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Abstract We consider the isoperimetric problem in R
2 with density. We show that,

if the density is C0,α , then the boundary of any isoperimetric set is of class C1, α
3−2α .

This improves the previously known regularity.

1 Introduction

The isoperimetric problem inRn with density is a classical problem,whichhas received
much attention in the last decade. The idea is quite simple: given a lower semicontin-
uous function f : Rn → (0,+∞), usually called “density”, for any set E ⊆ R

n we
define the volume V f (E) and the perimeter Pf (E) as

V f (E) :=
∫
E
f (x) dx, Pf (E) :=

∫
∂∗E

f (x) dH n−1
(x),

where the subscript reminds us that volume and perimeter are computed with respect
to f , and where ∂∗E is the reduced boundary of E (to read this paper there is no
need to know what the reduced boundary is, since under our assumptions it always
coincides with the usual topological boundary ∂E). The literature on problems of this
kind is vast, here we can give just a very sketchy outline.

In the 1970–1980’s, the way for the study of the regularity in a completely gen-
eral case was paved, see the papers [2,4,7,26]. After that, people started to focus on
isoperimetric problems in a non-Euclidean setting, considering finer notions of min-
imality [19] and investigating the case of Riemannian manifolds [21]. In the last ten
years, finally, the above-described question of isoperimetric problemswith densitywas
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420 E. Cinti, A. Pratelli

explicitly considered; in [8,24] the first fundamental, general properties were studied,
the papers [13,16] consider some specific examples, namely the sectors with density
and the mixed Euclidean–Gaussian densities, and the more recent papers [10,12,23]
(see also the references therein) contain more or less the state-of-the-art on this prob-
lem.

The main questions about the isoperimetric problem with density are of course
the existence and regularity of isoperimetric sets. A lot is known about the existence
(see for instance [9,12,23]). Since in this paper we are dealing with the regularity, let
us briefly recall the main known results. The first, very important one, can be found
in [20, Proposition 3.5 and Corollary 3.8] (see also [1,3]).

Theorem 1.1 Let f be a Ck,α density on R
n, with k ≥ 1. Then the boundary of any

isoperimetric set is Ck+1,α , except for a singular set of Hausdorff dimension at most
n − 8. If f is just Lipschitz, then the boundary is of class C1,α for every 0 < α < 1.

It is important to point out that the above result requires at least a Lipschitz regularity
for f . The reason is rather simple: most of the standard techniques to get regularity
make sense only if f is at least Lipschitz (for a discussion on this fact, see [10,
Section 5]). In particular, the following simple observation can be useful. In order to
get regularity of an isoperimetric set E , a standard idea is to build some “competitor” F ,
which behaves better than E where the boundary of E is not regular enough; however,
in order to get some contradiction, we must ensure that F has the same volume as E ,
since otherwise the isoperimetric property of E cannot be used. On the other hand,
it can be complicated to build the set F taking its volume into account, since while
defining F one is interested in its perimeter. As a consequence, it is extremely useful
to have the so-called “ε − ε property”, which roughly speaking says the following: it
is always possible to modify the volume of a set F of a small quantity ε, increasing
its perimeter of at most C |ε| for some fixed constant C . If this is the case, one can
then “adjust” the volume of F so that it coincides with the one of E . This property
has already been discussed by Allard, Almgren and Bombieri since the 1970’s (see for
instance [1–4,7]), and it has been widely used in most of the papers about regularity
in this context since then. Unfortunately, while the ε − ε property is rather simple to
establish when f is at least Lipschitz, it is false if f is not Lipschitz.

To get some regularity for isoperimetric sets in the case of low regularity of f , in
the recent paper [10] we introduced and proved a weaker property, called the “ε − εβ

property”,which basically says that the volumeof a set can bemodified by ε, increasing
the perimeter by at most C |ε|β . Since we will use this property in the present paper,
we provide the result below (the actual result proved in [10] is more general, but here
we prefer to state the simpler version that we are going to need).

Theorem 1.2 [10, Theorem B] Let E ⊆ R
n be a set of locally finite perimeter, and

f an α-Hölder density for some 0 < α ≤ 1. Then, for every ball B with nonempty
intersection with ∂∗E, there exist two constants ε̄, C > 0 such that, for every |ε| < ε̄,
there is a set Ẽ satisfying

Ẽ�E ⊂⊂ B, V f (Ẽ) = V f (E) + ε, Pf (Ẽ) ≤ Pf (E) + C |ε|β, (1.1)

where β = β(α, n) is defined by
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β = β(α, n) := α + (n − 1)(1 − α)

α + n(1 − α)
,

so for n = 2 it is β = 1
2−α

.

