x �→ �gFx on U . Thus

[

	∗Xi , RF (z)
] = W [Xi , (W

∗HFW − z)−1]W ∗,
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with W ∗HFW = −�gF + 	∗V . Denote R(x, z) := (−�gFx + 	∗V − z)−1. The
commutator [Xi , R] equals the Lie-derivative LXi R, so we need to show that R(x, z)
depends differentiably on x ∈ U . We have

LXi R(x, z) = −R(x, z)(LXi W
∗HFW )R(x, z), (6)

which means that it is enough to show differentiability of W ∗HFW . In order to see
thatLXi W

∗HFW defines a bounded operatorW 2(F)∩W 1
0 (F) → L2(F), let x0 ∈ U

and φXi be the flow of Xi on U × F . Then for 0 ≤ t < T , the expression W ∗HFW ◦
φt∗
X |{x0}×F makes sense as a one-parameter family of operators W 2(F) ∩ W 1

0 (F) →
L2(F) since the domain is invariant under φXi .

Now let γ (t) be the integral curve of Xi starting at x0. Since F is compact we
can check differentiability locally, so take an open set UF ⊂ F equipped with an
orthonormal frame of vector fields (Y j ) j≤n with respect to gFx0 . We extend these to

γ × UF by parallel transport with respect to the Levi–Cività connection ∇̃ of g̃ and
claim that this gives an orthonormal frame of vertical fields. In fact, orthonormality
is clear since parallel transport is an isometry. To check that they remain vertical, we
calculate their component in the direction of any Xk , k ∈ {1, . . . , d}. The equation

Xi g̃(Y j , Xk) = g̃(∇̃Xi Y j
︸ ︷︷ ︸

=0

, Xk) + g̃(Y j , ∇̃Xi Xk) = g̃(Y j , ∇̃Xi Xk)

means that this component satisfies a first-order differential equation, with the initial
value given by zero. But ∇̃Xi Xk is horizontal for the metric g̃, as one easily checks
using the Koszul formula. Hence the unique solution to the equation with the given
initial value is zero, which means that the fields Y j (t) are vertical for every t . Thus we
have

�gF |γ×UF =
n

∑

j=1

Y j ◦ Y j − ∇Y j Y j ,

where ∇ is the Levi–Cività connection of (F, gF ). Then the Lie derivative equals

LXi �gF |{x0}×UF =
n

∑

j=1

[Xi ,Y j ]Y j + Y j [Xi ,Y j ] − [Xi ,∇Y j Y j ]

= −
n

∑

j=1

(∇̃Y j Xi )Y j + Y j (∇̃Y j Xi ) + [Xi ,∇Y j Y j ]. (7)

Now [Xi ,Y j ] is a vertical field and by (7) its coefficients with respect to the basis
(Yk)k≤n are given by the second fundamental form of F ↪→ {x0} × F . Hence this
defines a second order differential operator W 2(F) → L2(F), with norm bounded
uniformly in i and U by the global bounds on 	 and Xi . The derivative of V is of
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course just given by Xi	∗V , which is bounded for the same reasons and V ∈ C∞
b (M).

Finally, by the standard estimate

‖R(x, z)‖2L (L2,W 2)
≤ 2 + (1 + 2|z|2)δ−2,

the composition (6) defines a uniformly bounded operator L2(F) → W 2(F), with
image in W 2(F) ∩ W 1

0 (F). The bounds on 	 also assure that this still holds after
applying the unitary W . ��

Lemma 3.9 E := P0HF is a finite rank subbundle ofHF . Moreover, for any U ∈ U
and corresponding vector field Xi , i ∈ {1, . . . , d}

[	∗Xi , P0] ∈ L∞(L (HF , D(HF ))|U )

is bounded uniformly in U and i . In particular λ ∈ C 1
b (B).

Proof Let δ > 0 be the gap constant of Condition 1. Let x0 ∈ U ∈ U and γ be the
circle of radius δ around λ(x0) in C. Now there is an open neighbourhood Uδ ⊂ U of
x0, such that dist(γ, σ (HF (x))) > δ/2 for every x ∈ Uδ , and P0 is given by the Riesz
formula

P0 = i

2π

∫

γ

RF (z)dz. (8)

Mapping this to Uδ × F with the unitary W from the proof of Lemma 3.8, we imme-
diately see that P0 is strongly continuous in x because this holds forWHF (x)W ∗ and
R(x, z). This implies continuity of the projected transition maps of the bundle HF

(cf. [39, Appendix B]), so P0HF is a subbundle.
The statement on the commutator [	∗Xi , P0] is a direct consequence of the Riesz

formula and Lemma 3.8. To check that this implies λ ∈ C 1
b (B), let k = rank(E) and

observe that λ = k−1 tr(HF P0), where the trace is taken in the fibre of HF . This is
continuous for the same reasons as P0. Now we may calculate (Xiλ)(x0) by lifting to
π−1(U ):

π∗(Xiλ) = [	∗Xi , π
∗λ]

= k−1 tr ([	∗Xi , HF P0])
= k−1 tr ([	∗Xi , HF ]P0 + HF P0[	∗Xi , P0] + HF	∗Xi , P0]P0). (9)

All of these terms are trace-class since they have finite rank. They are also uniformly
bounded since

[	∗Xi , HF ] ∈ L∞(L (D(HF ),HF )|U )

is uniformly bounded by (7). The terms are continuous in x by the same reasoning as
for P0, so since x0 and i were arbitrary this implies λ ∈ C 1

b (B). ��
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In order to control [�h, P0] we also need to take care of commutators of P0 with
two horizontal vector fields. Then, in our iterative construction of Pε, commutators
with an arbitrary number of such fields may appear. Additionally we will need to
keep track of boundary values in order to be sure when we have an object compatible
with the domain of H . For a systematic discussion of these issues we define special
algebras of differential operators. These differential operators will have coefficients
in L∞(L (HF )), which are exactly the fibre-wise operators in L (H ). We assume
these coefficients to be smooth in the following sense:

TakeUν ∈ U and let Cν ⊂ L∞ (

L (HF )|Uν

)

be those linear operators A for which
any commutator of the form

[

	∗
νX

ν
i1 , . . . , [	∗

νX
ν
ik , A] · · ·

]

(10)

defines an element of L∞ (

L (HF )|Uν

)

, where k ∈ N and i1, . . . , ik ∈ {1, . . . , d}.
Let Cν

H ⊂ Cν be the subset for which (10) belongs to L∞ (

L (HF , D(HF ))|Uν

)

.
This is equivalent to saying that A ∈ Cν

H if and only if HF A ∈ Cν , as can be seen from
the proof of Lemma 3.8.

