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Abstract We introduce dynamic asymptotic dimension, a notion of dimension for
actions of discrete groups on locally compact spaces, and more generally for locally
compact étale groupoids.We study our notion forminimal actions of the integer group,
its relationwith conditions used byBartels, Lück, andReich in the context of controlled
topology, and its connections with Gromov’s theory of asymptotic dimension. We
also show that dynamic asymptotic dimension gives bounds on the nuclear dimension
of Winter and Zacharias for C∗-algebras associated to dynamical systems. Dynamic
asymptotic dimension also has implications for K -theory andmanifold topology: these
will be drawn out in subsequent work.

1 Introduction

The main aim of this paper is to introduce dynamic asymptotic dimension, a property
of topological dynamical systems. Precisely, we are interested in actions of discrete
groups on locally compact spaces: throughout the paper, we say ‘� ü X is an action’
as shorthand for saying that � is a discrete group acting by homeomorphisms on a
locally compact Hausdorff topological space X .
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786 E. Guentner et al.

To give an idea of our main definition, we will state it here in a specialized form.
First, we need a preliminary on ‘broken’ orbit equivalence relations.

Definition 1.1 Let � ü X be an action. For a subset E of � and an open subset U of
X , let ∼U,E be the equivalence relation on U generated by E : precisely, for x, y ∈ U ,
x ∼U,E y if there is a finite sequence

x = x0, x1, . . . , xn = y

of points in U such that for each i ∈ {1, . . . , n} there exists g ∈ E ∪ E−1 ∪ {e} such
that gxi−1 = xi .

Note that if U = X then ∼U,E is just the equivalence relation of being in the same
orbit for the subgroup 〈E〉 of � generated by E . However, if U is a proper subset of
X then ∼U,E equivalence classes will generally be smaller than the intersection of U
with the 〈E〉-orbits.

Here is our main definition.

Definition 1.2 Let � ü X be an action, where we assume for simplicity that X is
compact, and the action is free.1 The dynamic asymptotic dimension of � ü X is the
smallest d ∈ N with the following property: for each finite subset E of �, there is
an open cover {U0, . . . , Ud} of X such that for each i ∈ {0, . . . , d}, the equivalence
relation ∼Ui ,E on Ui has uniformly finite equivalence classes.

Heuristically, we think that � ü X has dynamic asymptotic dimension at most d,
if for any (large) finite subset E of �, the action can be ‘broken’ into at most d + 1
parts, and on each part the ‘action generated by E’ has only ‘finite complexity’. We
generalize this definition to non-free actions on non-compact spaces in Definition 2.1
below, and then to locally compact, Hausdorff, étale groupoids in Definition 5.1.

Our main motivation for introducing this property is its implications for K -theory
of associated algebras (and more general categories) and thus for manifold topology.
These implications come via the use of controlled cutting-and-pasting, or Mayer–
Vietoris, techniques pioneered by the third author [44] in the setting of asymptotic
dimension, and developed in a more general context by the first and third authors
in collaboration with Tessera [15]. Other important motivations come from work of
Farrell and Jones [12], of Bartels, Lück and Reich [3], and of Bartels and Lück [2] in
controlled topology. We will explore these aspects in other work [16].

We believe however, that dynamic asymptotic dimension will admit many interest-
ing examples, and be useful in other contexts: it is the purpose of this paper to explore
some of these other aspects. Specifically, we will develop some of the main motivating
examples and discuss some consequences for the structure theory of C∗-algebras.

1.1 Examples

Our main theorems on examples are as follows.

1 This means that if gx = x for some g ∈ � and x ∈ X , then g = e is the identity element of �.
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Dynamic asymptotic dimension... 787

Theorem 1.3 (i) Let Z ü X be a free, minimal Z action on a compact space. Then
the dynamic asymptotic dimension of Z ü X is one.

(ii) Let � ü X be an action satisfying a ‘Bartels–Lück–Reich type condition of
dimension d’ for the family of finite subgroups. Then the dynamic asymptotic
dimension of � ü X is at most d.

(iii) The canonical action � ü β� of any (countable) discrete group on its Stone–
Čech compactification is equal to the asymptotic dimension of � in the sense of
Gromov. More generally, if X is a bounded geometry coarse space and G(X)

the associated coarse groupoid, then the dynamic asymptotic dimension of G(X)

equals the asymptotic dimension of X.
(iv) Let � be a countable group with asymptotic dimension d. Then � admits a free

minimal action on the Cantor set with dynamic asymptotic dimension at most d.

See Theorems 3.1, 4.7, 6.4 and Corollary 6.6 below for parts (i), (ii), (iii) and (iv)
respectively (and more explanation of the terminology involved in each part).

Part (i) says that the actions that are perhaps most interesting from the point of
view of classical topological dynamics fall under the purview of dynamic asymptotic
dimension in a natural and simple way. On the other hand, part (iv) implies that many
interesting classes of groups—for example, word hyperbolic groups [32], CAT(0)
cubical groups [43], lattices in Lie groups, and many solvable groups [4]—admit at
least some actions with finite dynamic asymptotic dimension. Parts (ii) and (iii) were
our principal motivations, as they give the connections to controlled K -theory and
controlled topology which underlie our work in those directions.

1.2 Implications

The main implications we explore in this paper are to the structure theory of C∗-
algebras: in particular to nuclear dimension in the sense of Winter and Zacharias [42],
a property that has been very important in Elliott’s classification program [9] and
elsewhere. The main result we have here is Theorem 8.6 below: this says that under
a minor technical hypothesis, the nuclear dimension of the reduced C∗-algebra of a
free étale groupoid can be bounded in terms of the dynamic asymptotic dimension of
the groupoid, and the covering dimension of the groupoid’s unit space. Rather than
repeat Theorem 8.6 here, we just give some corollaries. See Sect. 8 for more details.

Theorem 1.4 (i) Let Z ü X be a free, minimal action on a second countable com-
pact space of covering dimension N. Then the nuclear dimension of the crossed
product C(X) � Z is at most 2N + 1.

(ii) Let X be a bounded geometry coarse space. Then the nuclear dimension of the
uniform Roe algebra C∗

u (X) is at most the asymptotic dimension of X.
(iii) Any countable group � admits a free, minimal action on the Cantor set X such

that the associated reduced crossed product C(X) �r � has nuclear dimension
at most the asymptotic dimension of �.

Parts (i) and (ii) are originally due to Toms and Winter [39, Section 3] and Winter
and Zacharias [42, Section 8] respectively; moreover, our proofs are in some sense

123



788 E. Guentner et al.

close to the original ones (if heavily disguised). Nonetheless, we think there is some
interest in explicitly bringing these results under one dynamical framework. The final
result seems to be new, and says that ‘many’ groups admit simple crossed products
with finite nuclear dimension. Thanks to spectacular recent advances in C∗-algebra
theory [10,38], it seems that one now knows that this implies these crossed products
fall under the purview of the Elliott program.

1.3 Outline of the paper

In Sect. 2 we introduce our main definition in the case of group actions, and mention
some basic consequences. In Sect. 3 we study minimal Z actions on compact spaces
using ideas of Putnam [27]. In Sect. 4 we discuss the connection to the work of Bartels,
Lück, and Reich [1,3] in controlled topology. In Sect. 5, we extend the main definition
to étale groupoids with applications to coarse geometry in the next section in mind.
In Sect. 6 we explore the connections to coarse geometry, and use this to construct
the examples in part (iv) of Theorem 1.3, as well as to clarify the relationship of the
Bartels–Lück–Reich conditions to asymptotic dimension. Section 7 is devoted to a
technical construction of almost invariant partitions of unity. Finally, Sect. 8 discusses
the implications to nuclear dimension of groupoid C∗-algebras, and in particular all
the parts of Theorem 1.4.

We have tried to write the paper in a ‘modular’ way, so that sections can be read
independently of each other to a large extent. In particular, groupoids are notmentioned
until Sect. 5, and (noncommutative) C∗-algebras are not mentioned before Sect. 8.

2 Dynamic asymptotic dimension for group actions

In this section, we introduce our main definition.

Definition 2.1 An action � ü X has dynamic asymptotic dimension d if d is the
smallest natural number with the following property: for any compact subset K of X
and finite subset E of � there are open subsets U0, . . . , Ud of X that cover K such
that for each i ∈ {0, . . . , d}, the set

⎧
⎨

⎩

there exist x ∈ Ui and gn, . . . , g1 ∈ Esuch that
g ∈ � g = gn · · · g2g1 and for all k ∈ {1, . . . , n},

gk · · · g1x ∈ Ui

⎫
⎬

⎭
(2.1)

is finite.
The action has finite dynamic asymptotic dimension if it has dynamic asymptotic

dimension d for some d, and infinite dynamic asymptotic dimension otherwise.

Remark 2.2 (i) An action � ü X on a compact space X has dynamic asymptotic
dimension 0 if and only if � is locally finite, i.e., any finite subset of � generates
a finite subgroup.

(ii) Recall that an action � ü X is proper if for any compact subset K of X , the set
{g ∈ � | gK ∩ K 	= ∅} is finite. It is locally proper if every finitely generated
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Dynamic asymptotic dimension... 789

subgroup of � acts properly on X . Point (i) says that an action on a compact
space has dynamic asymptotic dimension zero if and only it is locally proper.
In general, it is still true that local properness implies dynamic asymptotic dimen-
sion zero: indeed, let a finite E ⊆ � and compact K ⊆ X be given. Let U0 be
any relatively compact open set that contains K (such a U0 exists as X is locally
compact). Then if 〈E〉 is the subgroup of � generated by E , the set in line (2.1)
above is contained in

{g ∈ 〈E〉 | g−1U0 ∩ U0 	= ∅}

and is thus finite by local properness. The converse is false, however: for example,
the action of Z on R

2 considered in [22, Chapter 5, Example 8.3] has dynamic
asymptotic dimension zero but is not (locally) proper. It is perhapsmost natural to
characterize dynamic asymptotic dimension zero actions in terms of groupoids:
see Example 5.3 below.

(iii) If an action has finite dynamic asymptotic dimension, then all point stablizers
must be locally finite. In particular, an action of a torsion free group with finite
dynamic asymptotic dimension is free.

(iv) If� ü X is a free action with X compact, then Definition 2.1 above is equivalent
to Definition 1.2 from the introduction.
To see this, assume first that � ü X satisfies the condition in Definition 2.1, and
let a finite subset E of � be given. Take K = X , and a cover U0, . . . , Ud as in
Definition 2.1 for this K and E . Then if Fi is the finite set in line (2.1), all ∼Ui ,E

equivalence classes are contained in Fi · x for some x , and thus have uniformly
bounded finite cardinalities.
Conversely say a finite subset E of � is given and {U0, . . . , Ud} is a cover of
X with the properties in Definition 1.2, so in particular all ∼Ui ,E equivalence
classes have cardinality at most some integer N . Then each of the sets Fi in
line (2.1) is contained in (E ∪ E−1 ∪ {e})N , and thus has cardinality at most
(2|E | + 1)N .

(v) See Corollary 7.2 below for a stronger-looking equivalent definition of dynamic
asymptotic dimension in terms of almost-invariant partitions of unity.

3 Example: minimal Z-actions

In this section we give our first non-trivial examples: minimal actions ofZ on compact
spaces (recall that an action � ü X is minimal if all �-orbits are dense).

The proof is inspired by ideas of Ian Putnam that were originally used to build
interesting AF-algebras associated to minimal actions of Z on the Cantor set [27] (and
subsequently much developed by Putnam and others). We would like to thank Prof.
Putnam for suggesting that there might be a connection between his work and our
notion of dynamic asymptotic dimension.

Theorem 3.1 Let Z ü X be a minimal Z action on an infinite compact space X.
Then the dynamic asymptotic dimension of the action is one.
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790 E. Guentner et al.

Proof AsZ is not locallyfinite,Remark2.2 part (i) implies that the dynamic asymptotic
dimension of Z ü X is not zero, so it suffices to bound the dynamic asymptotic
dimension above by one.

Let a finite subset E of Z be given; we may as well assume that E is an ‘interval’
[−N , N ] ∩ Z for some N ∈ N. As the action is minimal and X is infinite, the action
is free. It follows that we can find a non-empty open subset U of X such that

n · U ∩ U = ∅

for all n ∈ [−5N , 5N ]\{0}. Let V be any non-empty open subset of X such that
V ⊆ U . Define

U0 :=
N⋃

n=−N

n · U, U1 := X \
N⋃

n=−N

n · V .

