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Abstract The main results of the present paper consist in some quantitative estimates
for solutions to the wave equation ∂2t u − div(A(x)∇xu) = 0. Such estimates imply
the following strong unique continuation properties: (a) if u is a solution to the the
wave equation and u is flat on a segment {x0} × J on the t axis, then u vanishes in a
neighborhood of {x0}× J . (b) Let u be a solution of the above wave equation in�× J
that vanishes on a a portion Z× J where Z is a portion of ∂� and u is flat on a segment
{x0} × J , x0 ∈ Z , then u vanishes in a neighborhood of {x0} × J . The property (a)
has been proved by Lebeau (Commun Partial Differ Equ 24:777–783, 1999).

Mathematics Subject Classification Primary 35R25 · 35L; Secondary 35B60 ·
35R30

1 Introduction

The strong unique continuation properties and the related quantitative estimates have
been well understood for second order equations of elliptic [1,6,22,27] and parabolic
type [5,15,28]. The three sphere inequalities [30], doubling inequalities [20], or two-
sphere one cylinder inequality [16] are the typical form in which such quantitative
estimates of unique continuation occur in the elliptic or in the parabolic context. We
refer to [4,36] for a more extensive literature on these subjects. On the contrary,
the strong properties of unique continuation are much less studied in the context of
hyperbolic equations, [7,31,32].
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136 S. Vessella

To the author knowledge there exits no result in the literature concerningquantitative
estimates of unique continuation in the framework of hyperbolic equations. In this
paper we study this issue for the wave equation

∂2t u − div (A(x)∇xu) = 0, (1.1)

(div := ∑n
j=1 ∂x j ) where A(x) is a real-valued symmetric n×n, n ≥ 2, matrix whose

entries are functions of Lipschitz class and satisfying uniform ellipticity condition.
The quantitative estimates of unique continuation for the Eq. (1.1) represent the

quantitative counterparts of the following strong unique continuation property. Let u
be a weak solution to (1.1) and assume that

sup
t∈J

‖u(·, t)‖L2(Br ) = CNr
N , ∀N ∈ N, ∀r < 1,

where CN is arbitrary and independent on r , J = (−T, T ) is an interval of R. Then
we have

u = 0 in U ,

where U is a neighborhood of {0} × J . The above property was proved by Lebeau in
[31]. As a consequence of such a result and using the weak unique continuation prop-
erty proved in [23,34,35], see also [24], we have that, if the entries of A are function
in C∞(Rn) then u = 0 in the domain of dependence of a cylinder Bδ × J , where Bδ

is the ball of Rn , n ≥ 2, centered at 0 with a small radius δ. Previously the strong
unique continuation property was proved by Masuda [32] whenever J = R and the
entries of the matrix A are functions of C2 class and by Baouendi and Zachmanoglou
[7] whenever the entries of A are analytic functions. In both [7,32], the above property
was proved also for first order perturbation of operator ∂2t u − div(A(x)∇u). Also, we
recall here the papers [11,12,33]. In such papers unique continuation properties are
proved along and across lower dimensional manifolds for the wave equation.

The quantitative estimate of strong unique continuation (in the interior) that we
prove is, roughly speaking, the following one (for the precise statement see Theorem
2.1). Let u be a solution to (1.1) in the cylinder B1 × J and let r ∈ (0, 1). Assume
that

sup
t∈J

‖u(·, t)‖L2(Br ) ≤ ε and ‖u(·, 0)‖H2(B1) ≤ 1,

where ε < 1. Then

‖u(·, 0)‖L2
(
Bs0

) ≤ C
∣
∣log

(
εθ
)∣
∣−1/6

, (1.2)

where s0 ∈ (0, 1), C ≥ 1 are constants independent of u and r and

θ = | log r |−1. (1.3)
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The estimate (1.2) are sharp estimate from two points of view:

(i) The logarithmic character of the estimate cannot be improved as it is shown by
a well-known counterexample of John for the wave equation, [26];

(ii) The sharp dependence of θ by r . Indeed it is easy to check that the estimate (1.2)
implies the strong unique continuation for the Eq. (1.1) (see Remark 2.2 for more
details).

As a consequence of estimate (1.2) and some reflection transformation introduced in
[1] we derive a quantitative estimate of unique continuation at the boundary (Theorem
2.3). Also, we extend (1.2) to a first order perturbation of the wave operator (Sect. 4).

One of the main purposes that led us to derive the above estimates is their appli-
cations in the framework of stability for inverse hyperbolic problems with time
independent unknown boundaries from transient data with a finite time of observation.
Some uniqueness results has been proved in [25]. In the paper [37] the most important
tools that are used to prove a sharp stability estimate are precisely the strong unique
continuation (at the interior and at the boundary) for the Eq. (1.1). The quantitative
estimate of strong unique continuation was applied for the first time to the elliptic
inverse problems with unknown boundaries in [3]. Concerning the parabolic inverse
problems with unknown boundaries such estimates were applied in [9,10,14,18,36].
In both the cases, elliptic and parabolic, the stability estimates that were proved are
optimal [13] and [2] (elliptic case), [14] (parabolic case).

The proof of (1.2) follows a similar strategy and ingredients as the one used in
[31]. In particular, in order to perform a suitable transformation of the wave equation
in a nonhomogeneous second order elliptic equation we use the Boman transforma-
tion [8], then, to the obtained elliptic equation, we use the Carleman estimate with
singular weight, [6,17,22] and the stability estimates for the Cauchy problem. The
main difference between our proof and the one of [31] relies in the different nature
of the results; in our case the results are quantitative while in [31] the results are only
qualitative. More precisely, in [31] the parameter ε has the particular form ε = CNr N

while in the present paper ε is a free parameter. An important consequence of this fact
is that we need to control very accurately how much the error ε affects the growth of
the solution to (1.1) in order to reach the above sharpness character (i) and (ii).

The plan of the paper is as follows. In Sect. 2 we state the main results of this paper,
in Sect. 3 we prove the theorems of Sect. 2, in Sect. 4 we consider the case of the more
general equation q(x)∂2t u − div(A(x)∇xu) = b(x) · ∇xu + c(x)u.

2 The main results

2.1 Notation and definition

Let n ∈ N, n ≥ 2. For any x ∈ R
n , we will denote x = (x ′, xn), where x ′ =

(x1, . . . , xn−1) ∈ R
n−1, xn ∈ R and |x | = (

∑n
j=1 x

2
j )
1/2. Given x ∈ R

n , r > 0,

we will denote by Br , B ′
r B̃r the ball of Rn , Rn−1 and R

n+1 of radius r centered
at 0. For any open set � ⊂ R

n and any function (smooth enough) u we denote by
∇xu = (∂x1u, . . . , ∂xn u) the gradient of u. Also, for the gradient of u we use the
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138 S. Vessella

notation Dxu. If j = 0, 1, 2 we denote by D j
x u the set of the derivatives of u of order

j , so D0
xu = u, D1

xu = ∇xu and D2
xu is the hessian matrix {∂xi x j u}ni, j=1. Similar

notation are used whenever other variables occur and � is an open subset of Rn−1 or
a subset Rn+1. By H �(�), � = 0, 1, 2 we denote the usual Sobolev spaces of order �,
in particular we have H0(�) = L2(�).

For any interval J ⊂ R and � as above we denote by

W(J ;�) = {u ∈ C0(J ; H2(�)) : ∂�
t u ∈ C0(J ; H2−�(�)), � = 1, 2}.

Weshall use the lettersC,C0,C1, . . . to denote constants. The value of the constants
may change from line to line, but we shall specified their dependence everywhere they
appear.