By using the classical regularity results (see for instance [5,25]), and modifying
the arguments in order to make use of the ε − εβ property instead of the ε − ε one
(which is false), we obtained the following regularity result (see [25] for a definition
of porosity).

Theorem 1.3 [10, Theorem 5.7] Let E be an isoperimetric set in R
n with a density

f ∈ C0,α , with 0 < α ≤ 1. Then ∂∗E = ∂E is of class C1, α
2n(1−α)+2α . In particular, if

n = 2 then ∂E is C1, α
4−2α . If f is only bounded above and below, then it is still true

that ∂∗E = ∂E, and moreover E is porous.

The main result of the present paper is a stronger regularity result for the bi-
dimensional case, stated as follows.

Theorem A (Regularity of isoperimetric sets) Let f : R
2 → (0,+∞) be a C0,α

density, for some 0 < α ≤ 1. Then, every isoperimetric set E has a boundary of class
C1, α

3−2α .

It is worth observing that the regularity obtained above is still less than the C1,α

regularity that one could expect just by looking at Theorem 1.1, but it is better than the
previously known regularity given by Theorem 1.3. In particular, notice that there is a
substantial improvement between C1, α

4−2α and C1, α
3−2α . Indeed, the second exponent

is not just merely bigger than the first one, there is also a much deeper difference:
namely, when α goes to 1, the first exponent goes to 1/2, while the second goes to 1.
In particular, our Theorem A gives also a proof that for f Lipschitz an isoperimetric
set is C1,1, as stated in Theorem 1.1.

Let us give now some remarks. First of all, the fact that the regularity of the “old”

Theorem 1.3 never exceeds C1, 12 is not strange: indeed, this is the best regularity
that can be obtained via the classical methods, without fully using the isoperimetric
property of a set E , but only the (weaker) fact that E is anω-minimizer of the perimeter.

To get anything better than C1, 12 , one must use the fact that E is isoperimetric (at least
in a “local” sense), as we do in the present paper by using the ε − εβ property.

A second remark is about the sharp regularity exponent that one can obtain for an
isoperimetric setwith aC0,α density:we do not believe that our exponent of TheoremA
is sharp, but we are also not sure whether it is possible to reach the C1,α regularity,
similarly to what happens for k ≥ 1 in the classical case.

Lastly, let us notice that most of our arguments also work in a Riemannian surface
with minor modifications. More precisely, a Riemannian surface behaves more or
less as R

n with density, but the density corresponding to the volume and the one
corresponding to the perimeter are different. A work in progress considers the more
general setting with two distinct densities (which covers the case of a Riemannian
surface, but is in fact much more general). Similarly, the same technique also gives
results in the more general case of the (M, ε, δ) curves (see for instance [19,26]);
results in this direction are also currently being investigated in a work in progress.
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We conclude the introduction by quickly describing how the proof works. The idea
is to take two points x, y in the boundary of E , very close to each other, and to replace
the arc of ∂E connecting them with the segment xy. If the points are well chosen,
then the new curve is still the boundary of a set, say F , very similar to E . While the
Euclidean perimeter of F is obviously smaller than that of E , this is not sure for the
(weighted) perimeter; however, since f is continuous, one has also Pf (F) < Pf (E)

unless the curve between x and y is sufficiently close to the segment. The set F need
not have the same volume as E , hence we cannot directly use it as a competitor for
the isoperimetric problem; however, we can do so after having “adjusted” its volume
by means of Theorem 1.2. Summarizing, we have obtained an estimate of how much
three points in ∂E , sufficiently close to each other, can deviate from being aligned.
Finally, applying this estimate subsequently to a suitable sequence of triples of points,
we can show that, for any two points a and z in ∂E , the tangent vectors νa and νz to
∂E at a and z satisfy

|νa − νz | ≤ Cρ
α

3−2α ,

where ρ is the distance between a and z. This will provide the required regularity,
hence concluding the proof.