Definition 3.10 The algebras A and AH consist of those linear operators in
L (W∞(M),H ) satisfying

∀ f ∈ W∞(M) : π(supp A f ) ⊂ π(supp f )

and

A|π−1(Uν ) =
∑

α∈Nd

Aν
α(ε)ε|α|(	∗Xν

1)
α1 · · · (	∗Xν

d)
αd ,

with Aν
α ∈ Cν , respectively Cν

H , for which there exists � ∈ N such that Aν
α = 0 for all

|α| > �, ν ∈ N and furthermore there exist constants C(α, k) such that

∥
∥
∥

[

	∗
νX

ν
i1 , . . . , [	∗

νX
ν
ik , A

ν
α(ε)] · · ·

]∥
∥
∥
L (HF )

≤ C(α, k)

for all ν, k ∈ N, i1, . . . , ik ∈ {1, . . . , d} and ε > 0.

From now on we write Cν• and A• in statements that hold with or without the
subscript H . A• is an algebra because of the commutator condition (10) for Cν• and
[	∗Xi ,	

∗X j ] = 	∗[Xi , X j ], allowing us to arrange the vector fields in any order
without producing vertical derivatives. AH consists of those A ∈ A whose image
consists of functions satisfying the Dirichlet condition and for which HF A ∈ A.
Hence AHA ⊂ AH and AH is a right ideal of A.

The algebra A• is filtered by setting

Ak• := {

A ∈ A• : ∀ν ∈ N (|α| > k ⇒ Aν
α = 0)

}

.
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Clearly Ak ⊂ L (Wk
ε ,H ) so it inherits this operator norm, which we denote by

‖·‖k . It is because of the ε dependence of this norm (5) that we explicitly introduced
the factors of ε|α| into the definition of A•. An additional filtration is given by the
order in ε by defining A j,�• to be those A ∈ A j• for which the constants C(α, k) of
Definition 3.10 can be chosen of order ε�:

A j,l• :=
{

A ∈ A j• : ε−�A ∈ A j•
}

This of course implies that ‖A‖ j = O(ε�). Note that a differential operator of order
k is also one of order k+1, soAk• ⊂ Ak+1• , while a norm of order �+1 is also of order
�, so Ak,�+1• ⊂ Ak,�• . We may also observe that due to the commutation properties

of the coefficients and vector fields we have the composition property A j,k• A�,m ⊂
A j+�,k+m• . More precisely we have for A ∈ A j , B ∈ A�

AB|π−1(Uν ) −
∑

|α|=k
|β|=l

Aν
αB

ν
βεk+�(	∗Xν

1)
α1+β1 · · · (	∗Xν

d)
αd+βd ∈ A j+�−1|π−1(Uν ),

and we may also note that terms containing commutators of 	∗Xi with other vector
fields or the coefficients Aα, Bβ produce terms of lower order in ε.

Remark 3.11 The condition π(supp A f ) ⊂ π(supp f ) allows us to calculate the
norms ‖·‖k locally with respect to the base since (denoting by N (U) the multiplicity
of U, see page 15)

‖Aψ‖2W 0
ε (M)

=
∑

ν

‖χν Aψ‖2H =
∑

ν

‖χν A
∑

μ

χμψ‖2

≤ N (U)
∑

μ,ν

‖χν Aχμψ‖2

≤ N (U)2
∑

μ

sup
ν

‖χν A‖2L (Wk
ε (π−1Uμ),H )

‖χμψ‖2Wk
ε (π−1Uμ)

≤ N (U)2 sup
μ

‖A‖2L (Wk
ε (π−1Uμ),H )

‖ψ‖2Wk
ε (M)

.

Thus for any A ∈ Ak

‖A‖k ≤ N (U)3/2 sup
μ

‖A‖L (Wk
ε (π−1Uμ),H ),

where Wk
ε (π−1Uν) is defined in the trivialisation by Eq. (5) without the sum over ν.

The starting point for our construction is to show that RF (z) and P0 are elements
of these algebras, following Lemmas 3.8 and 3.9.

Proposition 3.12 Let z ∈ C∞
b (B, C) with dist(z(x), σ (HF (x))) ≥ δ > 0, then

RF (z) ∈ A0,0
H . Furthermore, P0 ∈ A0,0

H .
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Proof The first statement is shown by iterating the proof of Lemma 3.8, which can be
done by the explicit form of the commutator (7). The second statement then follows
from the gap condition and the Riesz formula (8). ��

Aswe see from the proof of Lemma3.9 this immediately gives us a simple corollary.

Corollary 3.13 The eigenband λ is smooth and bounded with all its derivatives.

From P0 and RF we will be able to construct many other elements of A. The first
is the reduced resolvent.

Corollary 3.14 RF (λ) := (HF − λ)−1(1 − P0) ∈ A0,0
H .

Proof Follows directly from the assertions 3.8, 3.9 and 3.13 together with the local
formula (in the notation of (8))

RF (λ) = (1 − P0)
i

2π

∫

γ

1

λ − z
RF (z)dz(1 − P0).

��
A systematic construction of objects in A is provided by the following lemma.

Lemma 3.15 Let A, B ∈ AH with AB ∈ Ak,�
H , then

[�gε , A]B ∈ Ak+1,�

and

[ε2�h, A]B ∈ Ak+1,�+1.

Proof We split �gε = �F + ε2�h and first observe that

[�F , A]B = �F A
︸ ︷︷ ︸

∈A
B − A�F B

︸ ︷︷ ︸

∈A
∈ Ak,�,

since �F Aα ∈ C if Aα ∈ CH . Hence the second claim implies the first one.
Since the definition of Ak and its norm are local with respect to the base (cf.

Remark 3.11) it is sufficient to show the claim on π−1(Uν). We fix ν and split X∗
i =

	∗Xi + Yi . In this frame we have ε2�h = ε2
∑

i≤d 	∗Xi	
∗Xi + ε2D, where D

contains first order differential operators and second order parts that contain at least
one vertical derivative. We have for every j ∈ {1, . . . , d}

[

	∗X j , A
] |π−1(U ) =

∑

α∈Nd

ε|α|([	∗X j , Aα]
︸ ︷︷ ︸

∈CH

(	∗X1)
α1 · · · (	∗Xd)

αd

+ Aα[	∗X j , (	
∗X1)

α1 · · · (	∗Xd)
αd ]).
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This is of the same order as A in AH because [	∗X j ,	
∗Xi ] = 	∗[X j , Xi ]. Hence

χ
∑

i≤d

[ε2	∗Xi	
∗Xi , A]B ∈ Ak+1,�+1

H .