2.2 Statements of the main results

Let A(x) = {ai j (x)}ni, j=1 be a real-valued symmetric n × n matrix whose entries are
measurable functions and they satisfy the following conditions for given constants
ρ0 > 0, λ ∈ (0, 1] and 
 > 0,

λ |ξ |2 ≤ A(x)ξ · ξ ≤ λ−1 |ξ |2 , for every x, ξ ∈ R
n, (2.1a)

|A(x) − A(y)| ≤ 


ρ0
|x − y| , for every x, y ∈ R

n . (2.1b)

Let q = q(x) be a a real-valued measurable function that satisfies

λ ≤ q(x) ≤ λ−1, for every x ∈ R
n, (2.2a)

|q(x) − q(y)| ≤ 


ρ0
|x − y| , for every x, y ∈ R

n . (2.2b)

Let u ∈ W([−λρ0, λρ0]; Bρ0) be a weak solution to

q(x)∂2t u − div (A(x)∇xu) = 0, in Bρ0 × (−λρ0, λρ0). (2.3)

Let r0 ∈ (0, ρ0] and denote by

ε := sup
t∈(−λρ0,λρ0)

(

ρ−n
0

∫

Br0

u2(x, t)dx

)1/2

(2.4)

and

H :=
⎛

⎝
2∑

j=0

ρ
j−n
0

∫

Bρ0

∣
∣
∣D

j
x u(x, 0)

∣
∣
∣
2
dx

⎞

⎠

1/2

. (2.5)
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Theorem 2.1 (estimate at the interior) Let u ∈ W([−λρ0, λρ0]; Bρ0) be a weak solu-
tion to (2.3) and let (2.1) and (2.2) be satisfied. There exist constants s0 ∈ (0, 1) and
C ≥ 1 depending on λ and 
 only such that for every 0 < r0 ≤ ρ ≤ s0ρ0 the
following inequality holds true

‖u(·, 0)‖L2(Bρ) ≤ C
(
ρ0ρ

−1
)C

(H + eε)
(
θ log

( H+eε
ε

))1/6 , (2.6)

where

θ = log(ρ0/Cρ)

log(ρ0/r0)
. (2.7)

The proof of Theorem 2.1 is given in Sect. 3.

Remark 2.2 Observe that estimate (2.6) implies the following property of strong
unique continuation. Let u ∈ W([−λρ0, λρ0]; Bρ0) be a weak solution to (2.3) and
assume that

sup
t∈(−λρ0,λρ0)

(

ρ−n
0

∫

Br0

u2(x, t)dx

)1/2

= O(r N0 ), ∀N ∈ N, as r0 → 0,

then

u(·, t) = 0, for |x | + λ−1s0|t | ≤ s0ρ0. (2.8)

It is enough to consider the case t = 0. If ‖u(·, 0)‖L2(Bs0ρ0 ) = 0 there is nothing to
proof, otherwise if

‖u(·, 0)‖L2
(
Bs0ρ0

) > 0, (2.9)

we argue by contradiction. By (2.9) it is not restrictive to assume that H =
‖u(·, 0)‖H2(Bρ0 ) = 1. Now we apply inequality (2.6) with ε0 = CNr N0 , N ∈ N,
and passing to the limit as r0 → 0 we have that (2.6) implies

‖u(·, 0)‖L2
(
Bs0ρ0

) ≤ Cs−C
0 N−1/6, ∀N ∈ N,

by passing again to the limit as N → 0 we get, by (2.9), ‖u(·, 0)‖L2(Bρ) = 0 that
contradicts (2.9).

In order to state Theorem 2.3 below let us introduce some notation. Let φ be a
function belonging to C1,1(B ′

ρ0
) that satisfies

φ(0) = |∇x ′φ(0)| = 0 (2.10)
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140 S. Vessella

and

‖φ‖
C1,1

(
B′

ρ0

) ≤ Eρ0, (2.11)

where

‖φ‖
C1,1

(
B′

ρ0

) = ‖φ‖
L∞

(
B′

ρ0

) + ρ0 ‖∇x ′φ‖
L∞

(
B′

ρ0

) + ρ2
0

∥
∥
∥D2

x ′φ
∥
∥
∥
L∞

(
B′

ρ0

) .

For any r ∈ (0, ρ0] denote by

Kr := {(x ′, xn) ∈ Br : xn > φ(x ′)}

and

Z := {(x ′, φ(x ′)) : x ′ ∈ B ′
ρ0

}.

Let u ∈ W([−λρ0, λρ0]; Kρ0) be a solution to

∂2t u − div (A(x)∇xu) = 0, in Kρ0 × (−λρ0, λρ0), (2.12)

satisfying one of the following conditions

u = 0, on Z × (−λρ0, λρ0) (2.13)

or

A∇xu · ν = 0, on Z × (−λρ0, λρ0), (2.14)

where ν denotes the outer unit normal to Z .
Let r0 ∈ (0, ρ0] and denote by

ε = sup
t∈(−λρ0,λρ0)

(

ρ−n
0

∫

Kr0

u2(x, t)dx

)1/2

(2.15)

and

H =
⎛

⎝
2∑

j=0

ρ
j−n
0

∫

Kρ0

∣
∣
∣D

j
x u(x, 0)

∣
∣
∣
2
dx

⎞

⎠

1/2

. (2.16)

Theorem 2.3 (estimate at the boundary)Let (2.1)be satisfied. Let u∈W([−λρ0, λρ0];
Kρ0) be a solution to (2.12) satisfying (2.15) and (2.16). Assume that u satisfies either
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Quantitative estimates of strong unique continuation for… 141

(2.13) or (2.14). There exist constants s0 ∈ (0, 1) and C ≥ 1 depending on λ, 
 and
E only such that for every 0 < r0 ≤ ρ ≤ s0ρ0 the following inequality holds true

‖u(·, 0)‖L2(Kρ) ≤ C
(
ρ0ρ

−1
)C

(H + eε)
(
θ̃ log

( H+eε
ε

))1/6 , (2.17)

where

θ̃ = log(ρ0/Cρ)

log(ρ0/r0)
. (2.18)

The proof of Theorem 2.3 is given in Sect. 3.2.

Remark 2.4 By arguing similarly to Remark 2.2 we have that estimate (2.17) implies
the following property of strong unique continuation at the boundary. Let u ∈
W([−λρ0, λρ0]; Kρ0) be a solution to (2.12) satisfying either (2.13) or (2.14) and
assume that

sup
t∈(−λρ0,λρ0)

(

ρ−n
0

∫

Kr0

u2(x, t)dx

)1/2

= O(r N0 ), ∀N ∈ N, as r0 → 0,

then

u(x, t) = 0, for x ∈ Kρ(t), t ∈ (−λρ0, λρ0),

where ρ(t) = s0(ρ0 − λ−1|t |).

3 Proof of Theorems 2.1 and 2.3

3.1 Proof of Theorem 2.1

Observe that to prove Theorem 2.1 we can assume that u(x, t) is even with respect to
the variable t . Indeed defining

u+(x, t) = u(x, t) + u(x,−t)

2
,

we see that u+ satisfies all the hypotheses of Theorem 2.1 and, in particular, we have

u+(x, 0) = u(x, 0),

sup
t∈(−λρ0,λρ0)

(

ρ−n
0

∫

Br0

u2+(x, t)dx

)1/2

≤ ε,
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142 S. Vessella

and

⎛

⎝
2∑

j=0

ρ
j−n
0

∫

Bρ0

∣
∣
∣D

j
x u+(x, 0)

∣
∣
∣
2
dx

⎞

⎠

1/2

= H,

also, notice that the function of ε at the right hand side of (2.6) is not decreasing.
Hence, from now on we assume that u(x, t) is even with respect to the variable t .
Moreover it is not restrictive to assume ρ0 = 1.

