
Math. Ann. (2017) 367:701–753
DOI 10.1007/s00208-016-1385-2 Mathematische Annalen

A systolic inequality for geodesic flows on the two-sphere

Alberto Abbondandolo1 · Barney Bramham2 ·
Umberto L. Hryniewicz3 · Pedro A. S. Salomão4

Received: 14 September 2015 / Published online: 12 March 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract For a Riemannian metric g on the two-sphere, let �min(g) be the length of
the shortest closed geodesic and �max(g) be the length of the longest simple closed
geodesic. We prove that if the curvature of g is positive and sufficiently pinched, then
the sharp systolic inequalities

�min(g)
2 ≤ π Area(S2, g) ≤ �max(g)

2,

hold, and each of these two inequalities is an equality if and only if the metric g is
Zoll. The first inequality answers positively a conjecture of Babenko and Balacheff.
The proof combines arguments from Riemannian and symplectic geometry.
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1 Introduction

In 1988 Croke proved that the length of the shortest closed geodesic on a Riemannian
two-sphere can be bounded from above in terms of its area: there exists a positive
number C such that the quantity

�min(g) := length of the shortest non-constant closed geodesic on (S2, g)

is bounded from above by

�min(g)
2 ≤ C Area(S2, g),

for every Riemannian metric g (see [13]). In other words, the systolic ratio

ρsys(g) := �min(g)2

Area(S2, g)

is bounded from above on the space of all Riemannian metrics on S2. The value of
the supremum of ρsys is not known, but it was shown to be not larger than 32 by
Rotman [23], who improved the previous estimates due to Croke [13], Nabutowski
and Rotman [22], and Sabourau [24].

The naïve conjecture that the round metric ground on S2 maximises ρsys is false.
Indeed,

ρsys(ground) = π,

while, by studying suitable positively curved metrics approximating a singular metric
constructed by gluing two flat equilateral triangles along their boundaries, one sees
that
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A systolic inequality for geodesic flows on the two-sphere 703

sup ρsys ≥ 2
√
3 > π.

This singular example is known as the Calabi–Croke sphere. Actually, it is conjectured
that the supremum of ρsys is 2

√
3 and that it is not attained. See [5,25] for two different

proofs of the fact that the Calabi–Croke sphere can be seen as a local maximiser of
ρsys.

In this paper, we are interested in the behaviour of ρsys near the round metric ground
on S2. To the authors’ knowledge, this question was first raised by Babenko, and then
studied by Balacheff, who in [4] showed that ground can be seen as a critical point of
ρsys. In the same paper, Balacheff conjectured the roundmetric to be a local maximiser
ofρsys and gave some evidence in favour of this conjecture (see also [9,Question 8.7.2],
where upon request of Balacheff the conjecture is attributed to Babenko).

Certainly, ground is not a strict local maximiser of ρsys, even after modding out
rescaling: in any neighbourhood of it there are infinitely many non-isometric Zoll
metrics, i.e. Riemannian metrics on S2 all of whose geodesics are closed and have the
same length, and ρsys is constantly equal to π on them (see [17,27] and Appendix B
below). Further evidence in favour of the local maximality of the round metric is given
in [3], where Álvarez Paiva and Balacheff prove that ρsys strictly decreases under
infinitesimal deformations of the round metric which are not tangent with infinite
order to the space of Zoll metrics.

The aim of this paper is to give a positive answer to Babenko’s and Balacheff’s
conjecture and to complement it with a statement about the length �max(g) of the
longest simple closed geodesic on (S2, g). The latter number is well defined whenever
the Gaussian curvature K of (S2, g) is non-negative, see [11].

We recall that a Riemannian metric g on S2 is δ-pinched, for some δ ∈ (0, 1], if its
Gaussian curvature K is positive and satisfies

min K ≥ δmax K .

The main result of this article is the following:

Theorem Let g be a δ-pinched smooth Riemannian metric on S2, with

δ >
4+√

7

8
= 0.8307 . . .

Then

�min(g)
2 ≤ π Area(S2, g) ≤ �max(g)

2.

Each of the two inequalities is an equality if and only if g is Zoll.

In particular, the left most inequality alone implies that the round metric maximizes
ρsys in a somewhat large C2-neighborhood of ground, which can be described in terms
of the Gaussian curvature: if g satisfies the above pinching condition, then

ρsys(g) ≤ ρsys(ground) = π,
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with the equality holding if and only if g is Zoll. Although the optimal pinching
constant might be less than (4 + √

7)/8, it must be a strictly positive value because
the Calabi–Croke singular sphere is itself a limit of pinched metrics.

As far as we know, also the lower bound for the length �max(g) of the longest
simple closed geodesic which is stated in the above theorem is new. Lower bounds
for �max(g) are studied by Calabi and Cao in the already mentioned [11], where the
non-sharp bound

�max(g)
2 ≥ π

2
Area(S2, g)

is proved for any metric g with non-negative curvature. This bound is deduced by the
following sharp lower bound in terms of the diameter

sup{�(γ ) | γ simple closed geodesic on (S2, g)} ≥ 2 diam(S2, g),

which is due to Croke and holds for any metric (when finite, this supremum is a
maximum; the supremum is finite in the case K ≥ 0). Unlike for the first inequality,
we do not have counterexamples to the second inequality in our main theorem for
metrics which are far from the round one. Our theorem also implies that, under the
pinching assumption, when all the simple closed geodesics have the same length the
metric must be Zoll.

The proof of the above theorem combines arguments from Riemannian geometry
and techniques from symplectic geometry. The role of symplectic geometry in the
proof should not surprise: as stressed in [3], the systolic ratio ρsys is a symplectic
invariant, meaning that if two metrics give rise to geodesic flows on the cotangent
bundle of S2 which are conjugate by a symplectic diffeomorphism, then their systolic
ratios coincide. Another argument in favour of the symplectic nature of our theorem
is that Zoll metrics, which produce the extremal cases of both our inequalities, are in
general not pairwise isometric, but their geodesic flows are symplectically conjugate,
see Appendix B. The presence of a large set of not pairwise isometric local maximisers
for ρsys seems to exclude the possibility of a purely Riemannian geometric proof.

We conclude this introduction with an informal description of the proof.We start by
looking at a closed geodesic γ on (S2, g) ofminimal length L = �min(g), parametrised
by arc length. When the curvature of (S2, g) is non-negative, this curve is simple (see
[11], or Lemma 3.11 below for a proof under the assumption that g is δ-pinched for
some δ > 1/4).

Then we consider a Birkhoff annulus �+
γ which is associated to γ : �+

γ is the set
of all unit tangent vectors to S2 which are based at points of γ (R) and point in the
direction of one of the two disks which compose S2\γ (R). The set �+

γ is a closed
annulus, and its boundary consists of the unit vectors γ̇ (t) and −γ̇ (t), for t ∈ R/LZ.

By a famous result of Birkhoff, the positivity of the curvature K guarantees that all
orbits of the geodesic flow on the unit tangent bundle T 1S2 of (S2, g), except for the
two closed orbits γ̇ and −γ̇ , hit the interior part of �+

γ infinitely many times in the
future and in the past. In other words,�+

γ is a global Poincaré section for the geodesic
flow φt : T 1S2 → T 1S2 induced by g. This allows us to consider the first return time
function
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τ : int(�+
γ ) → (0,+∞), τ (v) := inf{t > 0 | φt (v) ∈ �+

γ },

and the first return time map

ϕ : int(�+
γ ) → int(�+

γ ), ϕ(v) := φτ(v)(v).

The function τ and the map ϕ are smooth and, as we will show, extend smoothly to
the boundary of �+

γ .
The map ϕ preserves the two-form dλ, where λ is the restriction to �+

γ of the
standard contact form on T 1S2. The two-form dλ is an area-form in the interior of
�+

γ , but vanishes on the boundary, due to the fact that the geodesic flow is not transverse
to the boundary. Indeed, if we consider the coordinates

(x, y) ∈ R/LZ× [0, π ]

on �+
γ given by the arc parameter x on the geodesic γ and the angle y which a unit

tangent vector makes with γ̇ , the one-form λ and its differential have the form

λ = cos y dx, dλ = sin y dx ∧ dy. (1)

By lifting the first return map ϕ to the strip S = R×[0, π ], we obtain a diffeomor-
phism� : S → S which preserves the two-form dλ given by (1), maps each boundary
component into itself, and satisfies

�(x + L , y) = (L , 0)+�(x, y), ∀(x, y) ∈ S.

As we shall see, diffeomorphisms of S with these properties have a well defined flux
and, when the flux vanishes, a well defined Calabi invariant. The flux of � is its
average horizontal displacement. We shall prove that, if g is δ-pinched with δ > 1/4,
one can find a lift � of ϕ having zero flux. For diffeomorphisms � with zero flux, the
action and the Calabi invariant can be defined in the following way. The action of �

is the unique function

σ : S → R,

such that

dσ = �∗λ− λ on S,

and whose value at each boundary point w ∈ ∂S coincides with the integral of λ on
the arc from w to �(w) along ∂S. The Calabi invariant of � is the average of the
action, that is, the number

CAL(�) = 1

2L

∫∫
[0,L]×[0,π ]

σ dλ.
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We shall prove that, still assuming g to be δ-pinched with δ > 1/4, the action and the
Calabi invariant of � are related to the geometric quantities we are interested in by
the identities

τ ◦ p = L + σ, (2)

π Area(S2, g) = L2 + L CAL(�), (3)

where

p : S = R× [0, π ] → �+
γ = R/LZ× [0, π ]

is the standard projection. The δ-pinching assumption on g with δ > (4 + √
7)/8

implies that the map � is monotone, meaning that, writing

�(x, y) = (X (x, y),Y (x, y)),

the strict inequality D2Y > 0 holds on S. This is proved by using an upper bound on the
perimeter of convex geodesic polygons which follows from Toponogov’s comparison
theorem.This upper bound plays an important role also in the proof of someof the other
facts stated above, and we discuss it in Appendix A. The monotonicity of � allows us
to represent it in terms of a generating function. The method of generating functions
is absolutely classical, it goes back to the foundational contributions of Poincaré, and
continues to be a fundamental tool in modern Symplectic Topology. By using such a
generating function, we shall prove the following fixed point theorem (Theorem 2.12):
If a monotone map�with vanishing flux is not the identity and satisfies CAL(�) ≤ 0,
then � has an interior fixed point with negative action.

The first inequality in our main theorem is now a consequence of the latter fixed
point theorem and of the identities (2) and (3). First one observes that � is the identity
if and only if g is Zoll. Assume that g is not Zoll. If, by contradiction, the inequality

L2 = �min(g)
2 ≥ π Area(S2, g)

holds, (3) implies that CAL(�) ≤ 0, so� has a fixed pointw ∈ int(S)with σ(w) < 0.
But then (2) implies that the closed geodesic which is determined by p(w) ∈ �+

γ has
length τ(p(w)) < L , which is a contradiction, because L is the minimal length of a
closed geodesic. This shows that when g is not Zoll, the strict inequality

�min(g)
2 < π Area(S2, g)

holds. This proves the first inequality. The proof of the second one uses the Birkhoff
map associated to a simple closed geodesic of maximal length and is similar.

2 A class of self-diffeomorphisms of the strip preserving a two-form

We denote by S the closed strip

S := R× [0, π ],
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on which we consider coordinates (x, y), x ∈ R, y ∈ [0, π ]. The smooth two-form

ω(x, y) := sin y dx ∧ dy

is an area form on the interior of S and vanishes on its boundary. Fix some L > 0, and
let DL(S, ω) be the group of all diffeomorphisms � : S → S such that:

(i) �(x + L , y) = (L , 0)+�(x, y) for every (x, y) ∈ S.
(ii) � maps each component of ∂S into itself.
(iii) � preserves the two-form ω.

The elements of DL(S, ω) are precisely the maps which are obtained by lifting to
the universal cover

S → A := R/LZ× [0, π ]

self-diffeomorphisms of A which preserve the two-form ω on A and map each bound-
ary component into itself.

By conjugating an element � of DL(S, ω) by the homeomorphism

S → R× [−1, 1], (x, y) �→ (x,− cos y),

one obtains a self-homeomorphism of the strip R× [−1, 1] which preserves the stan-
dard area form dx ∧ dy. Such a homeomorpshism is in general not continuously
differentiable up to the boundary. Since we find it more convenient to work in the
smooth category, we prefer not to use the above conjugacy and to deal with the non-
standard area-form ω vanishing on the boundary.

2.1 The flux and the Calabi invariant

In this section, we define the flux on DL(S, ω) and the Calabi homomorphism on the
kernel of the flux. These real valued homomorphisms were introduced by Calabi in
[10] for the group of compactly supported symplectic diffeomorphisms of symplectic
manifolds of arbitrary dimension. See also [21, Chapter 10]. In this paper we need
to extend these definitions to the surface with boundary S. Our presentation is self-
contained.

Definition 2.1 The flux of a map � ∈ DL(S, ω), �(x, y) = (X (x, y),Y (x, y)), is
the real number

FLUX(�) := 1

2L

∫∫
[0,L]×[0,π ]

(X (x, y)− x) ω(x, y).

In other words, the flux of � is the average shift in the horizontal direction (notice
that 2L is the total area of [0, L] × [0, π ] with respect to the area form ω). Using
the fact that the elements of DL(S, ω) preserve ω, it is easy to show that the function
FLUX : DL(S, ω) → R is a homomorphism.
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708 A. Abbondandolo et al.

Proposition 2.2 Let α0 : [0, π ] → S be the path α0(t) := (0, t). Then

FLUX(�) = 1

2

∫
�(α0)

x sin y dy,

for every � in DL(S, ω).

Proof Let � : S → S be the covering transformation (x, y) �→ (x + L , y), and set
Q := [0, L] × [0, π ]. With its natural orientation, Q ⊂ S is the region whose signed
boundary is �(α0) − α0 plus pieces that lie in ∂S. Since � ∈ DL(S, ω) commutes
with �, we have

�(Q)− Q = �(R)− R (4)

as simplicial 2-chains in S, where R ⊂ S is an oriented region whose signed boundary
consists of �(α0)− α0 plus two additional pieces in ∂S that we do not need to label.
Therefore,

FLUX(�) = 1

2L

∫
Q
(X − x) ω = 1

2L

∫
Q
(�∗(x ω)− x ω) = 1

2L

∫
R
(�∗(x ω)− x ω),

using (4) for the last equality. Since

�∗(x ω)− x ω = L ω = L d
(
x sin y dy

)
,

by Stokes theorem we conclude that

FLUX(�) = 1

2

∫
∂R

x sin y dy = 1

2

∫
�(α0)−α0

x sin y dy = 1

2

∫
�(α0)

x sin y dy.

