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Abstract Let ϕ : Mm → Nn be a minimal, proper immersion in an ambient space
suitably close to a space form N

n
k of curvature −k ≤ 0. In this paper, we are inter-

ested in the relation between the density function �(r) of M and the spectrum of its
Laplace–Beltrami operator. In particular, we prove that if �(r) has subexponential
growth (when k < 0) or sub-polynomial growth (k = 0) along a sequence, then the
spectrum of Mm is the same as that of the space form N

m
k . Notably, the result applies

to Anderson’s (smooth) solutions of Plateau’s problem at infinity on the hyperbolic
space, independently of their boundary regularity. We also give a simple condition on
the second fundamental form that ensures M to have finite density. In particular, we
show that minimal submanifolds with finite total curvature in the hyperbolic space
also have finite density.
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1 Introduction

Let Mm be a minimal, properly immersed submanifold in a complete ambient space
Nn . In the present paper, we are interested in the case when N is close, in a sense made
precise below, to a space form N

n
k of curvature −k ≤ 0. In particular, our focus is the

study of the spectrum of the Laplace Beltrami operator −� on M and its relationship
with the density at infinity of M , that is, the limit as r → +∞ of the (monotone)
quantity

�(r)
.= vol(M ∩ Br )

Vk(r)
, (1)

where Br indicates a geodesic ball of radius r in Nn and Vk(r) is the volume of a
geodesic ball of radius r in Nm

k . Hereafter, we will say that M has finite density if

�(+∞)
.= lim

r→+∞ �(r) < +∞.

To properly put our results into perspective, we briefly recall few facts about the
spectrum of the Laplacian on a geodesically complete manifold. It is known by works
of Chernoff [15] and Strichartz [48] that −� on a complete manifold is essentially
self-adjoint on the domainC∞

c (M), and thus it admits a unique self-adjoint extension,
which we still call−�. Since−� is positive and self-adjoint, its spectrum is the set of
λ ≥ 0 such that � + λI does not have bounded inverse. Sometimes we say spectrum
of M rather than spectrum of −� and we denote it by σ(M). The well-known Weyl’s
characterization for the spectrum of a self-adjoint operator in a Hilbert space implies
the following

Lemma 1 [19, Lemma 4.1.2] A number λ ∈ R lies in σ(M) if and only if there exists
a sequence of nonzero functions u j ∈ Dom(−�) such that

‖�u j + λu j‖2 = o
(‖u j‖2

)
as j → +∞. (2)

In the literature, characterizations of the whole σ(M) are known only in few spe-
cial cases. Among them, the Euclidean space, for which σ(Rm) = [0,∞), and the
hyperbolic space Hm

k , for which

σ(Hm
k ) =

[
(m − 1)2k

4
,+∞

)
. (3)

The approach to guarantee that σ(M) = [c,+∞), for some c ≥ 0, usually splits into
two parts. The first one is to show that inf σ(M) ≥ c via, for instance, the Laplacian
comparison theorem from below ([5,41]), and the second one is to produce a sequence
like in Lemma 1 for each λ > c. This step is accomplished by considering radial
functions of compact support, and, at least in the first results on the topic like the one
in [21], uses the comparison theorems on both sides for�ρ, ρ being the distance from
a fixed origin o ∈ M . Therefore, the method needs both a pinching on the sectional
curvature and the smoothness of ρ, that is, that o is a pole of M (see [21,25,36] and
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Density and spectrum of minimal submanifolds in space forms 1037

Corollary 2.17 in [8]), which is a severe topological restriction. Since then, various
efforts were made to weaken both the curvature and the topological assumptions. We
briefly overview some of the main achievements.

In [34], Kumura observed that to perform the second step (and just for it) it is
enough that there exists a relatively compact, mean convex, smooth open set � with
the property that the normal exponential map realizes a global diffeomorphism ∂� ×
R

+
0 → M\�. Conditions of this kind seem, however, unavoidable for his techniques

to work. On the other hand, in [35] the author drastically weakened the curvature
requirements needed to establish Step 2, by replacing the two-sided pinching on the
sectional curvaturewith a combination of a lower bound on a suitablyweighted volume
and an L p-bound on the Ricci curvature.

Regarding the need for a pole, major recent improvements have been made in a
series of papers ([11,40,49,54]): their guiding idea was to replace the L2-norm in
relation (2) with the L1-norm, which via a trick in [40,54] enables to use smoothed
distance functions to construct sequences as in Lemma 1. Building on deep function-
theoretic results due to Sturm [49] and Charalambous–Lu [11], in [40,54] the authors
proved that σ(M) = [0,∞) when

lim inf
ρ(x)→+∞Riccx = 0 (4)

in the sense of quadratic forms, without any topological assumption. This remarkable
result improves on [36] and [25] (see alsoCorollary 2.17 in [8]), whereM was assumed
to have a pole. Further refinements of (4) have been given in [11]. However, when
(4) does not hold, the situation is more delicate and is still the subject of an active
area of research. In this respect, we also quote the general function-theoretic criteria
developed by Donnelly [22], and Elworthy and Wang [24] to ensure that a half-line
belongs to the spectrum of M .

The main concern in this paper is to achieve, in the above-mentioned setting of
minimal submanifolds ϕ : M → N , a characterization of the whole σ(M) free from
curvature or topological conditions onM (in this respect, observe that the completeness
of M follows from that of N and the properness of ϕ). It is known by [18] and [5] that
for a minimal immersion ϕ : Mm → N

n
k the fundamental tone of M , inf σ(M), is at

least that of Nm
k , i.e.,

inf σ(M) ≥ (m − 1)2k

4
. (5)

Moreover, as a corollary of [34] and [4,6], if the second fundamental form II satisfies
the decay estimate

lim
ρ(x)→+∞ ρ(x)|II(x)| = 0 if k = 0

lim
ρ(x)→+∞ |II(x)| = 0 if k > 0

(6)

(ρ(x) being the intrinsic distance with respect to some fixed origin o ∈ M), then M
has the same spectrum that a totally geodesic submanifold N

m
k ⊂ N

n
k , that is,

σ(M) =
[
(m − 1)2k

4
,+∞

)
. (7)
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1038 B. P. Lima et al.

According to [1,20], (6) is ensured when M has finite total curvature, that is, when

∫

M
|II|m < +∞. (8)

Remark 1 A characterization of the essential spectrum, similar to (7), also holds for
submanifolds of the hyperbolic space Hn

k with constant (normalized) mean curvature
H <

√
k. There, condition (8) is replaced by the finiteness of the Lm-norm of the

traceless second fundamental form. For deepening, see [10].

Condition (6) is a quite binding requirement for (7) to hold, since it needs a point-
wise control of the second fundamental form, and the search for more manageable
conditions has been at the heart of the present paper.Here,we identify a suitable growth
on the density function �(r) along a sequence as a natural candidate to replace them,
see (10). As a very special case, (7) holds when M has finite density. It might be
interesting that just a volume growth condition along a sequence could control the
whole spectrum of M ; for this to happen, the minimality condition enters in a crucial
and subtle way.

Regarding the relation between (8) and the finiteness of �(+∞), we remark that
their interplay has been investigated in depth for minimal submanifolds of Rn , but the
case of Hn

k seems to be partly unexplored. In the next section, we will briefly discuss
the state of the art, to the best of our knowledge. As a corollary of Theorem 2 below,
we will show the following

Corollary 1 Let Mm be a minimal properly immersed submanifold in H
n
k . If M has

finite total curvature, then �(+∞) < +∞.

As far as we know, this result was previously known just in dimension m = 2 via
a Chern–Osserman type inequality, see the next section for further details.

We now come to our results, beginning with defining the ambient spaces which we
are interested in: these are manifolds with a pole, whose radial sectional curvature is
suitably pinched to that of the model Nn

k .