In order to prove Theorem 2.1 we proceed in the following way.
First step. After a standard extension of u(·, 0) in H2(B2) ∩ H1

0 (B2) we will
construct, similarly to [31], a sequence of function {vk(x, y)}k∈N, with the following
properties:

(i) for every k ∈ N the function vk belongs to H2(B2)∩ H1
0 (B2), in addition vk(x, y)

is even with respect to the variable y ∈ R,
(ii) the sequence {vk(·, 0)}k∈N approximates u(·, 0) in L2(B1), more precisely we

have

‖u(·, 0) − vk‖L2(B1) ≤ CHk−1/6.

Moreover, for every k ∈ N the function vk(x, y) is a solution to the elliptic prob-
lem,

{
q(x)∂2yvk + div (A(x)∇xvk) = fk(x, y), in B2 × R,

‖vk(·, 0)‖L2
(
Br0

) ≤ ε,

where fk satisfies

‖ fk(·, y)‖L2(B2) ≤ (C |y|)2k ∀k ∈ N.

Second step. Here we derive some stability estimates of Cauchy problem for the
above elliptic equation getting estimates vk in the ball of Rn+1 centered at 0 with
radius r0/4, (Proposition 3.6). Then we use Carleman estimates with singular weight
(Theorem 3.7) for the elliptic equation and the above estimate of ‖u(·, 0)− vk‖L2(B1).
Finally, we choose the parameter k and we get the estimate (2.6).

First step.
Let us start by introducing some notation and by giving an outline of the proof

of Theorem 2.1. Let ũ0 an extension of the function u0 := u(·, 0) such that ũ0 ∈
H2(B2) ∩ H1

0 (B2) and

‖ũ0‖H2(B2) ≤ CH, (3.1)

where C is an absolute constant.
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Let us denote by λ j , with 0 < λ1 ≤ λ2 ≤ · · · ≤ λ j ≤ · · · the eigenvalues
associated to the Dirichlet problem

{
div (A(x)∇xv) + ωq(x)v = 0, in B2,

v ∈ H1
0 (B2) ,

(3.2)

and by e j (·) the corresponding eigenfunctions normalized by

∫

B2
e2j (x)q(x)dx = 1. (3.3)

By (2.1a), (2.2) and Poincaré inequality we have for every j ∈ N

λ j =
∫

B2
A(x)∇x e j (x) · ∇xe j (x)dx ≥ cλ2

∫

B2
e2j (x)q(x)dx = cλ2 (3.4)

where c is an absolute constant. Denote by

α j :=
∫

B2
ũ0(x)e j (x)q(x)dx, (3.5)

and let

ũ(x, t) :=
∞∑

j=1

α j e j (x) cos
√

λ j t. (3.6)

Proposition 3.1 We have

∞∑

j=1

(
1 + λ2j

)
α2
j ≤ CH2, (3.7)

where C depends on λ,
 only. Moreover, ũ ∈ W(R; B2)∩C0(R; H2(B2)∩H1
0 (B2))

is an even function with respect to the variable t and it satisfies

⎧
⎨

⎩

q(x)∂2t ũ − div (A(x)∇x ũ) = 0, in B2 × R,

ũ(·, 0) = ũ0, in B2,

∂t ũ(·, 0) = 0, in B2.

(3.8)

Proof By (3.2) and (3.3) we have

λ jα j =
∫

B2
ũ0(x)λ j q(x)e j (x)dx = −

∫

B2
div (A(x)∇x ũ0(x)) e j (x)dx .
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144 S. Vessella

Hence, by (2.1), (2.2) and (3.1) we have

∞∑

j=1

(
1 + λ2j

)
α2
j = ‖ũ0‖2L2(B2;qdx) +

∥
∥
∥
∥
1

q
div (A∇x ũ0)

∥
∥
∥
∥

2

L2(B2;qdx)
≤ CH2,

where C depends on λ,
 only and (3.7) follows. �
Notice that, since ũ(·, 0) = u+(·, 0) and ∂t ũ(·, 0) = 0 = ∂t u+(·, 0) in B1, we have
for the uniqueness to the Cauchy problem for Eq. (2.3), (see, for instance [19]),

ũ(x, t) = u+(x, t), for |x | + λ−1|t | < 1. (3.9)

Let us introduce the following nonnegative, even function ψ such that

ψ(t) =
{ 1

2 (1 + cosπ t) , for |t | ≤ 1,
0, for |t | > 1.

(3.10)

Notice that ψ ∈ C1,1, supp ψ ⊆ [−1, 1] and
∫

R

ψ(t)dt = 1. (3.11)

Let

ψ̂(τ ) =
∫

R

ψ(t)e−iτ t dt =
∫

R

ψ(t) cos τ tdt, τ ∈ R. (3.12)

Since ψ has compact support, ψ̂ is an entire function. By (3.11) we have

∣
∣ψ̂(τ )

∣
∣ ≤

∫

R

ψ(t)dt = 1, for every τ ∈ R,

and

∣
∣
∣τ 2ψ̂(τ )

∣
∣
∣ =

∣
∣
∣
∣−

∫

R

ψ(t)
d2

dt2
cos τ tdt

∣
∣
∣
∣ =

∣
∣
∣
∣−

∫

R

ψ
′′
(t) cos τ tdt

∣
∣
∣
∣ ≤ π2, for every τ ∈ R,

hence we have

∣
∣ψ̂(τ )

∣
∣ ≤ min

{
1, π2τ−2

}
, for every τ ∈ R. (3.13)

Let

ϑ(t) = 4λ−1ψ(4λ−1t), t ∈ R. (3.14)

In the following proposition we collect the elementary properties of ϑ that we need.
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Quantitative estimates of strong unique continuation for… 145

Proposition 3.2 The function ϑ is an even and non negative function such that ϑ ∈
C1,1, supp ϑ = [−λ

4 , λ
4 ], ∫

R
ϑ(t)dt = 1, ϑ̂(τ ) = ψ̂( λτ

4 ) and

∫

R

∣
∣ϑ ′(t)

∣
∣ dt = 8λ−1, (3.15)

∣
∣ϑ̂(τ )

∣
∣ ≤ min

{
1, 16π2(τλ)−2

}
, for every τ ∈ R, (3.16)

∣
∣ϑ̂(τ ) − 1

∣
∣ ≤

(
λτ

4

)2

, for

∣
∣
∣
∣
λτ

4

∣
∣
∣
∣ ≤ π

2
, (3.17)

1

2
≤ ϑ̂(τ ), for

∣
∣
∣
∣
λτ

4

∣
∣
∣
∣ ≤ 1√

2
. (3.18)

Proof We limit ourselves to prove property (3.17) and (3.18), since the other properties
are immediate consequences of (3.12), (3.13) and (3.14). We have

∣
∣ϑ̂(τ ) − 1

∣
∣ ≤

∫ 1

−1
ψ(s)

(

1 − cos

(
λsτ

4

))

ds. (3.19)

Now, if s ∈ [−1, 1] and |λτ
4 | ≤ π

2 then

1 − cos

(
λsτ

4

)

≤
(

λτ

4

)2

.

Hence by (3.19) we get (3.17). Finally (3.18) is an immediate consequence of (3.17)
�

As usual, if f, g ∈ L1(R), we denote by ( f ∗g)(t) := ∫
R

f (t−s)g(s)ds. Moreover
we denote by f ∗(k) := f ∗ f ∗(k−1), for k ≥ 2, where f ∗(1) := f .