1.1 Notation

Let us briefly present the notation of the present paper. The density will always be
denoted by f : R2 → (0,+∞); keep inmind that, since wewant to prove TheoremA,
the function f will always be at least continuous. For any set E ⊆ R

2, we denote by
V f (E) and Pf (E) its volume and perimeter. For any z ∈ R

2 and ρ > 0, we denote by
Bρ(z) the ball centered at z with radius ρ. Given two points x, y ∈ R

2, we denote by
xy, �(xy), and � f (xy) the segment connecting the two points, its Euclidean length,
and its length with respect to the density f (that is,

∫
xy f (t)dt). Given three points

a, b, c, we denote by aÛbc the angle between the segments ab and bc. Let now E ⊆ R
2

be an isoperimetric set; then, through Theorem 1.3 we already know that the boundary
of E is of class C1, α

4−2α ; hence in particular Lipschitz. As a consequence, for any two
points x, y which belong to the same connected component of ∂E and which are very
close to each other (with respect to the diameter of this connected component), the
shortest curve in ∂E connecting x and y is well-defined. We denote this curve by xy�,
and again by �(xy�) and � f (xy

�) we denote its Euclidean length and its length with
respect to the density f . The letter C is always used to denote a large constant, which
can increase from line to line, while M is a fixed constant, coming from the α-Hölder
property.

2 Proof of the main result

This section is devoted to the proof of our main result, Theorem A. Most of the proof
consists in studying the situation around a few given points, so let us set some useful
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ρ

y

x̄

x δ

z
ȳ

Fig. 1 Position of the points for Lemma 2.2

specific notation; Fig. 1 illustrates the names of the points. Let us fix an isoperimetric
set E and a point z on ∂E . Let ρ 
 1 be a very small constant, much smaller than
the length of the connected component γ ⊆ ∂E containing z, and of the distance
between z and the other connected components of ∂E (if any). Since we know that γ
is a C1, α

4−2α curve, we can decide arbitrarily an orientation on it; hence, let us define
four points x, x̄, y, ȳ in ∂Bρ(z) as follows: among the points of γ which belong to
∂Bρ(z) and which are before z, we call x̄ the closest one to z, and x the farthest one
(in the sense of the parameterization of γ ). We define analogously ȳ and y after z: of
course, x̄ and x may coincide, as well as y and ȳ. Moreover, we call δ the angle zÛx y,
and

l := �(x x̄
�

) + �(y ȳ
�

).

Finally, we introduce the following set F , which we will use as a competitor to E
(after adjusting its area).

Definition 2.1 With the above notation, we let F ⊆ R
2 be the bounded set whose

boundary is ∂F = ∂E\xy� ∪ xy.

Notice that the above definition makes sense: indeed, by [10, Theorem 1.1] we
already know that E is bounded, and by construction the segment xy cannot intersect
any point of ∂E\xy�. In particular, all the connected components of E whose boundary
is not γ also belong to F ; instead, the connected component of E with γ as boundary
has been slightly modified near z. Recalling that f is real-valued and strictly positive,
as well as α-Hölder, we can find a constant M such that

1

M
≤ f (p) ≤ M , | f (p) − f (q)| ≤ M |p − q|α (2.1)

for every p, q in some neighborhood of E , containing all the points that we are going
to use in our argument. This is not a problem, since all our arguments will be local.
Let us now give the first easy estimates about the above quantities.
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424 E. Cinti, A. Pratelli

Lemma 2.2 With the above notation, one has

l ≤ Cρ
2

2−α , δ ≤ Cρ
α

4−2α , (2.2)

and moreover
� f (xy

�) − � f (xy) 
 �(xy). (2.3)

Proof First of all, let us consider a point p ∈ E�F in the symmetric difference
between E and F ; by construction, either p belongs to the ball Bρ(z), or it has a
distance at most l/2 from that ball. As a consequence, p has distance at most ρ + l/2
from z, and this gives

|V f (E) − V f (F)| ≤ V f (E�F) ≤ M
(
π(ρ + l/2)2

) ≤ 2Mπ(ρ2 + l2). (2.4)

Let us now apply Theorem 1.2 to the set E , with a ball B intersecting ∂E far away from
the point z. We get a constant ε̄ and of course, up to have taken ρ small enough, we
can assume that |ε| ≤ ε̄, being ε = V f (E) − V f (F). Then, Theorem 1.2 provides us
with a set Ẽ satisfying (1.1). As a consequence, if we define F̃ = F\B ∪ (B ∩ Ẽ), we
get V f (F̃) = V f (F)+ V f (Ẽ)− V f (E) = V f (E), and then, since E is isoperimetric,
by (2.4) we get