Definition 1 Let Nn possess a pole ō and denote with ρ̄ the distance function from ō.
Assume that the radial sectional curvature K̄rad of N , that is, the sectional curvature
restricted to planes π containing ∇̄ρ̄, satisfies

− G(ρ̄(x)) ≤ K̄rad(πx ) ≤ −k ≤ 0 ∀ x ∈ N\{ō}, (9)

for some G ∈ C0(R+
0 ). We say that

(i) N has a pointwise (respectively, integral) pinching to Rn if k = 0 and

sG(s) → 0 as s → +∞ (respectively, sG(s) ∈ L1(+∞));

(ii) N has a pointwise (respectively, integral) pinching to H
n
k if k > 0 and

G(s) − k → 0 as s → +∞ (respectively, G(s) − k ∈ L1(+∞)).
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Density and spectrum of minimal submanifolds in space forms 1039

Hereafter, given an ambient manifold N with a pole ō, the density function �(r)
will always be computed by taking extrinsic balls centered at ō.

Our main achievements are the following two theorems. The first one characterizes
σ(M)when the density ofM grows subexponentially (respectively, sub-polynomially)
along a sequence. Condition (10) below is very much in the spirit of a classical growth
requirement due to Brooks [9] and Higuchi [30] to bound from above the infimum of
the essential spectrum of −�. However, we stress that our Theorem 1 seems to be the
first result in the literature characterizing the whole spectrum of M under just a mild
volume assumption.

Theorem 1 Let ϕ : Mm → Nn be a minimal properly immersed submanifold, and
suppose that N has a pointwise or an integral pinching to a space form. If either

N is pinched to H
n
k , and lim inf

s→+∞
log�(s)

s
= 0, or

N is pinched to R
n, and lim inf

s→+∞
log�(s)

log s
= 0.

(10)

then

σ(M) =
[
(m − 1)2k

4
,+∞

)
. (11)

The above theorem is well suited for minimal submanifolds constructed via Geo-
metric Measure Theory since, typically, their existence is guaranteed by controlling
the density function �(r). As an important example, Theorem 1 applies to all solu-
tions of Plateau’s problem at infinity Mm → H

n
k constructed in [2], provided that

they are smooth. Indeed, because of their construction, �(+∞) < +∞ (see [2],
part [A] at p. 485) and they are proper (it can also be deduced as a consequence of
�(+∞) < +∞, see Remark 5). By standard regularity theory, smoothness of Mm is
automatic if m ≤ 6.

Corollary 2 Let � ⊂ ∂∞H
n
k be a closed, integral (m − 1) current in the boundary

at infinity of Hn
k such that, for some neighbourhood U ⊂ H

n
k of supp(�), � does

not bound in U, and let Mm ↪→ H
n
k be the solution of Plateau’s problem at infinity

constructed in [2] for �. If M is smooth, then (11) holds.

An interesting fact of Corollary 2 is thatM is not required to be regular up to ∂∞H
n
k ,

in particular it might have infinite total curvature. In this respect, we observe that if M
be C2 up to ∂∞H

n
k , then M would have finite total curvature (Lemma 5 in “Appendix

1”). By deep regularity results, this is the case if, for instance, Mm → H
m+1
k is a

smooth hypersurface that solves Plateau’s problem for�, and� is aC2,α (for α > 0),
embedded compact hypersurface of ∂∞H

n
k . See “Appendix 1” for details.

The spectrum of solutions of Plateau’s problems has also been considered in [3] for
minimal surfaces in R

3. In this respect, it is interesting to compare Corollary 2 with
(3) of Corollary 2.6 therein.

Remark 2 The solution M of Plateau’s problem in [2] is constructed as a weak limit
of a sequence Mj of minimizing currents for suitable boundaries � j converging to �.
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1040 B. P. Lima et al.

and property�(+∞) < +∞ is a consequence of a uniform upper bound for the mass
of a sequence Mj (part [A], p. 485 in [2]). Such a bound is achieved because of the
way the boundaries � j are constructed, in particular, since they are all sections of the
same cone. Onemight wonder whether�(+∞) < +∞, or at least the subexponential
growth in (10), is satisfied by all solutions of Plateau’s problem. In this respect, we
just make this simple observation: in the hypersurface case n = m + 1, if M ∩ Bm+1

r
is volume-minimizing then clearly

�(r) = vol(M ∩ Bm+1
r )

Vk(r)
≤ vol(∂Bm+1

r ⊂ H
m+1
k )

Vk(r)
= ck

sinhm(
√
kr)

Vk(r)
,

but this last expression diverges exponentially fast as r → +∞ (differently from its
Euclidean analogous, which is finite). This might suggest that a general solution of
Plateau’s problem does not automatically satisfies �(+∞) < +∞, and maybe not
even (10).

In our second result we focus on the particular case when �(+∞) < +∞, and
we give a sufficient condition for its validity in terms of the decay of the second
fundamental form.Towards this aim,we shall restrict to ambient spaceswith an integral
pinching.

Theorem 2 Let ϕ : Mm → Nn be a minimal immersion, and suppose that N has an
integral pinching to a space form. Denote with ρ(x) the intrinsic distance from some
reference origin o ∈ M. Assume that there exist c > 0 and α > 1 such that the second
fundamental form satisfies, for ρ(x) >> 1,

|II(x)|2 ≤ c

ρ(x) logα ρ(x)
if N is pinched toHn

k ;

|II(x)|2 ≤ c

ρ(x)2 logα ρ(x)
if N is pinched toRn .

(12)

Then, ϕ is proper, M is diffeomorphic to the interior of a compact manifold with
boundary, and �(+∞) < +∞.

The assertions that ϕ be proper and M have finite topology is well-known under
assumptions even weaker than (12) and not necessarily requiring the minimality, see
for instance [4,6]. Former results are due to [1] (N = R

n) and [10,20] (N = H
n
k ).

Here, our original contribution is to show that M has finite density. Because of a result
in [20,45], if ϕ : M → H

n
k has finite total curvature then |I I (x)| = o(ρ(x)−1) as

ρ(x) → +∞. Hence, (12) is met and Corollary 1 follows at once.
We briefly describe the strategy of the proof of Theorem 1. In view of (5), it is

enough to show that each λ > (m − 1)2k/4 lies in σ(M). To this end, we follow
an approach inspired by a general result due to Elworthy and Wang [24]. However,
Elworthy–Wang’s theorem is not sufficient to conclude, and we need to considerably
refine the criterion in order to fit in the present setting. To construct the sequence as in
Lemma 1, a key step is to couple the volume growth requirement (10) with a sharpened
form of the monotonicity formula for minimal submanifolds, which improves on the
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Density and spectrum of minimal submanifolds in space forms 1041

classical ones in [2,47]. Indeed, in Proposition 3we describe threemonotone quantities
other than �(s), that might be useful beyond the purpose of the present paper. For
example, in the very recent [26] the authors discovered and used some of the relations
in Proposition 3 to show interesting comparison results for the capacity and the first
eigenvalue of minimal submanifolds.