Let us define

ϑk(t) := (kϑ(kt))∗(k) , for every k ∈ N. (3.20)

Notice that ϑk ≥ 0, supp ϑk ⊂ [−λ
4 , λ

4 ], ∫
R

ϑk(t)dt = 1, for every k ∈ N and

ϑ̂k(τ ) =
(
ϑ̂(k−1τ)

)k
, for every k ∈ N, τ ∈ R. (3.21)

Moreover, by (3.17) we have

lim
k→+∞ ϑ̂k(τ ) = 1, for every τ ∈ R. (3.22)

For any number μ ∈ (0, 1] and any k ∈ N let us set

ϕμ,k = (
ϑk ∗ ϕμ

)
, (3.23)
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146 S. Vessella

where

ϕμ(t) = μ−1ϑ
(
μ−1t

)
, for every t ∈ R. (3.24)

We have supp ϕμ,k ⊂ [−λ(μ+1)
4 ,

λ(μ+1)
4 ], ϕμ,k ≥ 0 and

∫
R

ϕμ,k(t)dt = 1. More-
over ϕμ,k is an even function.

Now, let us define the following mollified form of the Boman transformation of
ũ(x, ·) [8],

ũμ,k(x) =
∫

R

ũ(x, t)ϕμ,k(t)dt, for x ∈ B2. (3.25)

Proposition 3.3 If k ∈ N and μ = k−1/6 then the following inequality holds true

∥
∥u(·, 0) − ũμ,k

∥
∥
L2(B1)

≤ CHk−1/6, (3.26)

where C depends on λ only.

Proof Let μ ∈ (0, 1]. By applying the triangle inequality and taking into account
(3.11) and (3.24) we have

∥
∥u(·, 0) − ũμ,k(·)

∥
∥
L2(B1)

≤
(∫

B1
dx

∫ λμ/4

−λμ/4
|u(x, 0) − ũ(x, t)|2 ϕμ(t)dt

)1/2

+
(∫

B1
dx

∫ λ(μ+1)/4

−λ(μ+1)/4
|̃u(x, t)|2 dt

)1/2
∥
∥ϕμ − ϕμ,k

∥
∥
L2(R)

:= I1 + I2. (3.27)

In order to estimate I1 from above we observe that by the energy inequality, (3.1),
and taking into account that ∂t ũ(x, 0) = 0, we have

∫

B2
|∂t ũ(x, t)|2 dx ≤

∫

B2

(
|∂t ũ(x, t)|2 + |∇x ũ(x, t)|2

)
dx

≤ λ−2
∫

B2

(
|∂t ũ(x, 0)|2 + |∇x ũ(x, 0)|2

)
dx ≤ CH2,

where C depends on λ only. Therefore

I 21 ≤2
∫

B1
dx

∣
∣
∣
∣

∫ λμ/4

0
∂ηũ(x, η)dη

∣
∣
∣
∣

2

≤ λμ

2

∫

B1
dx

∫ λμ/4

0

∣
∣∂ηũ(x, η)

∣
∣2 dη ≤ CH2μ2.

Hence

I1 ≤ CHμ, (3.28)

where C depends on λ only.
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Concerning I2, firstwe observe that by usingPoincaré inequality, by energy inequal-
ity, and by (3.1) (recalling that μ ∈ (0, 1]), we have

∫ λ(μ+1)/4

−λ(μ+1)/4
dt
∫

B1
|̃u(x, t)|2 dx ≤

∫ λ/2

−λ/2
dt
∫

B2
|̃u(x, t)|2 dx

≤ C
∫ λ/2

−λ/2
dt
∫

B2
|∇x ũ(x, t)|2 dx ≤ CH2, (3.29)

where C depends on λ only.
In order to estimate from above ‖ϕμ − ϕμ,k‖L2(R) we recall that ϕ̂μ(τ ) = ϑ̂(μτ)

and ϕ̂μ,k(τ ) = ϑ̂(μτ)(ϑ̂(k−1τ))k , hence the Parseval identity and a change of variable
give

2π
∥
∥ϕμ − ϕμ,k

∥
∥2
L2(R)

= 1

μ

∫

R

∣
∣
∣
∣

(
ϑ̂((μk)−1τ)

)k − 1

∣
∣
∣
∣

2 ∣
∣ϑ̂(τ )

∣
∣2 dτ. (3.30)

By (3.16), (3.17) and (3.18) and by using the elementary inequalities 1− e−z ≤ z, for
every z ∈ R, and log s ≤ s − 1, for every s > 0, we have, whenever | λτ

4μk | ≤ 1√
2
,

0 ≤ 1 −
(
ϑ̂((μk)−1τ)

)k = 1 − ek log ϑ̂((μk)−1τ) ≤ λ2τ 2

8μ2k
. (3.31)

Now let δ ∈ (0, 1] be a number that we shall choose later and denote β = 4μk√
2λ

δ.
By (3.30), (3.16) and (3.31) we have

2π
∥
∥ϕμ − ϕμ,k

∥
∥2
L2(R)

= 1

μ

∫

|τ |≤β

∣
∣
∣
∣

(
ϑ̂((μk)−1τ)

)k − 1

∣
∣
∣
∣

2 ∣
∣ϑ̂(τ )

∣
∣2 dτ

+ 1

μ

∫

|τ |≥β

∣
∣
∣
∣

(
ϑ̂((μk)−1τ)

)k − 1

∣
∣
∣
∣

2 ∣
∣ϑ̂(τ )

∣
∣2 dτ

≤ 1

μ

∫

|τ |≤β

(
λ2τ 2

8μ2k

)2

dτ + 1

μ

∫

|τ |>β

(
32π2

λ2τ 2

)2

dτ ≤ C

(

k3δ5 + 1

δ3μ4k3

)

,

(3.32)

where C depends on λ only. If μ2k3/5 ≥ 1, we choose δ = (μ2k3)−1/4 and by (3.32)
we have

∥
∥ϕμ − ϕμ,k

∥
∥
L2(R)

≤ C
(
k3/5μ2

)−5/8
, (3.33)

where C depends on λ only. Hence recalling (3.29) we have

I2 ≤ CH
(
k3/5μ2

)−5/8
. (3.34)
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By (3.27), (3.28) and (3.34) we obtain

‖u(·, 0) − ũμ,k‖L2(B1) ≤ CH(μ + (k3/5μ2)−5/8). (3.35)

Now, if μ = k− 1
6 , k ≥ 1 then (3.35) implies (3.26). �

From now on we fix μ := k− 1
6 for k ≥ 1 and we denote

ũk := ũμ,k . (3.36)

Let us introduce now, for every k ∈ N an even function gk ∈ C1,1(R) such that if
|z| ≤ k then we have gk(z) = cosh z, if |z| ≥ 2k then we have gk(z) = cosh 2k and
such that it satisfies the condition

|gk(z)| + ∣
∣g′

k(z)
∣
∣+ ∣

∣g′′
k (z)

∣
∣ ≤ ce2k, for every z ∈ R, (3.37)

where c is an absolute constant.
The following proposition is the main result of this first step.

Proposition 3.4 Let

vk(x, y) :=
∞∑

j=1

α j ϕ̂μ,k
(√

λ j
)
gk
(
y
√

λ j
)
e j (x), for (x, y) ∈ B2 × R. (3.38)

We have that vk(·, y) belongs to H2(B2) ∩ H1
0 (B2) for every y ∈ R, vk(x, y) is an

even function with respect to y and it satisfies

{
q(x)∂2yvk + div (A(x)∇xvk) = fk(x, y), in B2 × R,

vk(·, 0) = ũk, in B2.
(3.39)

and

‖vk(·, 0)‖L2
(
Br0

) ≤ ε. (3.40)

where

fk(x, y) =
∞∑

j=1

λ jα j ϕ̂μ,k
(√

λ j
) (
g′′
k

(
y
√

λ j
)− gk

(
y
√

λ j
))
q(x)e j (x). (3.41)

Moreover we have

2∑

j=0

‖∂ j
y vk(·, y)‖H2− j (B2) ≤ CHe2k, for every y ∈ R, (3.42)

123



Quantitative estimates of strong unique continuation for… 149

‖ fk(·, y)‖L2(B2) ≤ CHe2k min

{

1,
(
4πλ−1|y|

)2k
}

, for every y ∈ R, (3.43)

where C depends on λ and 
 only.