Pf (E) ≤ Pf (F̃) = Pf (F) + Pf (Ẽ) − Pf (E) ≤ Pf (F) + C
(
ρ2 + l2

) 1
2−α ,

which implies

� f (xy�) − � f (xy) = Pf (E) − Pf (F) ≤ C
(
ρ2 + l2

) 1
2−α . (2.5)

Let us now evaluate the term � f (xy
�)− � f (xy): if we call fmin and fmax the minimum

and the maximum of f inside Bz(ρ), by (2.1) we have

fmax ≤ fmin + 2Mρα, fmin ≥ 1

M
,

and then

� f (xy
�) − � f (xy) = � f (x y

�
) + � f (x x̄

�
) + � f (y ȳ

�
) − � f (xy) ≥ 2ρ fmin

+ l

M
− 2ρ cos(δ) fmax

≥ 2ρ fmin + l

M
− 2ρ cos(δ)

(
fmin + 2Mρα) ≥ 2

1 − cos δ

M
ρ

+ l

M
− 4Mρα+1.

Inserting this estimate in (2.5), we obtain

2
1 − cos δ

M
ρ + l

M
≤ C

(
ρ2 + l2

) 1
2−α + 4Mρα+1 .
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Since

2

2 − α
> 1, α + 1 ≥ 2

2 − α
,

we immediately derive, first, that δ is very small, so that 1− cos δ ≥ δ2/3, and, then,

δ2ρ + l ≤ Cρ
2

2−α .

This gives the validity of both the inequalities in (2.2). Finally, (2.5) together with (2.2)
and the fact that, since δ 
 1, one has �(xy) ≈ 2ρ, gives (2.3). ��

Corollary 2.3 For any two points a, b ∈ γ sufficiently close to each other, one always
has

� f (ab
�

) − � f (ab) 
 � f (ab) , �(ab
�

) − �(ab) 
 �(ab) . (2.6)

Proof Let z ∈ ab
� be a point such that ρ = �(az) = �(zb), and let us call x, x̄, y and

ȳ as before. Of course, a ∈ x x̄
�

and b ∈ yy
�
, so that �(ax̄) + �(bȳ) ≤ l. Since by (2.2)

we have l 
 ρ, we get aÛzx̄ 
 1 and bÛz ȳ 
 1, as well as � f (ab) ≈ � f (xy). Hence,
(2.3) gives us

� f (ab
�

) − � f (ab) ≤ � f (xy
�) − � f (xy) + � f (xy) − � f (ab) 
 �(ab) ,

and then the first estimate in (2.6) is established. The second one immediately follows,
simply because f is continuous. ��

Asimilar argument to the one proving Lemma 2.2 then gives the following estimate.

Lemma 2.4 Given any two sufficiently close points r, s ∈ γ , one has

� f (rs�) − � f (rs) ≥ −12M5 �(rs)
2+α
2−α . (2.7)

Proof Let us call t the maximal distance between points of the arc rs� and the segment
rs, and let us denote 2d = �(rs) for brevity. Of course, concerning the Euclidean
distances, one has

�(rs�) ≥ 2
»

d2 + t2 . (2.8)

Let us call π the projection of R2 on the line containing the segment rs, so that for
every a ∈ rs� one has |a − π(a)| ≤ t by definition; moreover, define the density
g : R2 → R

+ as g(a) = f (π(a)), so that by the α-Hölder property (2.1) of f we get

f (a) ≥ g(a) − Mtα (2.9)
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for every a ∈ rs�. Since π(a) = a for every a ∈ rs, by (2.8) and (2.1) we can then
easily evaluate

�g(rs
�) − � f (rs) = �g(rs

�) − �g(rs) ≥ 2

M

(»
d2 + t2 − d

)
.

On the other hand, by (2.9) and by (2.6) we have also

� f (rs
�) − �g(rs

�) ≥ −Mtα� f (rs
�) ≥ −2Mtα� f (rs) ≥ −4M2tαd .

Putting together the last two estimates, we obtain

� f (rs
�) − � f (rs) = �g(rs

�) − � f (rs) + � f (rs
�) − �g(rs

�)

≥ 2

M

(»
d2 + t2 − d

) − 4M2tαd.