Clearly {U0, U1} is an open cover of X . To finish the proof, it suffices to show that the
sets

⎧
⎨

⎩

there exist x ∈ Ui and n1, . . . , nm ∈ E such that
n ∈ Z n = n1 + · · · + nm and for all k ∈ {1, . . . , m},

(nk + · · · + n1)x ∈ Ui

⎫
⎬

⎭
(3.1)

are finite for i = 0, 1.
First look at U0. We claim that in this case the set in line (3.1) is contained in

[−3N , 3N ]. Indeed, assume for contradiction that there exist n1, . . . , nm ∈ [−N , N ]
with |n1 + · · · + nm | > 3N and x ∈ U0 with (nk + · · · + n1)x ∈ U0 for all k ∈
{1, . . . , m}. Write x = n0x0 for some x0 ∈ U and n0 ∈ [−N , N ] (such exist by
definition of U0). As each nk is in [−N , N ] and |nm + · · · + n1| > 3N , there must
exist k such that 3N ≥ |nk + · · · + n1| > 2N , whence

4N ≥ |nk + · · · + n1 + n0| > N . (3.2)

As

(nk + · · · + n1)x = (nk + · · · + n1 + n0)x0

is in U0, there are n′
0 ∈ [−N , N ] and x ′

0 ∈ U with

(nk + · · · + n1 + n0)x0 = n′
0x ′

0,

whence

(nk + · · · + n1 + n0 − n′
0)x0 = x ′

0

Hence as x0 and x ′
0 are in U we have that

(nk + · · · + n1 + n0 − n′
0) · U ∩ U 	= ∅.
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However, line (3.2) implies that 5N ≥ |nk +· · ·+n1+n0−n′
0| > 0, so this contradicts

that U ∩ n · U = ∅ for n ∈ [−5N , 5N ]\{0}.
We now look at the set in line (3.1) for U1. We first claim that there exists M ∈ N

such that for all x ∈ U1 there exists m− ∈ [−M, 0) and m+ ∈ (0, M] with m−x ∈ V
and m+x ∈ V . Indeed, for each M ∈ N define

WM :=
{

x ∈ X there are m− ∈ [−M, 0), m+ ∈ (0, M]
such that m−x, m+x ∈ V

}

.

It follows from the fact that V is open that each WM is open. Moreover, minimality
of the action implies that for each x ∈ X , the ‘half-orbits’ N · x and (−N) · x are
dense: if not, the limit points of one of these sets would be a closed Z-invariant subset.
Hence the fact that V is open implies that each x ∈ X is in WM for some M , and so
{WM | M ∈ N} is an open cover of X . Compactness of X and the fact that WM1 ⊆ WM2

for M1 ≤ M2 implies that X is contained in WM for some M , and this implies the
claim.

To complete the proof, wewill now show that forU1, the set in line (3.1) is contained
in [−M − N , M + N ]. Assume for contradiction this fails, so there exist n1, . . . , nm ∈
E with |n1 + · · · + nm | > M + N and x ∈ U1 such that (n1 + · · · + nk)x is in U1
for all k ∈ {1, . . . , m}. Assume for simplicity that n1 + · · · + nm > M + N ; the case
n1 + · · · nm < −M − N can be handled similarly. Let m+ ∈ (0, M] be such that
m+x ∈ V . Then there exists k ∈ {1, . . . , m} with (n1 + · · · + nk) − m+ ∈ [−N , N ].
In particular,

(n1 + · · · + nk)x = (m+ + n)x

for some n ∈ [−N , N ]. However as m+x is in V , (m+ + n)x is in X\U1 by definition
of U1, which is a contradiction. ��

4 Example: Bartels–Lück–Reich conditions

Our main goal in this section is to study some properties of group actions that were
important in the work of Bartels et al. [1,3] on the Farrell–Jones conjecture and show
that that they imply that the action has finite dynamic asymptotic dimension.

We will need to establish come conventions on simplicial complexes. Let V be a
set, thought of a discrete topological space. The space of probability measures on V
is

P(V ) := {μ ∈ l1(V ) | μ(v) ≥ 0 for all v ∈ V and ‖μ‖1 = 1},

equipped with the metric

d

(
∑

v∈V

tvv,
∑

v∈V

svv

)

:=
∑

v∈V

|tv − sv|.
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792 E. Guentner et al.

coming from the l1-norm. Write Pn(V ) for the subset of P(V ) consisting of measures
supported on at most n + 1 points ad define

Pf (V ) :=
∞⋃

n=0

Pn(V )

to be the subspace of finitely supported probability measures. Elements of P(V ) will
usually be written as formal sums

μ =
∑

v∈V

tvv,

where μ(v) = tv is in [0, 1] and∑v tv = 1. We identify V with P0(V ) in the obvious
way.

A simplicial complex is a subspace C of some Pf (V ) as above such that V ⊆ C ,
and with the property that whenever

μ =
∑

v∈V

tvv

is an element of C and S = {v ∈ V | tv 	= 0} is the support of μ, then
{
∑

v∈V

tvv ∈ Pf (V )

∣
∣
∣ tv = 0 for v /∈ S

}

is contained in C . The vertex set of C is V . A simplicial complex C is equipped with
the restriction of the l1-metric defined above. If C is a simplicial complex and n ∈ N,
an n-simplex in C is a subset that is equal to the convex hull of some set of n + 1
vertices. The n-skeleton of C is defined to be Cn := C ∩ Pn(V ) (so in particular
C0 = V and C−1 = ∅). The dimension of C is the smallest d such that C = Cd (or
infinity if no such d exists).

If � is a discrete group and C a simplicial complex with vertex set C , then a
simplicial action of � on C is an action that is induced from some action of � on V
via the formula

g

(
∑

v∈V

tvv

)

=
∑

v∈V

tv(gv).

Note that a simplicial action is isometric. All actions on simplicial complexes will be
assumed simplicial.

We will need the following technical lemma at a couple of points below: roughly, it
says that simplicial complexes admit covers with rather rigid combinatorial properties.

Lemma 4.1 Let C be a simplicial complex of dimension at most d and equipped with
a simplicial action by �. For a subset A of C and δ > 0, write

Nδ(A) := {x ∈ C | d(x, A) < δ}
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Dynamic asymptotic dimension... 793

for the δ-neighbourhood of A. For each i ∈ {0, . . . , d} define

Vi := N 1
3 10

−i (Ci )\N 5
2 10

−i (Ci−1).

Then the collection {V0, . . . , Vd} is an open cover of C by �-invariant subsets.
Moreover, for each i ∈ {0, . . . d} and i-simplex �, define

Vi � := N 1
3 10

−i (�)\N 5
2 10

−i (Ci−1).

Then

Vi =
⋃

� an i-simplex

Vi �,

the � action permutes the distinct Vi �, and for distinct i-simplices � and �′,

d(Vi �, Vi �′) ≥ 1

3
10−i ≥ 1

3
10−d . (4.1)

Proof Clearly each Vi is open, and each is �-invariant as � acts simplicially (whence
it preserves each i-skeleton and the metric). To show that {V0, . . . , Vd} covers C , it
suffices to show that Ci ⊆ V0 ∪ · · · ∪ Vi for each i , which is clear by induction.
The decomposition Vi = ⋃� an i-simplex Vi � is also clear as Ci = ⋃� an i-simplex �.
Moreover, as the action is simplicial � permutes the sets Vi �.

Finally, say for contradiction that �, �′ are distinct i-simplices such that
d(Vi �, Vi �′) < 1

310
−i . Then there exists μ ∈ Vi � such that d(μ,�′) < 2

310
−i .

Note that

1

3
10−i > d(μ,�) ≥

∑

v /∈�

tv, and
2

3
10−i > d(μ,�′) ≥

∑

v /∈�′
tv

whence

T :=
∑

v /∈�∩�′
tv ≤

∑

v /∈�

tv +
∑

v /∈�′
tv < 10−i .

Hence in particular T < 1 and so we may define

ν :=
∑

v∈�∩�′

tv
1 − T

v,

which is in Ci−1 as � and �′ are distinct. Note that

d(μ, Ci−1) ≤ d(μ, ν) =
∑

v∈�∩�′
tv
( 1

1 − T
− 1
)

+
∑

v /∈�∩�′
tv = 2T < 2 · 10−i .
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794 E. Guentner et al.

However, as μ is in Vi � we have μ /∈ N 5
2 10

−i (Ci−1)
, and putting this together with the

line above gives

5

2
10−i < d(μ, Ci−1) < 2 · 10−i ,

which is the desired contradiction. ��
A family of subgroups of a discrete group � is a collection of subgroups satisfying

the following conditions:

• F is closed under conjugation;
• F is closed under taking subgroups;
• F is closed under taking finite index supergroups.

The examples that are important for applications are the family of finite subgroups,
and that of virtually cyclic subgroups.

Definition 4.2 Let C be a simplicial complex equipped with a simplicial action of a
discrete group �. LetF be a family of subgroups of � satisfying the conditions above.
Then C is called a (�,F)-complex if the stabilizer of every vertex in C is an element
of F .

We will only use the following definition in the case that Y is a simplicial complex
equipped with a simplicial action of �.

Definition 4.3 Let X be a topological space and Y a metric space, and assume that �
is a discrete group acting on X by homeomorphisms, and on Y by isometries. Let E
be a subset of � and ε > 0. A map f : X → Y is (E, ε)-equivariant if

sup
x∈X

dY ( f (gx), g f (x)) < ε.

for all g ∈ E .

As the last of our preliminaries before getting to the conditions of Bartels–Lück–
Reich, we have another technical lemma.

Lemma 4.4 Let f : X → C be a continuous (E, ε)-equivariant map as in Definition
4.3, where X is compact and E is finite. Then there exists a finite subset S of the vertex
set of C and an (E, ε)-equivariant map f ′ : X → C such that f ′(X) ⊆ P(S) ∩ C.

Proof Note that for any fixed δ > 0, the collection

{Nδ(P(S) ∩ C) | S a finite set of vertices}

is an open cover of C . It follows that if K ⊆ C is compact, then for any δ > 0 there
exists a finite subset S of V such that K ⊆ Nδ(P(S) ∩ C). Define

δ := min
{
1,

1

2
min
g∈E

{
ε − sup

x∈X
dC ( f (gx), g f (x))

}}
> 0
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Dynamic asymptotic dimension... 795

and let S be a finite subset of V such that f (X) ⊆ Nδ/2(P(S) ∩ C). We may write
f (x) =∑v∈V tv(x)v where each tv : X → [0, 1] is a continuous function. Note that
for any μ =∑v∈S svv ∈ P(S),

d(μ, f (x)) =
∑

v∈S

|sv − tv(x)| +
∑

v /∈S

tv(x) ≥
∑

v /∈S

tv(x).

Taking the infimum over all such μ and using that f (X) ⊆ Nδ/2(P(S) ∩ C) gives

∑

v /∈S

tv(x) < δ/2.

Hence in particular the formula T (x) := ∑v∈S tv(x) defines a continuous function
T : X → (1 − δ/2, 1]. Define

f ′(x) :=
∑

v∈S

tv(x)

T (x)
v,

so f ′ : X → C ∩ P(S) is a continuous function. Then for any x ∈ X ,

dC ( f (x), f ′(x)) =
∑

v∈S

tv(x)
( 1

T (x)
− 1
)

+
∑

v /∈S

tv(x) = 2(1 − T (x)) < δ.

It follows that f ′ : X → C has the desired properties. ��
We now come to the conditions that are our main object of study in this section.

The first condition in the following proposition is essentially taken from Bartels’
survey paper [1, Theorem A, page 9], and the second from the paper of Bartels–Lück–
Reich on equivariant covers of hyperbolic groups [3, Theorem 1.2]. The result is very
closely connected to [37, Lemma 4.4], and is to some extent already implicit in [3];
nonetheless, we do not think a complete proof exists anywhere in the literature, so
give one here.

Proposition 4.5 Say � ü X is an action with X compact, and F is a family of
subgroups of �. The following are equivalent.

(i) There exists d such that for all finite E ⊆ � and all ε > 0 there exists a (�,F)-
complex C of dimension at most d and and a continuous (E, ε)-equivariant map

f : X → C.

(ii) There exists d such that for each finite subset E of � there exists a � equivariant
open cover U of X × � such that the following hold.
(A) For every U ∈ U and g ∈ �, gU = U, or gU ∩ U = ∅.
(B) For every U ∈ U , {g ∈ � | gU = U } ∈ F .
(C) The multiplicity of U is at most d + 1.
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(D) U/� is finite.
(E) For every g ∈ � and x ∈ X there exists U ∈ U such that {x} × gE ⊆ U.

Proof Assume condition (i). Let ε = 1
610

−d . Fix a finite subset E of �, and let C , f
be as in condition (i) for this choice of E and ε. Using Lemma 4.4, we may assume
that the image of f is contained in P(S) ∩ C for some finite subset S of the vertex set
of C . Define

φ : X × � → C ∩ P(� · S), (x, g) �→ g f (g−1x).

Then φ is equivariant, and for g, h ∈ � with g−1h ∈ E satisfies

d(φ(x, g), φ(x, h)) = d(g f (g−1x), h f (h−1x))

= d( f (g−1x), g−1h f (h−1x))

< ε. (4.2)

Now, let {V0, . . . , Vd} be the cover of C given by Lemma 4.1. With notation from
Lemma 4.1, define

U := {φ−1(N 1
6 10

−d (Vi �)) | i ∈ {0, . . . , d} and � an i-simplex}.

The open cover U of X × � is equivariant as it is the pullback of an equivariant
cover by an equivariant map. It satisfies condition (A) as � permutes the disjoint sets
N 1

6 10
−d (Vi �) for each fixed i ; it satisfies condition (B) as C is a (�,F)-complex; it

satisfies condition (C) as each point in C can intersect at most one N 1
6 10

−d (Vi �) for
each i ; and it satisfies condition (D) as S is finite. Moreover, as {V0, . . . , Vd} covers
C , the Lebesgue number of the cover

V := {N 1
6 10

−d (Vi �) | i ∈ {0, . . . , d} and � an i-simplex}.

of C is at least ε = 1
610

−d . Hence the condition

g−1h ∈ E ⇒ d(φ(x, g), φ(x, h)) < ε

from line (4.2) above implies for any x and g there exists V ∈ V such that

φ({x} × gE) ⊆ V ;
this implies condition (E) for U .