Proof First of all observe that

∣
∣ϕ̂μ,k

(√
λ j
)∣
∣ ≤ ‖ϕμ,k‖L1(R) = 1. (3.44)

For the sake of brevity, in what follows we shall omit k from vk .
In order to prove that v(·, y) ∈ H2 (B2) ∩ H1

0 (B2) for y ∈ R, let M, N ∈ N such
that M > N and let us denote by

VM,N (x, y) :=
M∑

j=N+1

α j ϕ̂μ,k
(√

λ j
)
gk
(
y
√

λ j
)
e j (x). (3.45)

By (3.37) and (3.44) we have, for every y ∈ R,

λ

∫

B2

∣
∣∇x VM,N (x, y)

∣
∣2 dx ≤

∫

B2
A(x)∇x VM,N (x, y) · ∇x VM,N (x, y)dx

=
M∑

j=N+1

(∫

B2
A(x)∇x e j (x) · ∇x VM,N (x, y)dx

)

ϕ̂μ,k
(√

λ j
)
gk
(
y
√

λ j
)
α j

=
M∑

j=N+1

λ jα
2
j ϕ̂

2
μ,k

(√
λ j
)
g2k
(
y
√

λ j
) ≤ ce4k

M∑

j=N+1

λ jα
2
j .

Therefore, since VM,N (·, y) ∈ H1
0 (B2) we have

‖VM,N (·, y)‖2
H1
0 (B2)

≤ ce4k
M∑

j=N+1

λ jα
2
j , for every y ∈ R. (3.46)

The inequality above and (3.7) gives

‖VM,N (·, y)‖H1
0 (B2)

→ 0, as M, N → ∞, for every y ∈ R,

hence v ∈ H1
0 (B2).

In order to prove that v ∈ H2(B2), first observe that by (3.37), (3.44) and (3.45)
we have
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‖div (A∇x VM,N
) ‖2L2(B2)

≤ cλ−1e4k
M∑

j=N+1

λ2jα
2
j , for every y ∈ R,

then by the above inequality and standard L2 regularity estimate [21] we obtain

‖D2
x VM,N (·, y)‖2L2(B2)

≤ C‖div (A∇x VM,N
) ‖2L2(B2)

≤ e4k
M∑

j=N+1

λ2jα
2
j , for every y ∈ R, (3.47)

where C depends on λ and 
 only. Hence v ∈ H2(B2). Moreover by (3.7), (3.46) and
(3.47) we have

‖v(·, y)‖L2(B2) + ‖∇xv(·, y)‖L2(B2) + ‖D2
xv(·, y)‖L2(B2)

≤ CHe2k, for every y ∈ R, (3.48)

whereC dependsonλ and
only. Similarlywehave ∂yv(·, y), ∂2yv(·, y), ∂y∇xv(·, y)∈
L2(B2) and

2∑

j=1

‖∂ j
y D

2− j
x v(·, y)‖L2(B2) ≤ CHe2k, for every y ∈ R, (3.49)

where C depends on λ and 
 only.
Inequality (3.49) and (3.48), yields (3.42). By (3.38) we have immediately that the

function v is an even function and it satisfies (3.39).
Concerning (3.40), we have by ‖ϕμ,k‖L1(R) = 1, by Schwarz inequality, by (2.4)

and by (3.25),

‖vk(·, 0)‖2L2
(
Br0

)=
∫

Br0

|̃uk(x)|2 dx≤
∫ λ(μ+1)/4

−λ(μ+1)/4

(∫

Br0

|u(x, t)|2 dx
)

ϕμ,k(t)dt≤ε2.

Concerning (3.43), first observe that by the definition of gk wehave that g′′
k (y

√
λ j )−

gk(y
√

λ j ) = 0, for |y|√λ j ≤ k and |g′′
k (y

√
λ j )−gk(y

√
λ j )| ≤ ce2k , for |y|√λ j ≥ k.

Hence, taking into account (3.16) and (3.21), we have, for every y ∈ R and for every
k ∈ N,

∣
∣g′′

k (y
√

λ j ) − gk(y
√

λ j )
∣
∣
∣
∣ϕ̂μ,k(

√
λ j )

∣
∣ ≤ ce2k

∣
∣
∣ϑ̂(k−1√λ j )

∣
∣
∣
k
χ{y:|y|√λ j≥k}

≤ ce2k sup

{∣
∣
∣ϑ̂(k−1√λ j )

∣
∣
∣
k : |y|√λ j ≥ k

}

≤ ce2k min

{

1,
(
4πλ−1|y|

)2k
}

.

(3.50)
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By (3.42) and (3.50) we have

‖ fk(·, y)‖L2(B2) ≤ ce2k min

{

1,
(
4
√
2πλ−1|y|

)2k
}
⎛

⎝
∞∑

j=1

λ2jα
2
j

⎞

⎠

1/2

, for every y ∈ R.

By the above inequality and by (3.7) we obtain (3.43). �
Second step.

In what follows we shall denote by B̃r the ball of Rn+1 of radius r centered at 0.
In order to prove Proposition 3.6 stated below we need the following Lemma.

Lemma 3.5 Let r be a positive number and let w ∈ H2(B̃r ) be a solution to the
problem

{
q(x)∂2yw(x, y) + div (A(x)∇xw(x, y)) = 0, in B̃r ,
∂yw(·, 0) = 0, in Br ,

(3.51)

where A satisfies (2.1) and q satisfies (2.2).
Then there exist β ∈ (0, 1) and C ≥ 1 depending on λ and 
 only such that

∫

B̃r/4
w2dxdy ≤ C

(∫

B̃r
w2dxdy

)1−β
(

r
∫

Br/2
w2(x, 0)dx

)β

. (3.52)

Proof After scaling, we may assume r = 1. By [4, Theorem 1.7] we have

‖w‖L2(B̃1/4) ≤ C
(
‖w‖L2(B̃1)

)1−β̃ (‖w‖H1/2(B1/2)

)β̃

, (3.53)

where C and β̃ ∈ (0, 1) depend on λ and
 only. Now, by the interpolation inequality,
the trace inequality and standard regularity for elliptic equation [21] we have

‖w‖H1/2(B1/2) ≤ C‖w‖2/3
L2(B1/2)

‖w‖1/3
H3/2(B1/2)

≤ C‖w‖2/3
L2(B1/2)

‖w‖1/3
H2(B̃3/4)

≤ C ′‖w‖2/3
L2(B1/2)

‖w‖1/3
L2(B̃1)

, (3.54)

where C ′ depends on λ and 
 only. By (3.53) and (3.54) we get (3.52) with β = 2β̃
3 .
�

Proposition 3.6 Let vk be defined in (3.38) and let r0 ≤ λ
8 . Then we have

‖vk‖L2
(
B̃r0/4

) ≤ C
√
r0
(
ε + H (C0r0)

2k
)β (

He2k + H (C0r0)
2k
)1−β

. (3.55)

where β ∈ (0, 1), C depend on λ and 
 only and C0 = 4πeλ−1.
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Proof Let wk ∈ H2
(
B̃r0

)
be the solution to the following Dirichlet problem

{
q(x)∂2ywk + div (A(x)∇xwk) = fk, in B̃r0 ,
wk = 0, on ∂ B̃r0 .

(3.56)

Notice that, since fk is an even function with respect to y, by the uniqueness to the
Dirichlet problem (3.56) we have that wk is an even function with respect to y.