1.1 Finite density and finite total curvature in R
n and H

n

The first attempt to extend the classical theory of finite total curvature surfaces in R
n

(see [16,17,31,43]) to the higher-dimensional case is due to Anderson. In [1], the
author drew from (8) a number of topological and geometric consequences, and here
we focus on those useful to highlight the relationship between total curvature and
density. First, he showed that (8) implies the decay

lim
ρ(x)→+∞ ρ(x)|II(x)| = 0, (13)

where ρ(x) is the intrinsic distance from a fixed origin, and as a consequence M is
proper, the extrinsic distance function r has no critical points outside some compact
set and |∇r | → 1 as r diverges, so by Morse theory M is diffeomorphic to the interior
of a compact manifold with boundary. Moreover, he proved that M has finite density
via a higher-dimensional extension of the Chern–Osserman identity [16,17], namely
the following relation linking the Euler characteristic χ(M) and the Pfaffian form �

([1, Theorem 4.1]):

χ(M) =
∫

M
� + lim

r→+∞
vol(M ∩ ∂Br )

V ′
0(r)

. (14)

Observe that, since |∇r | → 1, by coarea’s formula the limit in the right hand-side
coincides with �(+∞). We underline that property �(+∞) < +∞ plays a funda-
mental role to apply the machinery of manifold convergence to get information on the
limit structure of the ends of M ([1,46,53]). For instance, �(+∞) is related to the
number E(M) of ends of M : if we denote with V1, . . . , VE(M) the (finitely many) ends
of M , (8) implies for m ≥ 3 the identities

�(+∞) =
E(M)∑

i=1

lim
r→+∞

vol(Vi ∩ ∂Br )

V ′
0(r)

≡ E(M), (15)

and thusM is totally geodesic provided that it has only one end andfinite total curvature
([1, Thm 5.1 and its proof]). Further information on the mutual relationship between
the finiteness of the total curvature and �(+∞) < +∞ can be deduced under the
additional requirement that M is stable or it has finite stability index. For example, by
work of Tysk [53], if Mm has finite index and m ≤ 6, then

�(+∞) < +∞ if and only if
∫

M
|II|m < +∞. (16)
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1042 B. P. Lima et al.

Remark 3 Indeed, the main result in [53] states that, when �(+∞) < +∞ and
m ≤ 6, M has finite index if and only if it has finite total curvature. However, since
the finite total curvature condition alone implies both that M has finite index and
�(+∞) < +∞ (in any dimension1), the characterization in (16) is equivalent to
Tysk’s theorem. We underline that it is still a deep open problem whether or not, for
m ≥ 3, stability or finite index alone implies the finiteness of the density at infinity.

Since then, efforts were made to investigate analogous properties for minimal sub-
manifolds of finite total curvature immersed in H

n
k . There, some aspects show strong

analogy with the Rn case, while others are strikingly different. For instance, minimal
immersions ϕ : Mm → H

n
k with finite total curvature enjoy the same decay property

(13) with respect to the intrinsic distance ρ(x) ([20], see also [45]), which is enough
to deduce that they are properly immersed and diffeomorphic to the interior of a com-
pact manifold with boundary. Moreover, Anderson [2] proved the monotonicity of
�(r) in (1). In order to show (among other things) that complete, finite total curvature
surfaces M2 ↪→ H

n have finite density, in [13,14] the authors obtained the following
Chern–Osserman type inequality:

χ(M) ≥ − 1

4π

∫

M
|II|2 + �(+∞), (17)

see also [27]. However, in the higher dimensional case we found no analogous of (14),
(17) in the literature, and adapting the proof of (14) to the hyperbolic ambient space
seems to be subtler than what we expected. In fact, an equality like (14) is not even
possible to obtain, since there exist minimal submanifolds ofHn

k with finite density but
whose density at infinity depends on the chosen reference origin (Gimeno V, Private
communication). We point out that, on the contrary, inequality (17) holds for each
choice of the reference origin in Rn . This motivated the different route that we follow
to prove Theorem 2 and Corollary 1.

Among the results in [1] that could not admit a corresponding one inHn
k , in view of

the solvability of Plateau’s problem at infinity onHn
k we stress that a relation like (15)

cannot hold for each minimal submanifold of Hn
k with finite total curvature. Indeed,

there exist a wealth of properly immersed minimal submanifolds in H
n
k with finite

total curvature and one end: for example, referring to the upper half-space model, the
graphical solution of Plateau’s problem for �m−1 ⊂ ∂∞H

n
k being the boundary of a

convex set (constructed at the end of [2]) has finite total curvature, as follows from
Lemma 5 and the regularity results recalled in “Appendix 1”. It shall be observed,
however, that when II decays sufficiently fast at infinity with respect to the extrinsic
distance function r(x):

lim
r(x)→+∞ e2

√
kr(x)|II(x)| = 0, (18)

then the inequality �(+∞) ≤ E(M) still holds for minimal hypersurfaces in H
n
k as

shown in [28], and in particular M is totally geodesic provided that it has only one end,

1 As said, finite total curvature implies �(+∞) < +∞ by (14), while the finiteness of the index can be
seen as an application of the generalized Cwikel–Lieb–Rozembljum inequality (see [37]) to the stability
operator L = −� − |II|2, recalling that a minimal submanifold Mm → R

n satisfies a Sobolev inequality.
We refer to [44] for deepening.
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Density and spectrum of minimal submanifolds in space forms 1043

as first observed in [32,33]. We remark that there exists an infinite family of complete
minimal cylinders ϕλ : S1 × R → H

3 whose second fundamental form IIλ decays
exactly of order exp{−2r(x)}, see [42].

2 Preliminaries

Let ϕ : (Mm, 〈 , 〉) → (Nn, ( , )) be an isometric immersion of a complete m-
dimensional Riemannian manifold M into an ambient manifold N of dimension n
and possessing a pole ō. We denote with ∇,Hess ,� the connection, the Riemannian
Hessian and the Laplace–Beltrami operator on M , while quantities related to N will
be marked with a bar. For instance, ∇̄, dist,Hess will identify the connection, the
distance function and the Hessian in N . Let ρ̄(x) = dist(x, ō) be the distance function
from ō. Geodesic balls in N of radius R and center y will be denoted with BN

R (y).
Moreover, set

r : M → R, r(x) = ρ̄(ϕ(x)), (19)

for the extrinsic distance from ō.Wewill indicatewith�s the extrinsic geodesic spheres
restricted toM :�s

.= {x ∈ M; r(x) = s}. Fix a base point o ∈ M . In what follows, we
shall also consider the intrinsic distance function ρ(x) = dist(x, o) from a reference
origin o ∈ M .

2.1 Target spaces

Hereafter, we consider an ambient space N possessing a pole ō and, setting ρ̄(x)
.=

dist(x, ō), we assume that (9) is met for some k ≥ 0 and some G ∈ C0(R+
0 ). Let

snk(t) be the solution of

{
sn′′

k − k snk = 0 on R
+,

snk(0) = 0, sn′
k(0) = 1,

(20)

that is

snk(t) =
{
t if k = 0,
sinh(

√
kt)/

√
k if k > 0.

(21)

Observe that Rn andHn
k can be written as the differentiable manifold Rn equipped

with the metric given, in polar geodesic coordinates (ρ, θ) ∈ R
+ × S

n−1 centered at
some origin, by

ds2k = dρ2 + sn2k(ρ) dθ2,

dθ2 being the metric on the unit sphere Sn−1.
We also consider the model Mn

g associated with the lower bound −G for K̄rad, that

is, we let g ∈ C2(R+
0 ) be the solution of

{
g′′ − Gg = 0 on R

+,

g(0) = 0, g′(0) = 1,
(22)
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1044 B. P. Lima et al.

and we define Mn
g as being (Rn, ds2g) with the C2-metric ds2g = dρ2 + g2(ρ)dθ2 in

polar coordinates. Condition (9) and the Hessian comparison theorem (Theorem 2.3
in [44], or Theorem 1.15 in [8]) imply

sn′
k(ρ̄)

snk(ρ̄)
(( , ) − dρ̄ ⊗ dρ̄) ≤ Hess (ρ̄) ≤ g′(ρ̄)

g(ρ̄)
(( , ) − dρ̄ ⊗ dρ̄). (23)

The next proposition investigates the ODE properties that follow from the assump-
tions of pointwise or integral pinching.