Now assume condition (ii). Let ε, E be given; replacing E by E ∪ E−1 ∪ {e}, we
may assume that E is symmetric and contains the identity element. Let d be as in
(ii), and take a cover U of X × � as in (ii) for the finite set En = {g ∈ � | g =
g1 . . . gn for some g1, . . . , gn ∈ E} where n is such that

(2d + 2)(4d + 6)

n
< ε.
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Let C be the nerve of this cover: precisely, C is the subcomplex of P(U) consisting
of the union of the convex hulls of all subsets {U0, . . . , Um} of the vertex set U such
that
⋂m

i=0 Ui 	= ∅. Note that C is a (�,F)-complex by conditions (A) and (B); it is
moreover of dimension at most d by (C).

The next part of the argument is a ‘topological version’ of [7, Proposition 4.1]. For
each U ∈ U and each m ∈ {0, . . . n} define the Em-interior of U to be

U (m) := {(x, g) ∈ U | {x} × gEm ⊆ U }.

This gives rise to a nested sequence of open sets

U (n) ⊆ U (n−1) ⊆ · · · ⊆ U (1) ⊆ U (0) = U.

Note that for each m ∈ {0, . . . , n}, {U (m)}U∈U is an open cover of X ×� by condition
(E). Let {VU }U∈U be an open cover of X × � such that for each U , VU ⊆ U (n); as
X ×� is normal, standard arguments in general topology imply that such a ‘shrunken’
cover exists.

Fix U ∈ U for the moment. Define V (n) := VU . Define

W (n) := {(x, gh) ∈ X × � | (x, g) ∈ V (n), h ∈ E}

and note that if (x, g) is in W (n), then (x, gh) is in V (n) for some h ∈ E , and thus

{x} × gEn−1 ⊆ {x} × ghEn ⊆ U.

This says that W (n) ⊆ U (n−1), and thus by normality of X × � there is an open set
V (n−1) with

W (n) ⊆ V (n−1) ⊆ V (n−1) ⊆ U (n−1).

Now set

W (n−1) := {(x, gh) ∈ X × � | (x, g) ∈ V (n−1), h ∈ E},

and similarly we have W (n−1) ⊆ U (n−2) whence there is an open set V (n−2) with

W (n−1) ⊆ V (n−2) ⊆ V (n−2) ⊆ U (n−2).

Continuing this process gives a nested sequence

V (n) ⊆ V (n−1) ⊆ · · · ⊆ V (1) ⊆ V (0)

of open sets such that: for each m ∈ {1, . . . , n}, V (m) ⊆ V (m−1); for each m ∈
{0, . . . , n}, V (m) ⊆ U (m); and for each m ∈ {1, . . . , n},

{(x, gh) ∈ X × � | (x, g) ∈ V (m), h ∈ E} ⊆ V (m−1). (4.3)
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Now, for each m ∈ {1, . . . , n}, Urysohn’s lemma implies there exists a continuous
function ψ

(m)
U : X × � → [0, 1] such that

ψ
(m)
U (V (m)) = {1} and ψ

(m)
U ((X × �)\V (m−1)) = {0}.

Define

ψU :=
n∑

m=1

ψ
(m)
U .

Note that if (x, g) ∈ V (m−1)\V (m) for some m ∈ {1, . . . , n} then ψU (x, g) ∈ [m −
1, m] and moreover ψU (x, g) = 0 whenever (x, g) /∈ V (0). Hence by line (4.3) we
have that for any (x, g) ∈ X × �

h ∈ E ⇒ |ψU (x, g) − ψU (x, gh)| ≤ 2. (4.4)

At this point, we unfix U , and define φU : X × � → [0, 1] by the formula

φU = ψU
∑

V ∈U ψV
.

As {VU }U∈U is an open cover of X × �, {φU }U∈U is a well-defined partition of unity
on X × �. Moreover, for any x ∈ X , any g, h ∈ G such that g−1h ∈ E , and any
U ∈ U we have that |φU (x, g) − φU (x, h)| is bounded above by

∣
∣
∣
ψU (x, g) − ψU (x, h)
∑

V ∈U ψV (x, g)

∣
∣
∣+ ψU (x, h)
∑

V ∈U ψV (x, h)

∣
∣
∣

∑
V ∈U ψV (x, g) −∑V ∈U ψV (x, h)

∑
V ∈U ψV (x, g)

∣
∣
∣

which in turn is bounded above by

∣
∣
∣
ψU (x, g) − ψU (x, h)
∑

V ∈U ψV (x, g)

∣
∣
∣+
∣
∣
∣

∑
V ∈U ψV (x, g) − ψV (x, h)
∑

V ∈U ψV (x, g)

∣
∣
∣.

By construction, at least one of the terms in the sum
∑

V ∈U ψV (x, g) equals n. Com-
bining this with line (4.4) and the fact that the cover has multiplicity at most d + 1
implies that the above is bounded by

2

n
+ 4(d + 1)

n
= 4d + 6

n
.

Hence for x ∈ X and g, h ∈ � with g−1h ∈ E

∑

U∈U
|φU (x, g) − φU (x, h)| <

(2d + 2)(4d + 6)

n
.

as at most 2d + 2 of the terms can be non-zero by the multiplicity restriction.
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Finally, define

f : X → C, x �→
∑

U∈U
φU (x, e)U,

which is continuous as each φU is. Note that for g ∈ E , x ∈ X ,

d( f (gx), g f (x)) =
∑

U∈U
|φU (gx, e) − φU (gx, g)| <

(2d + 2)(4d + 6)

n
< ε

by choice of n; thus we may conclude (i). ��
Definition 4.6 If an action � ü X and familyF satisfy the conditions in Proposition
4.5, we say that the action is d-BLR for F .

The following theorem shows that the conditions on an action in Proposition 4.5
imply that the action has dynamic asymptotic dimension at most d. We do not know
whether the converse is true: some evidence for a converse is provided by Corollary
6.5 below that relates the d-BLR condition and dynamic asymptotic dimension to
asymptotic dimension in the sense of coarse geometry.

Theorem 4.7 Let � ü X be an action with X compact, and let F be the family
of finite subgroups of �. If � ü X is a d-BLR action for F , then it has dynamic
asymptotic dimension at most d.

Proof Assume condition (i) in Proposition 4.5 for the family F of finite subgroups of
�. Let a finite subset E of � be given; we may assume that E contains the identity and
that E = E−1. Let ε = 1

310
−d . Then there exists a (�,F)-complex of dimension at

most d and an (E, ε)-equivariant continuous map

f : X → C

as in Definition 4.3. Using Remark 4.4, we may assume that there exists a finite subset
S of the vertex set of C such that f (X) is contained in C ∩ P(S). Define also

F := {g ∈ � | gS ∩ S 	= ∅}. (4.5)

Note that as S is finite and as the stabilizer in � of each vertex in S is finite, F is a
finite subset of �.

Now, let {V0, . . . , Vd} be the open cover of C as in Lemma 4.1; we will freely
use the notation from Lemma 4.1 in the rest of the proof. For each i ∈ {0, . . . d}
define Ui := f −1(Vi ) and for each i-simplex�, define Ui � := f −1(Vi �). Note that
{U0, . . . , Ud} is an open cover of X , and that each Ui is the disjoint union of the sets
Ui � as � ranges over all i-simplices. We claim that the following holds for any i and
i-simplex �:

x ∈ Ui �, gx ∈ Ui , g ∈ E ⇒ gx ∈ Ui g�. (4.6)
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Indeed, with notation as in the line above, we know that gx is in Ui �′ for some
i-simplex �′. As f is (E, ε)-equivariant we have

d( f (gx), g f (x)) < ε;

As g f (x) is in Vi g� and f (gx) is in Vi �′ , line (4.1) from Lemma 4.1 now forces
g� = �′ and thus gx is in Ui g� as claimed.

To complete the proof, say x ∈ Ui for some i and g = gn · · · g1 with gk ∈ E
and gk · · · g1x ∈ Ui for each k ∈ {1, . . . , n}. If x is in Ui � for some i-simplex
�, then repeated applications of line (4.6) force gx to be in Ui g�, so in particular
f (gx) ∈ Vi g� ∩ f (X). As both f (gx) and f (x) are supported on vertices in S, this
in turn forces gS ∩ S to be non-empty, and thus g is in the finite set F from line (4.5)
above. This shows that � ü X satisfies the conditions in Definition 2.1 so we are
done. ��
Remark 4.8 In earlier versions of this work, we considered the following definition.
An action � ü X with X compact is d-amenable if for all finite subsets E of � and
all ε > 0 there exists an (E, ε)-equivariant map

f : X → Pd(�).

This definition is motivated by the notion of an amenable action, which is the same
definition without the extra restriction on d. We also said the amenability dimension of
an action is the smallest d such that the action is d-amenable. This notion was used in
recent work of Szabó,Wu, and Zacharias, where they gave very interesting relations to
Rokhlin-type conditions for actions of residually finite groups: see [37], particularly
Section 4.

Clearly a d-amenable action is d-BLR; it is not difficult to see that the converse
is true for torsion free groups, but false (for example) for finite groups in general
(take X a point, and � to a finite group of cardinality larger than d). Thus in particular,
Theorem4.7 also implies that d-amenable actions have dynamic asymptotic dimension
at most d (and thus by our other results, d-amenability has consequences for nuclear
dimension).

5 Dynamic asymptotic dimension for groupoids

In this section we reformulate the definition of dynamic asymptotic dimension for
groupoids. Our main goal is to explore connections to coarse geometry in Sect. 6, but
also the extra generality seemed interesting for the results in Sect. 8.

For us, groupoids are always locally compact and Hausdorff; we generally leave
these assumptions implicit from now on. We will also assume that groupoids are
étale, but do not leave this (less standard) assumption implicit. Accessible, as well
as reasonably self-contained and concise, introductions to this class of groupoids and
their associated C∗-algebras can be found in [30, Section 2.3] and [6, Section 5.6].

We use the following notation for groupoids. A groupoid is denoted G, and its unit
space by G(0). We identify G(0) with a closed and open subspace of G in the canonical
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way. The range and source maps are denoted r, s : G → G(0). An ordered pair (g, h)

of elements from G is composable if s(g) = r(h), and the composition is written gh
in this case. The inverse of g ∈ G is denoted g−1.

Definition 5.1 LetG be an étale groupoid. Then G has dynamic asymptotic dimension
d ∈ N if d is the smallest number with the following property: for every open relatively
compact subset K of G there are open subsets U0, . . . , Ud of G(0) that cover s(K ) ∪
r(K ) such that for each i , the set {g ∈ K | s(g), r(g) ∈ Ui } is contained in a relatively
compact subgroupoid of G.

Note that we may equivalently ask that for each i , the subgroupoid Gi generated
by the set {g ∈ K | s(g), r(g) ∈ Ui } is relatively compact. It is often convenient to
note that this Gi is automatically open. This follows from the next quite general (and
presumably well-known) lemma, which will be used several times in the remainder
of the paper.

Lemma 5.2 Let G be an étale groupoid.

(i) If K , H are open (respectively compact, respectively relatively compact) subsets
of G, then

K · H := {kh ∈ G | k ∈ K , h ∈ H, s(k) = r(h)}

is open (respectively compact, respectively relatively compact).
(ii) If K ⊆ G is open, then the subgroupoid of G generated by K is also open, and

is itself an étale groupoid.

Proof For part (i), assume first that K and H are open, and let kh be a point of K H .
As G is étale there are neighborhoods V ⊆ K of k and W ⊆ H of h such that r and s
both restrict to homeomorphisms on V and W . Define V ′ := (s|V )−1(s(V ) ∩ r(W )),
W ′ := (r |W )−1(s(V ) ∩ r(W )), and

U := {k′h′ | k ∈ V ′, h ∈ W ′, s(k′) = r(h′)};

note that U is a subset of K H . As s and r both restrict to homeomorphisms on V ′
and W ′, r restricts to a homeomorphism from U to r(V ′). In particular, U contains an
open neighborhood of kh, so we are done. Assume next that K and H are compact.
It is clear from the corresponding property for K and H that any net in K · H has a
convergent subnet, so K · H is compact. Finally, assume that K and H are relatively
compact. Clearly K · H ⊆ K · H , and we have already shown that the latter set is
compact.

For (ii), note that if H is any open subset of G then

Hn := {hn · · · h1 | hk ∈ H and s(hk) = r(hk−1) for all k ∈ {1, . . . , n}}
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is open by (i). If K is open, then so too is K ∪ K −1 ∪ r(K ) ∪ s(K ) and the subgroup
generated by K is equal as a set to

∞⋃

n=1

(
K ∪ K −1 ∪ r(K ) ∪ s(K )

)n

and thus open. An open subgroupoid of an étale groupoid is easily seen to be itself
étale, so this completes the proof. ��

We give a first, easy, example: it is a groupoid analogue of Remark 2.2, parts (i)
and (ii).

