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Abstract We define the counting of holomorphic cylinders in log Calabi–Yau sur-
faces. Although we start with a complex log Calabi–Yau surface, the counting is
achieved by applying methods from non-archimedean geometry. This gives rise to
new geometric invariants. Moreover, we prove that the counting satisfies a property
of symmetry. Explicit calculations are given for a del Pezzo surface in detail, which
verify the conjectured wall-crossing formula for the focus-focus singularity. Our holo-
morphic cylinders are expected to give a geometric understanding of the combinatorial
notion of broken line byGross,Hacking,Keel andSiebert. Our tools includeBerkovich
spaces, tropical geometry, Gromov–Witten theory and the GAGA theorem for non-
archimedean analytic stacks.
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1 Introduction

In mirror symmetry, the enumeration of holomorphic discs is of great importance.
Holomorphic discs are the building blocks of the Fukaya category [13,16,34]. Holo-
morphic discs also play the role of “quantum corrections” in the reconstruction of
mirror manifolds [1,14,15,36,49]. More precisely, the “quantum corrections” arise
from counting holomorphic discs with boundaries on torus fibers of an SYZ fibration
(Strominger–Yau–Zaslow [47]).

It turns out to be insufficient to restrict to holomorphic discs. One can enrich the
geometry by counting not only discs but also more general Riemann surfaces with
boundaries on torus fibers of an SYZ fibration. In this paper, we study a special case:
the counting of holomorphic cylinders in log Calabi–Yau surfaces. The general case
would require much more foundational efforts.

Our considerations are very much motivated by the work of Gross–Hacking–Keel
[20].1 A special case of our holomorphic cylinders is related to the remarkable notion
of broken line in loc. cit. Broken lines are combinatorial objects which are responsible
for the construction of the Landau–Ginzburg potential and the theta functions on the
mirror manifold. It is developed by Gross, Hacking, Keel, Siebert and their coauthors
in a series of papers [12,19,20,22,26] (also suggested by Abouzaid, Kontsevich and
Soibelman). Our holomorphic cylinders, besides their own interest, are expected to
give a geometric interpretation of the broken lines, as well as a better understanding
of the canonical theta functions in mirror symmetry.

Different from the existing literatures, we will work in the framework of non-
archimedean analytic geometry à la Berkovich [6,7] instead of differential geometry.
The reason is that it is easier to apply techniques from tropical geometry in the non-
archimedean setting. It is helpful to think of the non-archimedean picture as the most
degenerate differential-geometric picture. The total degeneracymakesmany construc-
tions and proofsmore transparent. The non-archimedean approach tomirror symmetry
was first suggested by Kontsevich and Soibelman in [35], where it is expected that the
differential-geometric picture and the non-archimedean picture should be equivalent.

Now let us explain our paper in precise mathematical terms.
We start with a Looijenga pair2 (Y, D), i.e. a connected smooth complex projec-

tive surface Y together with a singular nodal curve D representing the anti-canonical
class −KY . Let k := C((t)) be the field of formal Laurent series. Let X := Y\D. Let
Xk := X ×SpecC Spec k be the base change and X an

k the non-archimedean analytifica-
tion. Using a variant of Berkovich’s deformation retraction [9], we construct a proper
continuous map τ : X an

k → B, where B is a topological space homeomorphic to R
2.

1 In this paper, we will always refer to the first arXiv version [20], because it contains much more material
than the published version [21].
2 The terminology is borrowed from [20]. The notion was extensively studied by Looijenga [43].
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The map τ is a non-archimedean avatar of the SYZ fibration in differential geometry
(see Proposition 3.6). The generic fibers of τ are non-archimedean affinoid tori.

Our goal in this paper is to define the counting of holomorphic cylinders in X an
k

with boundaries on two different torus fibers of τ : X an
k → B. Ideally, we would

like to consider the moduli space of such holomorphic cylinders, and then define the
counting using this moduli space. However, in general, a holomorphic cylinder in X an

k
can be very wild and complicated. Therefore, we impose a regularity condition on the
boundaries of the cylinders: we require that when wemake analytic continuation at the
boundaries, our cylinders extend straight to infinity. This regularity condition helps
us relate the counting of cylinders to the counting of certain closed curves in Y an

k , i.e.
certain Gromov–Witten type invariants. Finally, we achieve the counting via a mixture
of Gromov–Witten theory, non-archimedean geometry and tropical geometry.

The counting of holomorphic cylinders is expected to satisfy a list of nice properties.
We prove in this paper one non-trivial fundamental property called the symmetry
property (cf. Theorem 6.3). This ensures that our non-archimedean construction is
compatiblewith the intuition fromsymplectic geometry.Here is a heuristic explanation
of the symmetry property: Let F1 and F2 be two different torus fibers of the map
τ : X an

k → B. The actual construction of our counting invariants depends on the
orientation of the cylinders. In other words, we have the number of holomorphic
cylinders going from F1 to F2, and the number of holomorphic cylinders going from
F2 to F1. The symmetry property states that the two numbers are equal. We will
explore other properties of our counting invariants besides the symmetry property in
subsequent works.

Since the counting of holomorphic cylinders is constructed in a rather indirect way,
we give a concrete computation for a del Pezzo surface in the end of this paper. We
prove that the corresponding numbers of cylinders are certain binomial coefficients.
Our computation verifies the Kontsevich–Soibelman wall-crossing formula for the
focus-focus singularity (cf. [36]).

Here is the outline of this paper:
In Sect. 2, we start with a review of tropicalization, toroidal modification and

integral affine structure. In Sect. 3, we study the non-archimedean SYZ fibration of a
log Calabi–Yau surface. In Sect. 4, we introduce several combinatorial constructions
on the base B: spines, tropical cylinders, extension of spines and extension of tropical
cylinders. Moreover, we prove a rigidity property of tropical cylinders (Proposition
4.12), which will be an important ingredient in the proof of the properness of the
moduli space in Sect. 5.

In Sect. 5, we define our counting invariant: the number N (L , β) of homomorphic
cylinders in X an

k , given a spine L in B and a curve class β in Y . By imposing the
regularity condition as explained above, we relate the number of cylinders to certain
Gromov–Witten type invariants. We use non-archimedean geometry here to cut out
relevant components of the moduli space of stable maps. Finally, thanks to the GAGA
theorem for non-archimedean analytic stacks proved in [46], we are able to resort to
the virtual fundamental classes in algebraic geometry and achieve the enumeration.

In Sect. 6, we prove the symmetry property of the counting of holomorphic cylin-
ders. In Sect. 7, we carry out explicit computations of our counting invariants for a del
Pezzo surface in detail.
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Related works Our previous works on non-archimedean geometry and tropical
geometry [46,50–53] provide general foundations for the context of this paper. We
will refer to [50, §6] and [46] for the theory of stacks in non-archimedean analytic
geometry.

As mentioned in the beginning, we are very much inspired by the notion of broken
line in mirror symmetry. The collection of broken lines is believed to be a more
fundamental object than the scattering diagram (cf. [20, Remark 0.21]). We refer to
[23,24,36] for the notion of scattering diagram. However, the definition of broken
line in [20] is based on the scattering diagram and is combinatoric in nature. It is
expected that our consideration on holomorphic cylinders leads to a precise geometric
understanding of the broken lines, which does not à priori refer to scattering diagrams.
We will explore this direction in subsequent works.

We would also like to mention that the works by Auroux [1,2], Nishinou [45] and
Lin [42] on the enumeration of holomorphic discs are in a similar spirit of this paper.

2 Tropicalization and integral affine structures

First, we describe a general setup of tropicalization using snc pairs (see also [9,11,29,
37,48,53]). Then we recall the relation between toroidal blowups of formal models
and polyhedral subdivisions of the tropicalization following [31]. Finally we review
integral affine structures.

Let k = C((t)) be the field of formal Laurent series. It has the structure of a complete
discrete valuation field with t being a uniformizer. Let k◦ = C[[t]] denote the ring of
integers,˜k = C the residue field, and val : k× → Z the valuation map.

For a k◦-schemeX , we denote byXη its generic fiber over k, and byXs its special
fiber over the residue field k̃. For a scheme X locally of finite type over k, we denote
by X an the analytification of X (cf. [6]).

Definition 2.1 An snc pair (X , H) consists of a proper flat k◦-scheme and a finite
sum H =∑i∈I h Di of distinguished effective Cartier divisors on X such that

(i) every Di has irreducible support,
(ii) every point of X has an open affine neighborhood U which admits an étale

morphism

φ : U −→ Spec
(

k◦[T0, . . . , Tn]/(Tm0
0 . . . Tmd

d − �)
)

(2.1)

for some 0 ≤ d ≤ n, m0, . . . ,md ∈ Z>0 and a uniformizer � of k, and that for
every i ∈ I h the restriction Di |U is either empty or defined by φ∗(Tj ) for some
j > d.