��
Remark 2.3 More generally, it is not difficult to show that if α is any smooth path in
S with the first end-point in R× {0} and the second one in R× {π}, then

FLUX(�) = 1

2

∫
�(α)

x sin y dy − 1

2

∫
α

x sin y dy,

for every � in DL(S, ω).

Now we fix the following primitive of ω on S

λ := cos y dx .

Notice that λ is invariant with respect to translations in the x-direction. Let � be an
element of DL(S, ω). Since � preserves ω = dλ, the one-form

�∗λ− λ
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A systolic inequality for geodesic flows on the two-sphere 709

is closed. Since S is simply connected, there exists a unique smooth function

σ : S → R

such that
dσ = �∗λ− λ on S, (5)

and

σ(0, 0) =
∫

γ0

λ− FLUX(�), (6)

where γ0 is a smooth path in ∂S going from (0, 0) to �(0, 0). Of course, the value of
the integral in (6) does not depend on the choice of γ0, but only on its end-points.

Notice that the function σ is L-periodic in the first variable: This follows from
the fact that �∗λ − λ is L-periodic in the first variable and its integral on the path
β0 : [0, L] → S, β0(t) = (t, 0), vanishes:

∫
β0

(�∗λ− λ) =
∫

�(β0)

λ−
∫

β0

λ =
∫

�(0,0)+β0

λ−
∫

β0

λ = 0,

thanks to the invariance of λ with respect to horizontal translations (here, the L-
periodicity of λ in the first variable would have sufficed).

Notice also that, thanks to (5), the same normalization condition (6) holds for every
point in the lower component of the boundary of S: For every x in R there holds

σ(x, 0) =
∫

γx

λ− FLUX(�), (7)

where γx is a smooth path in ∂S going from (x, 0) to�(x, 0). Indeed, if ξx is a smooth
path in ∂S from (0, 0) to (x, 0), then the paths γ0#(� ◦ ξx ) and ξx#γx in ∂S have the
same end-points. Thus,

∫
γ0

λ+
∫

ξx

�∗λ =
∫

ξx

λ+
∫

γx

λ,

and Eqs. (5) and (6) imply

σ(x, 0)=σ(0, 0)+
∫

ξx

dσ =
∫

γ0

λ−FLUX(�)+
∫

ξx

(�∗λ−λ)=
∫

γx

λ− FLUX(�).

Therefore, we can give the following definitions.

Definition 2.4 Let � ∈ DL(S, ω). The unique smooth function σ : S → R which
satisfies (5) and (6) (or, equivalently, (5) and (7)) is called action of �.

Definition 2.5 Let � ∈ ker FLUX and let σ be the action of �. The Calabi invariant
of � is the real number

CAL(�) = 1

2L

∫∫
[0,L]×[0,π ]

σ ω.
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710 A. Abbondandolo et al.

In other words, the Calabi invariant of� is its average action. The following remark
explainswhywe define theCalabi invariant only for diffeomorphisms having zero flux.

Remark 2.6 The action σ depends on the choice of the primitive λ of ω. Let λ′ be
another primitive of ω, still L-periodic in the first variable. Then one can easily show
that λ′ = λ+ d f + c dx , where f : S → R is a smooth function which is L-periodic
in the first variable and c is a real number, and that the action σ ′ of � with respect to
λ′ is given by

σ ′(x, y) = σ(x, y)+ f ◦�(x, y)− f (x, y)+ c(X (x, y)− x),

where � = (X,Y ). If � has zero flux, then the integrals of σ ′ ω and of σ ω on
[0, L] × [0, π ] coincide, so the Calabi invariant of � does not depend on the choice
of the periodic primitive of ω. Moreover, this formula also shows that the value of the
action at a fixed point of� is independent on the choice of the primitive ofω. Since�∗λ
is another periodic primitive of ω, the above facts imply that CAL : ker FLUX → R

is a homomorphsim. In this paper, we work always with the chosen primitive λ of ω

and do not need the homomorphsim property of CAL, so we leave these verifications
to the reader. See [14,15] for interesting equivalent definitions of the Calabi invariant
in the case of compactly supported area preserving diffeomorphisms of the plane.

In our definition of the action, we have chosen to normalise σ by looking at the
lower component of ∂S. The following result describes what happens on the upper
component.

Proposition 2.7 Let � ∈ DL(S, ω) and let σ : S → R be its action. Let δx be a
smooth path in ∂S going from (x, π) to �(x, π). Then

σ(x, π) =
∫

δx

λ+ FLUX(�).

Proof The same argument used in the paragraph above Definition 2.4 shows that it
is enough to check the formula for x = 0. In this case, by integrating over the path
α0 : [0, π ] → S, α0(t) := (0, t), we find by Stokes theorem

σ(0, π) = σ(0, 0)+
∫

α0

dσ =
∫

γ0

λ− FLUX(�)+
∫

α0

(�∗λ− λ)

=
∫

γ0

λ−FLUX(�)+
∫

�(α0)

λ+
∫

α−1
0

λ=
∫

δ0

λ−FLUX(�)+
∫∫

R
h∗(dλ),

where h : R → S is a smooth map on a closed rectangle R whose restriction to the
boundary is given by the concatenation γ0#(�◦α0)#δ

−1
0 #α−1

0 . By using again Stokes
theorem with the primitive x sin y dy of ω = dλ, we get

∫∫
R
h∗(dλ) =

∫
γ0#(�◦α0)#δ−1

0 #α−1
0

x sin y dy =
∫

�(α0)

x sin y dy.
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By Proposition 2.2, the latter quantity coincides with twice the flux of �, and the
conclusion follows. ��

2.2 Generating functions

As it is well known, area-preserving self-diffeomorphisms of the strip which satisfy a
suitable monotonicity condition can be represented in terms of a generating function.
See for instance [21, Chapter 9]. Here we need to review these facts in the case of
diffeomorphims preserving the special two-form ω = sin y dx ∧ dy.

Definition 2.8 The diffeomorphism � = (X,Y ) in DL(S, ω) is said to be monotone
if D2Y (x, y) > 0 for every (x, y) ∈ S.

Assume that � = (X,Y ) ∈ DL(S, ω) is a monotone map. Then for every x ∈ R

the map y �→ Y (x, y) is a diffeomorphism of [0, π ] onto itself, and hence the map

� : S → S, �(x, y) = (x,Y (x, y))

is a diffeomorphism. Denoting by y the second component of the inverse of �, we
can work with coordinates (x,Y ) on S and consider the one-form

η(x,Y ) = (cos Y − cos y) dx + (X − x) sin Y dY on S.

From the fact that � preserves ω we find

dη = sin Y dx ∧ dY − sin y dx ∧ dy + sin Y dX ∧ dY − sin Y dx ∧ dY

= − sin y dx ∧ dy + sin Y dX ∧ dY = 0,

so η is closed. LetW = W (x,Y ) be a primitive of η. Then also (x, y) �→ W (x+L , y)
is a primitive of η, and hence

W (x + L ,Y )−W (x,Y ) = c, ∀(x,Y ) ∈ S,

for some real number c. Since the integral of η on any path in ∂S connecting (0, 0)
to (L , 0) vanishes, the constant c must be zero, and hence any primitive W of η is
L-periodic. By writing

dW (x,Y ) = D1W (x,Y ) dx + D2W (x,Y ) dY,

and using the definition of η, we obtain the following:

Proposition 2.9 Assume that � in DL(S, ω) is a monotone map. Then there exists a
smooth function W : S → R such that the following holds: �(x, y) = (X,Y ) if and
only if

(X − x) sin Y = D2W (x,Y ), (8)

cos Y − cos y = D1W (x,Y ). (9)
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712 A. Abbondandolo et al.

The function W is L-periodic in the first variable. It is uniquely defined up to the
addition of a real constant.

A function W as above is called a generating function of �. Equation (9) implies
that W is constant on each of the two connected components of the boundary of S.
The difference between these two constant values coincides with twice the flux of �:

Proposition 2.10 If W is a generating function of the monotone map � ∈ DL(S, ω),
then

FLUX(�) = 1

2
(W |R×{π} −W |R×{0}).

Proof By Proposition 2.2 and (8) we compute

FLUX(�) = 1

2

∫
�(α0)

x sin y dy = 1

2

∫
α0

X sin Y dY = 1

2

∫
α0

(X − x) sin Y dY

= 1

2

∫
α0

D2W (x,Y ) dY = 1

2
(W |R×{π} −W |R×{0}),

where we have used the fact that x = 0 on the path α0 which is defined in Proposi-
tion 2.2. ��

By the above proposition, we can choose the free additive constant of the generating
function W in such a way that:

W |R×{0} = −FLUX(�), W |R×{π} = FLUX(�). (10)

We conclude this section by expressing the action and the Calabi invariant of a
monotone element of DL(S, ω) in terms of its generating function, normalised by
the above condition.

Proposition 2.11 Let � = (X,Y ) ∈ DL(S, ω) be a monotone map, and denote by
W the generating function of � normalised by (10). Then we have:

(i) The action of � is the function

σ(x, y) = W (x,Y (x, y))+ D2W (x,Y (x, y)) cot Y (x, y).

(ii) If moreover FLUX(�) = 0, then the Calabi invariant of � is the number

CAL(�) = 1

2L

∫∫
[0,L]×[0,π ]

(W (x, y)+W (x,Y (x, y))) ω(x, y).

The formula for σ in (i) is valid only in the interior of S, because the cotangent
function diverges at 0 and π . Since D2W vanishes on the boundary of S, thanks to
(8), this formula defines a smooth function on S by setting

σ(x, 0) = W (x, 0)+ D22W (x, 0), σ (x, π) = W (x, π)+ D22W (x, π),

for every x ∈ R.
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Proof Let us check that the function σ which is defined in (i) coincides with the action
of �. By (8) we have

σ = W + D2W cot Y = W + (X − x) cos Y (11)

on int(S). By continuity, this formula for σ is valid on the whole S. By differentiating
it and using again (8) together with (9), we obtain

dσ = dW − (X − x) sin Y dY + cos Y (dX − dx)

= dW − D2W dY + cos Y (dX − dx) = D1W dx + cos Y (dX − dx)

= (cos Y − cos y) dx + cos Y (dX − dx) = cos Y dX − cos y dx = �∗λ− λ.

Therefore, σ satisfies (5). Evaluating (11) in (0, 0) we find

σ(0, 0) = W (0, 0)+ X (0, 0) = −FLUX(�)+ X (0, 0) = −FLUX(�)+
∫

γ0

λ,

where γ0 is a path in ∂S going from (0, 0) to �(0, 0). We conclude that σ satisfies
also (6), and hence coincides with the action of �. This proves (i).

Wenowuse (i) in order to compute the integral of the two formσ ω on [0, L]×[0, π ].
We start from the identity∫∫

[0,L]×[0,π ]
σ ω =

∫∫
[0,L]×[0,π ]

W (x,Y (x, y)) ω(x, y)

+
∫∫

[0,L]×[0,π ]
D2W (x,Y (x, y)) cot Y (x, y) sin y dx ∧ dy,

(12)

and we manipulate the last integral. By differentiating (9), that is, the identity

cos Y (x, y)− cos y = D1W (x,Y (x, y)),

we obtain

sin y dy = sin Y dY + D11W dx + D12W dY.

By the above formula, the integrand in the last integral in (12) can be rewritten as

D2W cot Y sin y dx ∧ dy = D2W cot Y dx ∧ (sin Y dY + D12W dY )

= D2W cos Y dx ∧ dY + D2WD12W cot Y dx ∧ dY.

(13)

We integrate the above two forms separately. By the L-periodicity in x , the integral
of the first two-form can be manipulated as follows:∫∫

[0,L]×[0,π ]
D2W (x,Y (x, y)) cos Y (x, y) dx ∧ dY (x, y)

=
∫∫

[0,L]×[0,π ]
D2W (x,Y ) cos Y dx ∧ dY
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=
∫ L

0

(∫ π

0
D2W (x,Y ) cos Y dY

)
dx

=
∫ L

0

(
[W (x,Y ) cos Y ]Y=π

Y=0 +
∫ π

0
W (x,Y ) sin Y dY

)
dx

= −L(W |R×{π} +W |R×{0})+
∫∫

[0,L]×[0,π ]
W (x,Y ) sin Y dx ∧ dY

= −L(−FLUX(�)+ FLUX(�))+
∫∫

[0,L]×[0,π ]
W (x, y) sin y dx ∧ dy

=
∫∫

[0,L]×[0,π ]
W (x, y) ω(x, y), (14)

where we have used the normalization condition (10). The integral of the second form
in the right-hand side of (13) vanishes, because

∫∫
[0,L]×[0,π ]

D2WD12W cot Y dx ∧ dY

= 1

2

∫∫
[0,L]×[0,π ]

D1(D2W )2 cot Y dx ∧ dY

= 1

2

∫ π

0
cot Y

(∫ L

0
D1(D2W )2 dx

)
dY = 0, (15)

by L-periodicity in x . By (12), (13), (14) and (15) we obtain

∫∫
[0,L]×[0,π ]

σ ω =
∫∫

[0,L]×[0,π ]
(W (x,Y (x, y))+W (x, y)) ω(x, y),

and (ii) follows. ��

2.3 The Calabi invariant and the action at fixed points

We are now in the position to prove the main result of this first part.

Theorem 2.12 Let � be a monotone element of DL(S, ω) which is different from the
identity and has zero flux. IfCAL(�) ≤ 0 (resp.CAL(�) ≥ 0), then� has an interior
fixed point with negative (resp. positive) action.

Proof LetW be the generating function of � normalised by the condition (10). Since
� has zero flux, this condition says that W is zero on the boundary of S. Since � is
not the identity, W is not identically zero. Then the condition CAL(�) ≤ 0 and the
formula of Proposition 2.11 (ii) for CAL(�) imply that W is somewhere negative.
Being a continuous periodic function, W achieves its minimum at some interior point
(x,Y ) ∈ int(S). Since the differential of W vanishes at (x,Y ), Eqs. (8) and (9) imply
that (x, y) := (x,Y ) is a fixed point of �. By Proposition 2.11 (i),

σ(x, y) = W (x,Y ) < 0.
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Therefore, (x, y) is an interior fixed point of � with negative action. The case
CAL(�) ≥ 0 is completely analogous. ��

The conclusion of the above theorem is false if we drop the assumption on the
monotonicity of �: there exist non monotone maps � ∈ DL(S, ω) which have zero
flux, negative Calabi invariant but no fixed points with negative action. See Section
2.8 and Remark 2.22 in [1].

3 The geodesic flow on a positively curved two-sphere

Throughout this section, a smooth oriented Riemannian two-sphere (S2, g) is fixed.
The associated unit tangent bundle is

T 1S2 := {v ∈ T S2 | gπ(v)(v, v) = 1},

where π : T S2 → S2 denotes the bundle projection. For each v ∈ T 1S2, we denote
by v⊥ ∈ Tπ(v)S2 the unit vector perpendicular to v such that {v, v⊥} is a positive basis
of Tπ(v)S2.