Now for a C∞-bounded vertical field Y , the commutator [	∗Xi ,Y ] is also vertical
and bounded, so we have Y AB and AY B ∈ Ak,�. By commuting all the 	∗Xi to the
right we see that

χ [ε2D, A]B ∈ Ak+1,�+1.

This proves the second claim and thus completes the proof. ��

Lemma 3.16 For every A ∈ Ak,�
H we have H1A ∈ Ak+2,�.

Proof Locally we have

H1|π−1(Uν ) =
∑

i≤ j≤d

Aν
i jε

2	∗Xν
i 	

∗Xν
j +

∑

i≤d

Bν
i ε	∗Xν

i + C,

with vertical differential operators C, Bν
i , of second, respectively, first order. The

Lemma follows easily from this in the same way as Lemma 3.15, using the bounds on
H1:Wm+2

ε → Wm
ε to obtain the required uniformity in ν. ��

As a consequence of Proposition 3.12 and Lemmas 3.15, 3.16 we thus have

[H, P0]P0 = [−ε2�h, P0]P0
︸ ︷︷ ︸

∈A1,1

+ε[H1, P0]P0 ∈ A2,1.

Since P0 is a projection, it has the property that

[A, P0] = [A, P2
0 ] = P0[A, P0] + [A, P0]P0,

and thus

P0[A, P0]P0 = 2P0[A, P0]P0 = 0.

Hence the commutator is off-diagonal with respect to the splitting of H = P0H ⊕
(1 − P0)H induced by P0. We will use this property of projections very frequently in
the following construction of the super-adiabatic projections. These will be obtained
from a sequence PN of almost-projections in AH that have the same asymptotic
expansion as Pε. We construct this sequence explicitly, similarly to [56, Lemma 3.8]
but replacing the symbol classes of pseudo-differential calculus by the algebras A•.

123



The adiabatic limit of Schrödinger… 1669

Lemma 3.17 For every k ∈ N there exists Pk ∈ A2k ,0
H , such that

PN =
N

∑

k=0

εk Pk

satisfies

(1) (PN )2 − PN ∈ A2N+1,N+1
H ,

(2) ‖[H, PN ]‖2N+2 = O(εN+1) on D(H).

Proof Take P0 to be the projection on the eigenband λ as above. By Proposition 3.12
we have P0 ∈ A0,0

H ⊂ A1,0
H and 1) is trivially satisfied because it is a projection. For

2) first observe that by Condition 3 we have [H1, P0] = H1P0 − P0H1 = O(1). To
see that

‖[−ε2�h, P0]‖2 = O(ε), (11)

one just commutes all derivatives of the form 	∗Xi to the right as in the proof of
Lemma 3.15, so 2) holds.

We define PN+1 recursively by splitting it into diagonal and off-diagonal parts with
respect to P0 and prove (1) and (2) by induction. To shorten the notation we write
P⊥
0 := 1 − P0. Define

εN+1PN+1 := −P0((P
N )2 − PN )P0 + P⊥

0 ((PN )2 − PN )P⊥
0

︸ ︷︷ ︸

=:εN+1PD
N+1

−P⊥
0 RF (λ)[H, PN ]P0 + P0[H, PN ]RF (λ)P⊥

0
︸ ︷︷ ︸

=:εN+1PO
N+1

.

This is an element of A2N+1

H because of Lemma 3.15 and the fact that AH is a right

ideal, since 2N+1 ≥ 2N + 2 for N ≥ 1 and P1 ∈ A2,0
H because P0, RF (λ) ∈ A0,0

H
by 3.12, 3.14. PN+1 is of clearly order ε0 by application of 1) and 2) to PN , which is
the induction hypothesis.
Proof of (1)We prove this for diagonal and off-diagonal parts separately. In both cases

it is just a simple calculation using PN = P0 + A2N ,1
H = P0 + O(ε).

• Diagonal:

P0((P
N+1)2 − PN+1)P0

= P0((P
N + εN+1PN+1)

2 − PN − εN+1PN+1)P0

= P0((P
N )2 − PN + εN+1(PN PN+1 + PN+1P

N − PN+1))P0

+ A2N+2,2N+2
H

=
=0

︷ ︸︸ ︷

P0((P
N )2 − PN )P0 + εN+1P0P

D
N+1P0 +A2N+2,N+2

H

∈ A2N+2,N+2
H .
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• Off-diagonal:

P⊥
0 ((PN+1)2 − PN+1)P0

= P⊥
0 ((PN )2 − PN )P0 + εN+1

∈A2N+1+2N ,1
H

︷ ︸︸ ︷

P⊥
0 (PN+1P

N − PN+1)P0

+ εN+1 P⊥
0 PN PN+1P0

︸ ︷︷ ︸

∈A2N+1+2N ,1
H

+A2N+2,2N+2
H

= P⊥
0 ((PN )2 − PN )(PN + P0 − PN )P0 + A2N+2,N+2

H

= P⊥
0 ((PN )2 − PN )PN P0 + A2N+2,N+2

H

= P⊥
0 PN ((PN )2 − PN )P0 + A2N+2,N+2

H

∈ A2N+2,N+2
H .

The calculations for the P⊥
0 -P⊥

0 and P0-P⊥
0 blocks are basically the same, so 1) is

verified.
Proof of (2)

• Diagonal: We will only do the calculation for the P0-block. The one for P⊥
0 is

similar, one merely needs to commute derivatives to the right as for (11), since
Lemma 3.15 is not directly applicable. First we show P0[H, εN+1PO

N+1]P0 =
O(εN+2):

P0[H, εN+1PO
N+1]P0

= εN+1P0(HP⊥
0 PO

N+1 − PO
N+1P

⊥
0 H)P0

= εN+1(−P0 [H, P0]PO
N+1

︸ ︷︷ ︸

∈A2N+1+2,1

P0 − P0P
O
N+1P

⊥
0 [H, P0]P0

︸ ︷︷ ︸

∈A2,1

)

= O(εN+2).