By standard regularity estimates we have

‖wk‖L2
(
B̃r0

) + r0‖∇x,ywk‖L2
(
B̃r0

) ≤ Cr20‖ fk‖L2
(
B̃r0

), (3.57)

where C depends on λ only. By the above inequality and by the trace inequality we
get

‖wk(·, 0)‖L2
(
Br0/2

) ≤ C
(
r−1/2
0 ‖wk‖L2

(
B̃r0

) + r1/20 ‖∇x,ywk‖L2
(
B̃r0

)
)

≤ Cr3/20 ‖ fk‖L2
(
B̃r0

), (3.58)

where C depends on λ only.
Now, denoting

zk = vk − wk, (3.59)

by (3.43), (3.40), (3.57) and (3.58) we have

‖zk(·, 0)‖L2
(
Br0/2

) ≤ ε + Cr20H (C0r0)
2k , (3.60)

and

‖zk‖L2
(
B̃r0

) ≤ Cr1/20 H
(
e2k + r20 (C0r0)

2k
)

, (3.61)

where C depends on λ only.
Now by (3.56) we have

{
q(x)∂2y zk + div (A(x)∇x zk) = 0, in B̃r0 ,
∂yzk(·, 0) = 0, on Br0 ,

hence by applying Lemma 3.5 to the function zk and by using (3.42), (3.59), (3.60)
and (3.61) the thesis follows. �
In order to proveTheorem2.1we use aCarleman estimatewith singularweight, proved
for the first time by [6]. In order to control the dependence of the various constants,
we use here the following version of such a Carleman estimate that was proved, in the
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context of parabolic operator, in [17]. First we introduce some notation. Let P be the
elliptic operator

P := q(x)∂2y + div (A(x)∇x ) . (3.62)

Denote

σ(x, y) =
(
A−1(0)x · x + (q(0))−1 y2

)1/2
, (3.63)

B̃σ
r =

{
(x, y) ∈ R

n+1 : σ(x, y) ≤ r
}

, r > 0, (3.64)

Notice that

B̃σ√
λr

⊂ B̃r ⊂ B̃σ

r/
√

λ
, for every r > 0. (3.65)

Theorem 3.7 Let P be the operator (3.62) and assume that (2.1) and (2.2) are satis-
fied. There exists a constant C∗ > 1 depending on λ and 
 only such that, denoting

φ(s) = s exp

(∫ s

0

e−C∗η − 1

η
dη

)

, (3.66a)

δ(x, y) = φ
(
σ(x, y)/2

√
λ
)

, (3.66b)

for every τ ≥ C∗ and U ∈ C∞
0

(
B̃σ

2
√

λ/C∗
\{0}

)
we have

τ

∫

Rn+1
δ1−2τ (x, y)

∣
∣∇x,yU

∣
∣2 dxdy + τ 3

∫

Rn+1
δ−1−2τ (x, y)U 2dxdy

≤ C∗
∫

Rn+1
δ2−2τ (x, y) |PU |2 dxdy. (3.67)

Conclusion of the proof of Theorem 2.1
Set

r1 =
√

λr0
16

by (3.55) we have

‖vk‖L2
(
B̃σ
4r1

) ≤ C
√
r1Sk, (3.68)

where C depends on λ and 
 only and

Sk =
(
ε + H (C1r1)

2k
)β (

He2k + H (C1r1)
2k
)1−β

, (3.69)
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where C1 = 16C0/
√

λ, recall that C0 has been introduced in Proposition 3.6.
Denote

δ0(r) := φ(r/2
√

λ), for every r > 0

and

R =
√

λ

C∗
.

Let us consider a function h ∈ C2
0 (0, δ0 (2R)) such that 0 ≤ h ≤ 1 and

h(s) = 1, for every s ∈ [δ0 (2r1) , δ0 (R)] ,

h(s) = 0, for every s ∈ [0, δ0 (r1)] ∪ [δ0 (3R/2) , δ0 (2R)] ,

r1
∣
∣h′(s)

∣
∣+ r21

∣
∣h′′(s)

∣
∣ ≤ c, for every s ∈ [δ0 (r1) , δ0 (2r1)] ,

∣
∣h′(s)

∣
∣+ ∣

∣h′′(s)
∣
∣ ≤ c, for every s ∈ [δ0 (R) , δ0 (3R/2)] ,

where c is an absolute constant.
Moreover, let us define

ζ(x, y) = h (δ(x, y)) .

Notice that if 2r1 ≤ σ(x, y) ≤ R then ζ(x, y) = 1 and if σ(x, y) ≥ 2R or σ(x, y) ≤
r1 then ζ(x, y) = 0.

For the sake of brevity, in what follows we shall omit k from vk and fk . By density,
we can apply (3.67) to the function U = ζv and we have, for every τ ≥ C∗,

τ

∫

B̃σ
2R

δ1−2τ (x, y)
∣
∣∇x,y (ζv)

∣
∣2 + τ 3

∫

B̃σ
2R

δ−1−2τ (x, y) |ζv|2

≤ C
∫

B̃σ
2R

δ2−2τ (x, y) | f |2 ζ 2 + C
∫

B̃σ
2R

δ2−2τ (x, y) |Pζ |2 v2

+C
∫

B̃σ
2R

δ2−2τ (x, y)
∣
∣∇x,yv

∣
∣2
∣
∣∇x,yζ

∣
∣2 := I1 + I2 + I3, (3.70)

where C depends λ and 
 only.
Estimate of I1.
Notice that

√|x |2 + y2

2C2
≤ δ(x, y) ≤ C2

√|x |2 + y2

2
for every (x, y) ∈ B̃2, (3.71)

where C2 > 1 depends on λ and 
 only.
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By (3.43), (3.65) and (3.71) we have

∫

B̃σ

2
√

λ/C∗
δ2−2τ (x, y) | f |2 ζ 2dxdy ≤

∫

B̃2

(
2C2|y|−1

)−2+2τ | f |2 dxdy

≤
∫ 2

−2

[
(
2C2|y|−1

)−2+2τ
∫

B2
| f (x, y)|2 dx

]

dy ≤ CH2
∫ 2

−2

(
2C2|y|−1

)−2+2τ
(C0|y|)4k dy,

(3.72)

where C depends on λ and 
 only.
Now let k and τ satisfy the relation

τ − 1

2
≤ k. (3.73)

By (3.72) and (3.73) we get

I1 ≤ CH2 (C3)
4k , (3.74)

where C3 = 2C0C2.
Estimate of I2
By (3.42) and (3.68) and (3.70) we have

I2 ≤ Cr−4
1

∫

B̃σ
2r1

\B̃σ
r1

δ2−2τ (x, y)v2dxdy + C
∫

B̃σ
3R/2\B̃σ

R

δ2−2τ (x, y)v2dxdy

≤ C
(
r−3
1 δ2−2τ

0 (r1)S
2
k + e4k H2δ2−2τ

0 (R)
)

,

hence (3.71) gives

I2 ≤ C
(
δ−1−2τ
0 (r1)S

2
k + e4k H2δ−1−2τ

0 (R)
)

, (3.75)

Estimate of I3
By (3.70) we have

I3 ≤ Cr−2
1 δ2−2τ

0 (r1)
∫

B̃σ
2r1

\B̃σ
r1

∣
∣∇x,yv

∣
∣2 dxdy + Cδ2−2τ

0 (R)

∫

B̃σ
3R/2\B̃σ

R

∣
∣∇x,yv

∣
∣2 dxdy.