We shall deal alwayswithRiemannianmetrics g having positiveGaussian curvature
K and shall often use Klingenberg’s lower bound on the injectivity radius inj(g) of
the metric g from [18], that is,

inj(g) ≥ π√
max K

, (16)

see also [19, Theorem 2.6.9].

3.1 Extension and regularity of the Birkhoff map

Let γ : R/LZ → S2 be a simple closed geodesic of length L parametrised by
arc-length, i.e. satisfying gγ (γ̇ , γ̇ ) ≡ 1. The smooth unit vector field γ̇⊥ along γ

determines the Birkhoff annuli

�+
γ := {cos y γ̇ (x)+ sin y γ̇⊥(x) ∈ T 1S2 | (x, y) ∈ R/LZ× [0, π ]},

�−
γ := {cos y γ̇ (x)+ sin y γ̇⊥(x) ∈ T 1S2 | (x, y) ∈ R/LZ× [−π, 0]}. (17)

These sets are embedded closed annuli and (x, y) are smooth coordinates on them.
The annuli �+

γ and �−
γ intersect along their boundaries ∂�+

γ = ∂�−
γ . This common

boundary has two components, one containing unit vectors γ̇ and the other containing
unit vectors −γ̇ . We denote the open annuli by

int(�+
γ ) := �+

γ \∂�+
γ , int(�−

γ ) := �−
γ \∂�−

γ .
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716 A. Abbondandolo et al.

Let φt be the geodesic flow on T 1S2. We define the functions

τ+ : int(�+
γ ) → (0,+∞], τ+(v) := inf{t > 0 | φt (v) ∈ int(�−

γ )},
τ− : int(�−

γ ) → (0,+∞], τ−(v) := inf{t > 0 | φt (v) ∈ int(�+
γ )},

where the infimum of the empty set is+∞. The functions τ+ and τ− are the transition
times to go from the interior of �+

γ to the interior of �−
γ and the other way round. The

first return time to �+
γ is instead the function

τ : int(�+
γ ) → (0,+∞], τ (v) := inf{t > 0 | φt (v) ∈ int(�+

γ )}.

Recall the following celebrated theorem due to Birkhoff (see also [6]):

Theorem 3.1 (Birkhoff [7]) If the Gaussian curvature of g is everywhere positive
then the functions τ+, τ− and τ are everywhere finite.

Thanks to the above result, we have the transition maps

ϕ+ : int(�+
γ ) → int(�−

γ ), ϕ+(v) := φτ+(v)(v),

ϕ− : int(�−
γ ) → int(�+

γ ), ϕ−(v) := φτ−(v)(v),

and the first return map

ϕ : int(�+
γ ) → int(�+

γ ), ϕ(v) := φτ(v)(v).

By construction,

ϕ = ϕ− ◦ ϕ+, (18)

τ = τ+ + τ− ◦ ϕ+. (19)

Using the implicit function theorem and the fact that the geodesic flow is transverse
to both int(�+

γ ) and int(�−
γ ), one easily proves that the functions τ+, τ− and τ are

smooth. These functions have smooth extensions to the closure of their domains.More
precisely, we have the following statement.

Proposition 3.2 Assume that theGaussian curvature of (S2, g) is everywhere positive.
Then:

(i) The functions τ+ and τ− can be smoothly extended to �+
γ and �−

γ , respectively,
as follows: τ+(γ̇ (x)) = τ−(γ̇ (x)) is the time to the first conjugate point along
the geodesic ray t ∈ [0,+∞) �→ γ (x + t), and τ+(−γ̇ (x)) = τ−(−γ̇ (x)) is the
time to the first conjugate point along the geodesic ray t ∈ [0,+∞) �→ γ (x− t).

(ii) The function τ can be smoothly extended to �+
γ as follows: τ(γ̇ (x)) is the time

to the second conjugate point along the geodesic ray t ∈ [0,+∞) �→ γ (x + t),
and τ(−γ̇ (x)) is the time to the second conjugate point along the geodesic ray
t ∈ [0,+∞) �→ γ (x − t).
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A systolic inequality for geodesic flows on the two-sphere 717

The smooth extensions of τ+, τ− and τ are denoted by the same symbols. The above
proposition has the following consequence:

Corollary 3.3 Suppose that the Gaussian curvature of (S2, g) is everywhere positive.
Then the formulas

v �→ φτ+(v)(v), v �→ φτ−(v)(v) and v �→ φτ(v)(v)

define smooth extensions of the maps ϕ+, ϕ− and ϕ to diffeomorphisms

ϕ+ : �+
γ → �−

γ , ϕ− : �−
γ → �+

γ and ϕ : �+
γ → �+

γ ,

which still satisfy (18) and (19).

Proof The smoothness of the geodesic flow φ and of the functions τ+, τ− and τ imply
that ϕ+, ϕ− and ϕ are smooth. Since the inverses of these maps on the interior of their
domains have analogous definitions, such as for instance

ϕ−1+ (v) = φτ̂+(v)(v), where τ̂+(v) := sup{t < 0 | φt (v) ∈ int(�+
γ )},

themapsϕ−1+ ,ϕ−1− andϕ−1 have also smooth extensions to the closure of their domains,
and hence ϕ+, ϕ− and ϕ are diffeomorphisms. ��

For sake of completeness, we include a proof of Proposition 3.2. A proof of state-
ment (ii) has recently appeared in [26]. This proof is based on a technical lemma
about return time functions of a certain class of flow, which we now introduce. Con-
sider coordinates (x, q, p) ∈ R/Z × R

2 and a smooth tangent vector field X on
R/Z× R

2 satisfying

X (x, 0, 0) = (1, 0, 0), ∀x ∈ R/Z. (20)

If we denote by ψt the flow of X then

ψt (x, 0, 0) = (x + t, 0, 0), ∀x ∈ R/Z,

and P := R/Z×0 is a 1-manifold invariant by the flow.We assume also that for every
x ∈ R/Z and t ∈ R the subspace {0} × R

2 ⊂ R
3 is preserved by the differential of

the flow, i.e.

Dψt (x, 0, 0)[{0} × R
2] = {0} × R

2, ∀x ∈ R/Z, ∀t ∈ R. (21)

For each δ ∈ (0,∞] consider the annuli

A+δ := R/Z× [0, δ), A−δ := R/Z× (−δ, 0],
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718 A. Abbondandolo et al.

both equipped with the coordinates (x, y). To each point (x, y) ∈ int(A+δ ) one may
try to associate the point ϕ+(x, y) ∈ int(A−δ ) given by the formula

ϕ+(x, y) = ψτ+(x,y)(x, y, 0) (22)

where τ+(x, y) is a tentative “first hitting time of A−δ ”, that is,

τ+(x, y) = inf {t > 0 | ψt (x, y, 0) ∈ int(A−∞)× {0}}. (23)

Of course, in general τ+ andϕ+may not bewell-defined, even for small δ. Our purpose
below is to give a sufficient condition on the vector field X to guarantee that, if δ is
small enough, τ+ and ϕ+ are well-defined smooth functions on int(A+δ ) which extend
smoothly to A+δ . In the following definition and in the proof of the lemma below, we
identify R2 with C.

Definition 3.4 Fix some x ∈ R/Z and v ∈ R
2\{0}. By (21) the image of (0, v) by

the differential of ψt at (x, 0, 0) has the form

Dψt (x, 0, 0)[(0, v)] = (0, ρ(t)eiθ(t)),

for suitable smooth functions ρ > 0 and θ , where ρ is unique and θ is unique up to
the addition of an integer multiple of 2π . We say that the linearised flow along P has
a positive twist if for every choice of x ∈ R/Z and v ∈ R

2\{0} the function θ which
is defined above satisfies θ ′(t) > 0 for all t ∈ R.

Lemma 3.5 If the linearised flow along P has a positive twist, then there exists δ0 > 0
such that τ+ is a well-defined smooth function on int(A+δ0) which extends smoothly as
a positive function on A+δ0 . Moreover, this extension is described by the formula

τ+(x, 0) = inf {t > 0 | Dψt (x, 0, 0)[∂y] ∈ R
−∂y}, (24)

where ∂y := (0, 1, 0).

Proof Write w = y+ i z and Y = X2+ i X3, where (X1, X2, X3) are the components
of the vector field X . Then

X (x, w) = (X1(x, w),Y (x, w)).

By (20) we have X1(x, 0) = 1 and Y (x, 0) = 0. Consider W (x, w) ∈ LR(C) defined
by

W (x, w) =
∫ 1

0
D2Y (x, sw) ds,

where D2Y denotes derivative with respect to the second variable. Then

W (x, 0) = D2Y (x, 0), Y (x, w) = W (x, w)w.
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We shall now translate the assumption that the linearised flow along P has a positive
twist into properties ofW (x, 0). Choose v0 ∈ C\0. Using (21) we find a smooth non-
vanishing complex valued function v such that

Dψt (x, 0)[(0, v0)] = (0, v(t)).

From

d

dt
Dψt = (DX ◦ ψt )Dψt ,

and from (21) we get the linear ODE

v̇(t) = D2Y (x + t, 0)v(t) = W (x + t, 0)v(t).

Writing v(t) = r(t)eiθ(t) with smooth functions r > 0 and θ , we know that

θ ′ = Re

(
v̇

iv

)
= Re

(
W (x + t, 0)v

iv

iv

iv

)

= 〈W (x + t, 0)v, iv〉
|v|2 = 〈W (x + t, 0)eiθ , ieiθ 〉, (25)

where 〈·, ·〉 denotes the Hermitian product on C. Since x, t and v(t) can take arbitrary
values, we conclude from the above formula and the assumptions of the lemma that

〈W (x, 0)u, iu〉 > 0, ∀u ∈ C\{0}, ∀x ∈ R/Z. (26)

Consider polar coordinates (r, θ) ∈ [0,+∞) × R/2πZ in the w-plane given by
w = y + i z = reiθ . The map

(x, r, θ) �→ X (x, reiθ )

is smooth. Using the formulas

∂y = y

r
∂r − z

r2
∂θ , ∂z = z

r
∂r + y

r2
∂θ ,

we obtain that the vector field X pulls back by this change of coordinates to a smooth
vector field

Z = (Z1, Z2, Z3),

which is given by

⎧⎨
⎩

Z1(x, r, θ) = X1(x, reiθ ),
Z2(x, r, θ) = cos θ X2(x, reiθ )+ sin θ X3(x, reiθ ),
Z3(x, r, θ) = 1

r

(
cos θ X3(x, reiθ )− sin θ X2(x, reiθ )

)
.

(27)
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Indeed, the smoothness of Z1 and Z2 follows immediately from the above formulas,
while that of Z3 needs a little more care. Since X2, X3 vanish on R/Z× {0}, we can
find smooth functions X2,2, X2,3, X3,2, X3,3 such that

X2(x, y + i z) = yX2,2(x, y + i z)+ zX2,3(x, y + i z),

X3(x, y + i z) = yX3,2(x, y + i z)+ zX3,3(x, y + i z),

where

X2,2(x, 0) = D2X2(x, 0, 0), X2,3(x, 0) = D3X2(x, 0, 0),

X3,2(x, 0) = D2X3(x, 0, 0), X3,3(x, 0) = D3X3(x, 0, 0),

and

W (z, w) =
[
X2,2(x, w) X2,3(x, w)

X3,2(x, w) X3,3(x, w)

]
.

Substituting y = r cos θ , z = r sin θ we find

Z3(x, r, θ) = 〈W (x, reiθ )eiθ , ieiθ 〉. (28)

Thus Z3 is a smooth function of (x, r, θ) and

Z3(x, 0, θ) > 0, ∀x ∈ R/Z, ∀θ ∈ R/2πZ, (29)

thanks to (26).
From now on we lift the variable θ from R/2πZ to the universal covering R and

think of the vector field Z as a smooth vector field defined on R/Z× [0,+∞) × R,
having components 2π -periodic in θ . Clearly this vector field is tangent to {r = 0}.

Let ζt denote the flow of Z . After changing coordinates and lifting, we see that the
conclusions of the lemma will follow if we check that

τ+(x, r) = inf{t > 0 | θ ◦ ζt (x, r, 0) = π} (30)

defines a smooth function of (x, r) ∈ R/Z×[0, δ)when δ is small enough. By (29) we
see that if δ0 is fixed small enough then τ+(x, r) is a well-defined, uniformly bounded
and strictly positive function of (x, r) ∈ R/Z×[0, δ0). Here we used that Z is tangent
to {r = 0}. Perhaps after shrinking δ0, we may also assume that

Z3(ζt (x, r, 0)) > 0, ∀(x, r) ∈ R/Z× [0, δ0), ∀t ∈ [0, τ+(z, r)]. (31)

Continuity and smoothness properties of τ+ remain to be checked. This is achieved
with the aid of the implicit function theorem. In fact, consider the smooth function

F : R× R/Z× [0,+∞) → R, F(τ, x, r) := θ ◦ ζτ (x, r, 0).
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Since

D1F(τ, x, r) = dθ [Z(ζτ (x, r, 0))] = Z3(ζτ (x, r, 0)),

it follows from (31) and from the implicit function theorem that the equation

F(τ+, x, r) = π

determines τ+ = τ+(x, r) as a smooth function of (x, r) ∈ R/Z× [0, δ0).
We now check formula (24) for τ+(x, 0). From the above equations one sees that

θ(t) = θ ◦ ζt (x, 0, 0) satisfies the differential equation

θ ′(t) = 〈D2Y (x + t, 0)eiθ , ieiθ 〉,

with initial condition θ(0) = 0. Thanks to (25), this is exactly the same initial value

problem for the argument θ̂ (t) of the solution v(t) = ρ(t)ei θ̂ (t) of the linearised flow
starting at the base point (x, 0) applied to the vector ∂y . ��

In order to prove Proposition 3.2, it is enough to show that coordinates can be
arranged in such a way that the geodesic flow near a simple closed geodesic γ meets
the assumptions of Lemma 3.5 when the Gaussian curvature is positive along γ . We
will assume for simplicity, and without loss of generality, that L = 1. We start by
recalling basic facts from Riemannian geometry and fixing some notation.

Given v ∈ T S2, let Vv ⊂ TvT S2 be the vertical subspace, which is defined as
Vv := ker dπ(v). The isomorphism

iVv
: Tπ(v)S

2 → Vv

is defined as

iVv
(w) := d

dt
(v + tw)

∣∣∣
t=0

, ∀w ∈ Tπ(v)S
2.