Now by definition PN+1 − εN+1PO
N+1 = PN + εN+1PD

N+1, so we still have to
calculate

P0[H, PN + εN+1PD
N+1]P0

= P0[H, PN − P0((P
N )2 − PN )P0]P0

= 2P0[H, PN ]P0 − P0[H, (PN )2]P0
+ (P0[H, P0]((PN )2 − PN )P0 + P0((P

N )2 − PN )[H, P0]P0)
︸ ︷︷ ︸

∈A2N+1+2,N+2
H by induction hypothesis and 3.15, 3.16

= P0(2[H, PN ] − PN [H, PN ] − [H, PN ]PN )P0 + O(εN+2)
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= P0((P0 − PN )[H, PN ] + [H, PN ](P0 − PN ))P0
︸ ︷︷ ︸

∈A2N+1+2,N+2
H

+O(εN+2)

= O(εN+2).

• Off-diagonal:
Here we use the statements of 3.13 and 3.15 to get

[−ε2�h + λ, PN+1]P0 ∈ A2N+1+1,1.

This gives us

[H, PN+1]P0 = [HF − λ, PN+1]P0 + [−ε2�h + λ + εH1, PN+1]P0
︸ ︷︷ ︸

∈A2N+1+2,1

.

We insert this into

P⊥
0 [H, PN + εN+1PN+1]P0

= P⊥
0 ([H, PN ] + εN+1[HF − λ, PN+1])P0 + O(εN+2)

= P⊥
0 ([H, PN ] + εN+1[HF − λ, P⊥

0 PN+1P0])P0 + O(εN+2)

= P⊥
0 ([H, PN ] − (HF − λ)RF (λ)

︸ ︷︷ ︸

=1

[H, PN ])P0 + O(εN+2)

= O(εN+2),

which completes the proof for the P⊥
0 -P0-block. The argument for the other off-

diagonal block is the same.

��

3.2.1 Proof of Theorem 2.1

The proof will use auxiliary energy cut-offs. We require these to satisfy:

Definition 3.18 A function f ∈ C∞
0 (R, [0, 1]) is a regular cut-off if for every s ∈

(0,∞), the power f s ∈ C∞
0 (R, [0, 1]).

In particular this prevents these functions from having zeros of finite order. The fol-
lowing lemma on the functional calculus for such functions can be derived from the
Helffer–Sjöstrand formula (see [39, Appendix C] for a proof).

Lemma 3.19 Let H be self-adjoint on D(H) ⊂ H . Let T ∈ L (H ) ∩ L (D(H))

be self-adjoint on H . If χ is a regular cut-off and

‖[T, H ]‖L (D(H),H ) = O(ε)

‖[T, H ]χ s(H)‖L (H ) = O(εk),

for some k ∈ N and all s ∈ (0,∞), then
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(1) ‖[T, χ(H)]‖L (H ,D(H)) = O(εk);
(2) If additionally T is a projection

‖Tχ(T HT ) − Tχ(H)T ‖L (H ,D(H)) = O(εk).

We restate the main point of the theorem for convenience.

Theorem (2.1) For every � > 0 and N ∈ N there exists an orthogonal projection
Pε ∈ L (H ) ∩ L (D(H)) that satisfies

‖[H, Pε] �(H)‖L (H ) = O(εN+1)

for every Borel function �: R → [0, 1] with support in (−∞,�].
Proof To prove the statement for N ∈ N and � > 0, take PN from Lemma 3.17 and
let χ1 ∈ C∞

0 (R, [0, 1]) be a regular cut-off, equal to one if x ∈ [inf σ(H)−1,�+1]
and equal to zero if x /∈ (inf σ(H) − 2,� + 2). Put P̃ := PN − P0 ∈ A2N ,1

H and
define

Pχ := P0 + P̃χ1(H) + χ1(H)P̃ (1 − χ1(H)) .

The first step is to justify that Pχ = P0 + O(ε) in L (H ) and L (D(H)). We
have χ1 ∈ L (H , D(H2N−1

)) and by elliptic regularity D(H2N−1
) ⊂ W 2N

ε (cf. The-
orem 3.6), so P̃χ1 ∈ L (H ) ∩ L (D(H)). Therefore its adjoint is also a bounded
operator and from the construction of PN we can see that χ1 P̃ = (P̃χ1)

∗ on W 2N
ε , so

they are equal inL (H ) becauseW 2N
ε is a dense subspace ofH . Hence Pχ ∈ L (H )

is self-adjoint by construction.
We want to prove that also Pχ ∈ L (D(H)). To show χ1 P̃ ∈ L (D(H)) we

need to show [H, χ1 P̃] = χ1[H, P̃] ∈ L (D(H),H ). But actually, by the same
argument as before, we have χ1[H, P̃] = ([P̃, H ]χ1)

∗ on W 2N+2
ε ∩ D(H), and thus

χ1[H, P̃] ∈ L (H ). These norms are of order ε because P̃ ∈ A2N ,1
H . Consequently

Pχ − P0 = O(ε) inL (H ) as well as L (D(H)). We conclude that

‖[H, Pχ ]‖L (D(H),H ) = ‖[H, P0]‖L (D(H),H ) + O(ε) = O(ε). (12)

Now let χ2 ∈ C∞
0 (R, [0, 1]) be another regular cut-off, equal to zero where χ1 �= 1

and equal to one on [inf σ(H),�]. Then we have χ1χ2 = χ2, (1 − χ1)χ2 = 0 and
from Lemma 3.17 we get

‖[H, Pχ ]χ2(H)‖L (H ) = ‖[H, PN ]χ2(H)‖L (H ) = O(εN+1). (13)

Since Pχ is close to the projection P0 we have for m ∈ {0, 1}:

‖(Pχ )2 − Pχ‖L (D(Hm)) = O(ε).
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Thus there is a constantC > 0 such that the spectrum of Pχ (as an operator inL (H )

as well asL (D(H))) satisfies

σ(Pχ ) ⊂ [−Cε,Cε] ∪ [1 − Cε, 1 + Cε].

Take γ to be the circle of radius 1/2 around z = 1. Then for ε < (4C)−1 the integral

Pε := i

2π

∫

γ

(

Pχ − z
)−1 dz

defines an element ofL (H ) andL (D(H))with norm less than two. It is an orthog-
onal projection on H by the functional calculus and satisfies

Pε − P0 = i

2π

∫

γ

((Pχ − z)−1 − (P0 − z)−1)dz

= i

2π

∫

γ

(P0 − z)−1(P0 − Pχ )(Pχ − z)−1dz = O(ε).