(3.76)

Now in order to estimate from above the righthand side of (3.76) we use the Cacciop-
poli inequality, (3.42), (3.43) and (3.68) and we get
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I3 ≤ Cδ2−2τ
0 (r1)

(

r−4
1

∫

B̃σ
4r1

\B̃σ
r1/2

v2dxdy +
∫

B̃σ
4r1

\B̃σ
r1/2

f 2dxdy

)

+Cδ2−2τ
0 (R)

∫

B̃σ
3R/2\B̃σ

R

∣
∣∇x,yv

∣
∣2 dxdy ≤ C

(
S2k + H2 (C1r1)

4k
)

δ−1−2τ
0 (r1)

+CH2e4kδ1−2τ
0 (R) := Ĩ3 (3.77)

Now let r1 ≤ R
2 and let ρ be such that 2r1√

λ
≤ ρ ≤ R√

λ
and denote by ρ̃ = √

λρ.
By estimating from below trivially the left hand side of (3.70) and taking into account
(3.77) we have

δ1−2τ
0 (ρ̃)

∫

B̃σ
ρ̃ \B̃σ

2r1

∣
∣∇x,yv

∣
∣2 + δ−1−2τ

0 (ρ̃)

∫

B̃σ
ρ̃ \B̃σ

2r1

|v|2 ≤ I1 + I2 + Ĩ3. (3.78)

Now let us add at both the side of (3.78) the quantity

δ1−2τ
0 (ρ̃)

∫

B̃σ
2r1

∣
∣∇x,yv

∣
∣2 + δ−1−2τ

0 (ρ̃)

∫

B̃σ
2r1

v2,

since this term can be estimated from above by Ĩ3, by using standard estimates for
second order elliptic equations and by taking into account that δ0(ρ̃) ≥ δ0(r1), we
have

ρ2
∫

B̃σ
ρ̃

∣
∣∇x,yv

∣
∣2 +

∫

B̃σ
ρ̃

v2 ≤ δ1+2τ
0 (ρ̃)

(
I1 + I2 + C Ĩ3

)
, (3.79)

where C depends on λ and 
 only.
Now by (3.71), (3.74), (3.75), (3.77) and (3.79) it is simple to derive that if (3.73)

is satisfied then we have

ρ2
∫

B̃λρ

∣
∣∇x,yv

∣
∣2 +

∫

B̃λρ

v2 ≤ C

[

S2k

(
δ0(ρ̃)

δ0(r1)

)1+2τ

+ H2Ck
4

(
δ0(ρ̃)

δ0(R)

)1+2τ
]

,

(3.80)

where C4 > 1 depends on λ and 
 only.
Now, by applying a standard trace inequality and by recalling that v(·, 0) = ũk(·, 0)

in B2 (where ũk is defined by (3.36)) we have

∫

Bλρ/2

|̃uk(·, 0)|2 ≤ Cρ−1

[

S2k

(
δ0(ρ̃)

δ0(r1)

)1+2τ

+ H2Ck
4

(
δ0(ρ̃)

δ0(R)

)1+2τ
]

. (3.81)

123



Quantitative estimates of strong unique continuation for… 157

By Proposition 3.3, by (3.69) and (3.81) we have, for r1 ≤ R
2

ρ

∫

Bλρ/2

|u(·, 0)|2 ≤ C
(
Hk,τ + H2k−1/3

)

+C

[

Ck
5

(
δ0(ρ̃)

δ0(r1)

)1+2τ

H2(1−β)ε2β + H2Ck
4

(
δ0(ρ̃)

δ0(R)

)1+2τ
]

, (3.82)

where

Hk,τ := H2
(

δ0(ρ̃)

δ0(r1)

)1+2τ

Ck
5r

4βk
1 .

and C , C5 depend on λ,
 only.
Now let us choose τ = 4βk−1

2 . We have that (3.73) is satisfied and by (3.71), (3.82)
we have that there exist constants C6 > 1 and k0 depending on λ and 
 only such that
for every k ≥ k0 we have

ρ

∫

Bλρ/2

|u(·, 0)|2 ≤ C6H
2
1

[(
C6ρr

−1
1

)4βk
ε
2β
1 + (C6ρ)4βk + k−1/3

]

, (3.83)

where

H1 := H + eε and ε1 := ε

H + eε
.

Now, let us denote by

k :=
[
log ε1

2 log r1

]

+ 1,

where, for any s ∈ R, we set [s] := max {p ∈ Z : p ≤ s}. If k ≥ k0 we choose k = k
so that by (3.83) we have, for ρ ≤ 1/C6,

ρ

∫

Bλρ/2

|u(·, 0)|2 ≤ C2H
2
1

(

ε
2βθ0
1 +

(
2 log(1/r1)

log(1/ε1)

)1/3
)

, (3.84)

where

θ0 = log(1/C6ρ)

2 log(1/r1)
. (3.85)

Otherwise, if k < k0 then multiplying both the side of such an inequality by
log(1/C6ρ) and by (3.85) we get θ0 log(1/ε1) ≤ k0 log(1/C6ρ). Hence

(H + eε)2βθ0 ≤ (C6ρ)−2βk0ε2βθ0 .
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By this inequality and by (2.5) we have trivially

∫

Bλρ/2

|u(·, 0)|2 ≤ (H + eε)2 = (H + eε)2(1−βθ0)(H + eε)2βθ0

≤ (H + eε)2(1−βθ0)(C6ρ)−2βk0ε2βθ0 . (3.86)

Finally by (3.84) and (3.86) we obtain (2.6). �

3.2 Proof of Theorem 2.3

First, let us assume A(0) = I where I is the identity matrix n × n. Following the
arguments of [1] or [3] we have there exist ρ1, ρ2 ∈ (0, ρ0] such that ρ1

ρ0
,

ρ2
ρ0

depend

on λ,
, E only and we can construct a function � ∈ C1,1(Bρ2(0),R
n) such that

�
(
Bρ2

) ⊂ Bρ1, (3.87a)

�(y′, 0) = (y′, φ(y′)), for every y′ ∈ B ′
ρ2

, (3.87b)

�
(
B+

ρ2

) ⊂ Kρ1, (3.87c)

C−1
1 |y − z| ≤ |�(x) − �(z)| ≤ C1|y − z|, for every y, z ∈ Bρ2 , (3.87d)

C−1
2 ≤ |detD�(y)| ≤ C2, for every y ∈ Bρ2 , (3.87e)

|detD�(y) − detD�(z)| ≤ C3|y − z|, for every y, z ∈ Bρ2 , (3.87f)

where C1,C2,C3 ≥ 1 depend on λ,
, E only.
Denoting

A(y) = |detD�(y)|(D�−1)(�(y))A(�(y))(D�−1)∗(�(y)),

v(y, t) = u(�(y), t), (3.88)

we have

A(0) = I (3.89a)

ank(y′, 0) = akn(y′, 0) = 0, k = 1, . . . , n − 1. (3.89b)
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Moreover, we have that the ellipticity and Lipschitz constants of A depend on
λ,
, E only. For every y ∈ Bρ2(0), let us denote by Ã(y) = {ãi j (y)}ni, j=1 the matrix
with entries given by

ãi j (y′, |yn|) = ai j (y′, |yn|), if either i, j ∈ {1, . . . , n − 1}, or i = j = n,

ãn j (y′, yn) = ã jn(y′, yn) = sgn(yn)a
nj (y′, |yn|), if 1 ≤ j ≤ n − 1.

We have that Ã satisfies the same ellipticity and Lipschitz continuity conditions as A.
Now, if u satisfies the boundary condition (2.13) then we define

U (y, t) = sgn(yn)v(y′, |yn|, t), for (y, t) ∈ Bρ2 × (−λρ2, λρ2),

q̃(y) = |detD�(y′, |yn|)|, for y ∈ Bρ2 ,

we have that U ∈ W (
(−λρ2, λρ2); Bρ2

)
is a solution to

q̃(y)∂2t U − div
(
Ã(y)∇U

) = 0, in Bρ2 × (−λρ2, λρ2). (3.90)

Moreover, by (3.87d) we have that

Kr/C1 ⊂ �
(
B+
r

) ⊂ KC1r , for every r ≤ ρ2.