Example 5.3 A groupoid is locally finite if it is the union of open, relatively compact
subgroupoids. It is not difficult to check directly from Definition 5.1 that a groupoid
has dynamic asymptotic dimension zero if and only if it is locally finite in this sense.

In particular, if G = G(0) is just a space, then G has dynamic asymptotic dimension
zero.

We now show that Definition 5.1 generalizes our earlier definition for group actions.
An action� ü X gives rise to an associated transformation groupoid ��X as follows.
To fix notation, recall that as a set � � X is defined by

� � X := {(gx, g, x) | x ∈ X, g ∈ �}.

Note that the projection onto the last two variables is a bijection from � � X to � × X ;
� � X is given the topology that makes this bijection a homeomorphism. The unit
space of G(0) is {(x, e, x) | x ∈ X} and the source and range maps are given by

r(gx, g, x) = gx, s(gx, g, x) = x .

Composition and inverse are defined by

(ghx, g, hx)(hx, h, x) = (ghx, gh, x), (gx, g, x)−1 = (x, g−1, gx)

respectively.

Lemma 5.4 An action � ü X has dynamic asymptotic dimension d in the sense of
Definition 2.1 if and only if the corresponding transformation groupoid G = � � X
has dynamic asymptotic dimension d in the sense of Definition 5.1.

Proof Say an action � ü X has dynamic asymptotic dimension d, and let K be
an open relatively compact subset of the transformation groupoid � � X . Any open
relatively compact subset of G is contained in a (relatively compact, open) set of the
form {(gx, g, x) ∈ G | x ∈ K ′, g ∈ E} for some finite subset E of � such that e ∈ E
and E = E−1, and some open relatively compact subset K ′ of X . Hence we may
assume that K has this form. Let U ′

0, . . . , U ′
d be open subsets of G(0) that cover K ′

and are such that the set
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Fi :=
⎧
⎨

⎩

there exist x ∈ U ′
i and gn, . . . , g1 ∈ E such that

g ∈ � g = gn · · · g2g1 and for each k ∈ {1, . . . , m},
gk · · · g1x ∈ U ′

i

⎫
⎬

⎭

is finite for each i . DefineUi := U ′
i ∩ K ′, soU1, . . . , Ud are open subsets of G(0) = X

that cover K ′. Then the subgroupoid of G generated by

{(gx, g, x) ∈ K | x, gx,∈ Ui }

is contained in {(gx, g, x) ∈ G | g ∈ Fi , x ∈ K ′}, and is thus relatively compact.
The converse can be proved in a very similar way. ��

6 Example: coarse spaces with finite asymptotic dimension

In this section we show that the coarse groupoid G(X) associated to a bounded geome-
try coarse space X has dynamic asymptotic dimension d if and only if X has asymptotic
dimension d. This example (in the special case X is the coarse space underlying a
group �) was our original motivation, and also motivates the terminology ‘dynamic
asymptotic dimension’.

We recall the following definition: compare for example [31, Chapter 2].

Definition 6.1 Let X be a set. A coarse structure on X is a collection E of subsets of
X × X called controlled sets such that:

(i) the diagonal {(x, x) | x ∈ X} is contained in E ;
(ii) if E is in E and F is a subset of E , then F is in E ;
(iii) if E and F are in E , then their union E ∪ F is in E ;
(iv) if E is in E then

E−1 := {(x, y) ∈ X × X | (y, x) ∈ E}

is in E ;
(v) if E and F are in E , then

E ◦ F := {(x, y) ∈ X × X | there exists z ∈ X such that

(x, z) ∈ E, (z, y) ∈ F}

is in E .
A set X equipped with a coarse structure in called a coarse space.

A coarse space X has bounded geometry if for each controlled set E the cardinals

sup
x∈X

|{y ∈ X | (x, y) ∈ E}|, sup
x∈X

|{y ∈ X | (y, x) ∈ E}|

are finite.

The reader should keep the following example of a coarse space in mind. If (X, d)

is a discrete metric space, a controlled tube is defined to be a set of the form
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E := {(x, y) ∈ X × X | d(x, y) < r}

for some r ≥ 0, and the controlled sets are defined to be those subsets E of X × X that
are contained in a controlled tube. The bounded geometry condition corresponds to
the following assumption: for any r > 0, there is a uniform bound on the cardinality
of all balls of radius r in X .

We recall the following definition, due originally to Gromov [14, Section 1.E] in the
special case that the coarse structure comes from a metric as above. See for example
[31, Chapter 9], [24, Chapter 2], or [4, Section 12] for more information.

Definition 6.2 Let X be a coarse space and E a controlled set for X . A cover U =
{Ui }i∈I of X is:

(i) E-separated if whenever i 	= j , Ui × U j ∩ E = ∅;
(ii) E-bounded if each set Ui × Ui is contained in E .

Definition 6.3 Let X be a coarse space. Then X has asymptotic dimension d if d is
the smallest number with the following property: for any controlled set E there exists
a controlled set F and a cover U = {Ui }i∈I of X such that U is F-bounded and such
that U admits a decomposition

U = U0 � · · · � Ud

such that each Ui is E-separated.

Now, let X be a bounded geometry coarse space. Skandalis et al. [35] (see also [31,
Chapter 10]) associate a groupoid to X as follows. For each controlled set E for X ,
let E denote its closure in the product β X × β X of the Stone-Čech compactification
of X with itself. Define

G(X) :=
⋃

E∈E
E,

and equip G(X) with the weak topology coming from this union, i.e., a subset U of
G(X) is open if and only if its intersection with each E is open in the natural compact
topology on E . This is a locally compact Hausdorff topology for which each E is a
compact open subset of G(X). It is not difficult to see that if (ω, η) are in E , and (η, ζ )

are in F , then (ω, ζ ) is in E ◦ F , whence it follows that G(X) inherits a groupoid
structure from the pair groupoid structure on β X × β X (its topology, however, is not
the same as the one it inherits from β X × β X ). The groupoid operations satisfy all
the necessary continuity axioms to show that G(X) is a (locally compact, Hausdorff)
étale groupoid.

Theorem 6.4 A bounded geometry coarse space X has asymptotic dimension d if and
only if the associated coarse groupoid G(X) has dynamic asymptotic dimension d.

Moreover, if X has asymptotic dimension at most d, then G(X) has dynamic asymp-
totic dimension at most d in the following slightly stronger form: for any open,
relatively compact subset K of G(X), there exists an open cover {U0, . . . , Ud} of
G(X)(0) such that the subset
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{g ∈ K | s(g), r(g) ∈ Ui }

is contained in a compact open subgroupoid of G(X).

Proof Assume first that G(X) has dynamic asymptotic dimension d. Fix a controlled
set E as in the definition of asymptotic dimension, which we may assume contains
the diagonal, and let K = E , a compact open subset of G(X) that contains the unit
space G(X)(0) = β X . Take an open cover U0, . . . , Ud of G(X)(0) = β X with the
properties in Definition 5.1 for this K , so for each i ∈ {0, . . . , d} the subgroupoid Gi

generated by the set

{g ∈ E | s(g), r(g) ∈ Ui }

is relatively compact. In particular, by definition of the topology on G(X) there exists
a controlled set F ⊆ X × X such that each Gi is contained in F ⊆ G(X). Fixing i
for the moment, let ∼ be the equivalence relation on Ui induced by Gi , so x ∼ y if
there exists g ∈ Gi with s(g) = x and r(g) = y. Write the equivalence classes for
this relation as {U j

i | j ∈ Ji } and define Ui := {U j
i ∩ X | j ∈ Ji } to be the collection

of equivalence classes for this relation. Now let U = U0 � · · · � Ud be the collection
of all these subsets of X (which covers X as {U0, . . . , Ud} covers β X ).

We claim that U , decomposed as U = U0 � · · · �Ud , has the properties required by
Definition 6.3. Indeed, for F-boundedness, note that the equivalence relation induced
on each U j

i ∩ X by Gi is entirely contained in F (as Gi is contained in F). For E-

separatedness, note that if for j 	= k there was some (x, y) in (U j
i ×U k

i )∩ E , then we

would have that x ∼ y, contradicting the fact that U j
i and U k

i are distinct equivalence
classes.

Conversely, say G has asymptotic dimension at most d. Let K be a compact subset
of G(X). The definition of the topology on G(X) implies that K ⊆ E for some
controlled set E . Let U = U0 � · · · � Ud and F be as in the definition of finite
asymptotic dimension for this E . For each i , set

Ui :=
⊔

U∈Ui

U ,

which is a compact open subset of β X ; as U is a cover of X , {U0, . . . , Ud} is a cover
of β X . Note that for each i ,

Gi :=
⊔

U∈Ui

U × U

is a subgroupoid of the pair groupoid that is contained (as a set) in F , and by continuity
of the groupoid operations, the subgroupoid of G(X) generated by

{g ∈ E | r(g), s(g) ∈ Ui }
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is contained in Gi , a subgroupoid of G(X) contained (as a set) in the compact subset
F . Hence the dynamic asymptotic dimension of G(X) is at most d.

The final statement is clear from the construction in the proof. ��
Finally in this section,wegive twoconsequences. Thefirst discusses the relationship

of the above to the Bartels–Lück–Reich conditions of Sect. 4; the second shows that
groups of finite asymptotic dimension all admit free, amenable, minimal actions on
the Cantor set which have finite dynamic asymptotic dimension.

Theorem 6.5 Let � be a discrete group. The following are equivalent:

(i) � admits an action � ü X on a compact space that is d-BLR with respect to the
family of finite subgroups.

(ii) � admits an action � ü X on a compact space with dynamic asymptotic dimen-
sion at most d.

(iii) The canonical action of � on β� has dynamic asymptotic dimension at most d.
(iv) � equipped with the canonical left-invariant coarse structure for which the con-

trolled sets are

E = {E ⊆ � × � | {s−1t ∈ � | (s, t) ∈ E} is finite},

has asymptotic dimension at most d.
(v) The canonical action of � on β� is d-BLR with respect to the family of finite

subgroups.

Proof The fact that (i) implies (ii) (for the same X ) is Theorem 4.7.
For (ii) implies (iii), assume that � ü X is an action on a compact space with

dynamic asymptotic dimension at most d. Let � → X be any orbit map, and let
φ : β� → X be the canonical extension to the Stone–Čech compactification of
�. Pulling back covers along φ shows that � ü β� also has dynamic asymptotic
dimension at most d.

For (iii) implies (iv), note that the transformation groupoid � � β� has dynamic
asymptotic dimension at most d by Lemma 5.4. On the other hand, this transformation
groupoid canonically identifies with the coarse groupoid of� by [35, Proposition 3.4],
so the result follows from Theorem 6.4.

The fact that (iv) implies (v) is essentially due to Higson and Roe, and very similar
to the proof of Proposition 4.5. The result follows from combining the arguments of
[18, Lemma 4.3] and [18, Section 3]: indeed, these give an (E, ε)-equivariant map
β� → Pd(�) for any finite E ⊆ � and any ε > 0.

Finally, (v) implies (i) is trivial. ��
The following theorem is a result of combining Theorem 6.4 with ideas of Rørdam

and Sierakowski from [33, Section 6].

Theorem 6.6 Let � be a countably infinite discrete group with asymptotic dimen-
sion d. Then � admits a free, minimal action on the Cantor set which has dynamic
asymptotic dimension at most d.
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Proof Using Theorem 6.5, the action of � on β� is d-BLR for the family F of finite
subgroups of �. Let

E1 ⊆ E2 ⊆ E3 ⊆ · · ·

be a nested sequence of finite subsets of � such that � = ⋃ En . For each n, let
fn : β� → Cn be a (En, 1/n)-equivariant map to a (�,F) simplicial complex of
dimension at most d. As β� is compact, we may assume by Remark 4.4 that the
image of each fn is contained in a set of the form P(Sn) ∩ Cn , where Sn is a finite
subset of the vertex set of Cn . Hence, replacing Cn by Cn ∩ P(� · Sn), we may assume
that there are only finitely many �-orbits of vertices of Cn , and thus in particular that
the vertex set Vn of Cn is countable.

Now, let A denote a unital �-invariant C∗-subalgebra of l∞(�). Let Â denote the
spectrum of A, which by Gelfand duality identifies with a quotient space of β� such
that the quotient map β� → Â is equivariant. For each n, write

fn(x) =
∑

v∈Vn

tv(x)v,

where each tv : β� → [0, 1] is continuous. Define 
1 := {tv | v ∈ Vn, n ∈ N}, which
is a countable subset of l∞(�). If A contains 
1, then the action � ü Â is d-BLR:
indeed, the functions tv then descend to the quotient space Â of β�, whence the maps
fn : β� → Cn descend to fn : Â → Cn (this argument is inspired by [17, Lemma
3.5]). On the other hand, [33, Lemma 6.4] shows that there is a countable subset 
2
of l∞(�) such that if A contains 
2, then the action of � on Â is free.

Define 
 := 
1 ∪ 
2, a countable subset of l∞(�). Rørdam and Sierakowski [33,
Lemma 6.7] show there is a countable�-invariant collection of projectionsP such that
the C∗-algebra generated by P contains 
. Let A be the C∗-algebra generated by P
and the unit of l∞(G). It follows from the above discussion that Â is a�-space, and that
the action of� is free and d-BLR.Moreover, as A is unital and generated by countably
many projections, the space Â is compact, metrizable, and totally disconnected.