To complete the proof, we will need to control the commutator of χ2(H) with
Rχ (z) := (Pχ − z)−1. First of all (1 − χ1)χ

s
2 = 0 for every s > 0, so (13) holds

for every positive power of χ2 and we can apply Lemma 3.19 with T = Pχ to get

‖[Pχ , χ2]‖L (H ,D(H)) = O(εN+1). (14)

Then

‖[Rχ (z), χ2]‖L (H ,D(H))

= ‖Rχ (z)[Pχ , χ2]Rχ (z)‖L (H ,D(H)) = O(εN+1). (15)

Now since �(H) = χ2(H)�(H) we have

‖[H, Pε]�(H)‖L (H )

= ‖ i

2π

∫

γ

Rχ (z)[H, Pχ ]Rχ (z)χ2(H)�(H)dz‖

=
∥
∥
∥
∥

i

2π

∫

γ

Rχ (z)[H, Pχ ]χ2(H)Rχ (z)�(H)

+ Rχ (z) [H, Pχ ]
︸ ︷︷ ︸

(12)= O(ε)

[Rχ (z), χ2(H)]
︸ ︷︷ ︸

(15)= O(εN+1)

�(H)dz

∥
∥
∥
∥

≤
∥
∥
∥
∥

i

2π

∫

γ

Rχ (z) [H, Pχ ]χ2(H)
︸ ︷︷ ︸

(13)= O(εN+1)

Rχ (z)�(H)dz

∥
∥
∥
∥

+ O(εN+2)

= O(εN+1).

��
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The projection Pε has the same asymptotic expansion as PN , as proved by Nen-
ciu [48].

Lemma 3.20 Let Pk be the operators of Lemma 3.17. Then for every regular cut-off
χ ∈ C∞

0 ((−∞,�], [0, 1])

‖(Pε −
N

∑

k=0

εk Pk)χ(H)‖L (H ,D(H)) = O(εN+1).

A proof adapted to our notation can be found in [39, Lemma 2.25].

4 The ground state band

In this section we apply the general theory just developed to the ground state band λ0.
We begin by showing that the gap condition holds if F is connected. Estimates on the
size of the spectral gap in terms of geometric quantities have been derived for many
special cases, mostly with V = 0, see Schoen and Yau [55] for a discussion of such
results.

Proposition 4.1 Let λ0 := min σ(HF ) be the ground state band. If F is connected
and M satisfies Condition 2, then λ0 has a spectral gap in the sense of Condition 1.

Proof Weargue that the absence of a spectral gap leads to a contradiction to the fact that
the ground state of a real Schrödinger operator on a connected, compact manifold is a
simple eigenvalue. Letλ1 := min(σ (HF )\λ0). If infx∈B λ1−λ0 is not larger than zero,
then clearly there exists a sequence (xk)k∈N in B with limk→∞ λ1(xk) − λ0(xk) = 0.
Now for every k take an open setUν(k) ∈ U containing xk and let gk := (	−1

ν(k))
∗gFxk .

Because of the bounds on (	−1
ν(k))

∗ that are required by Condition 2, for anym ∈ N the

sequence (gk)k∈N is bounded in theC m+1-norm on�(T ∗F⊗T ∗F)with respect to g0.
Thus by the Arzelà–Ascoli theorem there is a subsequence converging to a symmetric
bilinear form g∞ of C m-regularity and by repeated extraction of subsequences and
a diagonal argument g∞ is a smooth tensor. Because of the bounds on the inverse
	∗

ν(k), the sequence of metrics is also positive definite in a uniform way and g∞ is a
Riemannian metric. Further extraction of subsequences gives convergence of V (xk) to
a potential V∞. Now it was shown by Bando and Urakawa that the eigenvalues depend
continuously on the metric and the potential (see [2], the proof is stated for manifolds
without boundary but carries over to theDirichlet Laplacian and Schrödinger operators
because the eigenvalues are determined by a max-min principle in a similar way). This
means that the sequences λ1(xk) and λ0(xk) converge to the two smallest eigenvalues
of the operator H∞ := −�g∞ +V∞ on F . But this is impossible because the smallest
eigenvalue of H∞ is simple since F is connected. Thus a positive lower bound for
λ1 − λ0 must exist.

The continuous dependence of the eigenvalues on the metric and potential now
shows that these eigenvaluesmay be separated by continuous functions, so Condition 1
is satisfied. ��
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From now on we always assume F to be connected. In general it is convenient to
express the effective and adiabatic operators using the induced connection on E

∇B
Xψ := P0X

∗ψ,

which is usually called the Berry connection. Due to the special properties of the
ground state eigenfunction, this connection and the adiabatic operator for the band λ0
can be calculated rather explicitly. In fact it is always possible to chose an eigenfunction
φ0(x, ·) ∈ ker(HF (x)−λ0(x)) that is real valued, positive and normalised. Since this
choice is unique, it provides a trivialisation of E and an isomorphism L2(E) ∼= L2(B).
Expressing ∇B in this trivialisation defines a complex-valued one-form ωB by

∇B
Xφ0ψ =: φ0(X + ωB(X))ψ.

Since φ0 is real, the imaginary part of ωB vanishes. The real part can be calculated by

2ωB(X) = ωB(X) + ωB(X)

=
∫

Fx
(φ0X

∗φ0) + ((X∗φ0)φ0) volgFx

= −
∫

Fx
|φ0|2LX∗volFx

= −
∫

Fx
|φ0|2gB(X, π∗η)volFx

and equals the mean curvature vector η of the fibres, averaged by the eigenfunctions.
Note that a non-zero real part means that ∇B is not a metric connection and that for
∂M = ∅ this is explicitly given by

ωB ∂M=∅= − 1
2d(logVol(Fx )).

Using these formulas an elementary calculation yields (see [39, Chapter 3])

Ha = −ε2�gB + λ0 + εP0H1P0 + ε2Va,

with the adiabatic potential (in some contexts referred to as Born–Huang potential)

Va := − 1
2 trgB ((∇·ωB)(·)) +

∫

Fx
π∗gB(grad φ0, grad φ0) volFx .

If the boundary is empty this evaluates to

Va
∂M=∅= 1

2�(logVol(Fx )) + 1
4 |d logVol(Fx )|2gB . (16)

Explicit formulas for this operator are derived in [27] for different generalisations
of the waveguides and layers studied in [6–8,10,13–15,19,21,23,26,35,41,58]. In
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these situations, the operator H1 arises naturally from the induced metric of the tube,
which is a Riemannian submersion to leading order but not exactly. The corrections
to the metric concern only the horizontal directions, so H1 is a horizontal differential
operator of second order and the condition −ε2�h + εH1 ≥ −Cε of Proposition 2.5
is satisfied.