The Levi-Civita connection of g determines a bundle map K : T T S2 → T S2 satisfy-
ing ∇Y X = K (dX ◦ Y ), where X,Y are vector fields on S2 seen as maps S2 → T S2.
The horizontal subspaceHv := ker K |TvT S2 satisfies TvT S2 = Vv ⊕Hv . There is an
isomorphism

iHv
: Tπ(v)S

2 → Hv, iHv
(w) := d

dt
V (t)

∣∣∣
t=0

, ∀w ∈ Tπ(v)S
2,

where V is the parallel vector field along the geodesic β(t) satisfying β̇(0) = w with
initial condition V (0) = v, seen as a curve in T T S2. The isomorphism iHv

satisfies

dπ(v)
[
iHv

(w)
] = w, ∀w ∈ Tπ(v)S

2. (32)
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For each v ∈ T 1S2 we have

TvT
1S2 = span{iVv

(v⊥), iHv
(v⊥), iHv

(v)}.

The Hilbert form λH on T S2 is given by

λH (v)[ζ ] := gπ(v)

(
v, dπ(v)[ζ ]), ∀ζ ∈ TvS

2, (33)

and restricts to a contact form α on T 1S2. The contact structure ξ := ker α is trivial
since

ξv = span{iVv
(v⊥), iHv

(v⊥)}.

The Reeb vector field Rα of α coincides with iHv
(v), and {iVv

(v⊥), iHv
(v⊥)} forms

a symplectic basis for dα|ξv , because

dα(v)[iVv
(v⊥), iHv

(v⊥)] = 1.

If (x, y) are the standard coordinates on �±
γ given by

v = cos y γ̇ (x)+ sin y γ̇ (x)⊥,

then the tangent vectors ∂x and ∂y in Tv�
±
γ are

∂x = iHv
(γ̇ (x)) = cos y iHv

(v)− sin y iHv
(v⊥),

∂y = iVv
(v⊥). (34)

Proof of Proposition 3.2 It is enough to prove statement (i) for the function τ+. In
fact, the case of τ− follows by inverting the orientation of γ , and statement (ii) is then
a direct consequence of the identity (19).

By (34) the vector field Rα = iHv
(v) is transverse to the interior of�±

γ . The smooth
vector field

iHv
(γ̇⊥) = sin y iHv

(v)+ cos y iHv
(v⊥)

along �+
γ ∪�−

γ is transverse to it near γ̇ . To obtain the desired coordinates near γ̇ we
proceed as follows: let ḡ be the Riemannian metric on T 1S2 defined by

ḡv(ζ1, ζ2) := α(ζ1)α(ζ2)+ dα(πξ (ζ1), Jπξ (ζ2)),

where J : ξ → ξ is the dλ-compatible complex structure determined by

J (iVv
(v⊥)) = iHv

(v⊥),
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πξ : T 1S2 → ξ is the projection along Rα , and ζ1, ζ2 ∈ TvT 1S2 are arbitrary. Note
that ξ is orthogonal to RRα with respect to ḡ and ḡ(iVv

(v⊥), iHv
(v⊥)) = 0.

Denote by Exp the exponential map of ḡ. Then for all δ > 0 sufficiently small, the
map

R/Z× (−δ, δ)× (−δ, δ) → U
(x, y, z) �→ Expv=cos yγ̇ (x)+sin yγ̇⊥(x)

(
z(sin y iHv

(v)+ cos y iHv
(v⊥))

)

is a diffeomorphism, where U ⊂ T 1S2 is a small tubular neighborhood of γ̇ . In
coordinates (x, y, z), we have

γ̇ ≡ R/Z× {(0, 0)}
�+

γ ≡ {z = 0, y ≥ 0}
�−

γ ≡ {z = 0, y ≤ 0}
Rα|γ̇ ≡ (1, 0, 0)|R/Z×{(0,0)}
ξ |γ̇ ≡ {0} × R

2|R/Z×{(0,0)}
iVγ̇

(γ̇⊥) ≡ ∂y |R/Z×{(0,0)}
iHγ̇

(γ̇⊥) ≡ ∂z |R/Z×{(0,0)}. (35)

Denote by X = (X1, X2, X3) the Reeb vector field Rα in these coordinates and by
ψt its flow. Then X (x, 0, 0) = (1, 0, 0) and since ψt preserves the contact structure,
we have

Dψt (x, 0, 0)
[{0} × R

2] = {0} × R
2.

A linearised solution ζ(t) = a1(t)∂y + a2(t)∂z along ψt (x, 0, 0) = (x + t, 0, 0)
satisfies (

a′1(t)
a′2(t)

)
=

(
0 −K (t)
1 0

)(
a1(t)
a2(t)

)
,

where K (t) is theGaussian curvature at γ (x+t).Writing in complex polar coordinates
a1(t) + ia2(t) = ρ(t)eiθ(t), for smooth functions ρ ≥ 0 and θ , we can easily check
that

θ ′(t) = cos2 θ(t)+ K (t) sin2 θ(t), ∀t ∈ R.

Therefore, the positivity of the Gaussian curvature along γ implies the twist con-
dition. We have finished checking that X meets all the assumptions of Lemma 3.5.
Proposition 3.2 follows readily from an application of that lemma. ��

3.2 The contact volume, the return time and the Riemannian area

As we have seen in the previous section, the Hilbert form λH defined in (33) induces
by restriction a contact form α on T 1S2. A further restriction produces the one-form
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724 A. Abbondandolo et al.

λ on the Birkhoff annulus �+
γ . By using the standard smooth coordinates (x, y) ∈

R/LZ× [0, π ] on �+
γ , we express a vector v ∈ �+

γ as

v = cos y γ̇ (x)+ sin y γ̇ (x)⊥, (36)

and we find, using (33) and (34), together with (32),

λ(v)[∂x ] = gπ(v)(v, dπ(v)[cos y iHv
(v)− sin y iHv

(v⊥)])
= gπ(v)(v, cos y v − sin y v⊥) = cos y, λ(v)[∂y]
= gπ(v)(v, dπ(v)[iVv

(v⊥)]) = gπ(v)(v, 0) = 0

Therefore, the expression of λ in the coordinates (x, y) is

λ = cos y dx,

and its differential reads

dλ = sin y dx ∧ dy.

Thus, the forms λ and ω = dλ are the ones considered in part 2 on the universal cover
S of R/LZ× [0, π ].

Since the geodesic flow φt preserves α for all t , we have for any v in int(�+
γ ) and

ζ in Tv�
+
γ

(ϕ∗λ)(v)[ζ ] = λ(ϕ(v))[dϕ(v)[ζ ]]
= λ(φτ(v)(v))[dφτ(v)(v)[ζ ] + dτ(v)[ζ ]Rα(φτ(v)(v))]
= λ(v)[ζ ] + dτ(v)[ζ ]

on int(�+
γ ), and hence on its closure �+

γ since all the objects here are smooth. Here,
Rα is the Reeb vector field on the contact manifold (T 1S2, α), which coincides with
the generator of the geodesic flow. Therefore,

dτ = ϕ∗λ− λ on �+
γ .

Now let

� : int(�+
γ )× R→ T 1S2\(γ̇ (R) ∪ −(γ̇ (R))

be defined as �(v, t) := φt (v). Then

�∗α(v, t)[(ζ, s)] = α(φt (v))[dφt (v)[ζ ] + sRα(φt (v))]
= α(v)[ζ ] + s = λ(v)[ζ ] + s,
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that is,

�∗α = λ+ dt.

Again, we used the preservation of α by φt . Since λ∧ dλ = 0, being a three-form on
a two-dimensional manifold, we deduce that

�∗(α ∧ dα) = dt ∧ dλ.

Denoting by K the subset

K := {(v, t) ∈ int(�+
γ )× R | v ∈ int(�+

γ ), t ∈ [0, τ (x)]},

we can relate the contact volume Vol(T 1S2, α) with the function τ as follows

Vol(T 1S2, α) =
∫∫∫

T 1S2\(γ̇ (R)∪(−γ̇ (R)))

α ∧ dα =
∫∫∫

K
�∗(α ∧ dα)

=
∫∫∫

K
dt ∧ dλ =

∫∫
�+

γ

(∫ τ(v)

0
dt

)
dλ(v) =

∫∫
�+

γ

τ dλ.

Summarizing, we have proved the following:

Proposition 3.6 The restriction λ of the contact form α of T 1S2 to �+
γ has the form

λ = cos y dx

in the standard coordinates (x, y) ∈ R/LZ× [0, π ]. The first return map ϕ : �+
γ →

�+
γ preserves dλ. Moreover, the first return time τ : �+

γ → R satisfies

dτ = ϕ∗λ− λ on �+
γ .

Finally

Vol(T 1S2, α) =
∫∫

�+
γ

τ dλ.

For completeness we state and prove below a well known fact.

Proposition 3.7 The contact volume of (T 1S2, α) and the Riemannian area of (S2, g)
are related by the identity

Vol(T 1S2, α) = 2π Area(S2, g).

Proof Take isothermal coordinates (x, y) ∈ U ⊂ R
2 on an embedded closed disk

U ′ ⊂ S2. In these coordinates, the metric g takes the form

ds2 = a(x, y)2(dx2 + dy2),
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for a smooth positive function a. Any unit tangent vector v ∈ T 1U ′ ⊂ T 1S2 can be
written as

v = cos θ

a
∂x + sin θ

a
∂y, with θ ∈ R/2πZ,

where a = |∂x |g = |∂y |g . Thus (x, y, θ) ∈ U×R/2πZ can be taken as coordinates on
T 1U ′, and the bundle projection becomes π(x, y, θ) = (x, y). With respect to these
coordinates, the contact form

α(v)[ζ ] = gπ(v)

(
v, dπ(v)[ζ ])

has the expression

α = a(cos θ dx + sin θ dy).

Differentiation yields

dα = da ∧ (cos θ dx + sin θ dy)+ a(− sin θ dθ ∧ dx + cos θ dθ ∧ dy).

Hence

α ∧ dα = a da ∧ (cos θ sin θ dx ∧ dy + sin θ cos θ dy ∧ dx)

+a2(cos2 θ dx ∧ dθ ∧ dy − sin2 θ dy ∧ dθ ∧ dx)

= a2 dx ∧ dθ ∧ dy = −a2 dx ∧ dy ∧ dθ.

Therefore, the orientation of T 1U ′ which is induced by α ∧ dα is opposite to the
standard orientation of U × R/2πZ, and we get

Vol(T 1U ′, α) =
∫∫∫

T 1U ′
α ∧ dα =

∫∫∫
U×R/2πZ

a2dx ∧ dy ∧ dθ

=
∫∫

U
a2(x, y)

(∫ 2π

0
dθ

)
dxdy = 2π

∫∫
U
a2(x, y) dxdy

= 2π
∫∫

U

√
det(g) dxdy = 2π Area(U ′, g).

Taking two embedded disksU ′,U ′′ ⊂ S2 with disjoint interiors and coinciding bound-
aries, we get

Vol(T 1S2, α) = Vol(T 1U ′, α)+ Vol(T 1U ′′, α)

= 2π(Area(U ′, g)+ Area(U ′′, g))
= 2π Area(S2, g).

��
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3.3 The flux and the Calabi invariant of the Birkhoff return map

By using the standard smooth coordinates (x, y) given by (36), we can identify the
Birkhoff annulus�+

γ withR/LZ×[0, π ]. Its universal cover is the natural projection

p : S → �+
γ ,

where S is the strip R × [0, π ]. The first return map ϕ : �+
γ → �+

γ preserves the
two-form ω = dλ and maps each boundary component into itself. Therefore, ϕ can
be lifted to a diffeomorphism in the group DL(S, ω) which is considered in part 2.
The aim of this section is to prove the following result, which relates the objects of
this part with those of part 2.

Theorem 3.8 Assume that the metric g on S2 is δ-pinched with δ > 1/4. Let γ be a
simple closed geodesic of length L on (S2, g). Then the first returnmap ϕ : �+

γ → �+
γ

has a lift � : S → S which belongs to DL(S, ω) and has the following properties:

(i) � has zero flux.
(ii) The first return time τ : �+

γ → R is related to the action σ : S → R of � by
the identity

τ ◦ p = L + σ on S.

(iii) The area of (S2, g) is related to the Calabi invariant of � by the identity

π Area(S2, g) = L2 + L CAL(�).

The proof of this theorem requires an auxiliary lemma, whichwill play an important
role also in the next section.

Lemma 3.9 Assume that (S2, g) is δ-pinched for some δ > 1/4. Fix some v in �±
γ

and denote by α the geodesic satisfying α̇(0) = v. Then the geodesic arc α|[0,τ±(v)] is
injective.

Proof We consider the case of �+
γ , the case of �−

γ being completely analogous. Up
to the multiplication of g by a positive number, we may assume that 1 ≤ K < 4.

Let x∗ ∈ R be such that α(0) = γ (x∗) and let y∗ ∈ [0, π ] be the angle between
γ̇ (x∗) and v = α̇(0). Consider the family of unit speed geodesics αy with αy(0) =
α(0) = γ (x∗) such that the angle from γ̇ (x∗) to vy := α̇y(0) is y, for y ∈ [0, π ]. In
particular, αy∗ = α and vy∗ = v. By Proposition 3.2 (i),

{αy |[0,τ+(vy)]}y∈[0,π ]

is a smooth family of geodesic arcs, parametrised on a family of intervals whose length
varies smoothly.
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We claim that τ+(v0) < L and τ+(vπ ) < L . In order to prove this, first notice that
the length L of the closed geodesic γ satisfies

L ≥ 2π√
max K

>
2π√
4
= π, (37)

thanks to the lower bound (16) on the injectivity radius and to the inequality K < 4.
Moreover, by Proposition 3.2 (i) the number τ+(v0) is the first positive zero of the
solution u of the Jacobi equation

u′′(t)+ K (γ (x∗ + t))u(t) = 0, u(0) = 0, u′(0) = 1.

Writing the complex function u′+iu in polar coordinates as u′+iu = reiθ , for smooth
real functions r > 0 and θ satisfying r(0) = 1, θ(0) = 0, a standard computation
gives

θ ′(t) = cos2 θ(t)+ K (γ (x∗ + t)) sin2 θ(t).

Since K ≥ 1, we have θ ′ ≥ 1 and hence θ(L) ≥ L > π . This implies that τ+(v0) < L .
The case of τ+(vπ ) follows by applying the previous case to the geodesic t �→ γ (−t).

LetY0 be the subset of [0, π ] consisting of those y forwhichαy |[0,τ+(vy)] is injective.
The set Y0 is open in [0, π ], and by the above claim 0 and π belong to Y0. Let Y1
be the subset of (0, π) consisting of those y for which αy |[0,τ+(vy)] has an interior
self-intersection: there exist 0 < s < t < τ+(vy) such that αy(s) = αy(t). Such an
interior self-intersection must be transverse, so the fact that S2 is two-dimensional
implies that also Y1 is open in [0, π ]. It is enough to show that Y0 ∪ Y1 = [0, π ]:
Indeed, if this is so, the fact that [0, π ] is connected implies that only one of the two
open sets Y0 and Y1 can be non-empty, and we have already checked that Y0 contains
0 and π . The conclusion is that [0, π ] = Y0, and in particular α = αy∗ is injective.