Proposition 1 Let Nn satisfy (9), and let snk, g be solutions of (21), (22). Define

ζ(s)
.= g′(s)

g(s)
− sn′

k(s)

snk(s)
. (24)

Then, ζ(0+) = 0, ζ ≥ 0 on R
+. Moreover,

(i) If N has a pointwise pinching to Hn
k or R

n, then ζ(s) → 0 as s → +∞.
(ii) If N has an integral pinching to H

n
k or Rn, then g/snk → C as s → +∞ for

some C ∈ R
+, and

ζ(s) ∈ L1(R+), ζ(s)
snk(s)

sn′
k(s)

→ 0 as s → +∞. (25)

Proof The non-negativity of ζ , which in particular implies that g/snk is non-
decreasing, follows from G ≥ k via Sturm comparison, and ζ(0+) = 0 depends
on the asymptotic relations sn′

k/snk = s−1 + o(1) and g′/g = s−1 + o(1) as s → 0+,
which directly follow from theODEs satisfied by snk and g. To show (i), differentiating
ζ we get

ζ ′(s) = R(s) − ζ(s)B(s), (26)

where R(s)
.= G(s) − k and B(s)

.= g′(s)
g(s)

+ sn′
k(s)

snk(s)
. Thus, integrating on [1, s], we

can rewrite ζ as follows:

ζ(s) = ζ(1)e− ∫ s
1 B + e− ∫ s

1 B
∫ s

1
R(σ )e

∫ σ
1 Bdσ (27)

Using that B /∈ L1([1,+∞)), and applying de l’Hopital’s theorem, we infer

lim
s→+∞ ζ(s) = lim

s→+∞
R(s)

B(s)
≤ lim

s→+∞
snk(s)[G(s) − k]

sn′
k(s)

.

In our pointwise pinching assumptions on G(s), for both k = 0 and k > 0 the last
limit is zero, hence ζ(s) → 0 as s diverges. To show (ii), suppose that N has an
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Density and spectrum of minimal submanifolds in space forms 1045

integral pinching to H
n
k or to R

n . We first observe that the boundedness of g/snk on
R

+ equivalent to the property ζ ∈ L1(+∞), as it follows from

log
g(s)

snk(s)
=

∫ s

0

d

dσ
log

(
g(σ )

snk(σ )

)
ds =

∫ s

0
ζ (28)

(we used that (g/snk)(0+) = 1). The boundedness of g/snk is the content of Corollary
4 and Remark 16 in [7], but we prefer here to present a direct proof. Integrating (27)
on [1, s] and using Fubini’s theorem, the monotonicity of g/snk and the expression of
B we obtain

∫ s

1
ζ = ζ(1)

∫ s

1

g(1)snk(1)

g(σ )snk(σ )
dσ +

∫ s

1
e− ∫ σ

1 B
∫ σ

1
R(τ )e

∫ τ
1 Bdτ dσ

≤ ζ(1)snk(1)
2
∫ s

1

dσ

sn2k(σ )
+

∫ s

1

[∫ s

τ

e− ∫ σ
1 B R(τ )e

∫ τ
1 Bdσ

]
dτ

≤ C +
∫ s

1
R(τ )g(τ )snk(τ )

[∫ s

τ

dσ

g(σ )snk(σ )

]
dτ

≤ C +
∫ s

1
R(τ )g(τ )snk(τ )

[∫ +∞

τ

dσ

g(σ )snk(σ )

]
dτ (29)

for some C > 0, where we have used that sn−2
k , g−1sn−1

k ∈ L1(+∞). Next, since
g snk/sn2k is non-decreasing, Proposition 3.12 in [8] ensures the validity of the follow-
ing inequality:

g(τ )snk(τ )

[∫ +∞

τ

dσ

g(σ )snk(σ )

]
≤ sn2k(τ )

[∫ +∞

τ

dσ

sn2k(σ )

]

.

It is easy to show that the last expression is bounded if k > 0, and diverges at the order
of τ if k = 0. In other words, it can be bounded by C1snk/sn′

k on [1,+∞), for some
large C1 > 0. Therefore, by (29)

∫ s

1
ζ ≤ C + C1

∫ s

1
R(τ )

snk(τ )

sn′
k(τ )

dτ = C + C1

∫ s

1
[G(τ ) − k] snk(τ )

sn′
k(τ )

dτ.

In our integral pinching assumptions, both for k = 0 and for k > 0 it holds (G −
k)snk/sn′

k ∈ L1(+∞), and thus ζ ∈ L1(+∞). Next, we use (26) and the non-
negativity of ζ, B to obtain

(
ζ(s)snk(s)

sn′
k(s)

)′
= [G(s) − k − ζ(s)B(s)] snk(s)

sn′
k(s)

+ ζ(s)

[

1 − k

(
snk(s)

sn′
k(s)

)2
]

≤ [G(s) − k]snk(s)
sn′

k(s)
+ ζ(s) ∈ L1(+∞),
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1046 B. P. Lima et al.

hence ζ snk/sn′
k ∈ L∞(R+) by integrating. This implies that the function B in (26)

satisfies B ≤ Csn′
k/snk for some constant C > 0. Therefore, from (26) we get

ζ ′ ≥ −ζ B ≥ −Cζ sn′
k/snk . Integrating on [s, t] and using themonotonicity of sn′

k/snk
we obtain

−C
sn′

k(s)

snk(s)

∫ t

s
ζ ≤ ζ(t) − ζ(s).

Since ζ ∈ L1(R+), we can choose a divergent sequence {t j } such that ζ(t j ) → 0 as
j → +∞. Setting t = t j into the above inequality and taking limits we deduce

ζ(s) ≤ C
sn′

k(s)

snk(s)

∫ +∞

s
ζ,

thus letting s → +∞ we get the second relation in (25).

2.2 A transversality lemma

This subsection is devoted to an estimate of the measure of the critical set

St,s = {x ∈ M : t ≤ r(x) ≤ s, |∇r(x)| = 0},

with the purpose of justifying some coarea’s formulas for integrals over extrinsic
annuli. We begin with the next

Lemma 2 Letϕ : Mm → Nn bean isometric immersion, and let r(x) = dist(ϕ(x), ō)
be the extrinsic distance function from ō ∈ N. Denote with�σ

.= {x ∈ M; r(x) = σ }.
Then, for each f ∈ L1({t ≤ r ≤ s}),

∫

{t≤r≤s}
f dx =

∫

St,s
f dx +

∫ s

t

[∫

�σ

f

|∇r |
]
dσ. (30)

In particular, if
vol(St,s) = 0, (31)

then ∫

{t≤r≤s}
f dx =

∫ s

t

[∫

�σ

f

|∇r |
]
dσ. (32)

Proof We prove (30) for f ≥ 0, and the general case follows by considering the
positive and negative part of f . By the coarea’s formula, we know that for each
g ∈ L1({t ≤ r ≤ s}),

∫

{t≤r≤s}
g|∇r | dx =

∫ s

t

[∫

�σ

g

]
dσ. (33)
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Fix j and consider A j = {|∇r | > 1/j} and the function

g = f 1A j /|∇r | ∈ L1({t ≤ r ≤ s}).

Applying (33), letting j → +∞ and using the monotone convergence theorem we
deduce

∫

{t≤r≤s}\St,s
f dx =

∫ s

t

[∫

�σ \St,s
f

|∇r |

]

dσ =
∫ s

t

[∫

�σ

f

|∇r |
]
dσ, (34)

where the last equality follows since�σ ∩ St,s = ∅ for a.e. σ ∈ [t, s], in view of Sard’s
theorem. Formula (30) follows at once.