As a consequence, we can assume that t 
 d, since otherwise we readily get � f (rs
�)−

� f (rs) > 0, and in this case of course (2.7) holds. Therefore, the last inequality can
be rewritten as

� f (rs
�) − � f (rs) ≥ 2t2

3Md
− 4M2tαd =

Å

2t2

3Md2
− 4M2tα

ã

d . (2.10)

There are then two cases: if the term between parenthesis is positive, then again (2.7)
clearly holds. If, instead, it is negative, this implies

t ≤ 6M3d
2

2−α ,

and then (2.10) gives

� f (rs
�) − � f (rs) ≥ −4M2tαd ≥ −24M5d

2+α
2−α ≥ −12M5�(rs)

2+α
2−α ,

which is (2.7). ��
We can now show a more refined estimate for � f (pq�) − � f (pq), which takes into

account the maximal angle of deviation of the curve pq� with respect to the segment
pq. Let us be more precise: for every w ∈ pq� we define H = H(w) the projection
of w on the line containing pq. Moreover, we call θ = θ(w) the angle wÛq p if H is
closer to p than to q, and θ = wÛpq otherwise, and we let θ̄ be the maximum among
all the angles θ(w) for w ∈ pq�: Fig. 2 depicts the situation.

Lemma 2.5 With the above notation, and calling ρ = �(pq), there is C = C(α, M)

for which

either θ̄ ≤ Cρ
α

2−α , and then � f (pq
�) − � f (pq) ≥ −Cρ

2+α
2−α ,

or θ̄ ≥ Cρ
α

2−α , and then � f (pq
�) − � f (pq) ≥ ρ

12M
θ̄2 . (2.11)

123



Regularity of isoperimetric sets in R
2 with density 427

Fig. 2 Definition of θ̄

θ̄
qp

w

H

Proof Let us fix a point w ∈ pq� such that θ(w) = θ̄ , and assume without loss of
generality that θ̄ = wÛq p, as in Fig. 2. We can then apply Lemma 2.4, first with
rs = pw, and then with rs = wq, to get, also keeping in mind (2.6), that

� f (pq
�)=� f (pw

�)+� f (wq�) ≥ � f (pw) + � f (wq) − 12M5
Ä

�(pw)
2+α
2−α + �(wq)

2+α
2−α

ä

≥ � f (pw) + � f (wq) − 24M5ρ
2+α
2−α . (2.12)

Now we have to compare the lengths of the segments pw and qw with those of the
segments pH and qH . We can again argue defining the density g as g(a) = f (π(a)),
π being the projection on the line containing the segment pq: then

� f (pw) − � f (pH) = �g(pw) − �g(pH) + � f (pw) − �g(pw)

≥ 1

M

Ä

�(pw) − �(pH)
ä

− M� f (pw)�(wH)α ,

and the analogous estimate of course works for � f (wq) − � f (wH). Putting them
together, and recalling that � f (pH) + � f (qH) ≥ � f (pq), with strict inequality if H
is outside pq, we obtain

� f (pw) + � f (wq) − � f (pq) ≥ 1

M

Ä

�(pw) + �(wq) − �(pq)
ä

− M
(
� f (pw) + � f (wq)

)
�(wH)α

≥ ρ

6M
θ̄2 − 2M2ρ1+αθ̄α ,

where we have again used θ̄ 
 1, which comes as usual by (2.6). Putting this estimate
together with (2.12), we get

� f (pq
�) − � f (pq) ≥ ρ

6M
θ̄2 − 2M2ρ1+αθ̄α − 24M5ρ

2+α
2−α . (2.13)

Now, notice that

ρ1+αθ̄α ≥ ρ
2+α
2−α ⇐⇒ θ̄ ≥ ρ

α
2−α ⇐⇒ ρθ̄2 ≥ ρ1+αθ̄α .
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As a consequence, (2.13) implies the validity of both the cases in (2.11), up to have
chosen a sufficiently large constant C = C(M, α). ��

We are now ready to find a first result about the behaviour of the direction of the
chords connecting points of the curve γ . Indeed, putting together Lemma 2.5 and
Lemma 2.2, we get the next estimate.