We now have that � admits a free, d-BLR action on a totally disconnected, metriz-
able compact space Y := Â. Note that if Z is any non-empty closed �-invariant subset
of Y , then Z and the induced� action on it will still have all these properties. Inclusion
defines a partial order on the closed non-empty �-invariant subsets of Y ; compactness
implies that any descending chain for this order has non-empty intersection, and thus
Zorn’s lemma implies there exists a minimal element X . It follows easily that the
induced � action on X is minimal. We now have that � admits a free, minimal, d-BLR
action on a totally disconnected, metrizable compact space X .

To complete the proof, it suffices to show that this X is a copy of the Cantor set,
and for this it suffices to show that it has no isolated points. Note then that if x ∈ X
is isolated then the orbit of � · x is open, and thus X\� · x is empty by minimality.
As the action is free and � is infinite, the open cover {{gx} | g ∈ �} of X = � · x has
no finite subcover which contradicts compactness. Hence no isolated point can exist,
and we are done. ��

123



808 E. Guentner et al.

7 Partitions of unity

In this section we prove a technical result showing that dynamic asymptotic dimension
gives rise to partitions of unity which are ‘almost’ invariant in an appropriate sense.
This will be important in Sect. 8.

Proposition 7.1 Let G be an étale groupoid with compact unit space, and with
dynamic asymptotic dimension d. Then for any open relatively compact subset K
of G and any ε > 0 there exists an open cover {U0, . . . , Ud} of r(K ) ∪ s(K ) with the
following properties.

(i) For each i , the set

{g ∈ K | s(g), r(g) ∈ Ui }

is contained in an (open and) relatively compact subgroupoid of G.
(ii) For each x ∈ r(K ) ∪ s(K ), the ‘partial orbit’ s(r−1(x) ∩ K ) is completely

contained in some Ui .
(iii) There exists a collection of continuous functions {φi : G(0) → [0, 1]}d

i=0 such
that the support of each φi is contained in Ui , such that for all x ∈ r(K ) ∪ s(K )

we have
∑d

i=0(φi (x))2 = 1, and such that for any g ∈ K and each i

|φi (s(g)) − φi (r(g))| < ε.

For the convenience of readers who are mainly interested in the case of group
actions on compact spaces, we spell out here what this says in the special case where
G is a transformation groupoid in the language of actions. The proposition is not really
any easier to prove in this special case, however.

Corollary 7.2 Let � ü X be an action with X compact, and with dynamic asymptotic
dimension d. Then for any finite subset E of � and any ε > 0 there exists an open
cover {U0, . . . , Ud} of X with the following properties.

(i) For each i , the set

{
g ∈ � ∃x ∈ Ui and gn, . . . , g1 ∈ E such that g = gn · · · g1

and ∀ k ∈ {1, . . . , n}, gk · · · g1x ∈ Ui

}

is finite.
(ii) For each x ∈ X, the collection E · x := {g−1x | g ∈ E} is completely contained

in some Ui .
(iii) There exists a collection of continuous functions {φi : X → [0, 1]}d

i=0 on X such

that the support of each φi is contained in Ui , such that
∑d

i=0(φi (x))2 = 1 for
all x ∈ X, and such that for any g ∈ E and each i

sup
x∈X

|φi (gx) − φi (x)| < ε.

��
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The proof of Proposition 7.1 is related to that of Proposition 4.5.We wanted to keep
the two proofs separate for the convenience of readers who are only interested in one
or the other case, and as there are enough significant differences that it did not seem
possible to make a ‘combined’ proof that was much shorter.

We start with a lemma.

Lemma 7.3 Say G is an étale groupoid with dynamic asymptotic dimension d. Then
for any open relatively compact subset K of G there is a cover {U0, . . . , Ud} of
r(K ) ∪ s(K ) by relatively compact open subsets of G(0) such that for each i , the set
{g ∈ K | s(g), r(g) ∈ Ui } generates an (open and) relatively compact subgroupoid
of G, and moreover so that for each x ∈ G(0) the set s(r−1(x) ∩ K ) is completely
contained in some Ui .

Proof Replacing K with K ∪ K −1 ∪ r(K ) ∪ s(K ) (which is open and relatively
compact as r and s are open, continuous maps), we may assume that K = K ∪ K −1 ∪
r(K ) ∪ s(K ). Define

K 3 := {g ∈ G | there are g1, g2, g3 ∈ K such that g = g1g2g3},

which is again an open relatively compact subset ofG by Lemma 5.2. Let {V0, . . . , Vd}
be an open cover of r(K 3) ∪ s(K 3) such that the subgroupoid Gi of G generated by

{g ∈ K 3 | s(g), r(g) ∈ Vi } (7.1)

is relatively compact. For i ∈ {0, . . . , d}, define

Ui := s(K ∩ r−1(Vi )) ∩ (r(K ) ∪ s(K )),

which is open and relatively compact. Note that as r(K )∪s(K ) ⊆ K , eachUi contains
Vi ∩ (r(K ) ∪ s(K )); thus we have

d⋃

i=0

Ui ⊇
d⋃

i=0

Vi ∩ (r(K ) ∪ s(K )) ⊇ (r(K 3) ∪ s(K 3)) ∩ (r(K ) ∪ s(K ))

= r(K ) ∪ s(K ).

It remains to show that for each fixed i , the set {g ∈ K | s(g), r(g) ∈ Ui } generates
a relatively compact subgroupoid of G. Indeed, say g is in the subgroupoid generated
by this set. Then (recalling that K = K ∪ K −1 ∪ r(K ) ∪ s(K )) there exists a finite
sequence gn, . . . , g1 of composable elements from {g ∈ K | s(g), r(g) ∈ Ui } such
that g = gn · · · g1. As for each k ∈ {1, . . . , n} we have that s(gk) ∈ Ui , there exists
hk ∈ K such that r(hk) ∈ Vi , and s(hk) = s(gk). Moreover, as s(gn) ∈ Ui , there
exists hn+1 ∈ K such that s(hn+1) = s(gn) and such that r(hn+1) ∈ Vi . For each
k ∈ {1, . . . , n}, define

g′
k := hk+1gkh−1

k ,
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810 E. Guentner et al.

and note that g′
k ∈ {g ∈ K 3 | s(g), r(g) ∈ Vi }. On the other hand, g =

h−1
n+1g′

n · · · g′
1h1. If Gi is the subgroupoid of G generated by the set in line (7.1),

it follows that g is in the subset

K · Gi · K := {h ∈ G | there are h0, h2 ∈ K and h1 ∈ Gi

such that h = h0h1h2};

by relative-compactness of Gi and K , and Lemma 5.2, this set is relatively compact,
so we are done. ��

We need one more technical lemma before giving the proof of Proposition 7.1; in
some sense it is an iterated version of Lemma 7.3 above.

Lemma 7.4 Say G is an étale groupoid with dynamic asymptotic dimension d. Let K
be an open relatively compact subset of G, and let N be a fixed natural number. Then
for each i ∈ {0, . . . d} there is a nested collection

U (0)
i ⊆ U (1)

i ⊆ · · · ⊆ U (N+1)
i

of open, relatively compact subsets of G(0) with the following properties.

(i) The collection {U (0)
0 , . . . , U (0)

d } covers r(K ) ∪ s(K ).

(ii) For all i, n, U (n)
i ⊆ U (n+1)

i .
(iii) For all i, n,

s(K ∩ r−1(U (n)
i )) ⊆ U (n+1)

i .

(iv) For all i , the set

{g ∈ K | s(g), r(g) ∈ U (N+1)
i }

generates a relatively compact subgroupoid of G.

Proof Replacing K with K ∪ K −1 ∪ r(K ) ∪ s(K ), we may assume that K = K ∪
K −1 ∪ r(K ) ∪ s(K ). For each n, define

K
n := {gn · · · g1 | gk ∈ K and s(gk+1) = r(gk) for all k}.

Note that K
n
is compact for all n by Lemma 5.2, and that K

n ⊆ K
n+1

for all n by our
assumption that K = K ∪K −1∪r(K )∪s(K ). As G is locally compact, there exists an

open, relatively compact subset K ′ ⊆ G that contains K
N+1

. Let {V0, . . . , Vd} be an
open cover of r(K ′) ∪ s(K ′) with the properties in Lemma 7.3 for the open relatively
compact set K ′. Replacing each Vi with its intersection with r(K ′) ∪ s(K ′), we may
assume that each Vi is contained in r(K ′) ∪ s(K ′).
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Now, for each i ∈ {0, . . . d} and each n ∈ {0, . . . , N + 1}, define

V (n)
i := {x ∈ Vi | s(K

N+1−n ∩ r−1(x)) ⊆ Vi }.

As the sets K
n
are nested, this gives a nested sequence of subsets

V (0)
i ⊆ V (1)

i ⊆ · · · ⊆ V (N+1)
i

of G(0). As for each x ∈ G(0), s(r−1(x) ∩ K ′) ⊆ Vi for some i , the collection
{V (0)

0 , . . . V (0)
d } covers r(K ′) ∪ s(K ′). We claim moreover that each V (n)

i is open.
Indeed, if this does not happen, then we may find a net (xλ) in G(0) converging to

some x ∈ V (n)
i such that for each λ there exists gλ ∈ K

N+1−n ∩ r−1(xλ) with

s(gλ) /∈ Vi . As K
N+1−n

is compact we may assume by passing to a subnet that (gλ)

converges to some g ∈ K
N+1−n

. As r is continuous, g is in K
N+1−n ∩ r−1(x), and

as Vi is open, s(g) is not in Vi . This contradicts that x is in V (n)
i , so V (n)

i is open as
claimed.

Wemay now define the setsU (n)
i . As the set r(K ′) ∪ s(K ′) is compact, it is normal.

It follows that there are open subsetsU (0)
0 , . . . , U (0)

d of r(K ′)∪s(K ′) such thatU (0)
i ⊆

V (0)
i for each i and such that the collection {U (0)

0 , . . . , U (0)
d } covers r(K ) ∪ s(K ). Note

that for each i ,

s(K ∩ r−1(U (0)
i )) ⊆ s(K ∩ r−1(U (0)

i )) ⊆ s(K ∩ r−1(U (0)
i ))

⊆ s(K ∩ r−1(U (0)
i )) ⊆ s(K ∩ r−1(V (0)

i )).

It is not difficult to see that this last set is contained in V (1)
i , however. Moreover,

U (0)
i is contained in V (0)

i ⊆ V (1)
i by assumption. Hence by normality of the compact

set Vi , there exists an open set U (1)
i containing s(K ∩ r−1(U (0)

i )) ∪ U (0)
i such that

U (1)
i ⊆ V (1)

i . Continuing in this way, we see that

s(K ∩ r−1(U (1)
i )) ⊆ V (2)

i ,

and thus there is an open set U (2)
i containing s(K ∩ r−1(U (1)

i )) ∪ U (1)
i , with closure

contained in V (2)
i , and so on.

The process above gives a nested sequence of open subsets

U (0)
i ⊆ U (1)

i ⊆ · · · ⊆ U (N+1)
i

for each i such that

s(K ∩ r−1(U (n)
i )) ⊆ U (n+1)

i and U (n)
i ⊆ V (n)

i
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for all n. Note that each U (n)
i is relatively compact as V (n)

i ⊆ Vi ⊆ r(K ′) ∪ s(K ′) for
all n. It remains to check properties (i) through (iv) from the statement. Properties (i),
(ii), and (iii) are obvious from the way we chose our sets. Property (iv) follows as

{g ∈ K | s(g), r(g) ∈ U (N+1)
i } ⊆ {g ∈ K ′ | s(g), r(g) ∈ Vi },

and the set on the right generates a relatively compact subgroupoid by choice of the
sets V0, . . . , Vd . ��
Proof of Proposition 7.1 Let K be an open, relatively compact subset of G and ε > 0
be given. Replacing K with K ∪ K −1 ∪ r(K )∪ s(K ), we may assume that K = K −1,
and that K contains its image under r and s. Let N be any natural number larger than 2
such that (

√
2(1+√

d + 1))/
√

N < ε, and let {U (n)
i | i ∈ {0, . . . , d}, n ∈ {0, . . . , N+

1}} have the properties in Lemma 7.4. For each i = 0, . . . , d, set Ui = U (N+1)
i .

Condition (i) fromLemma 7.4 combinedwith the assumptions from the first paragraph
of that lemma imply that {U0, . . . Ud} is an open cover of r(K ) ∪ s(K ). Condition
(ii) from the statement of Proposition 7.1 follows condition (iii) from Lemma 7.4 and
the fact that {U (0)

0 , . . . , U (0)
d } covers r(K ) ∪ s(K ). Condition (i) from the statement

of Proposition 7.1 follows directly from condition (iv) from Lemma 7.4. It remains to
construct a partition of unity with the properties in condition (iii) from the statement
of Proposition 7.1.

For each i ∈ {0, . . . , d} and n ∈ {1, . . . , N }, let

ψ
(n)
i : G(0) → [0, 1]

be any continuous function which is constantly equal to one on U (n−1)
i and constantly

equal to zero on G(0)\U (n)
i ; such functions exist by condition (ii) from Lemma 7.4

and Urysohn’s lemma. For i ∈ {0, . . . , d} set

ψi = 1

N

N∑

n=1

ψ
(n)
i

and define

φi = ψi

max
{√∑d

j=0 ψ2
j , 1
} .