4.1 Proof of Proposition 2.5

We now prove Proposition 2.5, which states that the effective operator for the ground
state band λ0 (constructed for N ∈ N and � > 0), is almost unitarily equiv-
alent to H at energies below �1 := inf x∈B λ1(x). That is, for a regular cut-off
χ ∈ C∞

0 ((−∞,�1), [0, 1]) we need to show that

‖Hχ(H) −UεHeffχ(Heff)U
∗
ε ‖ = O(εN+1).

Proof Let Pε be the projection of Theorem 2.1 for N ∈ N and � > 0. We then have

Hχ(H) = (PεHPε + P⊥
ε HP⊥

ε + (1 − 2Pε)[H, Pε])χ(H)

= UεHeffU
∗
ε Pεχ(H) + P⊥

ε HP⊥
ε χ(H) + O(εN+1). (17)

Now, we use Lemma 3.19 with T = P⊥
ε to get

‖P⊥
ε χ(H) − P⊥

ε χ(P⊥
ε HP⊥

ε )‖L (H ,D(H)) = O(εN+1).

The lower bound on −ε2�h + εH1 then implies that suppχ ∩ σ(P⊥
ε HP⊥

ε ) = ∅, as
observed in (4). To make that observation rigorous, first note that the graph norms of
H and Hdiag = PεHPε + P⊥

ε HP⊥
ε are equivalent, with constants independent of ε.

Then

‖P⊥
ε (P⊥

0 HP⊥
0 − H)P⊥

ε ‖L (D(Hdiag),H ) = O(ε),

so indeed (cf. [52, Theorem X.12])

P⊥
ε HP⊥

ε ≥ P⊥
0 HP⊥

0 − O(ε) ≥ �1 − O(ε),

as an operator on P⊥
ε D(H) ⊂ P⊥

ε H . Hence P⊥
ε χ(P⊥

ε HP⊥
ε ) = 0, for ε small

enough, and HP⊥
ε χ(H) = O(εN+1) for the second term in (17).

It remains to prove that the first term is close to the desired one. This follows easily
by another use of Lemma 3.19, with T = Pε, giving

‖U∗
ε Pεχ(H) − P0χ(Heff)U

∗
ε ‖L (H ,D(H)) = O(εN+1),

because functional calculus commutes with unitaries. ��
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4.2 Refined asymptotics for small energies

In this section we take a closer look at the asymptotics for small energies. We already
know that H may be represented by Heff using the unitary transformation Uε, with
arbitrary (polynomial) precision. We will now show that the adiabatic operator deter-
mines the spectrum of H with higher precision than usual in the low energy regime. In
particular, the approximation is good enough to make the adiabatic potential, which is
of order ε2, relevant. Although Ha depends only on P0 and not the refined projections
Pε, knowledge of the precise form on these projections is crucial for our proof of this
approximation. There are two reasons for this, the first being that we need to know
the terms of Ha − Heff rather explicitly in order to see how their size depends on
the energy scale. The second reason is that Heff is not close to H but only (almost)
unitarily-equivalent. For the spectral problem this can be understood by taking the
eigenfunctions of Heff unitarily transformed with Uε as trial functions for H , which
does not change the eigenvalue but requires the existence of Uε.

Here we will only consider connected fibres and an operator H1 of a special form,
that is relevant to the applications in [27,40]. By small energies we mean energies
whose distance to

�0 := inf
x∈Bmin σ(HF )

is of order εα , with 0 < α ≤ 2. It is then convenient to set

H := −�gε + V + εH1 − �0, (18)

and

HF := −�F + V − �0.

For the following we fix the projection Pε and the unitaryUε constructed for λ0, given
� and N ≥ 3. Analysing energies of order εα amounts to studying H only on the
image of

�α(H) := 1(−∞,εαC](H), (19)

for some constant C > 0. Equivalently one may rescale the original problem by ε−α

and consider bounded energies. The most relevant energy scales are

• α = 1: If λ0 has a unique non-degenerate minimum on B, the smallest eigenvalues
of −ε2�B + λ0 behave like those of a d-dimensional harmonic oscillator. In
particular their difference is of order ε. We will show that this implies existence
of eigenvalues of H with the same behaviour, that are approximated by those of
Ha up to order ε3.

• α = 2: Assume λ0 ≡ 0, for example because ∂M = ∅ or the fibres are isometric.
Then (if H1 = 0) Ha = ε2(−�gB + Va) in the trivialisation by φ0, so the typical
energy scale of this operator is ε2. We will show that, also for H1 �= 0, small
eigenvalues of Ha approximate those of H up to ε4 and vice versa (Proposition 4.4).
More generally, the spectra coincide up to order ε3 (Proposition 4.3).

123



1678 J. Lampart, S. Teufel

The reason why one should expect the adiabatic approximation to be better on these
ε-dependent energy scales is that the corrections derived in Sect. 3.2 are given by
differential operators. More precisely, Pε − P0 ≈ εP1 (see Lemma 3.20) with

P1P0 = −RF (λ0)[H, P0]P0 = RF (λ0)(ε[�h, P0] − [H1, P0])P0.

By commuting derivatives to the right, the first term here can be written as the sum of
a potential of order ε and an operator with an horizontal derivative acting to the right.
Now such a derivative is of order one when ε2�h = O(1), but we expect it to be of
order εα/2 when ε�h = O(εα), which is the case on the image of �α . Hence we expect
εP1�α(H) to be of order ε1+α/2, at least if H1 also consists of horizontal differential
operators of non-zero order. In this case the adiabatic approximation should be better
by at least a factor of εα/2 compared to the general case. Precisely the assumptions
we make on H1 are:

Condition 4 The operator H1 has the form

H1ψ = −ε2 divg Sε(dψ, ·) + εVεψ,

with Sε ∈ �b(π
∗T B ⊗ π∗T B) and Vε ∈ C∞

b bounded uniformly in ε.

Note that such an operator always satisfies the conditions of Proposition 2.5. With
this condition we can make the heuristic discussion above precise.

Lemma 4.2 Let 0 < α ≤ 2, A ∈ {H, Ha, Heff}, k ∈ N and denote by Dk
α(A) the

domain of ε−kαAk with the graph-norm. If H1 satisfies Condition 4 and �α is given
by (19) the following hold true:

1. ‖H1P0‖L (D2
α(A),D(H)) = O(εα/2),

2. ‖[−ε2�h, P0]P0�α(A)‖L (H ) = O(ε1+α/2),
3. ‖(Pε − P0)P0�α(A)‖L (H ,D(H)) = O(ε1+α/2).