Lemma 2.6 Let a, z be two points in γ sufficiently close to each other, call ρ = �(az),
and let w ∈ az� be a point closer to a than to z. Then, there is C = C(M, α) such that

wÛza ≤ Cρ
α

3−2α .

Proof Having a point z ∈ γ and some ρ > 0 very small, we can define the points
x, x̄, y, ȳ as for Lemma 2.2, and by symmetry we can think a ∈ x x̄

�
. We now apply

Lemma 2.5 two times, once with p1 = x and q1 = z, and once with p2 = y and
q2 = z. Thus, we obtain the validity of (2.11) for the two angles θ̄1 and θ̄2; we claim
that

θ̄ := max
{
θ̄1, θ̄2

} ≤ Cρ
α

3−2α . (2.14)

Let us first see that this estimate implies the thesis. If the point w is closer to x than
to z, then by definition and by (2.14)

wÛzx = θ1(w) ≤ θ̄1 ≤ Cρ
α

3−2α .

As a consequence, by (2.2) we have

wÛza ≤ wÛzx + xÛza ≤ Cρ
α

3−2α + 2
l

ρ
≤ Cρ

α
3−2α + Cρ

α
2−α ≤ Cρ

α
3−2α , (2.15)

and the thesis is obtained. Suppose, instead, that w is closer to z than to x ; since by
assumption it is anyhow closer to a than to z, and �(ax) ≤ l 
 �(wz) by (2.2), again
using (2.14) we have

wÛzx ≤ 2wÛxz = 2θ1(w) ≤ Cρ
α

3−2α ,

then the very same argument as in (2.15) again shows the thesis. Summarizing, we
have proved that (2.14) implies the thesis, and hence to conclude we only have to show
the validity of (2.14).

We argue as in Lemma 2.2, defining the competitor set F which has ∂F = ∂E\xy�∪
xz ∪ zy as boundary. Notice that this is very similar to what we did in Definition 2.1,
the only difference being that we are putting the two segments xz and zy instead
of the segment xy. The very same argument that we presented after Definition 2.1
ensures that the set F is well defined. As in Lemma 2.2, then, we now have to evaluate
|V f (F) − V f (E)| and Pf (F) − Pf (E). Concerning the first quantity, we can get an
estimate which is much better than (2.4), thanks to the definition of θ̄1 and θ̄2.

Let us be more precise. The curve xz� is composed by two parts; the first one, x x̄
�
,

by definition remains within a distance of at most �(x x̄
�

) from x . The second one, x x̄
�
,
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4ρ tan θ̄1zx

x̄

Fig. 3 Constraint on the position of the curve xz�

is contained in the shaded region of Fig. 3, which is the intersection between the ball
Bρ(z) and the region of the points w such that min{wÛxz, wÛzx} ≤ θ̄1. Repeating the
same argument with θ̄2, y and ȳ, and recalling that l = �(x x̄

�
) + �(y ȳ

�
), we have

|V f (E) − V f (F)| ≤ 9Mρ2(θ̄1 + θ̄2) + πMl2 ≤ 18Mρ2θ̄ + πMl2 .

Let us now observe that by (2.2) one has l2 ≤ Cρ
4

2−α , and then

l2 ≤ ρ2θ̄ ⇐� Cρ
4

2−α ≤ ρ2θ̄ ⇐⇒ θ̄ ≥ Cρ
2α
2−α .

Then there are two possibilities: either θ̄ ≤ Cρ
2α
2−α , so we already have the validity

of (2.14) and the proof is concluded, or θ̄ ≥ Cρ
2α
2−α , and then the last two estimates

imply

|V f (E) − V f (F)| ≤ 22Mρ2θ̄ .

Therefore, using Theorem 1.2 exactly as in the proof of Lemma 2.2, we find a set F̃
having the same volume as E (and then more perimeter) satisfying

Pf (E) ≤ Pf (F̃) ≤ Pf (F) + C
(
22Mρ2θ̄

) 1
2−α = Pf (F) + Cρ

2
2−α θ̄

1
2−α ,

from which we directly get

� f (xy�) − � f (xz) − � f (zy) = Pf (E) − Pf (F) ≤ Cρ
2

2−α θ̄
1

2−α . (2.16)

We now use the fact that (2.11) is valid both with θ̄1 and with θ̄2, as pointed out before.
One has to distinguish three possible cases.