Note that condition (i) from Lemma 7.4 implies that for all x ∈ r(K ) ∪ s(K ), there is
at least one i ∈ {0, . . . , d} such that ψi (x) = 1, whence

d∑

i=0

(φi (x))2 = 1

for all x ∈ r(K ) ∪ s(K ).
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Fix now g ∈ K and i ∈ {0, . . . , d}; to complete the proof we must show that

|φi (s(g)) − φi (r(g))| < ε. (7.2)

For notational convenience, for each j ∈ {0, . . . , d}, set U (n)
j = G(0) for n ≥ N + 2.

Define

M = M j := min{n | r(g) ∈ U (n)
j }.

Note that

ψ
(n)
j (r(g)) =

{
1 n ≥ M + 1
0 n ≤ M − 1

and 0 ≤ ψ(r(g)) ≤ 1 whence

N − (M + 1)

N
≤ ψ j (r(g)) ≤ N − M

N
. (7.3)

Note also that condition (iii) from Lemma 7.4 combined with the fact that K = K −1

implies that s(g) is in U (M+1)
j \U (M−2)

j whence

ψ
(n)
j (s(g)) =

{
1 n ≥ M + 2
0 n ≤ M − 2

;

as 0 ≤ ψ
(n)
j (s(g)) ≤ 1 for all values of n, this forces

N − (M + 2)

N
≤ ψ j (s(g)) ≤ N − (M − 1)

N
. (7.4)

Combining lines (7.3) and (7.4), we may conclude that

|ψ j (r(g)) − ψ j (s(g))| ≤ 2

N
(7.5)

One the other hand, at least one of the ψ j is equal to one on each of s(g) and r(g),
and therefore

1 ≤
d∑

j=0

ψ j (r(g)) and 1 ≤
d∑

j=0

ψ j (s(g)). (7.6)

Hence for our fixed choice of i ∈ {0, . . . , d} and g ∈ K ,

|φi (r(g)) − φi (s(g))| =
∣
∣
∣
∣

ψi (r(g))
√∑d

j=0 ψ2
j (r(g))

− ψi (s(g))
√∑d

j=0 ψ2
j (s(g))

∣
∣
∣
∣
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and so

|φi (r(g))−φi (s(g))| ≤ 1
√∑d

j=0 ψ2
j (r(g))

|ψi (r(g)) − ψi (s(g))|

+ |ψi (s(g))|
∣
∣
∣
∣

1
√∑d

j=0 ψ2
j (r(g))

− 1
√∑d

j=0 ψ2
j (s(g))

∣
∣
∣
∣. (7.7)

Using lines (7.5) and (7.6) we have

1
√∑d

j=0 ψ2
j (r(g))

|ψi (r(g)) − ψi (s(g))| ≤ 2

N
. (7.8)

On the other hand,

|ψi (s(g))|
∣
∣
∣
∣

1
√∑d

j=0 ψ2
j (r(g))

− 1
√∑d

j=0 ψ2
j (s(g))

∣
∣
∣
∣

= 1
√∑d

j=0 ψ2
j (r(g))

1
√∑d

j=0 ψ2
j (s(g))

∣
∣
∣
∣

√
√
√
√

d∑

j=0

ψ2
j (s(g)) −

√
√
√
√

d∑

j=0

ψ2
j (r(g))

∣
∣
∣
∣

≤
∣
∣
∣
∣

√
√
√
√

d∑

j=0

ψ2
j (s(g)) −

√
√
√
√

d∑

j=0

ψ2
j (r(g))

∣
∣
∣
∣

≤
√
√
√
√
∣
∣
∣

d∑

j=0

ψ2
j (s(g)) −

d∑

j=0

ψ2
j (r(g))

∣
∣
∣

≤
√
√
√
√

d∑

j=0

|ψ j (s(g)) − ψ j (r(g))||ψ j (s(g)) + ψ j (r(g))|.

Using line (7.5) again thus gives

|ψi (s(g))|
∣
∣
∣
∣

1
√∑d

j=0 ψ2
j (r(g))

− 1
√∑d

j=0 ψ2
j (s(g))

∣
∣
∣
∣ ≤
√
4(d + 1)

N
. (7.9)

Combining lines (7.7), (7.8) and (7.9) therefore gives

|φi (r(g)) − φi (s(g))| ≤ 2

N
+
√
4(d + 1)

N
≤
√

2

N
+
√
4(d + 1)

N

=
√
2(1 + √

d + 1)√
N

.

which is smaller than ε by choice of N . ��
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8 Nuclear dimension

As usual, we adopt the conventions that all groupoids are locally compact and Haus-
dorff. Recall that a groupoid G is free (such groupoids are also called principal) if for
each x ∈ G(0), the isotropy group defined by

Gx
x := {g ∈ G | s(g) = r(g) = x}

is trivial.
In this section, we study nuclear dimension for the reduced groupoid C∗-algebra

C∗
r (G) of a free groupoid G of finite dynamic asymptotic dimension. Modulo a minor

technical assumption that is satisfied for examplewhenG is secondcountable, ourmain
result—Theorem 8.6 below—says that the nuclear dimension of C∗

r (G) is bounded
above by (d +1)(N +1)−1, where d is the dynamic asymptotic dimension of G, and
N is the covering dimension of G(0). The result is inspired by (and implies) theWinter-
Zacharias result that the nuclear dimension of the uniform Roe algebra associated to
a bounded geometry metric space is at most the asymptotic dimension of the space
[42, Theorem 8.5]. See the end of the section for some other corollaries.

We first recall the definitions of nuclear dimension, covering dimension, and of the
reduced C∗-algebra of a groupoid. More details on nuclear dimension can be found
in the paper of Winter and Zacharias [42] that introduces the notion. We do not really
need a definition of covering dimension, but record it as there is some ambiguity about
which definition one should use for non-metrizable spaces. Accessible introductions
to groupoid C∗-algebras, that largely focus on the case of interest here, can be found
in [30, Section 2.3] and [6, Section 5.6].

Definition 8.1 A completely positive map φ : A → B is order zero if it preserves
orthogonality: in other words, if a1, a2 are positive elements of A such that a1a2 = 0,
then φ(a1)φ(a2) = 0.

Let A be a C∗-algebra. The nuclear dimension of A is the smallest integer d ∈ N

with the following property. For any finite subset F of A and any ε > 0 there exist
finite dimensional C∗-algebras F0, . . . , Fd and contractive completely positive maps

A
�i

A

Fi

�i

such that each �i is order zero, and such that for all a ∈ F ,

∥
∥
∥

d∑

i=0

(�i ◦ �i )(a) − a
∥
∥
∥ < ε‖a‖.

Definition 8.2 Let X be a paracompact (Hausdorff) topological space. The covering
dimension of X is the smallest integer d ∈ N such that every open cover of X has a
refinement V such that V splits into a disjoint union
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V = V0 � · · · � Vd

such that whenever V 	= W are distinct elements of some Vi , then V ∩ W = ∅.

The definition above is equivalent to several other commonly used definitions of
covering dimension on the class of paracompact Hausdorff spaces: compare for exam-
ple [21, Proposition 1.6] or [26, Remark 4.5].

Definition 8.3 Let G be an étale groupoid. Let Cc(G) denote the vector space of
compactly supported complex-valued functions on G, made into a ∗-algebra via the
convolution product and adjoint defined by

( f1 f2)(g) =
∑

g1g2=g

f1(g1) f2(g2), f ∗(g) = f (g−1).

For each x ∈ G(0) let l2(s−1(x)) denote the Hilbert space of square-summable func-
tions on the source fibre of x , and define a ∗-representation πx of Cc(G) on l2(s−1(x))

by

(πx ( f )ξ)(g) =
∑

g1g2=g

f (g1)ξ(g2).

The reduced groupoid C∗-algebra of G is the completion of Cc(G) for the norm

‖ f ‖ := sup
x∈G(0)

‖πx ( f )‖.

Before we state the main theorem, we need one (ad-hoc) definition.

Definition 8.4 Let G be an étale groupoid, and H be an open subgroupoid of G. The
subgroupoid H is small if it is either compact, or second countable and relatively
compact.

A groupoid G has strong dynamic asymptotic dimension at most d if for any open
relatively compact subset K of G there exists an open cover {U0, . . . , Ud} of s(K ) ∪
r(K ) such that for each i , the set

{g ∈ K | s(g), r(g) ∈ Ui }

is contained in a small subgroupoid of G.

Remark 8.5 (i) A second countable groupoid with dynamic asymptotic dimension at
most d automatically has strong dynamic asymptotic dimension at most d. Thus
readers who are only interested in the second countable case can just ignore the
word ‘strong’ in all the statements below, and replace ‘small’ with ‘open and
relatively compact’.

(ii) Theorem 6.4 implies that if X is a bounded geometry metric space of asymptotic
dimension d, then the coarse groupoid G(X) has strong dynamic asymptotic
dimension d.
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(iii) Say G has strong dynamic asymptotic dimension d. Then Proposition 7.1, point
(i) can be strengthened to say that

{g ∈ K | s(g), r(g) ∈ Ui }

is contained in a small subgroupoid of G for each i : indeed, exactly the same
proof gives the stronger statement.

Theorem 8.6 Let G be a free, étale, groupoid. Assume that G has strong dynamic
asymptotic dimension at most d (Definition 8.4), and moreover that the unit space
G(0) has topological covering dimension at most N .

Then the nuclear dimension of the reduced groupoid C∗-algebra C∗
r (G) is at most

(N + 1)(d + 1) − 1.

As well as the results subsumed by this theorem discussed in the corollaries at
the end of this section, the reader might compare it to [37, Theorem 4.6], which
deduces analogous estimates on nuclear dimension from Rokhlin type conditions,
and a condition related to asymptotic dimension. We do not know the extent of the
overlap between Theorem 8.6 above and [37, Theorem 4.6]; the relationship between
the hypotheses of the two results seems worth investigating more carefully.

Most of the rest of this section is devoted to the proof of Theorem 8.6; we give
some corollaries at the end. There are two main steps to the proof: an analysis of small
subgroupoids, and a reduction to these subgroupoids.

8.1 Small subgroupoids

The goal of this subsection is to prove the following fact about small subgroupoids.

Proposition 8.7 Let G be a free, étale groupoid. Let H be a small (open) subgroupoid
of G in the sense of Definition 8.4, and assume that its unit space H (0) has covering
dimension N. Then C∗

r (H) has nuclear dimension2 N.

Wewill prove this separately in the case where H is compact, and in the case where
H is relatively compact and second countable. Before this point though, we need some
basic definitions and lemmas that will be used in both cases.

Definition 8.8 Let H be a (locally compact, Hausdorff) groupoid. Let∼ be the equiv-
alence relation on H (0) induced by H , i.e., x ∼ y if there is h ∈ H with s(h) = x and
r(h) = y. For x ∈ H (0), let [x] denote its equivalence class. For each m ∈ N, define

H (0)
m := {x ∈ H (0) | |[x]| = m}.

Finally, let H (0)/H and H (0)
m /H denote the spaces of equivalence classes equipped

with the quotient topology in inherited from H (0).

2 As will be clear from the proof, one can replace nuclear dimension with decomposition rank here, but we
will not need this distinction.
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Lemma 8.9 Let H be a topological groupoid. Then the quotient map π : H (0) →
H (0)/H is open.

Proof Say U is an open subset of H (0). Then as s is continuous and r is open, the set
r(s−1(U )) is open in H (0). However, it is clear that π−1(π(U )) = r(s−1(U )), and
thus by definition of the quotient topology, π(U ) is open. ��
Lemma 8.10 Let G be an étale groupoid and H be a relatively compact subgroupoid
of G. Then there exists M ∈ N such that H (0)

m is empty for all m > M.

Proof Note that as G is étale, each g ∈ G is contained in an open neighbourhood U
on which both r and s are injective. As the closure H is compact, there are finitely
many of these neighbourhoods covering H , say U1, . . . , UM . For each x ∈ H (0) we
have |[x]| ≤ |(s|H )−1(x)|; as (s|H )−1(x) can intersect eachUi at most once, however,
|(s|H )−1(x)| is bounded above by M . ��

We will need the following classical theorem from dimension theory: see [26,
Proposition 2.16].

Proposition 8.11 Let X and Y be paracompact Hausdorff topological spaces. Let
π : X → Y be a continuous open surjection such that for all y ∈ Y , π−1(y) is finite.
Then the covering dimensions of X and Y are equal. ��

At this point, we specialize to the case of Proposition 8.7 where H is compact; we
will come back to the second countable and relatively compact case later.

Lemma 8.12 Let H be a compact étale groupoid, and assume that the covering dimen-
sion of H (0 is N . Then H (0)/H is compact and Hausdorff, and the covering dimension
of H (0)/H is exactly N.