Remark 2.2 Definition 2.1 is a variant of [29, Definition 3.1] by allowing multiplic-
ities. We remark that the notion of formal strictly semistable pair in Definition 3.7
loc. cit. can also be generalized to the notion of formal snc pair in the same way.
Nevertheless, (algebraic) snc pairs are more convenient for this paper.

Let (X , H) be an snc pair. We denote by {Di }i∈I v the finite set of irreducible
components of the special fiber X red

s with its reduced scheme structure. For every

123



Enumeration of holomorphic cylinders in log. . . 1653

i ∈ I v, letmulti denote themultiplicity of Di inXs . The divisors in the set I h are called
horizontal divisors, while the divisors in the set I v are called vertical divisors. For every
non-empty subset I ⊂ I v ∪ I h, put DI := ∩i∈I Di , D◦

I := DI \
(⋃

i∈(I v∪I h)\I Di
)

.
We further assume that every DI is either empty or irreducible.

Definition 2.3 (cf. [31,37]) We define the Clemens cone and the Clemens polytope
associated to an snc pair (X , H) to be respectively

C(X ,H) =
⎧

⎨

⎩

∑

i∈I v∪I h

ai 〈Di 〉
∣

∣

∣

∣

ai ≥ 0,
⋂

i : ai>0

Di = ∅
⎫

⎬

⎭

⊂ R
I v∪I h ,

S(X ,H) = C(X ,H) ∩
{

∑

i∈I v
multi · ai = 1

}

.

Definition 2.4 Let X be an algebraic variety over k. An snc log-model of X consists
of an snc pair (X , H) together with an isomorphism X � (X \H)η.

As in [9,29,44,48], one has a canonical embedding S(X ,H) ↪→ X an and a canonical
strong deformation retraction from X an to S(X ,H). In this paper, we will only be
concernedwith the retractionmap at time one,whichwe denote by τ : X an → S(X ,H).
It has a simple description below.

Locally on the formal completion of X along its special fiber, a divisor Di for
i ∈ I v ∪ I h is given by a function ui , which is well-defined up to multiplication by
invertible functions. So val(ui (x)) defines a continuous function on X an. Then the
map τ equals the following continuous map

X an −→ R
I v∪I h , x �−→ ( val(ui (x))

)

i∈I v∪I h ,

whose image coincides with the Clemens polytope S(X ,H).

Toroidal modifications

We restrict to snc log-models for simplicity rather than for necessity. A more general
framework is to use toroidal log-models, in the sense that the pair

(

X ,Xs ∪ H
)

is
étale locally isomorphic to a toric scheme over k◦ with its toric boundary (cf. [31,
§4.3], [28, §7]). In the toroidal case, the Clemens cone C(X ,H) would be the conical
polyhedral complex defined in Chapter II §1 loc. cit., and the Clemens polytope would
be an analog of the compact polyhedral complex in the end of Chapter II §3 loc. cit.

Given a finite rational polyhedral subdivisionC ′
(X ,H)

of theClemens coneC(X ,H),
Chapter II Theorems 6* and 8* in [31] allow us to construct a new toroidal log-model
(X ′, H ′) of X dominating the original one, such that

C(X ′,H ′) � C ′
(X ,H), S(X ′,H ′) � S′

(X ,H),

where S′
(X ,H)

denotes the subdivision of S(X ,H) induced by the subdivisionC
′
(X ,H)

.
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1654 T. Y. Yu

As we are mainly interested in snc log-models, we remark that the new log-model
(X ′, H ′) is an snc pair if and only ifC ′

(X ,H)
is a finite rational subdivision ofC(X ,H)

into simplicial cones whose integer points can be generated by a subset of a basis of
the lattice Z

I v∪I h (cf. [31, Chapter II Theorem 4*]). We call such subdivisions regular
simplicial subdivisions.

Integral affine structures

Definition 2.5 An n-dimensional chart on a paracompact Hausdorff topological space
B is a pair (U, φ), whereU is a open subset of B, andφ : U → R

n is a homeomorphism
ofU onto an open subset of a convex polyhedron in R

n not contained in a hyperplane.
An (n-dimensional) integral affine structure (Z-affine structure for short) on B is a
maximal collection of n-dimensional charts such that the transitions functions belong
to the group GL(n, Z) � R

n of integral affine transformations of R
n .

Remark 2.6 When n = 1, choosing a Z-affine structure is the same as choosing a
metric.

Definition 2.5 is an extension of [36, §2.1] to manifolds with corners.
A real-valued function f on R

n is said to be integral affine if it has the form

f (x1, . . . , xn) = a1x1 + · · · + anxn + b

where a1, . . . , an ∈ Z and b ∈ R. Let � be a convex polyhedron in R
n not contained

in a hyperplane. We denote by AffZ,� the sheaf of functions on � which are locally
integral affine.

Since a homeomorphism between two open domains in R
n preserving the sheaf

AffZ,Rn is necessarily given by an integral affine transformation, an integral affine
structure on a paracompact Hausdorff topological space B can be given equivalently
as a subsheaf AffZ,B of the sheaf of continuous functions on B such that the pair
(B,AffZ,B) is locally isomorphic to (�,AffZ,�).

Definition 2.7 A piecewise Z-affinestructure on a polyhedral complex 	 consists of
an Z-affine structure for each polyhedron in 	, such that if σ is a face of τ , then the
restriction of the Z-affine structure on τ to σ equals the Z-affine structure on σ , in the
sense that AffZ,τ |σ � AffZ,σ .

Example 2.8 The embeddings of the Clemens coneC(X ,H) and theClemens polytope

S(X ,H) into R
I v∪I h induce naturally piecewise Z-affine structures on C(X ,H) and

S(X ,H).

Definition 2.9 A polyhedral Z-affinemanifold with singularities consists of a polyhe-
dral complex 	 equipped with a piecewise Z-affine structure, an open subset 	0 ⊂ 	

which is a manifold without boundary, and a Z-affine structure AffZ,	0 on 	0 com-
patible with the piecewise Z-affine structure on 	, in the sense that the restriction of
AffZ,	0 to the intersection between	0 and each polyhedron in	 is isomorphic to the
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Enumeration of holomorphic cylinders in log. . . 1655

one given by the piecewise Z-affine structure on 	. The points in the set 	0 are called
smooth points with respect to the Z-affine structure, while points in the set 	\	0 are
called singular points.

3 Log Calabi–Yau surfaces

Definition 3.1 (cf. [20]) A Looijenga pair (Y, D) consists of a connected smooth
complex projective surface Y together with a singular nodal curve D representing the
anti-canonical class-KY .

We note that the definition of Looijenga pair implies that Y is a rational surface,
and that D is either an irreducible arithmetic genus one curve with a single node, or
a cycle of smooth rational curves. For simplicity, we will assume that D is a cycle
of at least three smooth rational curves. This can always be achieved by blowing
up the nodes, which does not change the geometry we study. We order the irre-
ducible components of D cyclically, and write D = D1 + · · · + Dl . We take indices
modulo l.

Let (Y, D) be a Looijenga pair. Let X = Y\D. Let Yk◦ = Y ×SpecC Spec k◦,
Dk◦ = D ×SpecC Spec k◦, Yk = Y ×SpecC Spec k, Dk = D ×SpecC Spec k, and
Xk = X ×SpecC Spec k. We have (Yk◦\Dk◦)η � Xk . So (Yk◦ , Dk◦) is an snc log-
model of Xk in the sense of Definition 2.4.

Let (e′, e1, e2, . . . , el) be the standard basis of R
l+1 and let (a′, a1, a2, . . . , al) be

the coordinates.
By definition, we have

C(Yk◦ ,Dk◦ ) =
l
⋃

i=1

{a′e′ + aiei + ai+1ei+1|a′, ai , ai+1 ≥ 0} ⊂ R
l+1.

We have an isomorphism R
l+1 ∩{a′ = 1} � R

l . By abuse of notation, let (e1, . . . , el)
and (a1, . . . , al) denote respectively the induced basis and the induced coordinates on
R
l . We have

S(Yk◦ ,Dk◦ ) = C(Yk◦ ,Dk◦ ) ∩ {a′ = 1}

�
l
⋃

i=1

{aiei + ai+1ei+1|ai , ai+1 ≥ 0} ⊂ R
l .

We denote B = S(Yk◦ ,Dk◦ ) for simplicity. We call B the tropical base associated to the
Looijenga pair (Y, D).We have the retractionmap τ : X an

k → B constructed in Sect. 2.
Set

�i := {aiei |ai ≥ 0} ⊂ B,

�i,i+1 := {aiei + ai+1ei+1|ai , ai+1 ≥ 0} ⊂ B.
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1656 T. Y. Yu

Their relative interiors are denoted by �◦
i and �◦

i,i+1. We denote by O ∈ B the point

corresponding to the origin in R
l .

Let valn denote the map

valn : (Gn
m/k)

an → R
n (x1, . . . , xn) �→ (val x1, . . . , val xn).

Definition 3.2 A continuous map from a k-analytic space to a topological space
is called a k-analytic torus fibration if locally on the target, it is of the form
(valn)−1(U ) → U for some open subset U ⊂ R

n .