Let now N possess a pole ō and satisfy (9), and consider a minimal immersion
ϕ : M → N . Since, by the Hessian comparison theorem, geodesic spheres in N
centered at ō are positively curved, it is reasonable to expect that the “transversality”
condition (31) holds. This is the content of the next

Proposition 2 Let ϕ : Mm → Nn be a minimal immersion, where N possesses a
pole ō and satisfies (9). Then,

vol(S0,+∞) = 0. (35)

Proof Suppose by contradiction that vol(S0,+∞) > 0. By Stampacchia and
Rademacher’s theorems,

∇|∇r |(x) = 0 for a.e. x ∈ S0,+∞. (36)

Pick one such x and a local Darboux frame {ei }, {eα}, 1 ≤ i ≤ m, m + 1 ≤ α ≤
n around x , that is, {ei } is a local orthonormal frame for T M and {eα} is a local
orthonormal frame for the normal bundle T M⊥. Since ∇r(x) = 0, then ∇̄ρ̄(x) ∈
TxM⊥. Up to rotating {eα}, we can suppose that ∇̄ρ̄(x) = en(x). Fix i and consider
a unit speed geodesics γ : (−ε, ε) → M such that γ (0) = x , γ̇ (0) = ei . Identify γ

with its image ϕ ◦ γ in N . By Taylor’s formula and (36),

|∇r |(γ (t)) = o(t) as t → 0+.

Using that |∇r | =
√
1 − ∑

α(∇̄ρ̄, eα)2, we deduce

1 −
∑

α

(∇̄ρ̄, eα)2γ (t) = o(t2). (37)

Since ∇̄ρ̄(x) = en(x), we deduce from (38) that also

u(t)
.= 1 − (∇̄ρ̄, en)

2
γ (t) = o(t2), (38)
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1048 B. P. Lima et al.

thus u̇(0) = ü(0) = 0. Computing,

u̇(t) = 2(∇̄ρ̄, en)[(∇̄γ̇ ∇̄ρ̄, en) + (∇̄ρ̄, ∇̄γ̇ en)]
ü(t) = 2[(∇̄γ̇ ∇̄ρ̄, en) + (∇̄ρ̄, ∇̄γ̇ en)]2

+ 2(∇̄ρ̄, en)[(∇̄γ̇ ∇̄γ̇ ∇̄ρ̄, en) + 2(∇̄γ̇ ∇̄ρ̄, ∇̄γ̇ en) + (∇̄ρ̄, ∇̄γ̇ ∇̄γ̇ en)].

Evaluating at t = 0 we deduce

0 = ü(0)/2 = (∇̄ei ∇̄ei ∇̄ρ̄, ∇̄ρ̄) + 2(∇̄ei ∇̄ρ̄, ∇̄ei en) + (en, ∇̄ei ∇̄ei en).

Differentiating twice 1 = |en|2 = |∇̄ρ̄|2 along ei we deduce the identities
(en, ∇̄ei ∇̄ei en) = −|∇̄ei en|2 and (∇̄ei ∇̄ei ∇̄ρ̄, ∇̄ρ̄) = −|∇̄ei ∇̄ρ̄|2, hence

0 = ü(0)/2 = −|∇̄ei ∇̄ρ̄|2 + 2(∇̄ei ∇̄ρ̄, ∇̄ei en) − |∇̄ei en|2 = −|∇̄ei ∇̄ρ̄ − ∇̄ei en|2,

which implies ∇̄ei ∇̄ρ̄ = ∇̄ei en . Therefore, at x ,

(II(ei , ei ), en) = −(∇̄ei en, ei ) = −(∇̄ei ∇̄ρ̄, ei ) = Hess (ρ̄)(ei , ei ).

Tracing with respect to i , using that M is minimal and (23) we conclude that

0 ≥ sn′
k(r(x))

snk(r(x))
(m − |∇r(x)|2) = m

sn′
k(r(x))

snk(r(x))
> 0,

a contradiction.

3 Monotonicity formulae and conditions equivalent to �(+∞) < +∞
Our first step is to improve the classical monotonicity formula for �(r), that can be
found in [47] (for N = R

n) and [2] (for N = H
n
k ). For k ≥ 0, let vk, Vk denote

the volume function, respectively, of geodesic spheres and balls in the space form of
sectional curvature −k and dimension m, i.e.,

vk(s) = ωm−1snk(s)
m−1, Vk(s) =

∫ s

0
vk(σ )dσ, (39)

where ωm−1 is the volume of the unit sphere Sm−1. Although we shall not use all the
four monotone quantities in (41) below, nevertheless they have independent interest,
and for this reason we state the result in its full strength. We define the flux J (s) of
∇r over the extrinsic sphere �s :

J (s)
.= 1

vk(s)

∫

�s

|∇r |. (40)
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Proposition 3 (Themonotonicity formulae) Suppose that N has a pole ō and satisfies
(9), and let ϕ : Mm → Nn be a proper minimal immersion. Then, the functions

�(s),
1

Vk(s)

∫

{0≤r≤s}
|∇r |2 (41)

are absolutely continuous and monotone non-decreasing. Moreover, J (s) coincides,
on an open set of full measure, with the absolutely continuous function

J̄ (s)
.= 1

vk(s)

∫

{r≤s}
�r

and J̄ (s), Vk(s)[ J̄ (s)−�(s)] are non-decreasing. In particular, J (s) ≥ �(s) a.e. on
R

+.
Remark 4 To the best of our knowledge, the monotonicity of J (s) (aside from its
differentiability properties) has first been shown, in the Euclidean setting, in a paper
by Tkachev [50].

Proof We first observe that, in view of Lemma 2 and Proposition 2 applied with
f = �r ,

vk(s) J̄ (s)
.=

∫

{r≤s}
�r ≡

∫ s

0

[∫

�σ

�r

|∇r |
]
dσ (42)

is absolutely continuous, and by the divergence theorem it coincides with vk(s)J (s)
whenever s is a regular value of r . Consider

f (s) =
∫ s

0

Vk(σ )

vk(σ )
dσ =

∫ s

0

1

vk(σ )

[∫ σ

0
vk(τ )dτ

]
dσ (43)

which is a C2 solution of

f ′′ + (m − 1)
sn′

k

snk
f ′ = 1 on R

+, f (0) = 0, f ′(0) = 0,

and define ψ(x) = f (r(x)) ∈ C2(M). Let {ei } be a local orthonormal frame on M .
Since ϕ is minimal, by the chain rule and the lower bound in the Hessian comparison
Theorem 23

�r =
m∑

j=1

Hess (ρ̄)(dϕ(e j ), dϕ(e j )) ≥ sn′
k(r)

snk(r)
(m − |∇r |2). (44)

We then compute

�ψ = f ′′|∇r |2 + f ′�r ≥ f ′′|∇r |2 + f ′ sn′
k

snk
(m − |∇r |2)

= 1 + (1 − |∇r |2)( f ′(r)
sn′

k(r)

snk(r)
− f ′′(r)). (45)
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It is not hard to show that the function

z(s)
.= f ′(s)

sn′
k(s)

snk(s)
− f ′′(s) = m

m − 1

Vk(s)v′
k(s)

v2k (s)
− 1.

is non-negative and non-decreasing on R
+. Indeed, from

z(0) = 0, z′(s) = m

vk(s)

[
kVk(s) − 1

m − 1
v′
k(s)z(s)

]
(46)

we deduce that z′ > 0 when z < 0, which proves that z ≥ 0 on R
+. Fix 0 < t < s

regular values for r . Integrating (45) on the smooth compact set {t ≤ r ≤ s} and using
the divergence theorem we deduce

Vk(s)

vk(s)

∫

�s

|∇r | − Vk(t)

vk(t)

∫

�t

|∇r | ≥ vol({t ≤ r ≤ s}). (47)

By the definition of J (s) and �(s), and since J (s) ≡ J̄ (s) for regular values, the
above inequality rewrites as follows:

Vk(s) J̄ (s) − Vk(t) J̄ (t) ≥ Vk(s)�(s) − Vk(t)�(t),

or in other words,

Vk(s)[ J̄ (s) − �(s)] ≥ Vk(t)[ J̄ (t) − �(t)].