Proof We only sketch the proof here since it uses only standard techniques, a detailed
derivation for A ∈ {H, Ha} can be found in [39]. The statements for A = Heff follow
from those for Ha and the fact that Heff = Ha + O(ε2) (c.f. (20)).

The basis is to prove that for every X ∈ �b(T B) we have

‖εP0X∗‖L (D2
α(A),D(H)) = O(εα/2),

which follows by showing elliptic estimates while keeping track of ε (see [39, Appen-
dix C]). The first statement then follows immediately from Condition 4. The second
claim follows by writing

[ε2�h, P0]P0 = ε2 trNF [∇2, P0]P0 − ε2[η, P0]P0
= 2ε2 trgB ([(·)∗ − gB(π∗η, ·), P0]∇B· )

+ P⊥
0 (ε2 trgB ([(·)∗, [(·)∗, P0]] − [(∇··)∗, P0]) − [ε2η, P0])P0

︸ ︷︷ ︸

∈A0,2

and applying elliptic estimates for ∇B to the first term. The last claim follows from
the second one and Lemma 3.20. ��
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We now prove several propositions that give the precise results on the low energy
regime (note that we have subtracted �0 from H ). In particular they imply the state-
ments made in Sect. 2. Proposition 4.3 contains general information on the spectrum
of H in relation to that of Ha, Proposition 4.4 strengthens this statement for small
eigenvalues of these operators and Proposition 4.5 shows approximation for the eigen-
functions of simple eigenvalues. This last proposition is the starting point for the
investigation of nodal sets, conducted in [40] and [39, Chapter 3].

Proposition 4.3 Let 0 < α ≤ 2 and assume H1 satisfies Condition 4. Then for every
C > 0

dist(σ (H) ∩ (−∞,Cεα], σ (Ha) ∩ (−∞,Cεα]) = O(ε2+α/2).

Proof Since we have chosen N ≥ 3, Proposition 2.5 tells us that

dist(σ (H) ∩ (−∞,Cεα], σ (Heff) ∩ (−∞,Cεα]) = O(ε4)

if Cεα < �1. Thus we only need to show closeness of the spectra of Ha and Heff . We
can do this by expanding Heff −Ha on the image of �α(A)with A ∈ {Ha, Heff}, which
amounts to expanding PεUε − P0. First we may note that (P0 − Pε)

2 commutes with
both P0 and Pε, since e.g. P0(Pε − P0)2 = −P0(Pε − P0)P0. Thus by Definition (2)
we have

PεUε = PεP0 + 1
2 PεP0(Pε − P0)

2 + O(ε4),

where the error is estimated in L (D(H)). Inserting Pε = P0 + (Pε − P0) gives

PεUε = P0 + P⊥
0 (Pε − P0)P0

︸ ︷︷ ︸

=:εU1

− 1
2 P0(Pε − P0)

2P0
︸ ︷︷ ︸

=:ε2U2

+O(ε3).

Thus we have

Heff − Ha = ε
(

U∗
1 HP0 + P0HU1

) + ε2
(

U∗
1 HU1 + P0HU2 +U2HP0

) + O(ε3)

= εP0(Pε − P0)[H, P0]P0 + ε2U2P0HP0

+ εP0[P0, H ](Pε − P0)P0 + ε2
(

U∗
1 HU1 + P0HU2

) + O(ε3),

(20)

with an error inL (D(Heff),H ). Nowon the image of�α(A), the terms of the first line
are of order ε2+α/2 by part 1. and 2. of Lemma 4.2 and the fact that Ha�α(A) = O(εα).
The terms of the second line are of order ε2+α/2 by part 3. of Lemma 4.2. This shows

dist(σ (Heff) ∩ (−∞,Cεα], σ (Ha) ∩ (−∞,Cεα]) = O(ε2+α/2)

by the Weyl sequence argument of Corollary 2.4, and concludes the proof. ��
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Proposition 4.4 Let 0 < α ≤ 2 and assume H1 satisfies Condition 4. If there are pos-
itive constants C, δ and ε0 such that σ(Ha)∩(−∞,Cεα) consists of K+1 eigenvalues
μ0 ≤ · · · ≤ μK (repeated according to multiplicity) and rank(1(−∞,(C+δ)εα)(Ha)) <

∞ for all ε < ε0, then H has K + 1 eigenvalues λ0 ≤ · · · ≤ λK below the essential
spectrum and

|λ j − μ j | = O(ε2+α)

for all j ≤ K.

Proof Because of the unitary equivalence up to O(ε4) shown in Proposition 2.5 it is
enough to prove the claim for Heff instead of H . It follows from (20) and Lemma 4.2
that for normalised ψ in the image of �α(A) with A ∈ {Ha, Heff }

|〈ψ, (Ha − Heff)ψ〉| = O(ε2+α), (21)

because in the quadratic form �α(A) acts both from left and right onto Ha − Heff . Now
if rank(1(−∞,(C+δ/2)εα)(Heff)) were infinite, then (21) would imply that the subspace
where 〈ψ, Haψ〉 ≤ (C + δ)εα‖ψ‖2 had infinite dimension, in contradiction to the
hypothesis. Consequently σ(Heff )∩(−∞, (C+δ/2)εα) consists of finitely degenerate
eigenvalues λ̃0 ≤ · · · . The eigenvalues of Ha, and also those of Heff , are characterised
by the min–max principle

μ j = min
Wj

max{〈ψ, Haψ〉 : ψ ∈ Wj , ‖ψ‖L2(E) = 1},

whereWj runs over the ( j+1)-dimensional subspaces of D(Ha) = D(Heff). Choosing

Wj ⊂ ⊕ j
k=0 ker(Ha − μk) gives

λ̃ j
(21)≤ max{〈ψ, Haψ〉 : ψ ∈ Wj , ‖ψ‖L2(E) = 1} + O(ε2+α)≤μ j + O(ε2+α).

This shows that Heff has K + 1 eigenvalues below (C + δ/2)εα . We can thus repeat
the argument with reversed roles of Ha and Heff to obtain

μ j ≤ λ̃ j + O(ε2+α),

which proves the claim.