Proof As H is compact and H (0) is a closed subspace of H , H (0) is compact. Hence
H (0)/H is a quotient space of a compact space, so compact. To see that H (0)/H is
Hausdorff, note that the equivalence relation ∼ on H (0) induced by H is equal to

(r × s)(H) ⊆ H (0) × H (0),

and is thus compact and in particular closed as H (0)×H (0) is Hausdorff. It is a standard
fact that the quotient of a compact space by an equivalence relation that is closed in
this sense is Hausdorff: see for example [40, Proposition 2.1]. The claim on covering
dimension now follows immediately from Proposition 8.11 applied to the quotient
map π : H (0) → H (0)/H . ��
Proof of Proposition 8.7 when H is compact As H is compact and G is free, H is a
free and proper groupoid. Hence C∗

r (H) is Morita equivalent to C(H (0)/H) by [23,
Example 2.5 and Theorem 2.8].3 Hence the nuclear dimension of C∗

r (H) is equal to
the covering dimension of H (0)/H by [42, Proposition 2.4 and Corollary 2.8], and
this is N by Lemma 8.12. ��

3 The cited paper only covers the second countable case, but the second countability assumption is unnec-
essary when the groupoid is étale: see [13].
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We now turn to the case of Proposition 8.7 when H is second countable with
compact closure. We start by recalling a result of Winter, which needs the following
notation. If A is a C∗-algebra then Prim(A) denotes the collection of all kernels of
irreducible representations of A, equippedwith the hull-kernel topology: this is defined
by saying that a subset S of Prim(A) is closed if there exists an ideal I of A such that
S = {J ∈ Prim(A) | J ⊇ I }. Recall moreover that for m ∈ N, Primm(A) denotes the
subspace of Prim(A) consisting of kernels of m-dimensional representations; by [8,
Proposition 3.6.4], Primm(A) is locally compact and Hausdorff when equipped with
the subspace topology.

Here then is a (weak version of) Winter’s result: see [41, Theorem 1.6].

Theorem 8.13 Let A be a separable C∗-algebra such that all irreducible represen-
tations of A have dimension at most M for some M ∈ N, and assume that N is the
maximal covering dimension of the spaces Primm(A) for m ∈ {1, . . . , M}. Then the
nuclear dimension of A is N.

Proof Winter shows in [41, Theorem 1.6] that the decomposition rank of C∗
r (H) is

exactly N under the stated assumptions. Decomposition rank is (trivially—see [42,
Remarks 2.2 (ii)]) an upper bound for the nuclear dimension, and it follows from [42,
Proposition 2.9 and Corollary 2.10] that the nuclear dimension of C∗

r (H) is bounded
below by the maximum of the covering dimensions of the spaces Primm(C∗

r (H)).

Clearly the remaining case of Proposition 8.7 follows from this theorem of Winter
and the following result.

Lemma 8.14 Let H be a relatively compact, open subgroupoid of a free étale
groupoid. Then Prim(C∗

r (H)) is naturally homeomorphic to H (0)/H, via a homeo-

morphism that takes Primm(A) to H (0)
m /H. Moreover, the spaces H (0)

m /H are locally
compact and Hausdorff, and the maximum of their covering dimensions equals the
covering dimension of H (0).

For the proof of the lemma, we need a little more notation, and some preliminary
lemmas about ideals in groupoid C∗-algebras. Much of the following material seems
likely to be standard for experts in groupoid C∗-algebras: for example, the results of
[28, Pages 101–103] and [29, Corollary 4.9] are closely connected to what follows.
However, we could not find complete proofs of exactly what we need in the literature,
so give direct arguments below.

Definition 8.15 A subset U of H (0) is invariant if whenever x ∈ U and x ∼ y, we
have y ∈ U .

WewriteO(H (0)) for the collection of all invariant open sets in H (0), andI(C∗
r (H))

for the collection of all ideals inC∗
r (H). Both of these sets are equippedwith the partial

orders defined by inclusion.

Lemma 8.16 Let H be an étale groupoid. For a subset S of C∗
r (H), write 〈S〉 for the

ideal in C∗
r (H) generated by S. Provisionally define maps by

� : I(C∗
r (H)) → O(H (0)), I �→ Prim(I ∩ C0(H (0)))
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and

� : O(H (0)) → I(C∗
r (H)), U �→ 〈C0(U )〉.

Then � and � are well-defined and �(�(U )) = U for all U ∈ O(H (0)).

Proof It is clear that � is well-defined. To see that � is well-defined, we must show
that the primitive ideal space I ∩C0(H (0)), which canonically identifies with the open
subset

{x ∈ H (0) | there exists f ∈ I ∩ C0(H (0)) with f (x) 	= 0}

of H (0), is invariant. Say then x is in this subset, and x ∼ y, so there is h ∈ H with
r(h) = x and s(h) = y. Let f ∈ I ∩ C0(H (0)) be such that f (x) 	= 0. Let U � h
be an open subset of H such that the restrictions of r and s to U are injective. Let
φ : U → [0, 1] be any compactly supported function such that φ(h) = 1 (so in
particular, φ is an element of C∗

r (H)). Then φ f φ∗ is in C0(H (0)) ∩ I , and is non-zero
on y; thus y is in the primitive ideal space of C0(H (0)) ∩ I as required.

We now check that for U ∈ O(H (0)) that �(�(U )) = U . This is equivalent to
showing that

〈C0(U )〉 ∩ C0(H (0)) = C0(U );

as the inclusion 〈C0(U )〉 ∩ C0(H (0)) ⊇ C0(U ) is obvious, it remains to show the
converse inclusion. Say then f is an element of 〈C0(U )〉 ∩ C0(H (0)) and x ∈ H (0)

is such that f (x) 	= 0; we will show that x is in U . As f is in 〈C0(U )〉 we may
approximate it by elements of the algebraic ideal generated by C0(U ), and thus in
particular there must exist fi ∈ Cc(U ) and φi , ψi ∈ Cc(H) for i ∈ {1, . . . , n} such
that

n∑

i=1

(φi fiψi )(x) 	= 0.

Hence for some fixed i , we have (φi fiψi )(x) 	= 0. This says that

∑

g,h,k∈H, x=ghk

φi (g) fi (h)ψi (k) 	= 0.

As fi is supported in U , this implies that there must be h ∈ U and k ∈ H with
h = r(k) and x = s(k). Hence x ∼ h, and thus x is in U by invariance. ��
Lemma 8.17 Let H be an open relatively compact subgroupoid of a free étale
groupoid G. With notation as in Lemma 8.16, we have �(�(I )) = I for all
I ∈ I(C∗

r (H)).

Proof Given an ideal I in C∗
r (H), we need to show that 〈I ∩ C0(H (0))〉 = I . The

inclusion I ⊇ 〈I ∩C0(H (0))〉 is obvious, so it remains to show that 〈I ∩C0(H (0))〉 ⊇ I .
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Say then f is an element of I . Let ε > 0 and f0 be an element of Cc(H) such that
‖ f − f0‖C∗

r (H) < ε (note that f0 need not be an element of I ); write K ⊆ H for the
support of f0.

Fix for the moment x ∈ H (0) and write s−1(x) = {h1, . . . , hm} (this set is finite
by Lemma 8.10). For each hi choose an open neighborhood Vi of hi on which r and
s restrict to homeomorphisms and which is such that Vi ∩ Vj = ∅ for all i 	= j . As
r(hi ) 	= r(h j ) for i 	= j , we may further assume that the sets r(V1), . . . , r(Vm) are
mutually disjoint. Set Vx =⋂m

i=1 s(Vi ), an open neighborhood of x .
We now have an open cover {Vx }x∈H (0) of H (0), and in particular of the compact

subset s(K ). Hence by standard results about existence of partitions of unity there
is a finite collection {φi : H (0) → [0, 1] | i ∈ {1, . . . , n}} of continuous functions
such that each φi is supported in some compact subset of some Vx , and such that∑n

i=1 φi (x) = 1 for all x ∈ s(K ). It follows that f0(
∑n

i=1 φi ) = f0 (where the
product is the convolution onCc(H)). As the norm ofC∗

r (H) restricts to the supremum
norm on on the C∗-subalgebra C0(H (0)) this implies that

∥
∥
∥ f
( n∑

i=1

φi

)
− f
∥
∥
∥

C∗
r (H)

≤ ‖ f − f0‖C∗
r (H) +

∥
∥
∥

n∑

i=1

φi

∥
∥
∥

C∗
r (H)

‖ f − f0‖C∗
r (H) < 2ε.

As ε was arbitrary, to complete the proof it suffices to show that each element f φi of
I is actually in 〈I ∩ C0(H (0))〉.

Fix then φ = φi , which is supported in a compact subset Kx of some Vx . Say
s−1(x) = {h1, . . . , hm}, and write s−1(Vx ) = ⊔m

j=1 Vj , where Vj is an open neigh-
borhood of h j such that s and r restrict to homeomorphisms on each Vj , and so
that the sets r(V1), . . . , r(Vm) are mutually disjoint (the existence of such Vj fol-
lows from the construction of Vx ). For each j , let ψ j : H → [0, 1] be a continuous
function supported in Vj , and such that ψ j (s−1(Kx ) ∩ Vj ) = {1} (such a ψ j exists
by Urysohn’s lemma). Then

∑m
j=1 ψ∗

j f φ is an element of C0(H (0)) ∩ I . Moreover,
f φ =∑m

j=1 ψ jψ
∗
j f φ, so we are done. ��

Lemma 8.18 Say H is an open relatively compact subgroup of a free étale groupoid G.
Then the correspondence from Lemmas 8.16 and 8.17 restricts to a bijection between
the collection of primitive ideals in C∗

r (H) and the collection of subsets of H (0) of the
form H (0)\[x] for some x ∈ H (0).

Proof Note that by Lemma 8.10, any equivalence class [x] of some x ∈ H (0) is
finite, so closed. Hence all maximal open invariant sets are of the form H (0)\[x] for
some x ∈ H (0). Hence by Lemmas 8.16 and 8.17, the maximal ideals in I(C∗

r (H))

are exactly those of the form �(H (0)\[x]) for some x ∈ H (0). Maximal ideals are
primitive by [8, Theorem 2.9.7(ii)], so to complete the proof, it suffices to prove that
any non-maximal ideal in C∗

r (H) is not primitive.
We first claim that if [x], [y] are distinct equivalence classes in H (0), then there

exist U, V ∈ O(H (0)) such that [x] ⊆ U , [y] ⊆ V , and such that for all z ∈ U ∩ V ,
|[z]| ≥ |[x]| + |[y]|. Indeed, let M be as in Lemma 8.10. Let s : H → H (0) be the
source map for H (not for the ambient groupoid G), and write s−1(x) = {h1, . . . , hm}
and s−1(y) = {g1, . . . , gn}, where |[x]| = m, |[y]| = n (this is possible as the
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groupoid H is free). As [x] ∩ [y] = ∅ and H is Hausdorff there are open sets Ui � gi

and Vj � h j such that s restricts to a homeomorphism on each Ui and Vj , such that
Ui ∩ U j = ∅ = Vi ∩ Vj for i 	= j , and such that Ui ∩ Vj = ∅ for all i, j . Define

U0 :=
m⋂

i=1

s(Ui ) and V0 :=
n⋂

j=1

s(Vj )

and set

U := r(s−1(U0)) and V := r(s−1(V0)).

Clearly U and V are open and invariant, and [x] ⊆ U , [y] ⊆ V . Consider now
z ∈ U ∩ V . Then s−1(z)must intersect all the setsUi and Vj ; as these sets are disjoint,
this forces m + n ≤ |s−1(z)|, and as H is a free groupoid, this forces

|[z]| = |s−1(z)| ≥ m + n = |[x]| + |[y]|,

completing the proof of the claim.
Now, say V ∈ O(H (0)) is not maximal, so there are [x] 	= [y] with [x], [y] ⊆

H (0)\V . Say without loss of generality |[x]| ≥ |[y]| ≥ 1. The claim above implies
there exist Ux , Uy ∈ O(H (0)) such that [x] ⊆ Ux and [y] ⊆ Uy , and so that for any
z ∈ Ux ∩ Uy , |[z]| > |[x]|. If Ux ∩ Uy = ∅, it is not difficult to see that the images of
the ideals �(Ux ) and �(Uy) are non-zero and orthogonal in C∗

r (H)/�(V ) whence
�(V ) is not primitive4 as required. On the other hand, if there is some z ∈ Ux ∩ Uy ,
then we may repeat the process with [z] replacing [x] and [x] replacing [y]. Using
Lemma 8.10, this process must finish eventually to give orthogonal non-zero ideals in
C∗

r (H)/�(V ), which is thus not primitive. ��
Proof of Lemma 8.14 It follows from Lemma 8.18 that the map

H (0)/H → Prim(A), [x] �→ �(H (0)\[x])

is a bijection. Lemmas 8.16 and 8.17, the definition of the quotient topology on
H (0)/H , and the definition of the hull-kernel topology on Prim(A) imply that this map
is a homeomorphism. Moreover, it is not difficult to see that C∗

r (H)/�(H (0)\[x]) is
isomorphic to the C∗-algebra M|[x]|(C) of |[x]| × |[x]| matrices over C, whence it

follows that this homeomorphism takes H (0)
m /H onto Primm(A).

Note that the spaces Primm(C∗
r (H)) are locally compact and Hausdorff ([8, Propo-

sition 3.6.4]), and that for each m, Primm(C∗
r (H)) is open in �n≤mPrimn(C∗

r (H)) ([8,
Proposition 3.6.3]). Hence in particular H (0)

m is open in �n≤m H (0)
n (one could also

prove this directly, of course).