If y belongs to the complement of Y0∪Y1 in [0, π ], then y ∈ (0, π) and αy |[0,τ+(vy)]
has a self-intersection only at its endpoints: α|[0,τ+(vy)) is injective and αy(τ+(vy)) =
αy(0). Denote by l > 0 the length of the geodesic loop αy |[0,τ+(vy)]. Together with the
closed curve γ , this geodesic loop forms a two-gon with perimeter equal to L + l. By
Theorem A.12 and the inequality K ≥ 1, its perimeter L + l satisfies

L + l ≤ 2π√
min K

≤ 2π.

By using the bound (37) and the analogous bound l > π for the geodesic loop
αy |[0,τ+(vy)], we obtain

L + l > 2π.

The above two estimates contradict each other, and this shows that the complement
of Y0 ∪ Y1 is empty, concluding the proof. ��
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Proof of Theorem 3.8 Given v ∈ T 1S2, we denote by αv the geodesic parametrised
by arc length such that α̇v(0) = v. Let v ∈ �+

γ with π(v) = γ (x). Then we know
from Lemma 3.9 that the geodesic arc αv|[0,τ+(v)] is injective. In particular, αv(τ+(v))

is distinct from αv(0) = γ (x), so there exists a unique number

ρ+(v) ∈ (0, L)

such that

αv(τ+(v)) = γ (x + ρ+(v)).

By the continuity of the geodesic flow and of the function τ+, the function

ρ+ : �+
γ → (0, L)

is continuous. The restriction of τ+ to the boundary of �+
γ satisfies

ρ+(γ̇ (x)) = τ+(γ̇ (x)) and ρ+(−γ̇ (x)) = L − τ+(−γ̇ (x)), ∀x ∈ R. (38)

Similarly, there exists a unique continuous function

ρ− : �−
γ → (0, L)

such that, if v ∈ �−
γ is based at γ (x), we have

αv(τ−(v)) = γ (x + ρ−(v)).

As before,

ρ−(γ̇ (x)) = τ−(γ̇ (x)) and ρ−(−γ̇ (x)) = L − τ−(−γ̇ (x)), ∀x ∈ R. (39)

Define the function

ρ : �+
γ → (0, 2L)

by

ρ := ρ+ + ρ− ◦ ϕ+.

By construction, we have for every v ∈ �+
γ with π(v) = γ (x),

π(ϕ(v)) = γ (x + ρ(v)), (40)

and, by (38) and (39), together with (19),

ρ(γ̇ (x)) = τ(γ̇ (x)) and ρ(−γ̇ (x)) = 2L − τ(−γ̇ (x)), ∀x ∈ R. (41)
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Using the standard coordinates (x, y) ∈ R/LZ×[0, π ] on �+
γ , we can see ρ and τ as

functions on R/LZ× [0, π ] or, equivalently, as functions on R× [0, π ] which are L-
periodic in the first variable. Thanks to (40) we can fix a lift � = (X,Y ) ∈ DL(S, ω)

of ϕ by requiring its first component to be given by

X (x, y) = x + ρ(x, y)− L . (42)

By (41) we have

X (x, 0)− x = τ(x, 0)− L , X (x, π)− x = L − τ(x, π), ∀x ∈ R. (43)

By definition, the action σ : S → R of � is uniquely determined by the conditions

dσ = �∗λ− λ,

σ (x, 0)+ FLUX(�) =
∫

γx

λ = X (x, 0)− x, ∀x ∈ R.

where γx is a path in ∂S connecting (x, 0) to �(x, 0) = (X (x, 0), 0). By the first
identity in (43) we have

σ(x, 0)+ FLUX(�) = τ(x, 0)− L , ∀x ∈ R.

By Proposition 3.6, also the (L , 0)-periodic function τ : S → R satisfies dτ =
�∗λ− λ, so the above identity implies that

σ(x, y)+ FLUX(�) = τ(x, y)− L , ∀(x, y) ∈ S. (44)

By Proposition 2.7 and the second identity in (43) we have

σ(x, π)− FLUX(�) =
∫

δx

λ = −X (x, π)+ x = τ(x, π)− L , ∀x ∈ R,

where δx is a path in ∂S connecting (x, π) to �(x, π) = (X (x, π), π). Together with
(44) this implies that FLUX(�) = 0, thus proving statement (i). Statement (ii) now
follows from (44).

By Propositions 3.7 and 3.6, we have

π Area(S2, g)= 1

2
Vol(T 1S2, α)= 1

2

∫∫
R/LZ×[0,π ]

τ dλ= 1

2

∫∫
[0,L]×[0,π ]

(L+σ) dλ

= L2 + 1

2

∫∫
[0,L]×[0,π ]

σ dλ = L2 + L CAL(�),

and (iii) is proved. ��
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3.4 Proof of the monotonicity property

As we have seen, the first return map ϕ can be lifted to a diffeomorphism � in the
class DL(S, ω). The aim of this section is to prove that, if the curvature is sufficiently
pinched, then this lift is a monotone map, in the sense of Definition 2.8 (notice that
the monotonicity does not depend on the choice of the lift).

Proposition 3.10 If g is δ-pinched for some δ > (4+√7)/8, then any lift� : S → S
of the first return map ϕ : �+

γ → �+
γ is monotone.

Proof We may assume that the values of the curvature lie in the interval [δ, 1], where
δ > (4+√

7)/8.
Fix some x∗ ∈ R. In order to simplify the notation in the next computations, we

set for every y ∈ [0, π ]

ly := τ(x∗, y), ty := X (x∗, y), ỹ(y) := Y (x∗, y),

where τ is seen as a (L , 0)-periodic function on S and X and Y are the components of
the fixed lift � = (X,Y ) of ϕ. Our aim is to show that the derivative of the function
ỹ is positive on [0, π ].

Consider the 1-parameter geodesic variation

αy(t) := expγ (x∗)[t (cos y γ̇ (x∗)+ sin y γ̇ (x∗)⊥)],

where y ∈ [0, π ]. For each y ∈ (0, π), ly is the second time αy(t) hits γ (R) or,
equivalently, the first time α̇y(t) hits �+

γ . Moreover, α0(t) = γ (x∗ + t), and l0 is the
time to the second conjugate point to α0(0) along α0; analogously, απ(t) = γ (x∗− t),
and lπ is the time to the second conjugate point to απ(0) along απ . By construction

αy(ly) = γ (ty),

and

α̇y(ly) = cos ỹ γ̇ (ty)+ sin ỹ γ̇ (ty)
⊥,

α̇y(ly)
⊥ = − sin ỹ γ̇ (ty)+ cos ỹ γ̇ (ty)

⊥, (45)

for every y ∈ [0, π ], where the function ỹ is evaluated at y. Since γ is a geodesic,

D

dy
γ̇ ◦ ty = D

dt
γ̇ (ty)

∂ty
∂y

= 0,

and since the vector field γ̇⊥ along γ is parallelly transported,

D

dy
γ̇⊥ ◦ ty = D

dt
γ̇ (ty)

⊥ ∂ty
∂y

= 0.
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Notice that V (y) := α̇y(ly) is a vector field along the smooth curve y �→ γ (ty). Using
that γ is a geodesic we obtain from (45)

DV

dy
(y) = −ỹ′ sin ỹ γ̇ (ty)+ cos ỹ

D

dy
γ̇ ◦ ty + ỹ′ cos ỹ γ̇ (ty)

⊥ + sin ỹ
D

dy
γ̇⊥ ◦ ty

= −ỹ′ sin ỹ γ̇ (ty)+ ỹ′ cos ỹ γ̇ (ty)
⊥

= ỹ′(y) α̇y(ly)
⊥. (46)

The geodesic variation {αy} at y = y∗ corresponds to the Jacobi field J along αy∗
given by

J (t) := ∂

∂y

∣∣∣∣
y=y∗

αy(t). (47)

From the initial conditions J (0) = 0 and

DJ

dt
(0) = D

dy

∣∣∣∣
y=y∗

α̇y(0) = d

dy

∣∣∣∣
y=y∗

α̇y(0) = α̇y∗(0)
⊥,

we find a smooth real function u such that

J (t) = u(t)α̇y∗(t)
⊥,

DJ

dt
(t) = u′(t)α̇y∗(t)

⊥, ∀t ∈ R,

and
u(0) = 0, u′(0) = 1. (48)

Moreover
D

dy

∣∣∣∣
y=y∗

α̇y(t) = D

dt
J (t) = u′(t)α̇y∗(t)

⊥, ∀t ∈ R. (49)

Recall that the covariant derivative of a vector field v along a curve δ on S2 is the
full derivative of the corresponding curve (δ, v) on T S2 projected back to T S2 by the
connection operator K : T T S2 → T S2.More precisely, K projects this full derivative
(δ, v)′ onto the vertical subspace V(δ,v) ⊂ T(δ,v)T S2 along the horizontal subspace
H(δ,v) ⊂ T(δ,v)T S2, and then brings it to TδS2 via the inverse of the isomorphism
iVv

, see the discussion after the proof of Lemma 3.5. In (46) we find the covariant
derivative of the vector field y �→ α̇y(ly) along the curve y �→ αy(ly). In (49) we see
the covariant derivative of the vector field y �→ α̇y(t) along the curve y �→ αy(t) for
fixed t . Since αy is a geodesic for all y, by using the above description of the covariant
derivative we get from (46) and (49)

ỹ′(y∗)α̇y∗(ly∗)
⊥ = DV

dy
(y∗) = D

dy

∣∣∣∣
y=y∗

α̇y(ly∗)+ l ′y(y∗)
D

dt

∣∣∣∣
t=ly∗

α̇y∗(t)

= D

dy

∣∣∣∣
y=y∗

α̇y(ly∗) = u′(ly∗)α̇y∗(ly∗)
⊥,
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for every y∗ ∈ [0, π ], from which we derive the important identity

ỹ′(y∗) = u′(ly∗), ∀y∗ ∈ [0, π ]. (50)

Write

ly∗ = l + l ′

for y∗ ∈ (0, π), where l > 0 is the first time αy∗(t) hits γ , that is,

l = τ+(α̇y∗(0)), l ′ = τ−(ϕ+(α̇y∗(0))).

By Lemma 3.9, αy∗ |[0,l] is injective and, in particular, its end-points are distinct points
of γ , dividing it into two segments γ1, γ2 with lengths l1, l2 > 0, respectively, and
l1+ l2 = L . Therefore, αy∗ |[0,l] and γ1 determine a geodesic two-gon. The same holds
with αy∗ |[0,l] and γ2. It follows from Theorem A.12 that

l1 + l ≤ 2π√
δ

and l2 + l ≤ 2π√
δ
.

Theorem A.12 also implies that L ≤ 2π/
√

δ. From Klingenberg’s lower bound (16)
on the injectivity radius of g, we must have l1 + l ≥ 2π , l2 + l ≥ 2π , and L ≥ 2π .
Putting these inequalities together, we obtain

2π ≤ li + l ≤ 2π√
δ
, i = 1, 2, (51)

2π ≤ L = l1 + l2 ≤ 2π√
δ
. (52)

By adding the inequalities (51), we obtain

4π ≤ 2l + L ≤ 4π√
δ
. (53)

Together with (52), the above inequality implies

2π − π√
δ
≤ l ≤ 2π√

δ
− π.

Arguing analogously with the geodesic arc αy∗ |[l,ly∗=l+l ′], we obtain the similar esti-
mate

2π − π√
δ
≤ l ′ ≤ 2π√

δ
− π,
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concluding that the length ly∗ of αy∗ satisfies

4π − 2π√
δ
≤ ly∗ = l + l ′ ≤ 4π√

δ
− 2π. (54)

The Jacobi equation for the vector field J along αy∗ which is defined in (47) can
be written in terms of the scalar function u as

u′′(t)+ K (αy∗(t))u(t) = 0.

Writing

u(t)′ + iu(t) = reiθ

for smooth real functions r > 0 and θ , we get

θ ′ = cos2 θ + K (αy∗) sin
2 θ. (55)

The initial conditions (48) imply that r(0) = 1 and θ(0) = 0. From (55) we have
δ ≤ θ ′ ≤ 1. Hence, from the estimate for ly∗ given in (54), we find

δ

(
4π − 2π√

δ

)
≤ θ(ly∗) ≤ 4π√

δ
− 2π. (56)

From δ > (4+√
7)/8 we get

δ

(
4π − 2π√

δ

)
>

3π

2
,

and since a fortiori δ > 64/81, we have also

4π√
δ
− 2π <

5π

2
.

Therefore, (56) implies that cos θ(ly∗) is positive. By the identity (50), we conclude
that

ỹ′(y∗) = u′(ly∗) = r(ly∗) cos θ(ly∗) > 0,

as we wished to prove. ��

3.5 Proof of the main theorem

In [11] Calabi and Cao have proved that any shortest closed geodesic on a two-sphere
with non-negative curvature is simple. If one assumes that the curvature is suitably
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pinched, this fact follows also from the lower bound (16) on the injectivity radius and
from Theorem A.12:

Lemma 3.11 Assume that the metric g on S2 is δ-pinched for some δ > 1/4. Then
any closed geodesic γ of minimal length on (S2, g) is a simple curve.

Proof If a closed geodesic γ of minimal length is not simple, then it contains at least
two distinct geodesic loops. By the lower bound (16) on the injectivity radius, each of
these two geodesic loops has length at least

2π√
max K

,

and we deduce that

L ≥ 4π√
max K

. (57)

A celebrated theorem due to Lusternik and Schnirelmann implies the existence of
simple closed geodesics on any Riemannian S2. By Theorem A.12 any simple closed
geodesic has length at most

2π√
min K

.

By the pinching assumption,

2π√
min K

≤ 2π√
δmax K

<
4π√
max K

,

so by (57) any simple closed geodesic is shorter than L . This contradicts the fact that
L is the minimal length of a closed geodesic and proves that γ must be simple. ��

Now let γ be a simple closed geodesic on (S2, g) of length L . Let ϕ : �+
γ → �+

γ

be the associated Birkhoff first return map and let � ∈ DL(S, ω) be the lift of ϕ with
zero flux whose existence is guaranteed by Theorem 3.8. Here is a first consequence
of Theorem 3.8:

Lemma 3.12 Assume that the metric g on S2 is δ-pinched for some δ > 1/4. Then g
is Zoll if and only if � = id.