Since all the quantities involved are continuous, the above relation extends to all
t, s ∈ R

+, which proves the monotonicity of Vk[ J̄ − �]. Letting t → 0 we then
deduce that J̄ (s) ≥ �(s) on R

+. Next, by using f ≡ 1 and f ≡ |∇r |2 in Lemma 2
and exploiting again Proposition 2 we get

vol({t ≤ r ≤ s}) =
∫ s

t

[∫

�σ

1

|∇r |
]
dσ,

∫

{0≤r≤s}
|∇r |2 =

∫ s

0

[∫

�σ

|∇r |
]
dσ,

(48)
showing that the two quantities in (41) are absolutely continuous. Plugging into (47),
letting t → 0 and using that z ≥ 0 we deduce

Vk(s)

vk(s)

∫

�s

|∇r | ≥
∫ s

0

[∫

�σ

1

|∇r |
]
dσ, (49)

for regular s, which together with the trivial inequality |∇r |−1 ≥ |∇r | and with (48)
gives

Vk(s)
∫

�s

|∇r | ≥ vk(s)
∫ s

0

[∫

�σ

|∇r |
]
dσ,

Vk(s)

[
d

ds
vol({r ≤ s})

]
≥ vk(s)vol({r ≤ s}).

(50)
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Integrating the second inequalityweobtain themonotonicity of�(s), while integrating
the first one and using (48) we obtain the monotonicity of the second quantity in (41).
To show the monotonicity of J̄ (s), by (44) and using the full information coming from
(23) we obtain

sn′
k(r)

snk(r)
(m − |∇r |2) ≤ �r ≤ g′(r)

g(r)
(m − |∇r |2). (51)

In view of the identity (42), we consider regular s > 0, we divide (51) by |∇r | and
integrate on �s to get

sn′
k(s)

snk(s)

∫

�s

m − |∇r |2
|∇r | ≤ (vk(s) J̄ (s))′ ≤ g′(s)

g(s)

∫

�s

m − |∇r |2
|∇r | . (52)

Writing m − |∇r |2 = m(1 − |∇r |2) + (m − 1)|∇r |2, setting for convenience

vg(s) = ωm−1g(s)
m−1, T (s)

.=
∫
�s

|∇r |−1

∫
�s

|∇r | − 1, (53)

rearranging we deduce the two inequalities

(vk(s) J̄ (s))′ ≥ v′
k(s) J̄ (s) + m

sn′
k(s)

snk(s)
T (s)vk(s) J̄ (s)

(vk(s) J̄ (s))′ ≤ v′
g(s)

vg(s)
vk(s) J̄ (s) + m

g′(s)
g(s)

T (s)vk(s) J̄ (s).
(54)

Expanding the derivative on the left-hand side, we deduce

J̄ ′(s) ≥ m
sn′

k(s)

snk(s)
T (s) J̄ (s),

(
vk(s)

vg(s)
J̄ (s)

)′
≤ m

g′(s)
g(s)

T (s)

(
vk(s)

vg(s)
J̄ (s)

)
.

(55)

The first inequality together with the non-negativity of T implies the desired J̄ ′ ≥ 0,
concluding the proof. The second inequality in (55), on the other hand, will be useful
in awhile.

Remark 5 The properness of ϕ is essential in the above proof to justify integrations
by parts. However, if ϕ is non-proper, at least when N is Cartan–Hadamard with
sectional curvature K̄ ≤ −k the function � is still monotone in an extended sense. In
fact, as it has been observed in [53] for N = R

m+1, �(s) = +∞ for each s such that
{r < s} contains a limit point of ϕ. Briefly, if x̄ ∈ N is a limit point with ρ̄(x̄) < s,
choose ε > 0 such that 2ε < s − ρ̄(x̄), and a diverging sequence {x j } ⊂ M such that
ϕ(x j ) → x̄ . We can assume that the balls Bε(x j ) ⊂ M are pairwise disjoint. Since
dist(ϕ(x), ϕ(x j )) ≤ dist(x, x j ), we deduce that ϕ(Bε(x j )) ⊂ {r < s} for j large
enough, and thus
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vol({r ≤ s}) ≥
∑

j

vol(Bε(x j )).

However, using that K̄ ≤ −k and since N is Cartan–Hadamard, we can apply the
intrinsic monotonicity formula (see Proposition 7 in “Appendix 2” below) with chosen
origin ϕ(x j ) to deduce that vol(Bε(x j )) ≥ Vk(ε) for each j , whence vol({r ≤ s}) =
+∞.

We next investigate conditions equivalent to the finiteness of the density.

Proposition 4 Suppose that N has a pole and satisfies (9). Let ϕ : Mm → Nn be a
proper minimal immersion. Then, the following properties are equivalent:

(1) �(+∞) < +∞;
(2) J̄ (+∞) < +∞.

Moreover, both (1) and (2) imply that

(3)
sn′

k(s)

snk(s)

[∫
�s

|∇r |−1

∫
�s

|∇r | − 1

]

∈ L1(R+).

If further N has an integral pinching to R
n or Hn

k , then (1) ⇔ (2) ⇔ (3).

Proof We refer to the proof of the previous proposition for notation and formulas.
(2) ⇒ (1) is obvious since, by the previous proposition, J̄ (s) ≥ �(s).
(1) ⇒ (2). Note that the limit in (2) exists since J̄ is monotone. Suppose by

contradiction that J̄ (+∞) = +∞, let c > 0 and fix sc large enough that J̄ (s) ≥ c for
s ≥ sc. From (48) and (40), and since J̄ ≡ J a.e.,

�(s) = 1

Vk(s)

∫ s

0

[∫

�σ

1

|∇r |
]
dσ ≥ 1

Vk(s)

∫ s

0
vk(σ )J (σ )dσ

≥ 1

Vk(s)

∫ s

sc
vk(σ )J (σ )dσ ≥ c

Vk(s) − Vk(sc)

Vk(s)
.

Letting s → +∞ we get �(+∞) ≥ c, hence �(+∞) = +∞ by the arbitrariness of
c, contradicting (1).

(2) ⇒ (3). Integrating (55) on [1, s] we obtain

c1 exp

{
m

∫ s

1

sn′
k(σ )

snk(σ )
T (σ )dσ

}
≤ J̄ (s) ≤ c2

vg(s)

vk(s)
exp

{
m

∫ s

1

[
g′(σ )

g(σ )

]
T (σ )dσ

}
,

(56)
for some constants c1, c2 > 0, where vg(s), T (s) is as in (53). The validity of (2) and
the first inequality show that sn′

kT/snk ∈ L1(+∞), that is, (3) is satisfied.
(3) ⇒ (2). In our pinching assumptions on N , (ii) in Proposition 1 gives

g′

g
= sn′

k

snk
+ ζ, with ζ ≤ C

sn′
k

snk
on R

+, and g ≤ Csnk on R
+,
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for some C > 0. Plugging into (56) and recalling the definition of vg we obtain

J̄ (s) ≤ c3 exp

{
c4

∫ s

1

[
sn′

k(σ )

snk(σ )

]
T (σ )dσ

}
,

for some c3, c4 > 0, and (3) ⇒ (2) follows by letting s → +∞.