Remark 3.3 The terminology is chosen by analogy with SYZ fibrations in symplectic
geometry (cf. [36]). The fibers of a k-analytic torus fibrations are not split k-analytic
tori in the sense of [6, §6.3], but rather k-affinoid tori in the sense of [10] and [6, §6.3].

By construction, the retraction map τ : X an
k → B is a k-analytic torus fibration

over
⋃l

i=1 �◦
i,i+1 (cf. [29, §4.2]). The aim of the rest of this section is to extend this

k-analytic torus fibration over codimension one open strata �◦
i .

Let C denote the complex projective line P
1
C
with a chosen coordinate. Let Tn

denote the total space of the line bundle O(−n) on C for any integer n. Let Tn,0 and
Tn,∞ ⊂ Tn denote respectively the fibers at 0 and ∞. Let (Cn, En, Fn) denote the
formal completion of (Tn, Tn,0, Tn,∞) along the zero section. Let p ∈ C\{0,∞}.

Let ˜Cn denote the blowup ofCn at the point p. Let ̂Cn denote the formal completion
of ˜Cn along the strict transform of C . We have a natural morphism ̂Cn → Cn . Let ̂En

and ̂Fn denote respectively the pullback of the divisors En and Fn .

Lemma 3.4 The triple (̂Cn, ̂En, ̂Fn) is isomorphic to the triple (Cn+1, En+1, Fn+1).

Proof LetUn,0 be the affine formal schemeCn\{∞} and letUn,∞ beCn\{0}. Assume

Un,0 � Spf C[x0][[y0]], Un,∞ � Spf C[x∞][[y∞]].

The gluing of Un,0 and Un,∞ is given by

C[x0, x−1
0 ][[y0]] −→ C[x∞, x−1∞ ][[y∞]]

x0 �−→ x−1∞
x−1
0 �−→ x∞
y0 �−→ xn∞ · y∞.

Similarly, let ̂Un,0 be the affine formal scheme ̂Cn\{∞} and let ̂Un,∞ be ̂Cn\{0}.
We choose coordinates

u0 = y0
x0 − p

, u∞ = y∞
1 − px∞

.

We obtain

̂Un,0 � Spf C[x0][[u0]], ̂Un,∞ � Spf C[x∞][[u∞]].
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The gluing of ̂Un,0 and ̂Un,∞ is given by

C[x0, x−1
0 ][[u0]] −→ C[x∞, x−1∞ ][[u∞]]

x0 �−→ x−1∞
x−1
0 �−→ x∞

u0 �−→ y0
x0 − p

= xn∞ · y∞
1
x∞ − p

= xn+1∞ · y∞
1 − px∞

= xn+1∞ · u∞.

Therefore, we obtain an isomorphism ̂Cn � Cn+1. Since both divisors ̂En and
En+1 are defined by the equation x0 = 0, and both divisors ̂Fn and Fn+1 are defined
by the equation x∞ = 0, the isomorphism ̂Cn � Cn+1 induces an isomorphism
(̂Cn, ̂En, ̂Fn) � (Cn+1, En+1, Fn+1). ��
Remark 3.5 We observe that the triple (Cn, En, Fn) has a toric description. Let
u = (1, 0), v = (0, 1), w = (−1, n) be three vectors in Z

2. Consider the fan in
R
2 consisting of a cone generated by the vectors u, v and another cone generated by

the vectors v,w. Let Z be the corresponding smooth quasi-projective toric surface. Let
Du, Dv, Dw be the toric divisors corresponding to the rays in the directions u, v, w.
The divisor Dv is isomorphic to a projective line. Its normal bundle is isomorphic to
the line bundleO(−n). Let (C ′, E ′, F ′) denote the formal completion of (Z , Du, Dw)

along Dv . Then the triple (C ′, E ′, F ′) is isomorphic to the triple (Cn, En, Fn).

Proposition 3.6 The retraction map τ : X an
k → B is a k-analytic torus fibration over

B\O, where O denotes the origin of B.

Proof Since the retraction map τ : X an
k → B is a k-analytic torus fibration over

⋃l
i=1 �◦

i,i+1, it suffices to show that for any i ∈ {1, . . . , l}, any point b in the open
stratum �◦

i , the retraction map τ : X an
k → B is a k-analytic torus fibration over a

neighborhood of b.
The toroidal construction of [31] gives a one-to-one correspondence between finite

rational conical subdivisions of the Clemens polytope B and toric blowups of the
Looijenga pair (Y, D) in the sense of [20, §1.3]. In particular, toric blowups of the
pair (Y, D) do not alter the retraction map τ : X an

k → B near the point b ∈ B. So we
can assume that (Y, D) admits a toric model (�Y , �D) by [20, Proposition 1.19], i.e. the
pair (Y, D) is obtained from a smooth projective toric surface (�Y , �D) by blowing up
finitely many points on the smooth locus of �D.

Let (C ′, E ′, F ′) denote the formal completion of the triple (Y, Di−1, Di+1) along
the divisor Di . By Lemma 3.4 and Remark 3.5, it is thus isomorphic to the triple
(Cn, En, Fn) for some n. By construction, the retraction map τ : X an

k → B over the
open subset

�◦
i−1,i ∪ �◦

i ∪ �◦
i,i+1 ⊂ B (3.1)

is completely determined by the triple (C ′, E ′, F ′).Moreover, sincewehave k-analytic
torus fibration everywhere on the base in the toric case, by Remark 3.5 again, the
retraction map τ : X an

k → B is a k-analytic torus fibration over the open subset in Eq.
(3.1). ��
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Let ψi : �◦
i−1,i ∪ �◦

i ∪ �◦
i,i+1 → R

2 be the continuous map which is linear on
�◦

i−1,i , �
◦
i and �◦

i,i+1, and which sends the vectors ei−1, ei , ei+1 respectively to the

vectors (1, 0), (0, 1), (−1,−D2
i ) ∈ R

2, where D2
i denote the self-intersection number

of the curve Di inside the surface Y .

Remark 3.7 By Proposition 3.6 and [36, Theorem 1], we obtain aZ-affine structure on
B\O so that the tropical base B is a polyhedral Z-affine manifold with a singularity at
O in the sense of Definition 2.9. By the proof of Proposition 3.6, theZ-affine structure
restricted to�◦

i−1,i ∪�◦
i ∪�◦

i,i+1 is isomorphic to the pullback of the standardZ-affine

structure onR
2 by the mapψi defined above. So we obtain the sameZ-affine structure

as in [20, §1.1]. By [20, Lemma 1.3]), the Z-affine structure on B\O extends across
the origin if and only if Y is toric and D is the toric boundary.

4 Tropical cylinders

Tropical geometry is a fundamental tool in our enumeration of holomorphic cylinders.
In this section, we introduce the notion of spines, tropical cylinders, and extensions of
them. We prove a rigidity property of tropical cylinders, which will be an important
ingredient in the proof of Theorem 5.4.

Definition 4.1 An unbounded Z-affinegraph (�, V∞(�)) consists of the following
data:

(i) A finite graph � without loops. We denote by V (�) the set of vertices of � and
by E(�) the set of edges of �.

(ii) A subset of 1-valent vertices V∞(�) ⊂ V (�) called unbounded vertices. We call
the rest of the vertices bounded vertices.

(iii) For every edge e with two bounded endpoints, a Z-affine structure on e which is
isomorphic to the closed interval [0, α] ⊂ R for a positive real number α.

(iv) For every edge e with one unbounded vertex v∞, a Z-affine structure on e\{v∞}
which is isomorphic to the interval [0,+∞) ⊂ R.

(v) For every edge e with two unbounded vertices v∞ and v′∞, a Z-affine structure
on e\{v∞, v′∞} which is isomorphic to the standard Z-affine structure on R.

We will simply say a Z-affine graph where unbounded vertices are not present.

Definition 4.2 An (unbounded)Z-affine tree is an (unbounded)Z-affine graph whose
underlying graph is a tree.

Definition 4.3 Let (�, V∞(�)) be an unboundedZ-affine graph and let	 be a polyhe-
dral complex with a piecewise Z-affine structure. A Z-affine map h : �\V∞(�) → 	

is a continuous proper map such that every edge maps to a polyhedron in 	 and the
maps are compatible with the Z-affine structures. A Z-affine immersion is a Z-affine
map that does not contract any edge to a point.

Let 	 be a polyhedral Z-affine manifold with singularities and let 	0 ⊂ 	 be the
set of smooth points in the sense of Definition 2.9. Let h be a Z-affine map from an
unbounded Z-affine graph (�, V∞(�)) to 	. For a bounded vertex v ∈ V (�) which
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maps to 	0 and an edge e connected to v, we denote by w0
v(e) the unitary integral

tangent vector at v pointing to the direction of e, and by wv(e) the image of w0
v(e) in

Th(v)	(Z), where Th(v)	(Z) denotes the integral lattice in the tangent space of the
Z-affine manifold 	0 at the point h(v).