Proof Assume that� = id. Then the action σ of� is identically zero, so by Theorem
3.8 (ii) the first return time function τ is identically equal to L . Therefore, all the
vectors in the interior of �+

γ are initial velocities of closed geodesics of length L .
Since also the vectors in the boundary of �+

γ are by construction initial velocities of
closed geodesics of length L , we deduce that all the geodesics on (S2, g) are closed
and have length L .
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Conversely assume that (S2, g) is Zoll. Since γ has length L , all the geodesics on
(S2, g) are closed and have length L . Then every v in int(�+

γ ) is a periodic point of

ϕ, i.e. there is a minimal natural number k(v) such that ϕk(v)(v) = v, and the identity

k(v)−1∑
j=0

τ(ϕ j (v)) = L

holds on int(�+
γ ). Thanks to the continuity of τ and ϕ and to the positivity of τ , the

above identity forces the function k to be constant, k ≡ k0 ∈ N. By continuity, the
above identity holds also on the boundary of �+

γ , and we have in particular

k0−1∑
j=0

τ(ϕ j (γ̇ (t))) = L ∀t ∈ R/LZ.

By the above identity, there exists t0 ∈ R/LZ such that

τ(γ̇ (t0)) ≤ L

k0
,

that is, the time to the second conjugate point to γ (t0) along γ is at most L/k0. Since
this time is at least twice the injectivity radius of (S2, g), we obtain from (16)

L

k0
≥ τ(γ̇ (t0)) ≥ 2 inj(g) ≥ 2π√

max K
. (58)

On the other hand, by Theorem A.12 and by the pinching assumption, the length L of
the simple closed geodesic γ satisfies

L ≤ 2π√
min K

≤ 2π√
δmax K

<
4π√
max K

. (59)

Inequalities (58) and (59) imply that the positive integer k0 is less than 2, hence k0 = 1
and ϕ = id. Then � is a translation by an integer multiple of L and, having zero flux,
it must be the identity. ��

The theorem which is stated in the introduction concerns two inequalities, which
we treat separately in the following two statements.

Theorem 3.13 If g is δ-pinched with δ > (4+√
7)/8, then

�min(g)
2 ≤ π Area(S2, g), (60)

and the equality holds if and only if (S2, g) is Zoll.

Proof Let γ be a shortest closed geodesic on (S2, g) and let L be its length. Since in
particular δ > 1/4, Lemma 3.11 implies that γ is simple. Let � ∈ DL(S, ω) be the
lift with zero flux of the Birkhoff first return map which is associated to γ .
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If (S2, g) is Zoll, then by the Lemma 3.12 � = id, so CAL(�) = 0, and Theorem
3.8 (iii) implies that

π Area(S2, g) = L2.

This shows that if g is Zoll, then the equality holds in (60).
There remains to show that if (S2, g) is not Zoll, then the strict inequality holds in

(60). Assume by contradiction that

L2 ≥ π Area(S2, g).

Then by Theorem 3.8 (iii) we have

L CAL(�) = π Area(S2, g)− L2 ≤ 0,

andCAL(�) is non-positive. Since (S2, g) is not Zoll, by Lemma3.12 themap� is not
the identity. By Proposition 3.10, � satisfies the hypothesis of Theorem 2.12, which
guarantees the existence of a fixed point (x, y) ∈ int(S) of�with action σ(x, y) < 0.
The geodesic which is determined by the corresponding vector in �+

γ is closed and,
by Theorem 3.8 (ii), has length

τ(x, y) = L + σ(x, y) < L .

This contradicts the fact that L is the minimal length of a closed geodesic. This
contradiction implies that when (S2, g) is not Zoll, then the strict inequality

L2 < π Area(S2, g)

holds. ��
The proof of the second inequality differs only in a few details:

Theorem 3.14 If g is δ-pinched with δ > (4+√
7)/8, then

�max(g)
2 ≥ π Area(S2, g), (61)

and the equality holds if and only if (S2, g) is Zoll.

Proof Let γ be a longest simple closed geodesic on (S2, g) and let L be its length.
Let � ∈ DL(S, ω) be the lift with zero flux of the Birkhoff first return map which is
associated to γ .

If (S2, g) is Zoll, then by the Lemma 3.12 � = id, so CAL(�) = 0, and Theorem
3.8 (iii) implies that

π Area(S2, g) = L2.

This shows that if g is Zoll, then the equality holds in (61).

123



738 A. Abbondandolo et al.

There remains to show that if (S2, g) is not Zoll, then the strict inequality holds in
(61). Assume by contradiction that

L2 ≤ π Area(S2, g).

Then by Theorem 3.8 (iii) we have

L CAL(�) = π Area(S2, g)− L2 ≥ 0,

and CAL(�) is non-negative. Since (S2, g) is not Zoll, by Lemma 3.12 the map �

is not the identity. By Proposition 3.10, � satisfies the hypothesis of Theorem 2.12,
which guarantees the existence of a fixed point (x, y) ∈ int(S) of � with action
σ(x, y) > 0. The geodesic which is determined by the corresponding vector in �+

γ is
closed and, by Theorem 3.8 (ii), has length

τ(x, y) = L + σ(x, y) > L .

Moreover, Lemma 3.9 implies that this closed geodesic is simple. This contradicts
the fact that the longest simple closed geodesic has length L and proves that the strict
inequality

L2 > π Area(S2, g)

holds. The proof is complete. ��
Remark 3.15 The proof of our main theorem uses the bound δ > (

√
7+ 4)/8 on the

pinching constant δ only to have the monotonicity of the map �. If the fixed point
Theorem 2.12 holds without this assumption, then the conclusion of our main theorem
holds under the weaker condition δ > 1/4.
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Appendix A: Toponogov’s theorem and its consequences

This appendix is devoted to explaining how to estimate lengths of convex geodesic
polygons using a relative version of Toponogov’s theorem.

Geodesic polygons and their properties

For this discussion we fix a Riemannian metric g on S2. The following definitions are
taken from [12].
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Definition A.1 Let X ⊂ S2.

(i) X is strongly convex if for every pair of points p, q in X there is a unique minimal
geodesic from p to q, and this geodesic is contained in X .

(ii) X is convex if for every p in X there exists r > 0 such that Br (p)∩ X is strongly
convex.

When p ∈ S2 and u, v ∈ TpS2 are non-colinear vectors, consider the sets

�(u, v) = {su + tv | s, t ≥ 0} (62)

�r (u, v) = {w ∈ �(u, v) | |w| < r}. (63)

When u ∈ TpS2\{0} consider also

H(u) = {v ∈ TpS
2 | g(v, u) ≥ 0} (64)

Hr (u) = {w ∈ H(u) | |w| < r}. (65)

A corner of a unit speed broken geodesic γ : R/LZ→ S2 is a point γ (t) such that
γ ′+(t) /∈ R

+γ ′−(t), where γ ′± denote one-sided derivatives.

Definition A.2 D ⊂ S2 is said to be a geodesic polygon if it is the closure of an open
disk bounded by a simple closed unit speed broken geodesic γ : R/LZ→ S2.We call
D convex if for every corner p = γ (t) of γ we find 0 < r < injp small enough such
that D ∩ Br (p) = expp(�r (−γ ′−(t), γ ′+(t))). The corners of γ are called vertices of
D, and a side of D is a smooth geodesic arc contained in ∂D connecting two adjacent
vertices.

Jordan’s theorem ensures that every simple closed unit speed broken geodesic is
the boundary of exactly two geodesic polygons. At each boundary point which is not
a vertex the inner normals to the two polygons are well-defined and opposite to each
other.

It is well-known that Br (p) is strongly convex when r is small enough. By the
following lemma the same property holds for expp(�r (u, v)) and expp(Hr (u)).

Lemma A.3 Choose p in S2 and let 0 < r < inj(g). If Br (p) is strongly convex then
expp(�r (u, v)) and expp(Hr (u)) are strongly convex for all pairs u, v ∈ TpS2 of
non-colinear vectors.

Proof There is no loss of generality to assume that u, v are unit vectors.We argue indi-
rectly. Assume that y, z ∈ expp(�r (u, v)) are points for which the minimal geodesic
γ from y to z (with unit speed) is not contained in expp(�r (u, v)). Let γu and γv be
the geodesic segments expp(τu), expp(τv) respectively, τ ∈ (−r, r). Note that γ is
contained in Br (p) and, consequently, γ must intersect one of the geodesic segments
γu or γv in two points a �= b. Thus we have found two geodesic segments from a to
b which are length minimisers in S2 (one is contained in γ and the other is contained
in γu or γv). This contradicts the fact that Br (p) is strongly convex. The argument to
prove strong convexity of expp(Hr (u)) is analogous. ��
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As an immediate consequence we have the following:

Corollary A.4 A convex geodesic polygon D ⊂ S2 is convex.

Let d(p, q) denote the g-distance between points p, q ∈ S2.

Lemma A.5 Let D be a convex geodesic polygon. Then there exists a positive number
ε1 < inj(g) such that if p, q are in D and satisfy d(p, q) ≤ ε1, then the (unique)
minimal geodesic from p to q lies in D.

Proof If not we find pn, qn ∈ D such that d(pn, qn) → 0 and the minimal geodesic
γn in S2 from pn to qn intersects S2\D. Thus, up to selection of a subequence, we
may assume that pn, qn → x ∈ ∂D. If x is not a corner of ∂D then we consider
the unit vector n ∈ Tx S2 pointing inside D normal to the boundary and note that,
for some r > 0 small, D ∩ Br (x) = expx (Hr (n)) is strongly convex. Here we used
Lemma A.3. This is in contradiction to the fact that pn, qn ∈ D ∩ Br (x) when n
is large. Similarly, if x is a corner of ∂D then, in view of the same lemma, we find
unit vectors u, v ∈ Tx S2 and r very small such that D ∩ Br (x) = expx (�r (u, v)) is
strongly convex. This again provides a contradiction. ��

The next lemma shows that a convex geodesic polygon is ‘convex in the large’.

Lemma A.6 Let D be a convex geodesic polygon. Then for every p and q in D there
is a smooth geodesic arc γ from p to q satisfying

(i) γ ⊂ D.
(ii) γ minimises length among all piecewise smooth curves inside D from p to q.

Proof The argument follows a standard scheme. Consider a partition P of [0, 1] given
by t0 = 0 < t1 < · · · < tN−1 < tN = 1, with norm

‖P‖ = max
i
{ti+1 − ti }.

Let �P be the set of continuous curves α : [0, 1] → S2 such that each α|[ti ,ti+1] is
smooth, α(0) = p, α(1) = q. On�P we have the usual length and energy functionals

L[α] =
∫ 1

0
|α′(t)|dt, E[α] = 1

2

∫ 1

0
|α′(t)|2dt. (66)

Set

BP = {α ∈ �P | α|[ti ,ti+1] is a geodesic ∀i},
�P (D) = {α ∈ �P | α([0, 1]) ⊂ D}, BP (D) = BP ∩�P (D).

As usual, we use superscritps ≤ a to indicate sets of paths satisfying E ≤ a.
If α is in �

≤a
P and

√‖P‖ ≤ ε1/
√
2a, then d(α(ti ), α(ti+1)) ≤ ε1 ∀i , where ε1 > 0

is the number given by Lemma A.5. Thus, for every α ∈ �
≤a
P (D)we find γ ∈ BP (D)

such that each γ |[ti ,ti+1] is a constant-speed reparametrization of the unique minimal
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geodesic arc from α(ti ) to α(ti+1). Here we have used Lemma A.5 to conclude that
γ ([0, 1]) ⊂ D. Clearly L[γ ] ≤ L[α], so minimizing L on �

≤a
P (D) amounts to

minimizing L on B≤aP (D). Now pick a > 0 and a partition P such that �≤a
P (D) �= ∅

and
√‖P‖ ≤ ε1/

√
2a. By the above argument, B≤aP (D) �= ∅ and, as usual, the

map γ �→ (γ (t1), . . . , γ (tN−1)) is a bijection between B≤aP (D) and a certain closed
subset of DN−1. The topology which B≤aP (D) inherits from this identification makes
L continuous. Thus, by compactness, we find γ∗ ∈ B≤aP (D) which is an absolute
minimiser of L over �

≤a
P (D).

We claim that γ∗ is smooth, i.e., it has no corners. In fact, arguing indirectly, suppose
it has a corner, which either lies on int(D) or on ∂D. In both cases we can use the
auxiliary claim below to find a variation of γ∗ through paths in B≤aP (D) that decreases
length; the convexity of D is strongly used. This is a contradiction, and the smoothness
of γ∗ is established.

Auxiliary Claim. Consider a < x < b and a broken geodesic β : [a, b] → S2, which
is smooth and non-constant on [a, x] and on [x, b], satisfying β ′+(x) /∈ R

+β ′−(x). Let
α : (−ε, ε) × [a, b] → S2 be a piecewise smooth variation with fixed endpoints of
β (α(0, ·) = β) by broken geodesics such that α is smooth on (−ε, ε) × [a, x] and
on (−ε, ε) × [x, b]. If D1α(0, x) is a non-zero vector in �(−β ′−(x), β ′+(x)), then
d
ds |s=0L[α(s, ·)] < 0. In fact, the first variation formula gives us

d

ds

∫ b

a
|D2α(s, t)| dt

∣∣∣
s=0

= gβ(x)

(
D1α(0, x),

β ′−(x)

‖β ′−(x)‖ −
β ′+(x)

‖β ′+(x)‖
)

< 0

as desired. ��
It remains to be shown that γ∗ is an absolute length minimiser among all piecewise

smooth curves in D joining p to q. Let α be such a curve, which must belong to
�
≤b
Q (D) for some positive number b and some partition Q. Up to increasing b and

refining Q, we may assume that b ≥ a, Q ⊃ P , and
√‖Q‖ ≤ ε1/

√
2b. By the

previously explained arguments we can find a smooth geodesic γ̃ from p to q in
D which is a global minimiser of L over �

≤b
Q (D). Since �

≤a
P (D) is contained in

�
≤b
Q (D), we must have L[γ̃ ] ≤ L[γ∗]. Noting that γ∗, γ̃ are smooth geodesics, we

compute E[γ̃ ] = 1
2 L[γ̃ ]2 ≤ 1

2 L[γ∗]2 = E[γ∗] and conclude that γ̃ ∈ �
≤a
P (D). Thus

L[γ∗] = L[γ̃ ] ≤ L[α] as desired. ��
Lemma A.7 If D is a convex geodesic polygon in (S2, g), p and q are distinct points
of ∂D, and d is the distance from p to q relative to D then the following holds: a unit
speed geodesic γ : [0, d] → D from p to q minimal relative to D (which exists and is
smooth in view of Lemma A.6) is injective, and satisfies either γ ((0, d)) ⊂ int(D) or
γ ([0, d]) ⊂ ∂D. In the former case γ divides D into two convex geodesic polygons
D′, D′′ satisfying D = D′ ∪ D′′, γ = D′ ∩ D′′; moreover, a geodesic between two
points of D′ (D′′) which is minimal relative to D is contained in D′ (D′′). In the latter
case there are no vertices of D in γ ((0, d)).