Remark 6 Aversion of Propositions 3 and 4 that covers most of the material presented
above has also been independently proved in the very recent [26], seeTheorems 2.1 and
6.1 therein. We mention that their results are stated for more general ambient spaces
subjected to specific function-theoretic requirements, and that, in Proposition 4, it
holds in fact J̄ (+∞) ≡ �(+∞). For an interesting characterization, when N = R

n ,
of the limit J̄ (+∞) in terms of an invariant called the projective volume of M we
refer to [50].

4 Proof of Theorem 1

Let Mm be a minimal properly immersed submanifold in Nn , and suppose that N has
a pointwise or integral pinching to a space form. Because of the upper bound in (9),
by [5] and [18] the bottom of σ(M) satisfies

inf σ(M) ≥ (m − 1)2k

4
. (57)

Briefly, the lower bound in (51) implies

�r ≥ (m − 1)
sn′

k(r)

snk(r)
≥ (m − 1)

√
k on M.

Integrating on a relatively compact, smooth open set � and using the divergence
theorem and |∇r | ≤ 1, we deduceHm−1(∂�) ≥ (m − 1)

√
kvol(�). The desired (57)

then follows from Cheeger’s inequality:

inf σ(M) ≥ 1

4

(
inf

��M

Hm−1(∂�)

vol(�)

)2

≥ (m − 1)2k

4
.

To complete the proof of the theorem, since σ(M) is closed it is sufficient to show
that each λ > (m − 1)2k/4 lies in σ(M).

Set for convenience β
.= √

λ − (m − 1)2k/4 and, for 0 ≤ t < s, let At,s denote
the extrinsic annulus

At,s
.= {x ∈ M : r(x) ∈ [t, s]}.

Define the weighted measure dμk
.= vk(r)−1dx on {r ≥ 1}. Hereafter, we will always

restrict to this set. Consider
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ψ(s)
.= eiβs√

vk(s)
, which solves ψ ′′ + ψ ′ v′

k

vk
+ λψ = a(s)ψ, (58)

where

a(s)
.= (m − 1)2k

4
+ 1

4

(
v′
k(s)

vk(s)

)2

− 1

2

v′′
k (s)

vk(s)
→ 0 (59)

as s → +∞. For technical reasons, fix R > 1 large such that �(R) > 0. Fix t, s, S
such that

R + 1 < t < s < S − 1,

and let η ∈ C∞
c (R) be a cut-off function satisfying

0 ≤ η ≤ 1, η ≡ 0 outside of (t − 1, S), η ≡ 1 on (t, s),
|η′| + |η′′| ≤ C0 on [t − 1, s], |η′| + |η′′| ≤ C0

S−s on [s, S]

for some absolute constant C0 (the last relation is possible since S− s ≥ 1). The value
S will be chosen later in dependence of s. Set ut,s

.= η(r)ψ(r) ∈ C∞
c (M). Then, by

(58),

�ut,s + λut,s = (η′′ψ + 2η′ψ ′ + ηψ ′′)|∇r |2 + (η′ψ + ηψ ′)�r + ληψ

=
(

η′′ψ + 2η′ψ ′ − v′
k

vk
ηψ ′ − ληψ + aηψ

)
(|∇r |2 − 1) + aηψ

+ (η′ψ + ηψ ′)
(

�r − v′
k

vk

)
+

(
η′′ψ + 2η′ψ ′ + η′ψ

v′
k

vk

)
.

Using that there exists an absolute constant c for which |ψ | + |ψ ′| ≤ c/
√

vk , the
following inequality holds:

‖�ut,s + λut,s‖22 ≤ C

(∫

At−1,S

[

(1 − |∇r |2)2 +
(

�r − v′
k

vk

)2

+ a(r)2
]

dμk

+ μk(As,S)

(S − s)2
+ μk(At−1,t )

)

,

for some suitableC depending on c,C0. Since ‖ut,s‖22 ≥ μk(At,s) and (1−|∇r |2)2 ≤
1 − |∇r |2, we obtain

‖�ut,s + λut,s‖22
‖ut,s‖22

≤ C

(
1

μk(At,s)

∫

At−1,S

[

1 − |∇r |2 +
(

�r − v′
k

vk

)2

+ a(r)2
]

dμk

+ 1

(S − s)2
μk(As,S)

μk(At,s)
+ μk(At−1,t )

μk(At,s)

)

(60)
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Next, using (23),

�r =
m∑

j=1

Hess (ρ̄)(ei , ei ) = sn′
k(r)

snk(r)
(m − |∇r |2) + P(x)

= v′
k(r)

vk(r)
+ sn′

k(r)

snk(r)
(1 − |∇r |2) + P(x),

where, by Proposition 1,

0 ≤ P(x)
.=

m∑

j=1

Hess (ρ̄)(ei , ei ) − sn′
k(r)

snk(r)
(m − |∇r |2)

≤
(
g′(r)
g(r)

− sn′
k(r)

snk(r)

)
(m − |∇r |2) = ζ(r)(m − |∇r |2) ≤ mζ(r). (61)

We thus obtain, on the set {r ≥ 1},
(

�r − v′
k

vk

)2

+ 1 − |∇r |2 + a(r)2 ≤
[
sn′

k(r)

snk(r)
(1 − |∇r |2) + mζ(r)

]2

+ 1 − |∇r |2 + a(r)2

≤ C(ζ(r)2 + 1 − |∇r |2 + a(r)2) (62)

for some absolute constant C . Note that, in both our pointwise or integral pinching
assumptions on N , by Proposition 1 it holds ζ(s) → 0 as s → +∞. Set

F(t)
.= sup

σ∈[t−1,+∞)

[a(σ )2 + ζ(σ )2],

and note that F(t) → 0 monotonically as t → +∞. Integrating (62) we get the
existence of C > 0 independent of s, t such that

∫

At−1,S

[(
�r − v′

k

vk

)2

+ 1 − |∇r |2 + a(r)2
]

dμk

≤ C

(

F(t)
∫

At−1,S

1

vk(r)
+

∫

At−1,S

1 − |∇r |2
vk(r)

)

. (63)

Using the coarea’s formula and the transversality lemma, for each 0 ≤ a < b

μk(Aa,b) =
∫

Aa,b

1

vk(r)
=

∫ b

a
J [1 + T ],

∫

Aa,b

1 − |∇r |2
vk(r)

=
∫ b

a
JT, (64)
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where J and T are defined, respectively, in (40) and (53). Summarizing, in view of
(63) and (64) we deduce from (60) the following inequalities:

‖�ut,s + λut,s‖22
‖ut,s‖22

≤ C

(
1

∫ s
t J

[
1 + T

]
[
F(t)

∫ S

t−1
J
[
1 + T

] +
∫ S

t−1
JT

]

+
∫ S
s J

[
1 + T

]

(S − s)2
∫ s
t J

[
1 + T

] +
∫ t
t−1 J

[
1 + T

]

∫ s
t J

[
1 + T

]

)
.= Q(t, s).

(65)
If we can guarantee that

lim inf
t→+∞ lim inf

s→+∞
‖�ut,s + λut,s‖22

‖ut,s‖22
= 0, (66)

then we are able to construct a sequence of approximating eigenfunctions for λ as
follows: fix ε > 0. By (66) there exists a divergent sequence {ti } such that, for i ≥ iε,

lim inf
s→+∞

‖�uti ,s + λuti ,s‖22
‖uti ,s‖22

< ε/2.