Definition 4.4 The Z-affine map h above is said to be balanced at a vertex v which
maps to 	0 if we have

∑

e�v wv(e) = 0 ∈ Th(v)	(Z).

From now on we restrict to the particular polyhedral Z-affine manifold B with a
singularity at O in Remark 3.7.

Definition 4.5 A spine in the tropical base B consists of a connected Z-affine tree �,
a pair of two 1-valent vertices (v1, v2) of �, and a Z-affine immersion h : � → B
satisfying the following conditions:

(i) The image of h does not contain the origin O ∈ B.
(ii) The vertices v1 and v2 are the only 1-valent vertices of �.
(iii) For every vertex v, every edge e connected to v, neither of the vectors ±wv(e)

points towards to origin O ∈ B.
(iv) For every 2-valent vertex v, the vector −∑e�v wv(e) is either zero or points

towards to origin O ∈ B.

Definition 4.6 A tropical cylinder in the tropical base B consists of a connected Z-
affine tree �, a pair of two 1-valent vertices (v1, v2) of �, and a Z-affine immersion
h : � → B satisfying the following conditions:

(i) The inverse image of the origin O ∈ B consists of all the 1-valent vertices of �

except v1 and v2.
(ii) For every vertex v whose valency is greater than 1, the Z-affine map h is balanced

at v.

Definition 4.7 An extended spine in the tropical base B consists of a connected
unbounded Z-affine tree � with a pair of unbounded vertices (v1, v2) and a Z-affine
immersion h : �\{v1, v2} → B such that Conditions (i)-(iv) of Definition 4.5 hold.

Definition 4.8 An extended tropical cylinder in the tropical base B consists of a
connected unbounded Z-affine tree � with a pair of unbounded vertices (v1, v2) and a
Z-affine immersion h : �\{v1, v2} → B such that Conditions (i) and (ii) of Definition
4.6 hold.

We endow R with the standard Z-affine structure AffZ,R. We obtain a Z-affine
structure on the product R × (B\O), so R × B is a polyhedral Z-affine manifold with
singularities. Set ˜B := R × B. We denote by π1 : ˜B → R and π2 : ˜B → B the two
projections.

Remark 4.9 The factor R in ˜B will have two advantages in our approach:

(i) It will allow us to treat non-injective spines in a simple way by considering their
graphs.
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(ii) It will allow us to eliminate certain multiplicities. Consequently, we can cir-
cumvent the sophisticated machinery of relative Gromov–Witten invariants (cf.
[18,27,30,38–40]).

Definition 4.10 An extended tropical cylinder in˜B consists of a connected unbounded
Z-affine tree � with a pair of unbounded vertices (v1, v2) and a Z-affine immersion
h : �\{v1, v2} → ˜B such that

(i) the composition π1 ◦ h is a Z-affine map balanced at every vertex of �, and
(ii) the composition π2 ◦ h is an extended tropical cylinder in B as in Definition 4.8.

Let L = (�, (v1, v2), h : � → B) be a spine in B. We define in the following
an extension L ′ = (�′, {v′

1, v2}, h′) of the spine L and a curve class β ′ ∈ NE(Y )

associated to the extension. We set initially �′ = � and h′ = h. Let e1 denote the
edge connected to the vertex v1. Let r1 denote the ray starting at h(v1) with direction
opposite to h(e1). We distinguish two cases according to whether the ray r1 hits, or
not, a codimension one face �i of B.

(i) Assume that the ray r1 does not hit any codimension one face of B except
possibly the point h′(v1). Then we add an unbounded vertex v′

1 to �′ and an
edge e′

1 connecting v′
1 with v1. We endow e′

1\{v′
1} with the Z-affine structure

isomorphic to the interval [0,+∞) ⊂ R. Let h′|e′
1
be the Z-affine map sending

e′
1\{v′

1} to the ray r1 so that h′ becomes balanced at the vertex v1. In this case,
we set β ′ = 0.

(ii) Otherwise, we add a bounded vertex v′
1 to �′ and an edge e′

1 connecting v′
1 with

v1. Let h′(v′
1) be the first point other than h′(v1) where the ray r1 hits some

codimension one face �i ⊂ B. Let�e′
1 denote the segment connecting h′(v1) and

h′(v′
1). Assume that the pullback of the piecewise Z-affine structure on B to�e′

1
is isomorphic to the standard Z-affine structure on a closed interval [0, α] for a
positive real number α. Let m be the ratio wv1(e1)/w

0
v1

(e1). We endow the edge
e′
1 with the Z-affine structure isomorphic to the interval [0, α/m] ⊂ R. Let h′|e′

1

be the Z-affine map sending the edge e′
1 to the segment �e′

1 so that h′ becomes
balanced at the vertex v1. Let ei be the primitive integral vector in the direction
of �i . Let μ be the lattice length of the wedge product wv′

1
(e′

1) ∧ ei . We set
β ′ = μ[Di ] ∈ NE(Y ).

We call the triple (�′, {v′
1, v2}, h′) the extension of the spine L at the vertex v1, and

we call β ′ the curve class associated to this extension. Similarly, we can extend the
spine L at the vertex v2. We do iterated extensions at both sides until both sides end
with unbounded vertices. If this happens after finitely many steps, we call the spine L
extendable, we call the final product the extended spine associated to the spine L , and
we define the curve class associated to this extension to be the sum of all the curve
classes associated to the intermediate extensions.

Remark 4.11 The Looijenga pair is called positive if the intersection matrix (Di · Dj )

is not negative semi-definite. This holds if and only if Y\D is the minimal resolution
of an affine surface (cf. [20, Lemma 5.9]). In this case, every spine in the tropical base
B is extendable (cf. [20, Corollary 1.6]).
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Let ̂L = (�, (v1, v2), h) be an extended spine in B. Set �′ = � and h′ = h.
For every bounded vertex v of � such that σv := ∑e�v wv(e) is non-zero, we add a
vertex v′ to �′ and an edge ev connecting v and v′. Set h′(v′) = O . Let σ 0

v denote the
primitive vector in Th′(v)B(Z) in the direction of σv . Let mv be the ratio σv/σ

0
v . Let

�ev denote the segment connecting h′(v) and h′(v′). Assume that the pullback of the
piecewiseZ-affine structure on B to�ev is isomorphic to the standardZ-affine structure
on a closed interval [0, αv] for a positive real number αv . We endow the edge ev with
the Z-affine structure isomorphic to the interval [0, αv/mv] ⊂ R. Let h′|ev be the
Z-affine map sending the edge ev to the segment�ev so that h′ becomes balanced at the
vertex v. The resulting triple (�′, (v1, v2), h′) is an extended tropical cylinder in B,
which we call the extended tropical cylinder in B associated to the extended spine ̂L .

Since ̂L = (�, (v1, v2), h) is an extended spine in B, we see that �\{v1, v2} is
homeomorphic to the real line R. Let AffZ,� be the Z-affine structure on �\{v1, v2}
whose restriction to every edge of � coincides with the given Z-affine structure on the
edge. We obtain an isomorphism of Z-affine manifolds h0 : (�\{v1, v2},AffZ,�) →
(R,AffZ,R). Let π� : �′ → � be the map contracting all newly added edges. Set

h′′ = (h0 ◦ π� : �′\{v1, v2} → R, h′ : �′\{v1, v2} → B).

Then the triple (�′, (v1, v2), h′′) is an extended tropical cylinder in ˜B, which we call
the extended tropical cylinder in ˜B associated to the extended spine ̂L .

Rigidity of the tropical cylinder

Using the embedding B ⊂ R
l , for any point p ∈ B\O , any vector w ∈ TpB(Z), we

denote by (w1, . . . , wl) the coordinates of w with respect to the basis (e1, . . . , el) of
Z
l ⊂ R

l . We define |w| = √(w1)2 + · · · + (wl)2, called the norm of the vector w.
Let Z = (�, (v1, v2), h) be an extended tropical cylinder in ˜B. Let e1 and e2

denote the edges connected to the vertices v1 and v2 respectively. Let �v1 be the
bounded endpoint of e1 and let �v2 be the bounded endpoint of e2. We denote
A(Z) := max{|w�v1(e1)|, |w�v2(e2)|}.
Proposition 4.12 Let Z = (�, (v1, v2), h) be an extended tropical cylinder in ˜B. Let
e1 and e2 denote the edges connected to the vertices v1 and v2 respectively. Let p be
a point on the ray h(e1\{v1}). Let A0 be a real number such that A0 > A(Z). Then
there exists an open neighborhood U of the image h(�) in ˜B satisfying the following
conditions:

(i) Let Z ′ = (�′, {v′
1, v

′
2}, h′) be another extended tropical cylinder in ˜B such that

A(Z ′) < A0 and that its image h′(�′) lies in U and contains p, then the image
h′(�′) coincides necessarily with the image h(�).

(ii) For i = 1, 2, there exists a point pi on the ray h(ei\{vi }) and a neighborhood Ui

of pi in ˜B, such that any translation of Ui along the ray h(ei\{vi }) is contained
in U.