4 If A is a C∗-algebra faithfully represented on a Hilbert space H , and I, J are non-zero orthogonal ideals
in A, then I · H and J · H are A-invariant non-zero subspaces of H ; in particular, the representation is
reducible.
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Let N denote the covering dimension of H (0), which we may assume is finite.
As covering dimension does not increase on taking open subsets in our context (this
follows for example from [42, Proposition 2.5]), it follows inductively that the covering
dimension of H (0)

m is at most N for each m; on the other hand, it follows from [26,
Proposition 5.2] (plus second countability) that the covering dimension of H (0) is at
most the maximum of the covering dimensions of H (0)

m for m ∈ {1, . . . , M}. Hence
the maximum of the covering dimensions of H (0)

m , m ∈ {1, . . . , M}, is exactly N .
The claim on the covering dimension of H (0)

m /H now follows from Proposition 8.11
applied to the quotient map π : H (0) → H (0)/H , which is open by Lemma 8.9. ��

8.2 Completion of the proof of Theorem 8.6

For this subsection, G is as in the assumptions of Theorem 8.6.
For the next two lemmas, if φ and f are in Cc(G), let f · φ denote their pointwise

product in Cc(G), i.e., (φ · f )(g) = φ(g) f (g). Also, for a subset K of G, we will
write C∗

K (G) for the subspace of C∗
r (G) consisting of all elements supported in K .

Lemma 8.19 Let K be a compact subset of G. Then there exists a constant M > 0
such that for all φ ∈ C∗

K (G) we have

‖φ · f ‖C∗
r (G) ≤ M sup

g∈G
|φ(g)| ‖ f ‖C∗

r (G).

Proof With notation as in Definition 8.3, it suffices to prove that there exists M > 0
such that for all f ∈ Cc(G) and all x ∈ G(0),

‖πx (φ · f )‖ ≤ M sup
g∈G

|φ(g)| ‖πx ( f )‖.

As G is étale, for each g ∈ G there is an open neighbourhood U of G such that
both r and s are injective when restricted to U ; as K is compact, there is a collection
U1, . . . , UM of open subsets of G with this property such that K ⊆ ⋃M

i=1 Ui . We
may write φ as a sum φ = φ1 + · · · + φM , where each φi is supported in some Ui as
above, and satisfies supg∈G |φi (g)| ≤ supg∈G |φ(g)|. It thus suffices to prove that if
ψ ∈ Cc(G) is supported in an open set U such that r, s are injective when restricted
to U , then

‖πx (ψ · f )‖ ≤ sup
g∈G

|ψ(g)|‖πx ( f )‖.

We now prove this. Indeed, computing for ξ ∈ l2(s−1(x))

‖πx (ψ · f )ξ‖2 =
∑

g∈s−1(x)

∣
∣
∣
∑

g1g2=g

ψ(g1) f (g1)ξ(g2)
∣
∣
∣
2
.
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For each g ∈ G, write gU for the unique element in r−1(r(g)) ∩ U (if this exists).
Then the sum above becomes

∑

{g∈s−1(x) | r−1(r(g))∩U 	=∅}
|ψ(gU ) f (gU )ξ(g−1

U g)|2

≤ sup
g∈G

|ψ(g)|2 sup
{
| f (g)|2

∑

g∈s−1(x)

|ξ(g)|2
∣
∣
∣ g ∈

⋃

s(h)=x

s−1(r(h))
}

= sup
g∈G

|ψ(g)|2 sup
{
| f (g)|2‖ξ‖2

∣
∣
∣ g ∈

⋃

s(h)=x

s−1(r(h))
}
.

As the expression sup{| f (g)|2 | g ∈ ∪s(h)=x s−1(r(h))} is easily seen to be a lower
bound for ‖πx ( f )‖, we are done. ��
Lemma 8.20 For any ε > 0 and compact subset K of G, there exists δ > 0 such that
if φ ∈ Cc(G(0)) satisfies

sup
g∈K

|φ(r(g)) − φ(s(g))| < δ,

then the commutator [ f, φ] has norm at most ε‖φ‖‖ f ‖ for any f ∈ CK (G).

Proof With assumptions as above, the commutator is the element of Cc(G) given by

[ f, φ](g) = f (g)φ(s(g)) − φ(r(g)) f (g)

in other words, it is the function (φ ◦ s − φ ◦ r) · f , where ‘·’ denotes pointwise
multiplication. Fix now a compact set K ′ containing an open neighbourhood of K ,
and let ψ be any function that agrees with φ ◦ s − φ ◦ r on K , vanishes outside K ′
and is bounded above by supg∈K |(φ ◦ s − φ ◦ r)(g)|. Lemma 8.19 then implies that
there exists M such that for any f ∈ C∗

K (G)

‖[ f, φ]‖C∗
r (G) = ‖ψ · f ‖C∗

r (G) ≤ M sup
g∈G

|ψ(g)|‖ f ‖C∗
r (G)

≤ M sup
g∈K

|(φ ◦ s − φ ◦ r)(g)|‖ f ‖C∗
r (G);

taking δ = ε/M thus works. ��
Proof of Theorem 8.6 Let a finite subset F of C∗

r (G) and ε > 0 be given. As Cc(G)

is dense in C∗
r (G) we may assume that F is a subset of Cc(G); let K be a compact

subset of G such that K = K −1 and such that each element f ∈ F is supported

in K . Let C̃∗
r (G) denote the unitization of C∗

r (G), and let C̃∗
K (G) denote the closed

subspace of C̃∗
r (G) spanned by C∗

K (G) and the identity of C̃∗
r (G); as K = K −1, this

is an operator subsystem of C̃∗
r (G). Using Proposition 7.1 (see also Remark 8.5 part

(iii)), there exists a collection {φi : G(0) → [0, 1] | i ∈ {0, . . . , d}} of continuous
compactly supported functions on G(0) with the following properties:
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(i) for each x ∈ r(K ) ∪ s(K ) we have
∑d

i=0 φ2
i (x) = 1;

(ii) for each i there is a small open subgroupoid Hi ofG such that for any f ∈ C̃∗
K (G),

the element φi f φi is in contained in the sub-C∗-algebra C∗
r (Hi ) of C∗

r (G);
(iii) for each i and g ∈ K ,

|φi (r(g)) − φi (s(g))| <
ε

2(d + 1)
.

From the third point above and Lemma 8.20 we have

‖[ f, φi ]‖ <
ε

2(d + 1)
‖ f ‖ (8.1)

for any f ∈ C∗
K (G), so in particular for all f ∈ F .

Now, for each i ∈ {0, . . . , d}, the formula

�i : C̃∗
K (G) → C∗

r (Hi ), f �→ φi f φi

defines a contractive completely positive map. Let

�i : C∗
r (Hi ) → C∗

r (G)

be the canonical inclusion ∗-homomorphism. For each i ∈ {0, . . . d} we now have a
triangle of maps

C̃∗
K (G)

�i

C∗
r (G)

C∗
r (Hi )

�i

,

(8.2)

where each �i is contractive and completely positive, and each �i is a ∗-
homomorphism, so in particular order zero. Moreover, for every f ∈ F

d∑

i=0

�i (�i ( f )) =
d∑

i=0

φi f φi =
d∑

i=0

φ2
i f +

d∑

i=0

φi [ f, φi ] = f +
d∑

i=0

φi [ f, φi ],

whence line (8.1) implies that

∥
∥
∥

d∑

i=0

�i (�i ( f )) − f
∥
∥
∥ < ε/2

for all f ∈ F .

123



826 E. Guentner et al.

On the other hand, we have already shown that each C∗
r (Hi ) has nuclear dimension

at most the covering dimension of H (0)
i in Proposition 8.7, and this is at most N as cov-

ering dimension does not increase under taking open subsets (this follows for example
from [42, Proposition 2.5]). Combining the triangle in line (8.2) with approximations
to each C∗

r (Hi ) arising from the definition of nuclear dimension gives triangles

C̃∗
K (G)

�i j

C∗
r (G)

Fi j

�i j

, i ∈ {0, . . . d}, j ∈ {0, . . . , N }

where each �i j is contractive and completely positive, each �i j is contractive and
order zero, each Fi j is a finite dimensional C∗-algebra, and

∥
∥
∥

d∑

i=0

N∑

j=0

�i j (�i j ( f )) − f
∥
∥
∥ < ε

for all f ∈ F . Finally, the finite dimensional version of Arveson’s extension theorem
(see for example [6, Section 1.6]) implies that each �i j extends to a contractive
completely positive map

�i j : C̃∗
r (G) → Fi j ,

and restricting each of these maps to C∗
r (G) gives approximating triangles

C∗
r (G)

�i j

C∗
r (G)

Fi j

�i j

, i ∈ {0, . . . d}, j ∈ {0, . . . , N }

as required by the definition of nuclear dimension (d + 1)(N + 1) − 1. ��

8.3 Consequences

Finally, we spell out a few consequences. Many of these are known results, but we
think that combining the proofs under one common dynamical framework has some
interest.

The first result is much easier to check directly! See Winter [42, Remark 2.2(iii)]
and Kirchberg–Winter [21, Example 4.1]; nonetheless, it seemed interesting that it fits
directly into our framework.

Corollary 8.21 Separable AF C∗-algebras have nuclear dimension zero.
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Proof Renault [28, Proposition III.1.15] has shown that any (separable)AFC∗-algebra
arises as the C∗-algebra of a locally finite groupoid (in the sense of Example 5.3) with
unit space of covering dimension zero. The result thus follows directly from Example
5.3 and Theorem 8.6. ��

The next corollary is due to Winter–Zacharias: see [42, Section 8].

Corollary 8.22 Let X be a bounded geometry coarse space of asymptotic dimension
d. Then the uniform Roe algebra C∗

u (X) has nuclear dimension at most d.

Proof The uniform Roe algebra of X is naturally isomorphic to the reduced groupoid
C∗-algebra of the coarse groupoid G(X): see [31, Proposition 10.29] for a proof. The
result now follows on combining Theorem 6.4, Theorem 8.6 (see also Remark 8.5,
part (ii)), and the fact that the unit space of G(X) is β X , which has covering dimension
zero. ��

The next corollary is due to Toms–Winter [39, Section 3].

Corollary 8.23 Let Z ü X be a minimal action of Z on an infinite second countable
compact space X of covering dimension N. Then the nuclear dimension of C(X)�r Z

is at most 2N + 1.

Proof Combine Theorem 3.1, Lemma 5.4, Theorem 8.6, and the well-known (and
easily checked) fact that the reduced groupoidC∗-algebra of a transformation groupoid
� � Y identifies naturally with C(Y ) �r �. ��

It is worth noting explicitly that the proofs of Corollary 8.22 and Corollary 8.23 in
the original references given above are quite similar to our proof of Theorem 8.6: all
involve constructing ‘almost invariant’ partitions of unity, and using these to ‘cut down’
to subhomogeneous C∗-algebras whose nuclear dimension can be directly estimated.
This only became apparent to us ‘after the fact’, but we hope it helps to clarify how this
style of argument that estimates nuclear dimension from geometric and / or dynamic
assumptions is built up.

The following result seems to be new as stated. Note however that if � ü X is
a minimal, free, amenable action of a non-amenable group on the Cantor set, then
C(X) �r � is a Kirchberg algebra in the UCT class; the main result of [34] (see
also [5]) thus implies that the nuclear dimension of C(X) �r � is one. As any exact
(non-amenable) group admits such an action (see [33, Theorem 6.11]), and as finite
asymptotic dimension implies exactness (see [18, Lemma 4.3] and [25]) but not con-
versely, the corollary below is not optimal, neither with respect to the class of groups
covered, nor with respect to the estimate on nuclear dimension.

Corollary 8.24 Let � be a countable discrete group with finite asymptotic dimension.
Then � admits a minimal, free action on the Cantor set X such that C(X) �r � has
nuclear dimension bounded above by the asymptotic dimension of �.

Proof Combine Lemma 5.4, Theorems 6.6, 8.6, and again that the reduced groupoid
C∗-algebra of a transformation groupoid � � Y identifies naturally with C(Y ) �r �.

��
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We should note that there are many other results in the literature that give estimates
on nuclear dimension or other C∗-algebraic regularity properties based on conditions
on actions: see for example [11,19,20,36,37]. Many of these results go further than
ours in at least some ways: for example, [36] proves fairly general finite dimension-
ality results for Z

n-actions, [20] treats non-free Z-actions, [11] treats some Z-actions
on non-finite dimensional spaces, and several works deal with some actions on non-
commutative C∗-algebras. It would be interesting to clarify the relationships holding
between the various conditions involved in these results and ours.

The final result is not strictly a ‘corollary’ as such, but follows from exactly the
same method of proof; it does not require any separability assumptions as these were
only used in the above in the appeal to Theorem 8.13, and to avoid complications from
general topology with respect to dimension theory. We guess it is possible to prove it
more directly, and without the assumption of freeness, but did not pursue this.

Corollary 8.25 Let G be a free étale groupoid with finite dynamic asymptotic dimen-
sion. Then G is amenable.

Proof Themethod of proof of Theorem 8.6 implies in particular thatC∗
r (G) is nuclear

(whether or not the unit space of G is finite dimensional). Hence G is amenable by
[6, Theorem 5.6.18]. ��
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