Proof If there exists t in (0, d) such that γ (t) belongs to ∂D, then either γ (t) is a
vertex or not. But it can not be a vertex since in this case γ ′(t) would be colinear to
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one of the tangent vectors of ∂D at γ (t), allowing us to find t ′ close to t such that γ (t ′)
is not in D. Not being a vertex, γ (t) is a point of tangency with ∂D. By uniqueness
of solutions of ODEs, we must have γ ([0, d]) ⊂ ∂D, hence D has no vertices in
γ ((0, d)). By minimality γ has to be injective. If δ′, δ′′ are the two distinct arcs on ∂D
from p to q and γ ((0, d))∩ ∂D = ∅ then δ′ ∪ γ and δ′′ ∪ γ bound disks D′, D′′ ⊂ D
which are clearly geodesic convex polygons. Let α ⊂ D be a (smooth) geodesic arc
connecting distinct points of D′ minimal relative to D. If α �⊂ D′ then α intersects
γ ((0, d)) transversally at (at least) two distinct points x �= y. By minimality, there
are subarcs of α and of γ from x to y with the same length. Thus, one can use these
transverse intersections in a standard fashion to find a smaller curve in D connecting
the end points of α, contradicting its minimality. ��
Lemma A.8 If the Gaussian curvature of g is everywhere not smaller than H > 0
then any two points p, q ∈ D can be joined by a smooth geodesic arc γ satisfying
γ ⊂ D, L[γ ] ≤ π/

√
H.

Proof According to Lemma A.6 we can find a smooth geodesic arc γ : [0, 1] → D
from p to q which is length minimizing among all piecewise smooth curves from p
to q inside D. If L[γ ] > π/

√
H then for every ε > 0 small enough we can find

tε ∈ (ε, 1) such that γ (tε) is conjugated to γ (ε) along γ |[ε,tε ]. Note that either γ is
contained in a single side of D or γ maps (0, 1) into int(D). In latter case we use a
Jacobi field J along γ |[ε,tε ] satisfying J (ε) = 0, J (tε) = 0 to construct an interior
variation of γ which decreases length, a contradiction. In the former note that, perhaps
up to a change of sign, J can be arranged so that it produces variations into D which
decrease length, again a contradiction. ��

Before moving to Toponogov’s theorem and its consequence, we take a moment to
study convex geodesic polygons on the 2-sphere equipped with its metric of constant
curvature H > 0. This space is realised as a spherical shell of radius H−1/2 sitting
inside the euclidean 3-space, and will be denoted by SH .

Lemma A.9 Let D be a convex geodesic polygon in SH . Then the following hold.

(i) D coincides with the intersection of the hemispheres determined by its sides and
the corresponding inward-pointing normal directions.

(ii) The total perimeter of ∂D is not larger than 2π/
√
H.

(iii) If D has at least two sides then all sides of D have length at most π/
√
H.

Proof Assertion (iii) is obvious. The argument to be given below to prove (i) and (ii)
is by induction on the number n of sides of D. The cases n = 1, 2, 3 are obvious.

Now fix n > 3 and assume that (i), (ii) and (iii) hold for cases with j < n sides.
Let p, q, r be three consecutive vertices of D, so that minimal geodesic arcs γpq , γqr
from p to q and from q to r , respectively, can be taken as two consecutive sides of
D. Here we used that sides have length at most π/

√
H . Let γ1, . . . , γn−2 be the other

sides of D and denote by Hpq , Hqr , H1, . . . , Hn−2 the corresponding hemispheres
determined by these sides and D.

We argue indirectly to show that D ⊂ Hpq∩Hqr . If x ∈ D\(Hpq∩Hqr ), consider a
smooth geodesic arc γ from x to q inside D which minimises length among piecewise
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smooth paths in D. γ exists by Lemma A.6 and, by the Lemma A.8, L[γ ] ≤ π/
√
H .

Since x is not antipodal to q we have L[γ ] < π/
√
H which implies that γ is the unique

minimal geodesic from x to q in SH . Combining x /∈ Hpq ∩ Hqr and Definition A.2
one concludes that γ is not contained in D, a contradiction. Repeating this argument
for all triples of consecutive vertices we find that

D ⊂ Hpq ∩ Hqr ∩ H1 ∩ · · · ∩ Hn−2. (67)

Now let γpr ⊂ D be the smooth geodesic arc from p to r which isminimal relatively
to D. This arc exists by Lemma A.6. Moreover, γpr\{p, r} ⊂ int(D) since otherwise,
by the previous lemma, γpr ⊂ ∂D contradicting the fact that n > 3. Note that γpr

divides D into D = D′ ∪ T , where D′ is a convex geodesic polygon with sides
γpr , γ1, . . . , γn−2, and T is the convex geodesic triangle bounded by γpq , γqr , γpr .
Finally, let Hpr be the hemisphere determined by γpr and D′, and let H ′

pq be the
closure of SH\Hpr . By the induction step D′ = Hpr ∩ H1 ∩ · · · ∩ Hn−2, and T =
Hpq ∩ Hqr ∩ H ′

pr . Thus

Hpq ∩ Hqr ∩ H1 ∩ · · · ∩ Hn−2

= Hpq ∩ Hqr ∩ H1 ∩ · · · ∩ Hn−2 ∩ SH
= Hpq ∩ Hqr ∩ H1 ∩ · · · ∩ Hn−2 ∩ (Hpr ∪ H ′

pr )

⊂ (Hpr ∩ H1 ∩ · · · ∩ Hn−2) ∪ (Hpq ∩ Hqr ∩ H ′
pr )

= D′ ∪ T = D. (68)

Hence (67) and (68) prove that (i) holds for all convex geodesic polygons with at most
n sides.

Toprove (ii)we again assumen > 3and considera, b, c, d four consecutive vertices
of D, the consecutive sides γab, γbc, γcd connecting them, and let γ1, . . . , γn−3 be the
other sides of D. Let Hbc be the hemisphere containing D whose equator contains γbc,
and let H ′

bc be the closure of SH\Hbc. Continue γab along b and γcd along c till they
first meet at a point e ∈ int(H ′

bc). If γbe, γec are the minimal arcs connecting b to e
and e to c, respectively, and T is the convex triangle with sides γbe, γec, γbc, then we
claim that F = D ∪ T is a convex geodesic polygon with n − 1 sides. To see this the
reader will notice that the closed curve α = γab ∪ γbe ∪ γec ∪ γcd ∪ γ1 ∪ · · · ∪ γn−3 is
simple since T ⊂ H ′

bc and D ⊂ Hbc (D satisfies (i)), and α = ∂F . By the induction
step α has length < 2π/

√
H and, since γbc is minimal, the length of ∂D is smaller

than that of α. ��

The relative Toponogov’s Theorem

Toponogov’s triangle comparison theorem is one of the most important tools in global
Riemannian geometry. In the case of convex surfaces, it had been previously proven
byAleksandrov in [2]. Here we need a relative version for triangles in convex geodesic
polygons sitting inside positively curved two-spheres.
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We fix a metric g on S2, a convex geodesic polygon D ⊂ S2, and follow [12]
closely. However, we need to work with distances relative to D. For instance given
points of D, the distance between them relative to D is defined to be the infimum of
lengths of piecewise smooth paths in D connecting these points. Lemma A.5 tells us
that the relative distance is realised by a smooth geodesic arc contained in D. We say
that a (smooth) geodesic arc between two points of D is minimal relative to D if it
realises the distance relative to D.

Ageodesic triangle in D is a triple of non-constant geodesic arcs (c1, c2, c3)parame-
trised by arc-length, ci : [0, li ] → S2 (li is the length of ci ), satisfying ci ([0, li ]) ⊂ D,
ci (li ) = ci+1(0) and the triangle inequalities li ≤ li+1+li+2 (indicesmodulo 3). These
arcs may or may not self-intersect and intersect each other. The angle αi ∈ [0, π ] is
defined as the angle between −c′i+1(li+1) and c′i+2(0) (indices modulo 3).

Theorem A.10 (Relative Toponogov’s Theorem) Let g be a Riemannian metric on S2

with Gaussian curvature pointwise bounded from below by a constant H > 0, and let
D ⊂ S2 be a convex geodesic polygon. If (c1, c2, c3) is a geodesic triangle in D such
that c1, c3 are minimal relative to D and l2 ≤ π/

√
H , then for every 0 < ε < H there

exists a so-called comparison triangle (c̄1, c̄2, c̄3) in SH−ε with angles ᾱ1, ᾱ2, ᾱ3 such
that L[ci ] = L[c̄i ] and ᾱi ≤ αi , where αi are the angles of (c1, c2, c3).

In [19, page 297] Klingenberg observes that the relative version of Toponogov’s
theorem holds, and that this observation is originally due to Alexandrov [2]. A proof
of the above theorem would be too long to be included here, but the reader familiar
with the arguments from [12] will notice two facts:

• The proof from [12] for the case of complete Riemannian manifolds essentially
consists of breaking the given triangle into many ‘thin triangles’ (these are given
precise definitions in [12, chapter 2]), and the analysis of these thin triangles is
done by estimating lengths of arcs which areC0-close to them. Hence all estimates
of the perimeters of these thin triangles are obtained relative to an arbitrarily small
neighborhood of the given convex geodesic polygon.

• Distances relative to the convex geodesic polygon are only at most a little larger
than distances relative to a very small neighborhood of the convex geodesic poly-
gon. This is easy to prove since we work in two dimensions.

Putting these remarks together the relative version of Toponogov’s theorem can be
proved using the arguments from [12].

Remark A.11 A geodesic triangle in SH−ε with sides of length at most π/
√
H , either

is contained in a great circle, or its sides bound a convex geodesic polygon.

The perimeter of a convex geodesic polygon

Theorem A.12 Let (S2, g) be a Riemannian two-sphere such that the Gaussian cur-
vature is everywhere bounded from below by H > 0. If D is a convex geodesic polygon
in (S2, g) then the perimeter of ∂D is at most 2π/

√
H. The same estimate holds for

the perimeter of a two-gon consisting of two non-intersecting simple closed geodesic
loops based at a common point.
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This is proved in [19, page 297] for the case ∂D is a closed geodesic (no vertices).
We reproduce the argument here, observing that it also works for the general convex
geodesic polygon.

Proof of Theorem A.12 Let d > 0 be the perimeter of ∂D. We can parametrise ∂D
as the image of a closed simple curve c : R/dZ → S2 which is a broken unit speed
geodesic. For each n ≥ 1 and k ≥ 0 we denote by γk,2n a (smooth) geodesic arc from
c(kd2−n) to c((k+1)d2−n) in Dwhichminimises length relative to D.Wemake these
choices 2n-periodic in k, γk+2n ,2n = γk,2n , and also choose γ0,2 = γ1,2.We can assume
that L[γ0,2] < d/2 since, otherwise, d/2 ≤ L[γ0,2] ≤ π/

√
H (Lemma A.8) and the

proof would be complete. In particular, γ0,2 is not contained in ∂D, and Lemma A.7
implies that γ0,2 touches ∂D only at its endpoints c(0), c(d/2).

Notice that if the distance from c(kd2−n) to c((k + 1)d2−n) relative to D is d2−n ,
then Lemma A.7 implies that c|[kd2−n ,(k+1)d2−n ] is a smooth geodesic arc. Therefore,
we are allowed to make the following important choice:
(C) If the distance from c(kd2−n) to c((k + 1)d2−n) relative to D is d2−n , then we
choose γk,2n = c|[kd2−n ,(k+1)d2−n ].

The above choice forces γl,2n+m to be c|[ld2−n−m ,(l+1)d2−n−m ] for all k2m ≤ l <

(k + 1)2m , whenever γk,2n = c|[kd2−n(k+1)d2−n].
For n ≥ 2 set Dn to be the subregion of D bounded by the simple closed broken

geodesic ∂Dn = ∪{γk,2n | 0 ≤ k < 2n}. It follows readily from Lemma A.7 that this
is a convex geodesic polygon. Moreover, sides of Dn fall into two classes: either a
side is not contained in ∂D and coincides precisely with γk,2n for some k, or it lies in
∂D is a union of adjacent γk,2n ∪ γk+1,2n ∪ · · · ∪ γk+m,2n ⊂ ∂D for some k and some
m. By construction

(i) Dn ⊂ Dn+1 and L[∂Dn] → d as n →∞.
(ii) The vertices of Dn form a subset of {c(kd2−n) | 0 ≤ k < 2n}.

Fix 0 < ε < H .Wewould like to construct a sequence of convex geodesic polygons
En ⊂ En+1 in SH−ε such that L[∂En] = L[∂Dn].

Consider geodesic triangles Tk,2n = (γk,2n , γ2k,2n+1 , γ2k+1,2n+1) in the sense of
Sect. A.2. The triangle inequalities hold, since all sides are minimal relative to D.

According to TheoremA.10, associated to T0,2, T1,2 there are comparison triangles
T̄0,2 = (γ̄0,2, γ̄0,4, γ̄1,4), T̄1,2 = (γ̄1,2, γ̄2,4, γ̄3,4) in SH−ε with sides of same length
as the corresponding sides in T0,2, T1,2. The angles of T̄0,2, T̄1,2 are not larger than
the corresponding angles on T0,2, T1,2. Up to reflection and a rigid motion, we can
assume γ̄0,2 coincides with γ̄1,2 (along with vertices corresponding to endpoints of
γ0,2 = γ1,2) on a given great circle e, and T̄0,2, T̄1,2 lie on opposing hemispheres
determined by e. Of course, T̄0,2 and/or T̄1,2 could lie on e, but this forces L[γ0,2] to
be d/2, a case we already treated. Again the angle comparison can be used to deduce
that E2 := T̄0,2 ∪ T̄1,2 is a convex geodesic polygon in SH−ε with the same perimeter
as D2 (∂E2 = ∪3

k=0γ̄k,4).
To construct E3, note that each side of D2 not contained in ∂D is of the form γk,4 for

some fixed 0 ≤ k < 4. There is a corresponding side γ̄k,4 of E2, by construction and
angle comparison. By Lemma A.7 γk,4 divides D into two convex geodesic polygons,
only one of which, denoted by Dk,4, contains c([kd/4, (k + 1)d/4]) in its boundary.
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By the same lemma, Tk,4 is contained in Dk,4 (and determines a convex geodesic
polygon). By the relative Toponogov theorem, there exists a comparison triangle T̄k,4
which we can assume is of the form (γ̄k,4, γ̄2k,8, γ̄2k+1,8), i.e. one of its sides matches
precisely the side γ̄k,4 of E2 together with corresponding vertices of γ̄k,4. Moreover,
possibly after reflection, we can assume E2 and T̄k,4 lie on the opposing hemispheres
determined by the great circle containing γ̄k,4. This last step strongly uses Lemma A.9
and Remark A.11. Again by the angle comparison, E2 ∪ T̄k,4 is a convex geodesic
polygon in SH−ε with the same perimeter as the convex geodesic polygon D2 ∪ Tk,4.
Repeating this procedure for another side of D2 not in ∂D, which is of the form γk′,4
for some k′ �= k, with E2∪ T̄k,4 in the place of E2, we obtain a larger geodesic convex
polygon E2 ∪ T̄k,4 ∪ T̄k′,4 in SH−ε with the same perimeter as the geodesic convex
polygon D2∪ Tk,4∪ Tk′,4. After exhausting all the sides of D2 not in ∂D we complete
the construction of E3.