Proof Let v1, v11, v12, . . . , v1m, v2 be the chain of vertices on the path connecting
the vertices v1 and v2 in �. Let e1 j denote the edge connecting the vertices v1 j and

123



1662 T. Y. Yu

v1,( j+1). For any extended tropical cylinder Z ′ = (�′, {v′
1, v

′
2}, h′) in ˜B, we denote

by e′
1 and e

′
2 the edges connected to the vertices v′

1 and v′
2 respectively. We introduce

the similar notations v′
1, v

′
11, v

′
12, . . . , v

′
1m′ , v′

2 and e′
11, e

′
12, . . . for Z

′.
We start with any neighborhood U of the image h(�) in ˜B satisfying Condition

(ii). By shrinking U near the rays h(e1\{v1}) and h(e2\{v2}), we can assume that for
any extended tropical cylinder Z ′ = (�′, {v′

1, v
′
2}, h′) in ˜B such that h′(�′) ⊂ U ,

the rays h(e′
1\{v′

1}) and h(e′
2\{v′

2}) are necessarily parallel to the rays h(e1\{v1}) and
h(e2\{v2}), up to a switch of the labeling of v′

1 and v′
2.

Assume moreover that A(Z ′) < A0. By further shrinking U , we can ensure that
the ray Oπ2(h′(v′

11)) coincides with the ray Oπ2(h(v11)). By further shrinking U ,
we can ensure that the segment π2(h′(e′

11)) is parallel to the segment π2(h(e11)).
Since the norm |wv′

11
(e′

1)| is bounded by A0, the balancing condition at the vertex
v′
11 implies that the norm |wv′

11
(e′

11)| is bounded by a number depending only on A0

and Z . Therefore, by further shrinking U , we can ensure that the ray Oπ2(h′(v′
12))

coincides with the ray Oπ2(h(v12)) and that the segment π2(h′(e′
12)) is parallel to

the segment π2(h(e12)). Iterating the process, we can ensure that m = m′, that the
ray Oπ2(h′(v′

1 j )) coincides with the ray Oπ2(h(v1 j )) for j = 1, . . . ,m, and that the
segment π2(h′(e′

1 j )) is parallel to the segment π2(h(e1 j )) for j = 1, . . . ,m − 1.
Assume moreover that the image h′(�′) contains the point p. Then the image

π2(h′(�′)) contains the point π2(p). By further shrinking U if necessary, we can
ensure that the pointπ2(h′(v′

1 j )) coincideswith the pointπ2(h(v1 j )) for j = 1, . . . ,m,
and that the segment π2(h′(e′

1 j )) coincides with the segment π2(h(e1 j )) for j =
1, . . . ,m − 1. By further shrinking U if necessary, the balancing condition at the
vertices v′

1 j ensures that the point h′(v′
1 j ) coincides with the point h(v1 j ) for j =

1, . . . ,m, and that the segment h′(e′
1 j ) coincides with the segment h(e1 j ) for j =

1, . . . ,m − 1. Finally, the conditions in Definition 4.10 ensures that the image h′(�′)
coincides with the image h(�). We remark that at every stage of shrinking, we can
always ensure that Condition (ii) in the proposition holds. ��

Let C
˜B denote R≥0 ×˜B. We embed ˜B into C

˜B by the map x �→ (1, x). Let C ′̃
B
be a

finite subdivision of C
˜B into rational polyhedral cones, so that it induces a polyhedral

subdivision ˜B ′ of ˜B. For any one-dimensional cone r in C ′̃
B
, we denote by Star(r)

the union of the relative interior of the polyhedral cones in C ′̃
B
containing r , and by

�Star(r) the union of the polyhedral cones in C ′̃
B
containing r .

For a set R of one-dimensional cones in C ′̃
B
, we denote

U (R) :=
(

⋃

r∈R

Star(r)

)

∩ ˜B ′, �U (R) :=
(

⋃

r∈R

�Star(r)
)

∩ ˜B ′.

Remark 4.13 Condition (ii) of Proposition 4.12 implies that there exists a regular sim-
plicial subdivision C ′̃

B
of C
˜B and a set R of one-dimensional cones in C ′̃

B
intersecting

˜B such that h(�) ⊂ U (R) ⊂ �U (R) ⊂ U .
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5 Holomorphic cylinders

Given an extendable spine L = (�0, (v10, v20), h0) in the tropical base B and an
element β in the cone of curves NE(Y ), the goal of this section is to define a rational
number N (L , β), which we call the number of holomorphic cylinders associated to
L with class β.

Let L = (�0, (v10, v20), h0) be an extendable spine in the tropical base B. Let̂L =
(̂�0, (v1, v2),̂h0) be the extended spine in B associated to L . Let β ′ be the curve class
associated to the extension and let̂β := β+β ′. Let Z = (�, (v1, v2), h : �\{v1, v2} →
˜B) be the extended tropical cylinder in ˜B associated to the extended spinêL . Let e1, e2
denote the edges connected to the vertices v1, v2 respectively.

Choose any real number A0 > A(Z). LetU be the open neighborhood constructed
in Proposition 4.12. Let C ′̃

B
and R be as in Remark 4.13. We can assume that there

are two rays {r1, r2} ⊂ R pointing in the directions of h(e1\{v1}) and h(e2\{v2})
respectively.

Let ˜X = Gm/C × (Y\D) and ˜Xk = ˜X ×SpecC Spec k. Then

(

(P1
C

× Y ) ×SpecC Spec k◦,
(

({0,∞} × Y ) ∪ (P1
C

× D)
)×SpecC Spec k◦)

is an snc log-model of ˜Xk . The factor Gm/C in ˜X corresponds to the factor R in ˜B (see
Remark 4.9). By toroidal modification, the regular simplicial subdivision C ′̃

B
induces

an snc log-model ( ˜X , ˜H) of ˜Xk . Let˜Y denote the k-variety
(

˜X
)

η
. Let ˜D1, ˜D2 denote

the divisors in ˜Y corresponding to the rays r1, r2 respectively.
Let ˜B ′

f denote the union of bounded polyhedral faces of ˜B ′. It is by construction

the Clemens polytope associated to the snc model ˜X of ˜Y . We have a retraction map
τ̃ : ˜Y an → ˜B ′

f . Let U f = U ∩ ˜B ′
f , U (R) f = U (R) ∩ ˜B ′

f , �U (R) f = �U (R) ∩ ˜B ′
f .

Definition 5.1 An element γ ∈ NE(˜Y ) is said to represent the class ̂β ∈ NE(Y ) if
the following conditions are satisfied:

(i) The element γ admits a representative which is a closed curve C contained in
˜Xk ∪ ˜D1 ∪ ˜D2 intersecting ˜D1 ∪ ˜D2 transversely.

(ii) We require that the intersection numbers γ · ˜D1 = 1, γ · ˜D2 = 1.
(iii) Under the projection NE(˜Y ) → NE(P1

k), the image of γ is of degree 1.

(iv) Under the composite morphism NE(˜Y ) → NE(Yk)
∼−→ NE(Y ), the image of γ

equals ̂β ∈ NE(Y ).

We denote by ˜β ⊂ NE(˜Y ) the finite set of elements in NE(˜Y ) representing ̂β.
Let �M0,n(˜Y ,˜β) denote the moduli stack of n-pointed rational stable maps into ˜Y

with class in ˜β. We will assume n ≥ 3 in the following. For 1 ≤ i ≤ n, we will
denote by evi the evaluation morphism of the i th marked point. We refer to [17,33]
for the classical theory of stable maps, to [50] for the theory of stable maps in non-
archimedean analytic geometry, and to [3–5,32,41] for the theory of Gromov–Witten
invariants in algebraic geometry.

Lemma 5.2 The virtual dimension of the moduli stack �M0,n(˜Y ,˜β) equals n + 2.
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Proof For a smooth projective varietyV over a field, let �Mg,n(V, α) denote themoduli
stack of n-pointed genus g stable maps into V with homology class α. The formula
of virtual dimension (cf. [3,41]) gives

(1 − g)(dim V − 3) − α · KV + n,

where KV denotes the canonical class of V . Applying to our situation, we have g = 0,
dim˜Y = 3. Moreover, for any γ ∈ ˜β, we have γ · K

˜Y = −2 by Definition 5.1(ii). So
the virtual dimension of �M0,n(˜Y ,˜β) equals n + 2. ��

By [50, Theorem 8.7], the moduli stack �M0,n(˜Y an) of k-analytic stable maps into
˜Y an is isomorphic to the analytification of the algebraic stack �M0,n(˜Y ).

Let �M0,n(˜Y an,˜β) denote the analytification of �M0,n(˜Y ,˜β). Let �M0,n(˜Y an,˜β)0
denote the the substack consisting of stable maps such that the first marked point maps
to ˜Dan

1 and the second marked point maps to ˜Dan
2 . Let �M0,n(˜Y an,˜β,U f )0 denote the

substack of �M0,n(˜Y an,˜β)0 consisting of k-analytic stable maps whose composition
with the retraction map τ̃ : ˜Y an → ˜B ′

f lies in U f .
Let W1 (resp. W2) be a rational closed convex polyhedral neighborhood of h(v10)

(resp. h(v20)) satisfying the following conditions:

(i) W1 ⊂ U (R) f , W2 ⊂ U (R) f .
(ii) W1 ∩ ∂˜B ′

f = ∅, W2 ∩ ∂˜B ′
f = ∅.