Proposition 4.5 Assume the conditions of Proposition 4.4 are satisfied and addition-
ally that μ ∈ {μ0, . . . , μK } is a simple eigenvalue for which there exists Cμ > 0 such
that dist(μ, σ (Ha)\{μ}) ≥ Cμεα . Then the eigenvalue λ ∈ σ(H) corresponding to
μ is simple and dist(λ, σ (H)\{λ}) ≥ Cλε

α > 0. Moreover if ψ ∈ ker(Ha − μ) is
normalised and Pλ denotes the orthogonal projection to ker(H − λ) then

‖(1 − Pλ)ψ‖D(H) = O(εβ)
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with β = min{1 + 1
2α, 2 − 1

2α} and

‖(1 − Pλ)ψ‖W 1
ε=1

= O(εα/2).

Proof The statement on the eigenvalue λ follows directly from Proposition 4.4. Let
Pλ̃ denote the projection to the eigenspace of Heff corresponding to μ. Then since
ψ = P0�α(Ha)ψ , Eq. (20) and Proposition 4.4 imply

‖(1 − Pλ̃)ψ‖D(H) ≤ ‖(Heff − λ̃)−1(1 − Pλ̃)ψ‖L (H ,D(H))
︸ ︷︷ ︸

=O(ε−α)

‖(Heff − λ̃)ψ‖H
︸ ︷︷ ︸

=O(ε2+α/2)

.

Now by Proposition 2.5, U∗
ε PλUε = Pλ̃ + O(ε4), so

‖(1 − Pλ)Uεψ‖D(H) = O(ε2−α/2).

We also have

‖(Uε − 1)ψ‖D(H) = ‖P⊥
0 (Pε − P0)�α(Ha)ψ‖D(H) + O(ε2),

which implies ‖(1 − Pλ)ψ‖D(H) = O(εβ) by Lemma 4.2.
For the second estimate, note that φ := (1 − Pλ)ψ satisfies Dirichlet conditions,

so we can use the elliptic estimate of Theorem 3.6 to obtain

C−1‖φ‖2
W 1

ε=1
≤ ‖φ‖2H + 〈φ, (−�F − �h)φ〉

≤ (1 + �0 + ‖V ‖∞) ‖φ‖2 + ε−2〈φ, (−�F + V − �0)
︸ ︷︷ ︸

≥0

φ〉 + 〈φ,−�hφ〉

≤
(

1 + �0 + ‖V ‖∞ + ε−2|λ|
)

‖φ‖2 + ε−2|〈φ, (H − λ)φ〉| + ε−1|〈φ, H1φ〉|.

Now since Pλ(H − λ) = 0 and ψ = P0ψ :

ε−2|〈φ, (H − λ)φ〉| = ε−2|〈ψ, (H − λ)ψ〉| = ε−2|〈ψ, (μ − λ)ψ〉| = O(εα),

while ε−2|λ|‖φ‖H = O(ε2β+α−2) = O(εα). By Condition 4, the term containing
H1 can be bounded by

ε−1|〈φ, H1φ〉| ≤ ‖Vε‖∞‖φ‖2H + ε‖Sε‖∞‖φ‖2
W 1

ε=1

and we conclude that

(C−1 − ε‖Sε‖∞)‖φ‖2
W 1

ε=1
= O(εα),

which proves the claim. ��
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38. Krejčiřík, D., Tušek, M.: Nodal sets of thin curved layers. J. Differ. Equ. 258(2), 281–301 (2015)
39. Lampart, J.: The adiabatic limit of Schrödinger operators on fibre bundles. PhD thesis, Universität

Tübingen (2014)
40. Lampart, J.: Convergence of nodal sets in the adiabatic limit. Ann. Global Anal. Geom. 47(2), 147–166

(2015)
41. Lin, C., Lu, Z.: On the discrete spectrum of generalized quantum tubes. Comm. Partial Differ. Equ.

31(10), 1529–1546 (2006)
42. Álvarez, J.A., López, Y., Kordyukov, A.: Adiabatic limits and spectral sequences for Riemannian

foliations. Geom. Funct. Anal. 10(5), 977–1027 (2000)
43. Lott, J.: Collapsing and the differential form Laplacian: the case of a smooth limit space. Duke Math.

J. 114(2), 267–306 (2002)
44. Maraner, P.: A complete perturbative expansion for quantum mechanics with constraints. J. Phys. A

28(10), 2939 (1995)
45. Martinez, A., Sordoni, V.: A general reduction scheme for the time-dependent Born–Oppenheimer

approximation. C. R. Math. Acad. Sci. Paris 334(3), 185–188 (2002)
46. Mazzeo, R.R., Melrose, R.B.: The adiabatic limit, Hodge cohomology and Leray’s spectral sequence

for a fibration. J. Differ. Geom. 31(1), 185–213 (1990)
47. Mitchell, K.A.: Gauge fields and extrapotentials in constrained quantum systems. Phys. Rev. A 63(4),

042112 (2001)
48. Nenciu, G.: Linear adiabatic theory. Exponential estimates. Commun. Math. Phys. 152(3), 479–496

(1993)
49. Panati, G., Spohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and

beyond. Commun. Math. Phys. 242(3), 547–578 (2003)
50. Panti, G., Spohn, H., Teufel, S.: Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7(1),

145–204 (2003)
51. Post, O.: Spectral Analysis on Graph-like Spaces. Lecture Notes in Mathematics. Springer, Berlin

(2012)
52. Reed, M., Simon, B.: Methods of modern mathematical physics: II Fourier analysis, self-adjointness.

Academic Press, New York (1975)
53. Schick, T.: Analysis on ∂-manifolds of bounded geometry. In: Hodge-De Rham Isomorphism and

L2-Index Theorem. Shaker, OH (1996)
54. Schick, T.: Manifolds with boundary and of bounded geometry. Math. Nachr. 223, 89–102 (2001)
55. Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture

Notes in Geometry and Topology. International Press, USA (1994)
56. Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics.

Springer, Berlin (2003)
57. Wachsmuth, J., Teufel, S.: Effective Hamiltonians for constrained quantum systems. Mem. Am. Math.

Soc. 230, 2013 (1083)
58. Wittich, O.: L2-homogenization of heat equations on tubular neighborhoods (2008). arXiv:0810.5047

123

http://arxiv.org/abs/0810.5047

	The adiabatic limit of Schrödinger operators on fibre bundles
	Abstract
	1 Introduction
	2 Main results
	3 Adiabatic theory on fibre bundles
	3.1 Riemannian submersions of bounded geometry
	3.2 Adiabatic and super-adiabatic projections
	3.2.1 Proof of Theorem 2.1


	4 The ground state band
	4.1 Proof of Proposition 2.5
	4.2 Refined asymptotics for small energies

	References