The construction of En from Dn−1, En−1 follows the same algorithm, since sides
of Dn−1 not in ∂D must be of the form γk,2n−1 for some 0 ≤ k < 2n−1. In this case,
there will be a corresponding side γ̄k,2n−1 of En−1 with the same length as γk,2n−1

along which we fit the comparison triangle T̄k,2n−1 obtained by applying the relative
Toponogov theorem to Tk,2n−1 . Doing this step by step at each side of Dn−1 not in ∂D
we obtain En .

By Lemma A.9 we know that

L[∂Dn] = L[∂En] ≤ 2π/
√
H − ε, ∀n.

Together with (i) above, we deduce that L[∂D] ≤ 2π/
√
H − ε. Letting ε ↓ 0 we get

the desired estimate.
To get the estimate for the two-gon as in the statement note that its perimeter can

clearly be approximated by the perimeter of convex geodesic polygons. ��

Appendix B: Zoll geodesic flows on the two-sphere

Given a Riemannian metric g on S2, we denote by T 1S2(g) the corresponding unit
tangent bundle. The Hilbert 1-form on T S2 is the pull-back of the standard Liouville
form p dq on T ∗S2 by the isomorphism T S2 ∼= T ∗S2 induced by the metric g (see
also the end of Sect. 3.1 for an equivalent definition). This 1-form restricts to a contact
form αg on T 1S2(g)whose Reeb flow is the geodesic flow on T 1S2(g). We recall that
the geodesic equation induces also a Hamiltonian flow on T ∗S2, which is determined
by the standard symplectic structure on T ∗S2 and by the Hamiltonian

Hg(x, p) := 1

2
g∗x (p, p), ∀(x, p) ∈ T ∗S2,

where g∗ is the metric on the vector bundle T ∗S2 which is dual to g. By pushing
this Hamiltonian flow forward to T S2 by the isomorphism T ∗S2 ∼= T S2 which is
induced by g and by restriction to tangent vectors of norm one, we obtain precisely
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the geodesic flow on T 1S2(g). The aim of this appendix is to present a full proof of
the following result:

Theorem B.1 Let g be a metric on S2 all of whose geodesics are closed and have
length 2π . Then

area(S2, g) = area(S2, ground) = 4π, (69)

and there is a diffeomorphism

ϕ : T 1S2(ground) → T 1S2(g)

such that ϕ∗αg = αground . In particular, ϕ conjugates the geodesic flows of ground and
g. Furthermore, there is a symplectomorphism

ψ : T ∗S2\O→ T ∗S2\O

such that ψ∗Hg = Hground . Here O denotes the zero section of T ∗S2. In particular, ψ
conjugates the Hamiltonian flows of Hground and Hg away from the zero section.

The statement about the area of g is proved (for more general Zoll manifolds) by
Weinstein in [27]. The existence of a conjugacy is also proved by Weinstein (again
for more general Zoll manifolds) in [28], but assuming the existence of a path of Zoll
metrics connecting ground to g. See also [17] [Appendix B]. In the special case of S2

one does not need this assumption.
Before provingTheoremB.1,we study the contactmanifold (T 1S2(ground), αground ).

If we see (S2, ground) as the unit sphere in R
3, the unit tangent bundle T 1S2(ground)

is naturally identified with the three-dimensional submanifold of R6

{(x, u) ∈ R
3 × R

3 | |x | = |u| = 1, x · u = 0},

where | · | and · are the Euclidean norm and scalar product on R3. Using this identifi-
cation, the contact form αground has the form

αground (x, u)[(v,w)]=u · v, ∀(x, u) ∈ T 1S2(ground), (v,w) ∈ T(x,u)T
1S2(ground).

The above identification shows that T 1S2(ground) is diffeomorrphic to SO(3) by the
diffeomorphism

T 1S2(ground) → SO(3), (x, u) �→ [x u x × u],

where × is the vector product on R
3 and [a b c] denotes the matrix with columns

a, b, c. The push-forward of αground by this diffeomorphism is the following contact
form on SO(3)

α0(A)[H ] := Ae2 · He1, ∀A ∈ SO(3), H ∈ TASO(3),
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where {e1, e2, e3} is the standard basis of R3. Its differential is the two-form

dα0(A)[H, K ] = He2 · Ke1 − Ke2 · He1, ∀A ∈ SO(3), H, K ∈ TASO(3).
(70)

On SO(3) the geodesic flow of ground takes the form

φt (A) = A R(t), where R(t) :=
⎛
⎝ cos t − sin t 0

sin t cos t 0
0 0 1

⎞
⎠ .

The flow φt defines a free T-action on SO(3), where T := R/2πZ. The quotient of
SO(3) by this T-action is S2, and the quotient projection is the map

p0 : SO(3) → S2, p0(A) = Ae3. (71)

Denote by ω0 the standard area form of S2, namely

ω0(x)[u, v] := det[x u v], ∀x ∈ S2, u, v ∈ Tx S
2.

We claim that
p∗0 ω0 = −dα0. (72)

In order to prove this identity, notice that dα0 is invariant under the action of SO(3)
by left multiplication: if T ∈ SO(3) and LT is the map

LT : SO(3) → SO(3), LT (A) = T A,

then formula (70) shows that L∗T dα0 = dα0. Moreover, from the identity p0 ◦ LT =
T ◦ p0 and from the fact thatω0 is T -invariant we deduce that also p∗0ω is LT -invariant:

L∗T (p∗0ω0) = (p0 ◦ LT )∗ω0 = (T ◦ p0)
∗ω0 = p∗0(T ∗ω0) = p∗0ω0.

Therefore, it is enough to check the validity of the identity (72) at the identity matrix
I ∈ SO(3). Let H, K be two elements of the tangent space of SO(3) at I , that is, two
skew-symmetric matrices

H =
⎛
⎝ 0 h1 h2
−h1 0 h3
−h2 −h3 0

⎞
⎠ , K =

⎛
⎝ 0 k1 k2
−k1 0 k3
−k2 −k3 0

⎞
⎠ .

By (70) we have

dα0(I )[H, K ] = h3k2 − h2k3.
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On the other hand, from the form (71) of the projection p0 we find

p∗0ω(I )[H, K ] = ω(e3)[He3, Ke3] = det

⎛
⎝0 h2 k2
0 h3 k3
1 0 0

⎞
⎠ = h2k3 − h3k2.

The above two identities conclude the proof of (72).
The map p0 : SO(3) → S2 defines a principal T-bundle. The contact form α0

is a connection 1-form on this principal bundle. By (72) the curvature 2-form dα0
coincides with −p∗0ω0, and hence the Euler class of p0 is [ω0/2π ]. In particular, the
Euler number of p0 is

〈[ω0/2π ], [S2]〉 = 1

2π

∫
S2

ω0 = 2.

We will deduce Theorem B.1 by the following general result:

Theorem B.2 Let α be a contact form on SO(3) such that all the orbits of the corre-
sponding Reeb flow are periodic and have minimal period 2π . Then

vol(SO(3), α ∧ dα) = vol(SO(3), α0 ∧ dα0) = 8π2, (73)

and there exists a diffeomorphism ϕ : SO(3) → SO(3) such that ϕ∗α = α0.

Proof of Theorem A.12 First notice that the thesis is true for the contact form α =
−α0: indeed, (73) is trivial in this case, and the diffeomorphism

SO(3) → SO(3), A �→ AD where D :=
⎛
⎝ 1 0 0
0 −1 0
0 0 −1

⎞
⎠ ,

satisfies ϕ∗(−α0) = α0.
Now consider an arbitrary contact form α on SO(3) satisfying the periodicity

assumption. Up to the application of an orientation reversing diffeomorphism of
SO(3), we may assume that α and α0 induce the same orientation, meaning that
the volume forms α ∧ dα and α0 ∧ dα0 differ by the multiplication by a positive
function.

The Reeb flow of α induces a smooth free T-action on SO(3). The quotient B of
SO(3) by this action is a smooth closed surface. Denote by

p : SO(3) → B

the quotient projection. By (the easy part of) a theorem of Boothby and Wang ([8],
see also [16, Theorem 7.2.5]), p is a principal T-bundle, α is a connection 1-form on
it, whose curvature form ω is an area form on B satisfying

p∗ω = dα.
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Moreover, the cohomology class −[ω/2π ] is integral and coincides with the Euler
class e of the T-bundle.

In particular, B is orientable and from the exact homotopy sequence of fibrations

· · · → π2(SO(3)) = 0 → π2(B) → π1(T) = Z→ π1(SO(3)) = Z2 → · · ·

we deduce that π2(B) = Z. Therefore, B is the two-sphere S2. From the Gysin
sequence

· · · → H1(SO(3);Z) = 0
p∗−→ H0(S2;Z) = Z

∪e−→ H2(S2;Z) = Z→
p∗−→ H2(SO(3);Z) = Z2

p∗−→ H1(S2;Z) = 0 → · · ·

we deduce that the cup product with the Euler class is the multiplication by ±2, i.e.
the Euler number of the T-bundle p is±2. Then, choosing any orientation on SO(3),
we can compute the total volume of α ∧ dα by fiberwise integration

vol(SO(3), α ∧ dα) =
∣∣∣∣
∫
SO(3)

α ∧ dα

∣∣∣∣ =
∣∣∣∣
∫
SO(3)

α ∧ p∗ω
∣∣∣∣ =

∣∣∣∣
∫
S2

p∗(α)ω

∣∣∣∣
= 2π

∣∣∣∣
∫
S2

ω

∣∣∣∣ = 4π2
∣∣∣∣
∫
S2

ω

2π

∣∣∣∣ = 8π2,

and (73) follows. If we change α by −α, then ω becomes −ω and hence the Euler
number of p changes sign. Since α and−α induce the same orientation on SO(3), we
may assume that the Euler number is 2: if in this case we do have a diffeomorphism
ϕ such that ϕ∗α = α0, then the same diffeomorphism pulls −α back to −α0, and we
have already checked that −α0 can be pulled back to α0.

Therefore, in the sequel we assume that α and α0 induce the same orientation
on SO(3) and that the Euler number of p is 2. Since the Euler number determines
principal T-bundles over S2 (see [20, Theorem 8]) and since we have checked above
that the Euler number of p0 is 2, there is an isomorphism of principal T-bundles

SO(3)
ψ

p0

SO(3)

p

S2

In particular, ψ is orientation preserving and intertwines generators of the T-actions,
that is, the Reeb vector fields of α0 and α. Denote by R the Reeb vector field of α0.
Then R is also the Reeb vector field of the contact form

α1 := ψ∗α.
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We claim that

αt := tα1 + (1− t)α0

is a contact form for every t ∈ [0, 1]. Since ψ is orientation preserving, we have

α1 ∧ dα1 = ψ∗(α0 ∧ dα0) = f α0 ∧ dα0

for some positive smooth function f . Fix some point A in SO(3) and let H, K be a
basis of ker α0(A) such that

dα0[H, K ] = 1,

where we are omitting to write the point A. Then R = R(A), H, K is a basis of the
tangent space of SO(3) at A, and we have

α0 ∧ dα0[R, H, K ] = 1. (74)

Since R is the Reeb vector field of α1, we also have

dα1[H, K ] = α1 ∧ dα1[R, H, K ] = f α0 ∧ dα0[R, H, K ] = f. (75)

Therefore

α0 ∧ dα1[R, H, K ] = dα1[H, K ] = f, α1 ∧ dα0[R, H, K ] = dα0[H, K ] = 1.
(76)

By (74), (75) and (76) we obtain

αt ∧ dαt [R, H, K ] = (t2α1 ∧ dα1 + (1− t)2α0 ∧ dα0 + t (1− t)α1 ∧ dα0

+t (1− t)α0 ∧ dα1)[R, H, K ]
= t2 f + (1− t)2 + t (1− t)+ t (1− t) f = t f + 1− t.

Since the above quantity is positive for every t ∈ [0, 1], αt is a contact form for t in
this range, as claimed.

Now we proceed using Moser’s argument. Since dαt is non-degenerate on ker αt ,
we can find a unique (and hence smooth) vector field Yt taking values in ker αt and
such that

ıYt dαt |ker αt = (α0 − α1)|ker αt .

Since both ıYt dαt and α0 − α1 vanish on R, we can remove the restriction to ker αt

from the above identity:
ıYt dαt = α0 − α1. (77)
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Letφt : SO(3) → SO(3), t ∈ [0, 1], be the one-parameter family of diffeomorphisms
which solves the equation

φ0 = id,
d

dt
φt = Yt (φt ).

By Cartan’s identity we get

d

dt
φ∗t αt = φ∗t (LYtαt + α1 − α0) = φ∗t (ıYt dαt + dıYtαt + α1 − α0) = 0,

where we have used (77) and the fact that ıYtαt = αt [Yt ] = 0, since Yt is a section of
ker αt . Since φ∗0α0 = α0, we deduce that φ∗t αt = α0 for every t ∈ [0, 1]. In particular,

φ∗1ψ∗α = φ∗1α1 = α0,

and ϕ := ψ ◦ φ1 is the required diffeomorphism. ��
Proof of Theorem B.1 Using an arbitrary diffeomorphism between T 1S2(g) and
SO(3)we identify alsoαg with a contact formα on SO(3), which satisfies the assump-
tions of Theorem B.2. By Proposition 3.7 and (73) we have

2π area(S2, g) = vol(T 1S2(g), αg) = vol(SO(3), α) = 8π2,

which proves (69). The existence of a diffeomorphism

ϕ : T 1S2(ground) → T 1S2(g)

such that ϕ∗αg = αground is an immediate consequence of Theorem B.2. Since it
intertwines the Reeb vector fields of αground and αg , this diffeomorphism conjugates the
two geodesic flows. Let ϕ̃ be the induced diffeomorphism between the unit cotangent
bundles of S2 which are defined by the dualmetrics g∗round and g∗. The diffeomorphism
ϕ̃ intertwines the two restrictions of the standard Liouville form of T ∗S2. The one-
homogeneous extension

ψ : T ∗S2\O→T ∗S2\O, ψ(ru)=r ϕ̃(u) for u ∈ T ∗S2, g∗round(u, u)=1, r >0,

is a symplectomorphism and satisfies ψ∗Hg = Hground . ��
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