(iii) W1 = π1(W1) × π2(W1), W2 = π1(W2) × π2(W2). (Recall that π1 : ˜B → R

and π2 : ˜B → B denote the two projections.)
(iv) O /∈ π2(W1), O /∈ π2(W2), where O is the origin of the tropical base B.

By Proposition 3.6, we can assume that the retraction map τ̃ : ˜Y an → ˜B ′
f is a trivial

k-analytic torus fibration over W1 and W2. So τ̃−1(W1) and τ̃−1(W2) are affinoid
domains inside ˜Y an, which we denote by ˜W1 and ˜W2 respectively. Let A1 and A2 be
the k-affinoid algebras corresponding to ˜W1 and ˜W2 respectively.

Lemma 5.3 Let M be an analytic domain of �M0,n(˜Y an,˜β)0. Assume that the com-
position with the retraction map τ̃ : ˜Y an → ˜B ′

f of any k-analytic stable map in M
hits the polyhedron W1. LetM(U f ) := M ∩ �M0,n(˜Y an,˜β,U f )0. ThenM(U f ) is a
union of connected components ofM.

Proof Let M(U (R) f ) (resp. M(�U (R) f )) denote the substack of M(U f ) consist-
ing of k-analytic stable maps such that if we compose them with the retraction map
τ̃ : ˜Y an → ˜B ′

f , the images lie in U (R) f (resp. �U (R) f ).

Let I
˜X denote the set of irreducible components of the special fiber ˜Xs . For a

subset I ⊂ I
˜X , we denote by �I the corresponding simplex in the Clemens polytope

˜B ′
f , by (�I )◦ its relative interior, and by D◦

I the corresponding open stratum in ˜Xs .
Set

D(U (R) f ) :=
⋃

I⊂I
˜X

(�I )◦⊂U (R) f

D◦
I , D(�U (R) f ) :=

⋃

I⊂I
˜X

(�I )◦⊂�U (R) f

D◦
I .
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We note that D(U (R) f ) is a closed subscheme of ˜Xs , and D(�U (R) f ) is an open
subscheme of ˜Xs .

Let˜X denote the formal completion of ˜X along the special fiber ˜Xs . We note that
˜X is a formal scheme proper and flat over the ring of integers k◦. We have ˜Xs � ˜Xs

and ˜Xη � ˜Y an (cf. [8]).
Let �M0,n(˜X) denote the moduli stack of n-pointed rational formal stable maps into
˜X. Let �M0,n(˜Xs) denote the moduli stack of n-pointed rational algebraic stable maps
into ˜Xs . By [50, Proposition 8.6], we have

�M0,n(˜X)s � �M0,n(˜Xs) � �M0,n( ˜Xs).

By [50, Theorem 8.9], we have

�M0,n(˜X)η � �M0,n(˜Xη) � �M0,n(˜Y
an).

So we obtain a reduction map πM : �M0,n(˜Y an) → �M0,n( ˜Xs).
Let �M0,n( ˜Xs, D(U (R) f )) denote the closed substack of �M0,n( ˜Xs) consisting of

stable maps which map into D(U (R) f ).
Let �M0,n( ˜Xs, D(�U (R) f )) denote the open substack of �M0,n( ˜Xs) consisting of

stable maps which map into D(�U (R) f ).
We have two isomorphisms

π−1
M
( �M0,n( ˜Xs, D(U (R) f ))

) ∩ M � M(U (R) f ),

π−1
M
( �M0,n( ˜Xs, D(�U (R) f ))

) ∩ M � M(�U (R) f ).

Therefore,M(U (R) f ) is a closed substack ofM, andM(�U (R) f ) is an open substack
of M.

The inclusions U (R) f ⊂ �U (R) f ⊂ U f induce natural inclusions

M(U (R) f ) ⊂ M(�U (R) f ) ⊂ M(U f ). (5.1)

By the assumption that the composition with the retraction map τ̃ : ˜Y an → ˜B ′
f of any

k-analytic stable map inM hits the polyhedron W1, Proposition 4.12 implies that the
inclusions in (5.1) induce natural isomorphisms

M(U (R) f ) � M(�U (R) f ) � M(U f ).

Therefore,M(U f ) is at the same time an open substack and a closed substack ofM.
We conclude that M(U f ) is a union of connected components of M. ��

Theorem 5.4 Consider the two fiber products

�M0,n(˜Y
an,˜β)0 ×

˜Y an ˜W1 and �M0,n(˜Y
an,˜β,U f )0 ×

˜Y an ˜W1
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given by the evaluation morphism ev3 of the third marked point. Then the latter fiber
product is a union of connected components of the former fiber product. Therefore,
the evaluation morphism ev3 : �M0,n(˜Y an,˜β,U f )0 → ˜Y an is proper over ˜W1.

Proof LetM := �M0,n(˜Y an,˜β)0 ×
˜Y an ˜W1 andM(U f ) := M∩ �M0,n(˜Y an,˜β,U f )0.

We have M(U f ) � �M0,n(˜Y an,˜β,U f )0 ×
˜Y an ˜W1. Lemma 5.3 implies that M(U f )

is a union of connected components of M. So we have proved the first statement of
the theorem.

Since �M0,n(˜Y ,˜β) is a proper algebraic stack, its analytification �M0,n(˜Y an,˜β)

is a proper k-analytic stack (cf. [46, Proposition 6.4]). So the closed substack
�M0,n(˜Y an,˜β)0 is also proper. By base change, the k-analytic stack M is proper
over ˜W1. Therefore, the first statement of the theorem implies that the k-analytic stack
M(U f ) is proper over ˜W1. ��
Corollary 5.5 The k-analytic stack

�M0,n(˜Y
an,˜β,U f )0 ×

˜Y an ˜W1

is isomorphic to the analytification of an algebraic stack proper over Spec A1, which
we denote by �M0,n(˜Y an,˜β,U f ,W1)

alg
0 .

Proof Let F denote the pushforward of the structure sheaf of the k-analytic stack
�M0,n(˜Y an,˜β,U f )0 ×

˜Y an ˜W1 to the k-analytic stack �M0,n(˜Y an,˜β)0 ×
˜Y an ˜W1. By The-

orem 5.4, F is a coherent sheaf on the k-analytic stack �M0,n(˜Y an,˜β)0 ×
˜Y an ˜W1.

By construction, the k-analytic stack �M0,n(˜Y an,˜β)0 ×
˜Y an ˜W1 is the analytification

of an algebraic stack over Spec A1, which we denote by �M0,n(˜Y an,˜β,W1)
alg
0 . Now

we apply the GAGA theorem for k-analytic stacks ([46, Theorem 7.4]) to the alge-
braic stack �M0,n(˜Y an,˜β,W1)

alg
0 over Spec A1. We deduce thatF is isomorphic to the

analytification of an algebraic coherent sheafFalg on �M0,n(˜Y an,˜β,W1)
alg
0 . The alge-

braic coherent sheaf Falg defines a closed substack of �M0,n(˜Y an,˜β,W1)
alg
0 , which

we denote by �M0,n(˜Y an,˜β,U f ,W1)
alg
0 . We note that �M0,n(˜Y an,˜β,U f ,W1)

alg
0 is a

union of connected components of �M0,n(˜Y an,˜β,W1)
alg
0 . It is proper over Spec A1

because �M0,n(˜Y an,˜β,W1)
alg
0 is proper over Spec A1. By construction, the analytifi-

cation of �M0,n(˜Y an,˜β,U f ,W1)
alg
0 is the k-analytic stack �M0,n(˜Y an,˜β,U f )0×˜Y an ˜W1

we started with, so we have proved the corollary. ��
With the preparations above, we are ready to give the definition of the number

N (L , β).
Choose a rigid point p of ˜W1. We specialize to the case n = 3. Let

�M0,3(˜Y an,˜β,U f , p)
alg
0 denote thefiber of themorphism ev3 : �M0,3(˜Y an,˜β,U f ,W1)

alg
0→ Spec A1 over p. It is a proper algebraic stack over the residue field at p.

Let Vp denote the restriction of the virtual fundamental class of �M0,3(˜Y ,˜β)0 to
�M0,3(˜Y an,˜β,U f , p)

alg
0 . By Lemma 5.2, the cycle Vp is of dimension zero.

Definition 5.6 We define the number of holomorphic cylinders N (L , β) to be the
degree of the 0-dimensional cycle Vp.

123



Enumeration of holomorphic cylinders in log. . . 1667

Remark 5.7 In the construction of the number N (L , β), we used the affinoid domain
˜W1 ⊂ ˜Y an. This raises a natural question: if we choose to use the affinoid domain
˜W2 ⊂ ˜Y an, do we obtain the same number? It is not clear at all à priori. We will give
an affirmative answer to this question in Sect. 6.