Since ρ
α

2−α ≤ ρ
α

3−2α , if both θ̄1 and θ̄2 are smaller thanCρ
α

2−α then so is θ̄ , so (2.14)
is true and there is nothing more to prove.
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Suppose now that both θ̄1 and θ̄2 are bigger than Cρ
α

2−α . In this case, (2.11) gives

� f (xy
�) − � f (xz) − � f (zy) = (

� f (xz
�) − � f (xz)

) + (
� f (zy

�) − � f (zy)
)

≥ ρ

12M

(
θ̄21 + θ̄22 ) ≥ ρ

12M
θ̄2 ,

which together with (2.16) gives

ρθ̄2 ≤ Cρ
2

2−α θ̄
1

2−α ,

which is equivalent to (2.14), and then also in this case the proof is completed.
Finally, we have to consider what happens when only one between θ̄1 and θ̄2 is

bigger than Cρ
α

2−α ; just to fix the ideas, we can suppose that θ̄1 ≥ Cρ
α

2−α ≥ θ̄2, hence
in particular θ̄ = θ̄1. Applying then (2.11), this time we find

� f (xy
�) − � f (xz) − � f (zy) = (

� f (xz
�) − � f (xz)

) + (
� f (zy

�) − � f (zy)
)

≥ ρ

12M
θ̄2 − Cρ

2+α
2−α ≥ ρ

24M
θ̄2,

where the last inequality is true precisely because θ̄ ≥ Cρ
α

2−α . Exactly as before,
putting this estimate together with (2.16) implies (2.14), and then also in the last
possible case we obtain the proof. ��

The last lemma is exactly what we needed to obtain the proof of our main Theo-
rem A.

Proof (of Theorem A) Let E be an isoperimetric set for the C0,α density f . To show
that ∂E is of class C1, α

3−2α , let us select two generic points z, a ∈ ∂E such that
ρ = �(za) 
 1. We want to show that

wÛza ≤ Cρ
α

3−2α ∀w ∈ az�, (2.17)

as this readily implies the thesis. Indeed, suppose that (2.17) has been established,
and call ν ∈ §1 the direction of the segment az; since we already know that ∂E is of
class C1 by Theorem 1.3, considering points w ∈ az� which converge to z we deduce
by (2.17) that |ν −νz | ≤ Cρ

α
3−2α , where νz ∈ §1 is the tangent vector to ∂E at z. Since

the situation of a and of z is perfectly symmetric, the same argument also shows that
|ν − νa | ≤ Cρ

α
3−2α , thus by triangular inequality we have found

|νa − νz | ≤ Cρ
α

3−2α .

Since a and z are two generic points having distance ρ, and since C only depends on
M and on α, this estimate shows that ∂E is of class C

α
3−2α ; therefore, the proof will

be concluded once we show (2.17). Notice that (2.17) simply says that the estimate of
Lemma 2.6 holds also without requiring the point w to be closer to a than to z.
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To do so, let us recall that �(az�) ≤ 2ρ by (2.6), let us write a0 = a, and let us define
recursively the sequence a j by letting a j+1 ∈ â j z be the point such that

�(ă j+1z) = 2

3
�(â j z) .

Observe that a j is a sequence inside the curve az�, which converges to z, and moreover
for every j ∈ N one has

�(a j z) ≤ �(â j z) =
Å

2

3

ã j

�(az�) ≤ 2
Å

2

3

ã j

ρ . (2.18)

Let us now take a point w ∈ ȧ j a j+1; again recalling (2.6), by the definition of the
points a j it is obvious that w is closer to a j than to z; as a consequence, Lemma 2.6
applied to a j and z ensures that

wÛza j ≤ C�(a j z)
α

3−2α ≤ C κ jρ
α

3−2α ∀w ∈ ȧ j a j+1 ,

where we have also used (2.18), and where κ = (2/3)
α

3−2α < 1. Keeping in mind the
obvious fact that a j+1 ∈ ȧ j a j+1 for every j , and then that the above estimate is valid
in particular for the point a j+1, we deduce that for the generic w ∈ ȧ j a j+1 it holds

wÛza = wÛza0 ≤ wÛza j +
j−1∑
i=0

ai+1Ûzai ≤ Cρ
α

3−2α

j∑
i=0

κ i ≤ Cρ
α

3−2α ,

where the last inequality is true because κ = κ(α) < 1. We have then established
(2.17), and the proof is concluded. ��
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