Now we can apply Theorem 2.1 to the function U and then by simple changes of
variables in the integrals we obtain (2.17). In the general case A(0) �= I we can
consider a linear transformation G : Rn → R

n such that setting A′(Gx) = GA(x)G∗
detG

we have A′(0) = I . Therefore, noticing that

B√
λr ⊂ G (Br ) ⊂ B√

λ−1r , for every r > 0,

it is a simple matter to get (2.17) in the general case.
If u satisfies the boundary condition (2.14) then we define

V (y, t) = v(y′, |yn|, t), for (y, t) ∈ Bρ2 × (−λρ2, λρ2),

and we get that V is a solution to (2.12). Therefore, arguing as before we obtain again
(2.17). �

4 Concluding remark: a first order perturbation

In this subsectionwe outline the proof of an extension of Theorems 2.1, 2.3 for solution
to the equation

q(x)∂2t u − Lu = 0, in Bρ0 × (−λρ0, λρ0). (4.1)
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where

Lu = div (A(x)∇xu) + b(x) · ∇xu + c(x)u, (4.2)

and A, q satisfy (2.1), (2.2), b = (b1, . . . , bn) b j ∈ C0,1(Rn), c ∈ L∞(Rn), b(x) and
c(x) real valued. Moreover we assume

|b(x)| ≤ λ−1ρ−1
0 , for every x ∈ R

n, (4.3a)

|b(x) − b(y)| ≤ 


ρ2
0

|x − y| , for every x, y ∈ R
n . (4.3b)

and

|c(x)| ≤ λ−1ρ−2
0 , for every x ∈ R

n . (4.4)

In what follows we assume ρ0 = 1.
First of all we consider the case in which

b ≡ 0 (4.5)

and we set

L0u = div (A(x)∇xu) + c(x)u, (4.6)

Let us denote by λ j , with λ1 ≤ · · · ≤ λm ≤ 0 < λm+1 ≤ · · · ≤ λ j ≤ · · · the
eigenvalues associated to the problem

{
L0v + ωq(x)v = 0, in B2,

v ∈ H1 (B2) ,
(4.7)

and by e j (·) the corresponding eigenfunctions normalized by

∫

B2
e2j (x)q(x)dx = 1. (4.8)

In this case themain differencewith respect to the case considered above is the presence
of non positive eigenvalues λ1 ≤ · · · ≤ λm . In what follows we indicate the simple
changes in the proof of Theorem 2.1 in order to get the same estimate (2.6) (with
maybe different constants s0 and C). Let ε and H be the same of (2.4) and (2.5).

Likewise the case c ≡ 0, the proof can be reduced to the even part u+ with respect
to t of solution u of Eq. (4.1). Moreover denoting again by

ũ(x, t) :=
∞∑

j=1

α j e j (x) cos
√

λ j t, (4.9)
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it is easy to check that instead of Proposition 3.1 we have

Proposition 4.1 We have

∞∑

j=1

(
1 + |λ j | + λ2j

)
α2
j ≤ CH2, (4.10)

whereC dependsonλ,
only.Moreover, ũ∈W (R; B2)∩C0
(
R; H2 (B2) ∩ H1

0 (B2)
)

is an even function with respect to variable t and it satisfies

⎧
⎨

⎩

q(x)∂2t ũ − L0ũ = 0, in B2 × R,

ũ(·, 0) = ũ0, in B2,

∂t ũ(·, 0) = 0, in B2.

(4.11)

Similarly to (3.9), the uniqueness to theCauchy problem for the equation q(x)∂2t u−
L0u = 0 implies

ũ(x, t) = u+(x, t), for |x | + λ−1|t | < 1.

Likewise the Sect. 3 we set

ũk := ũμ,k,

where μ := k− 1
6 , k ≥ 1 and ũμ,k is defined by (3.25). In the present case we set,

instead of (3.38),

vk(x, y) := v
(1)
k (x, y) + v

(2)
k (x, y), (4.12)

where

v
(1)
k (x, y) =

m∑

j=1

α j ϕ̂μ,k

(
i
√|λ j |

)
cos

(√|λ j |y
)
e j (x), for (x, y) ∈ B2 × R

(4.13a)

v
(2)
k (x, y) =

∞∑

j=m+1

α j ϕ̂μ,k
(√

λ j
)
gk
(
y
√

λ j
)
e j (x), for (x, y) ∈ B2 × R.

(4.13b)

and gk(z) is the same function introduced in Sect. 3, in particular it satisfies (3.37).
Instead of Proposition 3.4 we have

Proposition 4.2 Letvk be definedby (4.12).Wehave thatvk(·, y)belongs to H1 (B2)∩
H1
0 (B2) for every y ∈ R, vk(x, y) is an even function with respect to y and it satisfies
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{
q(x)∂2yvk + div (A(x)∇xvk) = fk(x, y), in B2 × R,

vk(·, 0) = ũk, in B2.
(4.14)

and

‖vk(·, 0)‖L2
(
Br0

) ≤ ε. (4.15)

where

fk(x, y) =
∞∑

j=m+1

λ jα j ϕ̂μ,k
(√

λ j
) (
g′′
k

(
y
√

λ j
)− gk

(
y
√

λ j
))
e j (x). (4.16)

Moreover we have

2∑

j=0

‖∂ j
y vk(·, y)‖H2− j (B2) ≤ Ceλ

√|λ1|He2k, for every y ∈ R, (4.17)

‖ fk(·, y)‖L2(B2) ≤ CHe2k min{1, (4πλ−1|y|)2k}, for every y ∈ R, (4.18)

where C depends on λ and 
 only.

Instead of Proposition 3.6 we have

Proposition 4.3 Let vk be defined in (4.12). Then there exists a constant c, 0 < c < 1,
depending on λ only such that if r0 ≤ c, we have

‖vk‖L2(B̃r0/4)
≤ C

√
r0e

λ
√|λ1|(ε + H(C0r0)

2k)β(He2k + H(C0r0)
2k)1−β. (4.19)

where β ∈ (0, 1), C depend on λ and 
 only and C0 = 4πeλ−1.

With propositions 4.1, 4.2, 4.3 at hand and by using Carleman estimate (3.67), the
proofs of estimates (2.6) and (2.17) are straightforward, whenever (4.5) is satisfied.

In the more general case we use a well known trick, see for instance [29], to
transform the Eq. (4.1) in a self-adjoint equation. Let z be a new variable and denote
by A0(x, z) = {ai j0 (x, z)}(n+1)

i, j=1 the real-valued symmetric (n + 1) × (n + 1) matrix

whose entries are defined as follows. Let η ∈ C1(R) be a function such that η(z) = z,
for z ∈ (−1, 1), and |η(z)| + |η′(z)| ≤ 2λ−1

ai j0 (x, z) = ai j0 (x), if i, j ∈ {1, . . . , n},

a(n+1) j
0 (x, z) = a j (n+1)

0 (x, z) = η(z)b j (x), if 1 ≤ j ≤ n,

a(n+1)(n+1)
0 (x, z) = K0
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where K0 = 8λ−3 + 1. We have that A0 satisfies

λ0|ζ |2 ≤ A0(x, z)ζ · ζ ≤ λ−1
0 |ζ |2, for every ζ ∈ R

n+1

and

|A0(x, z) − A0(y, w)| ≤ 
0 (|x − y| + |z − w|) , for every (x, z), (y, w) ∈ R
n+1

where λ0 depends on λ only and 
0 depends on λ,
 only. Denote

LU := divx,z
(
A0(x, z)∇x,zU

)+ c(x)U

It is easy to check that if u(x, t) is a solution of (4.1) (ρ0 = 1) then U (x, z, t) :=
u(x, t) is solution to

q(x)∂2t U − LU = 0, in B̃1 × (−λ, λ).

Therefore we are reduced to the case considered previously in this subsection and
again the proofs of estimates (2.6) and (2.17) are now straightforward.
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