By construction, the number N (L , β) does not depend on the choice of the point
p. Moreover, we have the following property of deformation invariance.

Proposition 5.8 (Deformation invariance) Let Lt , t ∈ [0, 1] be a continuous defor-
mation of extendable spines in the tropical base B. Assume that the associated extended
spines ̂Lt also deforms continuously. Then we have N (L0, β) = N (L1, β) for any
β ∈ NE(Y ).

Proof For all t ∈ [0, 1], let Zt denote the extended tropical cylinder in ˜B associated
to the extended spine ̂Lt , and let Ut denote the open neighborhood constructed in
Proposition 4.12 for the extended tropical cylinder Zt . Now fix t ∈ [0, 1]. By conti-
nuity, there exists ε > 0, such that for any t ′ ∈ (t − ε, t + ε) ∩ [0, 1], the extended
tropical cylinder Zt ′ lies in Ut . By construction, we have N (Lt , β) = N (Lt ′, β) for
all t ′ ∈ (t − ε, t + ε) ∩ [0, 1]. Now the proposition follows from the compactness of
the interval [0, 1]. ��
Remark 5.9 The curve class β does not play a big role in this paper. Nevertheless,
we remark that in our construction, β represents exactly the class of our holomorphic
cylinders in the sense of the following definition.

Definition 5.10 Let C be a compact quasi-smooth strictly k-analytic curve and
f : C → Y an

k a morphism. Up to passing to a finite ground field extension, we can
choose a strictly semistable formal model C of C over k◦ such that f : C → Y an

k
extends to a morphism f : C → ̂Yk◦ , where ̂Yk◦ denotes the formal completion of Yk◦
along its special fiber. Let Cp

s be the union of proper irreducible components of the
special fiber Cs of C. We define [fs(Cp

s )] ∈ NE(Y ) to be the class of f . Since two
different choices of the model C can always be dominated by another model, we see
that the curve class does not depend on the choice. If the domain curve C is nodal, we
make the definition after taking normalization.

6 The symmetry property

In Sect. 5, we have defined the number of holomorphic cylinders N (L , β) given a
spine L = (�0, (v10, v20), h0) and a class β ∈ NE(Y ).

A natural question is whether the number N (L , β) depends on the orientation of
the spine L . We give an affirmative answer in Theorem 6.3. We start with two lemmas
concerning Berkovich non-archimedean analytic spaces.

Lemma 6.1 Let U be a k-affinoid space and f a holomorphic function on U. If the
norm | f | reaches maximum at a point x0 in the interior Int(U ) of U, then there exists
a neighborhood V of x0 in U such that | f | is constant on V .

123



1668 T. Y. Yu

Proof Let D be the closed disc of radius | f (x0)|. Then f defines amorphismU → D.
By [6, Proposition 2.5.8(iii)], we have the formula

Int(U ) = Int(U/D) ∩ f −1(Int(D)).

Since x0 ∈ Int(U ) by assumption, we deduce that f (x0) ∈ Int(D). Let V0 be the
connected component of Int(D) that contains f (x0). Then V := f −1(V0) is a neigh-
borhood of x0 inU such that | f | is constant on V , completing the proof of the lemma.

��
Lemma 6.2 Let M be a connected k-analytic space without boundary, m0 ∈ M
a rigid point and f a holomorphic function on M. Assume that the norm of f is
constantly one on M. Then the norm of the difference ( f − f (m0)) is strictly less than
one everywhere on M.

Proof Let

M1 = {m ∈ M
∣

∣ | f (m) − f (m0)| < 1
}

.

Since for any m ∈ M ,

| f (m) − f (m0)| ≤ max
{| f (m)|, | f (m0)|

} = 1,

we have
M\M1 = {m ∈ M

∣

∣ | f (m) − f (m0)| = 1
}

. (6.1)

Assume by contradiction that M\M1 = ∅. Let m′ ∈ M\M1. Since M has no
boundary, there exists an affinoid neighborhoodU ofm′ inM such thatm′ is contained
in the interior of U . Consider the function f (m) − f (m0) depending on m. We have
| f (m) − f (m0)| ≤ 1 for all m ∈ U and it reaches maximum at the point m′ ∈ U . By
Lemma 6.1, there exists a neighborhood V of m′ inU such that | f (m) − f (m0)| = 1
for all m ∈ V . In other words, we have V ⊂ M\M1. Applying the argument above to
every m′ ∈ M\M1, we deduce that M\M1 is an open subset of M .

By Eq. (6.1), M\M1 is also a closed subset of M . Since M is connected by assump-
tion, we see that M\M1 = M , in other words M1 = ∅. This contradicts the fact that
m0 ∈ M , completing the proof of the lemma. ��

Let L = (�0, (v10, v20), h0 : �0 → B) be an extendable spine in the tropical base
B. Let Lsw = (�0, (v20, v10), h0 : �0 → B) be the same spine except that the vertices
v10 and v20 are switched. We have the following symmetry property of the counting
of holomorphic cylinders.

Theorem 6.3 (Symmetry property) We have

N (L , β) = N (Lsw, β),

for any class β ∈ NE(Y ).
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Proof We use the settings of Sect. 5. Let � be the map

� := (ev3, ev4) : �M0,4(˜Y
an,˜β,U f )0 −→ ˜Y an × ˜Y an,

where ev3, ev4 denote respectively the evaluation map of the third and the fourth
marked point.

Let W ◦
1 and W ◦

2 denote the interior of W1 and W2 respectively. Let ˜W ◦
1 :=

τ̃−1(W ◦
1 ) ⊂ ˜W1, ˜W ◦

2 := τ̃−1(W ◦
1 ) ⊂ ˜W2. Let

M := �M0,4(˜Y
an,˜β,U f )0 ×

˜Y an×˜Y an (˜W ◦
1 × ˜W ◦

2 ),

M(U f ) := M ∩ �M0,4(˜Y
an,˜β,U f )0.

We have

M(U f ) � �M0,4(˜Y
an,˜β,U f )0 ×

˜Y an×˜Y an (˜W ◦
1 × ˜W ◦

2 ).

Recall that π1 : ˜B → R and π2 : ˜B → B denote the two projections. Let

˜W ′
1 := ˜W ◦

1 × val−1(π1(W
◦
2 )),

˜W ′
2 := val−1(π1(W

◦
1 )) × ˜W ◦

2 .

Let p1 : ˜W ◦
1 → val−1(π1(W ◦

1 )) and p2 : ˜W ◦
2 → val−1(π1(W ◦

2 )) denote the two pro-
jections. Let

�1 := (id × p2) ◦ � : M(U f ) → ˜W ′
1,

�2 := (p1 × id) ◦ � : M(U f ) → ˜W ′
2.

Up to shrinking the polyhedrons W1 and W2, we can embed ˜W ′
1 and ˜W ′

2 into
(Gn+1

m/k)
an so that

(i) there exists an open convex polyhedron W ⊂ R
n+1 such that both ˜W ′

1 and ˜W
′
2 are

isomorphic to the analytic domain ˜W := (valn+1)−1(W ) ⊂ (Gn+1
m/k)

an,

(ii) and that we have valn+1 ◦�1 = valn+1 ◦�2.

LetM0 be a connected component ofM(U f ). Fix a rigid point m0 ∈ M0. Let T
denote the k-analytic closed unit disc. Consider the map

F : M0 × T −→ (Gn+1
m/k)

an × T

(m, t) �−→
(

(1 − t)�1(m) + t · �1(m0)

�2(m0)
· �2(m), t

)

.

Let �F be the composition of F with the projection (Gn+1
m/k)

an × T → (Gn+1
m/k)

an. ��
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Lemma 6.4 The following diagram commutes

where the vertical arrow denotes the projection to the factor M0 of the fiber product
M0 × T . In other words, the composition valn+1 ◦ �F does not depend on t ∈ T .

Proof Let g be the map

g : M0 −→ (Gn+1
m/k)

an

m �−→ �1(m)

�2(m)
.

We have valn+1 ◦ g ≡ (0, . . . , 0) ∈ R
n+1.

Let G be the map

G : M0 × T −→ (Gn+1
m/k)

an

m �−→ (1 − t)g(m) + tg(m0) = g(m) + t (g(m0) − g(m)).

By Lemma 6.2, we have valn+1 ◦ (g(m0)− g(m)) ∈ R
n+1
>0 ⊂ R

n+1, for anym ∈ M0.
Therefore, we have val ◦G ≡ (0, . . . , 0) ∈ R

n+1 onM0×T . Now the lemma follows
from the equality �F = G · �2. ��

LetW ′ be a closed convex polyhedron inW . LetW ′′ be a closed convex polyhedron
in the interior of W ′. Let

˜W ′ := (valn+1)−1(W ′) ⊂ (Gn+1
m/k)

an,

˜W ′′ := (valn+1)−1(W ′′) ⊂ (Gn+1
m/k)

an.

Let

M′
0 := (valn+1 ◦�1)

−1(W ′),
M′′

0 := (valn+1 ◦�1)
−1(W ′′).

By Lemma 6.4, the map F induces two maps by restriction

F ′ : M′
0 × T → ˜W ′ × T,

F ′′ : M′′
0 × T → ˜W ′′ × T .

Lemma 6.5 The map F ′′ is a proper map.
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Proof Since �M0,n(˜Y ,˜β) is a proper algebraic stack, its analytification �M0,n(˜Y an,˜β)

is a proper k-analytic stack (cf. [46, Proposition 6.4]). So the closed substack
�M0,n(˜Y an,˜β)0 is also proper. By the definition of properness, there exists two finite
affinoid quasi-smooth coverings {Ui }i∈I and {Vi }i∈I of �M0,n(˜Y an,˜β)0 such that
Ui ⊂ Int(Vi ) for every i ∈ I .

By Lemma 5.3, M(U f ) is a union of connected components of M. Therefore,
by base change, the coverings {Ui }i∈I and {Vi }i∈I of �M0,n(˜Y an,˜β)0 induce a finite
affinoid quasi-smooth covering {U ′

i }i∈I ′ ofM′′
0 ×T and a finite affinoid quasi-smooth

covering {V ′
i }i∈I ′ ofM′

0 ×T such thatU ′
i ⊂ Int(V ′

i /T ). Let V ′′
i denote the restriction

of V ′
i toM′′

0 × T . Then {V ′′
i }i∈I is a finite quasi-smooth covering ofM′′

0 × T and we
have U ′

i ⊂ Int
(

(V ′′
i /(˜W ′′ × T )

)

. So we have proved that F ′′ is a proper map.
Let w be a rigid point in ˜W ′′. Lemma 6.5 implies that the degree of the virtual

fundamental class on (F ′′)−1(w, 0) equals the degree of the virtual fundamental class
on (F ′′)−1(w, 1).

Let T1 denote the k-analytic annulus val−1(1) ⊂ G
an
m/k . Consider the map

H : M′′
0 × T1 −→ ˜W ′′ × T1

(m, t) �−→ (t · �2(m), t
)

.

The same proof of Lemma 6.5 shows that H is a proper map. Therefore, the degree
of the virtual line bundle on H−1(w, 1) equals the degree of the virtual fundamental
class on H−1

(

w,
�1(m0)
�2(m0)

)

.
Summing over every connected component M0 of M(U f ), we deduce that the

degree of the virtual fundamental class on �−1
1 (w) equals the degree of the vir-

tual fundamental class on �−1
2 (w). By Definition 5.1(iii), using the divisor axiom of

Gromov–Witten invariants (cf. [32, §2.2.4]), we observe that the degree of the virtual
fundamental class on �−1

1 (w) equals the number N (L , β), and the degree of the vir-
tual fundamental class on �−1

2 (w) equals the number N (Lsw, β). So we have proved
our theorem. ��

7 The example of a del Pezzo surface

In this section, we compute the number of holomorphic cylinders for a concrete del
Pezzo surface. The result consists of certain binomial coefficients, which verifies
the Kontsevich-Soibelman wall-crossing formula for the focus-focus singularity (cf.
Remark 7.2).

Let Y0 := P
1
C

× P
1
C
. Let x be a coordinate on the first component of P

1
C
and let

y be a coordinate on the second component of P
1
C
. Let D00, D10, D20, D30 be the

divisors on Y0 given respectively by the equations x = 0, y = 0, x = ∞, y = ∞.
Let Y be the blowup of Y0 at the point with coordinate (−1, 0). Then Y is a del
Pezzo surface of degree 7. Let D0, D1, D2, D3 be the strict transforms of the divisors
D00, D10, D20, D30 respectively. Let D = D1 + D2 + D3 + D4. We see that D is an
anti-canonical cycle of rational curves in Y . So (Y, D) is a Looijenga pair in the sense
of Definition 3.1.
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Using the notations of Sect. 3, the tropical base B associated to the pair (Y, D)

consists of four cones �0,1,�1,2,�2,3,�3,0. Let B
∼−→ R

2 be the homeomorphism
which is linear on each of the four cones, and which maps the four cones subsequently
to the first, second, third and fourth quadrant of R

2. We use this homeomorphism to
identify B with R

2. We remark that the Z-affine structure on �i,i+1 is isomorphic to
the restriction of the standard Z-affine structure on R

2 via the identification. So we
will describe the integral tangent vectors on �i,i+1 using the coordinates with respect
to the standard basis of Z

2 ⊂ R
2.

Let l ∈ Z>0 and m, n ∈ Z. Let L(l,m, n) = (�, (v1, v2), h : � → B � R
2) be a

spine in the tropical base B satisfying the following conditions.

(i) The Z-affine tree � has three vertices v0, v1, v2 and two edges e1, e2. The edge
e1 connects v0 with v1; the edge e2 connects v0 with v2.

(ii) We assume that h(v0) has coordinates (0, b) with b > 0.
(iii) We assume that wv0(e1) = (−l,−m + n) and wv0(e2) = (l,m).

Theorem 7.1 The number of holomorphic cylinders associated to the spine L(l,m, n)

equals the binomial coefficient
( l
n

) = l!
n!(l−n)! . In other words, we have

∑

β∈NE(Y )

N (L(l,m, n), β)) =
(

l

n

)

.

Proof Since the surface Y is the blowup of Y0 at the point (−1, 0), the interior X :=
Y\D contains two piece of (C×)2. Let (x, u) be the coordinates on the first piece, with
y = u(x + 1). Let (y, v) be the coordinates on the second piece, with vy = x + 1.
The functions x, y, v give an embedding of X into C

× × C × C. So X is isomorphic
to the surface in C

× × C × C given by the equation vy = x + 1.
Let �k be an algebraic closure of k and let X�k = X ×SpecC Spec�k. Let Gm/�k =

Spec�k[s, s−1]. A morphism from Gm/�k to X�k is given by three Laurent polynomials
�x,�y,�v in s, such that�x is invertible and that the relation�v�y = �x + 1 holds.

Since�x is invertible, up to a change of coordinate of s, we can assume that�x = sl

for a nonnegative integer l. Then we have�v�y = 1 + sl . Let us factorize

1 + sl = (1 + b1s)(1 + b2s) . . . (1 + bls),

where b1, . . . , bl ∈ �k. Let J ⊂ {1, . . . , l} be a subset of cardinality n, and let J c be
its complement. Let c ∈ �k with valuation greater than 0. Let

�x = sl ,

�y = c · sm
∏

j ′∈J c

(1 + b j ′s),

�v = c−1 · s−m
∏

j∈J

(1 + b j s).

123



Enumeration of holomorphic cylinders in log. . . 1673

Let f : Gm/�k → X�k be the morphism given by the functions �x,�y,�v above. The
composition of the retractionmap τ : X an

k → B with the piecewise linear identification

B
∼−→ R

2 is given by

{

(

val x, min(0, val y)
)

when val x = 0, val v ≥ 0,
(

val x, − val v
)

otherwise.

Therefore, when l > 0, themorphism f gives rise to an extended spine in B associated
to a spine of the form L(l,m, n). Using the notations in Sect. 5, the domain curves of
the stable maps in the moduli stack �M0,3(˜Y an,˜β,U f )0 ×

˜Y an {p} are all irreducible,
because the variety X is affine in our example. Moreover, since a projective line with 3
marked points has neither moduli parameter nor nontrivial automorphisms, the stable
maps in �M0,3(˜Y an,˜β,U f )0 ×

˜Y an {p} correspond to morphisms f : Gm/�k → X�k of
the forms considered above. The choice of the constant c is uniquely determined by
the choice of the rigid point p ∈ ˜W1. So it remains a finite number of choices for
the functions �x,�y,�v, which correspond to the choice of the subset J ⊂ {1, . . . , l} of
cardinality n.

We conclude that
∐

β∈NE(Y )

�M0,3(˜Y
an,˜β,U f )0 ×

˜Y an {p}

is a disjoint union of
( l
n

)

reduced points. In other words, we have proved that

∑

β∈NE(Y )

N (L , β) =
(

l

n

)

.

��
Remark 7.2 The binomial coefficients in Theorem 7.1 are related to the Kontsevich–
Soibelman wall-crossing transformation around a focus-focus singularity. We recall
that the wall-crossing transformation around a two-dimensional focus-focus singular-
ity is an automorphism ϕ of the algebra C[[x, y]] given by

ϕ(x) = x(1 + y), ϕ(y) = y.

The reference is [36, §8], see also the generalizations by Gross and Siebert [24,25].
We compute that

ϕ(xl ym) = xl(1 + y)l ym =
∑

n

(

l

n

)

xl ym+n .

In other words, we obtain the following identity

ϕ(xl ym) =
∑

n

∑

β∈NE(Y )

N (L(l,m, n), β) xl ym+n .
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Deeper relations between the enumeration of cylinders and thewall-crossing structures
will be explored in a subsequent paper.
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