For i = iε, pick then a sequence {s j } realizing the liminf. For j ≥ jε(iε, ε)

‖�uti ,s j + λuti ,s j ‖22 < ε‖uti ,s j ‖22, (67)

Writing uε
.= utiε ,s jε , by (67) from the set {uε} we can extract a sequence of approx-

imating eigenfunctions for λ, concluding the proof that λ ∈ σ(M). To show (66), by
(65) it is enough to prove that

lim inf
t→+∞ lim inf

s→+∞ Q(t, s) = 0. (68)

Suppose, by contradiction, that (68) were not true. Then, there exists a constant δ > 0
such that, for each t ≥ tδ , lim infs→+∞ Q(t, s) ≥ 2δ, and thus for t ≥ tδ and s ≥ sδ(t)

F(t)
∫ S

t−1
J [1 + T ] +

∫ S

t−1
JT +

∫ S

s

J [1 + T ]
(S − s)2

+
∫ t

t−1
J [1 + T ] ≥ δ

∫ s

t
J [1 + T ],

(69)
and rearranging

(F(t)+1)
∫ S

t−1
J [1+T ]−

∫ S

t−1
J +

∫ S

s

J [1 + T ]
(S − s)2

+
∫ t

t−1
J [1+T ] ≥ δ

∫ s

t
J [1+T ].

(70)
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We rewrite the above integrals in order to make �(s) appear. Integrating by parts and
using again the coarea’s formula and the transversality lemma,

∫ b

a
J [1 + T ] =

∫

Aa,b

1

vk(r)
=

∫ b

a

1

vk(σ )

[∫

�σ

1

|∇r |
]
dσ =

∫ b

a

(Vk(σ )�(σ))′

vk(σ )
dσ

= Vk(b)

vk(b)
�(b) − Vk(a)

vk(a)
�(a) +

∫ b

a

Vkv′
k

v2k
�. (71)

To deal with the term containing the integral of J alone in (70), we use the inequality
J (s) ≥ �(s) coming from the monotonicity formulae in Proposition 3. This passage
is crucial for us to conclude. Inserting (71) and J ≥ � into (70) we get

(F(t) + 1)
Vk(S)

vk(S)
�(S) − (F(t) + 1)

Vk(t − 1)

vk(t − 1)
�(t − 1) + (F(t) + 1)

∫ S

t−1

Vkv′
k

v2k
�

−
∫ S

t−1
� + 1

(S − s)2

[
Vk(S)

vk(S)
�(S) − Vk(s)

vk(s)
�(s) +

∫ S

s

Vkv′
k

v2k
�

]

+ Vk(t)

vk(t)
�(t)

−Vk(t − 1)

vk(t − 1)
�(t − 1) +

∫ t

t−1

Vkv′
k

v2k
�

≥ δ
Vk(s)

vk(s)
�(s) − δ

Vk(t)

vk(t)
�(t) + δ

∫ s

t

Vkv′
k

v2k
�. (72)

The idea to reach the desired contradiction is to prove that, as a consequence of (72),

∫ S

t−1
� (73)

(hence, �(S)) must grow faster as S → +∞ than the bound in (10). To do so, we
need to simplify (72) in order to find a suitable differential inequality for (73).

We first observe that, both for k > 0 and for k = 0, there exists an absolute constant
ĉ such that ĉ−1 ≤ Vkv′

k/v
2
k ≤ ĉ on [1,+∞). Furthermore, by the monotonicity of �,

∫ S

s

Vkv′
k

v2k
� ≤ ĉ(S − s)�(S). (74)

Next, we deal with the two terms in the left-hand side of (72) that involve (73):

(F(t) + 1)
∫ S

t−1

Vkv′
k

v2k
� −

∫ S

t−1
� = F(t)

∫ S

t−1

Vkv′
k

v2k
� +

∫ S

t−1

Vkv′
k − v2k

v2k
�

≤ ĉF(t)
∫ S

t−1
� +

∫ S

t−1

Vkv′
k − v2k

v2k
�.
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The key point is the following relation:

Vk(s)v′
k(s) − vk(s)2

vk(s)2

{= −1/m if k = 0;
→ 0 as s → +∞, if k > 0.

(75)

Define

ω(t)
.= sup

[t−1,+∞)

Vkv′
k − v2k

v2k
, χ(t)

.= ĉF(t) + ω(t).

Again by the monotonicity of �,

(F(t) + 1)
∫ S

t−1

Vkv′
k

v2k
� −

∫ S

t−1
� ≤ [

ĉF(t) + ω(t)
] ∫ S

t−1
� = χ(t)

∫ S

t−1
�

≤ χ(t)�(t) + χ(t)
∫ S

t
�. (76)

For simplicity, hereafter we collect all the terms independent of s in a function that we
call h(t), which may vary from line to line. Inserting (74) and (76) into (72) we infer

[(
F(t) + 1 + 1

(S − s)2

)
Vk(S)

vk(S)
+ ĉ

S − s

]
�(S) + χ(t)

∫ S

t
�

≥ h(t) +
(

δ + 1

(S − s)2

)
Vk(s)

vk(s)
�(s) + δĉ−1

∫ s

t
�. (77)

Summing δĉ−1(S − s)�(S) to the two sides of the above inequality, using the
monotonicity of � and getting rid of the term containing �(s) we obtain

[(
F(t) + 1 + 1

(S − s)2

)
Vk(S)

vk(S)
+ ĉ

S − s
+ δĉ−1(S − s)

]
�(S) + χ(t)

∫ S

t
�

≥ h(t) + δĉ−1
∫ S

t
�. (78)

Using (75), the definition of χ(t) and the properties of ω(t), F(t), we can choose
tδ sufficiently large to guarantee that

δĉ−1 − χ(t) ≥ ck
.=

{
1
m + δĉ−1

2 if k = 0,
δĉ−1

2 if k > 0,
(79)

hence

[(
F(t) + 1 + 1

(S − s)2

)
Vk(S)

vk(S)
+ ĉ

S − s
+ δĉ−1(S − s)

]
�(S) ≥ h(t)+ck

∫ S

t
�.

(80)
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We now specify S(s) depending on whether k > 0 or k = 0.
The case k > 0.
We choose S

.= s + 1. In view of the fact that Vk/vk is bounded above on R+, (80)
becomes

c̄�(s + 1) ≥ h(t) + ck

∫ s+1

t
� ≥ ck

2

∫ s+1

t
�, (81)

for some c̄ independent of t, s. Note that the last inequality is satisfied provided
s ≥ sδ(t) is chosen to be sufficiently large, since the monotonicity of � implies that
� /∈ L1(R+). Integrating and using again the monotonicity of �, we get

(s + 1 − t)�(s + 1) ≥
∫ s+1

t
� ≥

[∫ s0+1

t
�

]
exp

{ ck
2c̄

(s − s0)
}

,

hence �(s) grows exponentially. Ultimately, this contradicts our assumption (10).
The case k = 0.
We choose S

.= s + √
s. Since Vk(S)/vk(S) = S/m, from (80) we infer

[(
F(t) + 1 + 1

s

)
S

m
+ ĉ√

s
+ δĉ−1√s

]
�(S) ≥ h(t) + ck

∫ S

t
�. (82)

Using the expression of ck and the fact that F(t) → 0, up to choosing tδ and then
sδ(t) large enough we can ensure the validity of the following inequality:

[(
F(t) + 1 + 1

s

)
S

m
+ ĉ√

s
+ δĉ−1√s

]
<

[
1

m
+ δĉ−1

4

]
S =

[
ck − δĉ−1

4

]
S

for t ≥ tδ and s ≥ sδ(t). Plugging into (80), and using that � /∈ L1(R+),

S�(S) ≥ h(t) + ck
ck − δĉ−1/4

∫ S

t
� ≥ (1 + ε)

∫ S

t
�,

for a suitable ε > 0 independent of t, S, and provided that S ≥ sδ(t) is large enough.
Integrating and using again the monotonicity of �,

S�(S) ≥ (S − t)�(S) ≥
∫ S

t
� ≥

[∫ S0

t
�

] (
S

S0

)1+ε

,

hence �(S) grows polynomially at least with power ε, contradicting (10).
Concluding, both for k > 0 and for k = 0 assuming (69) leads to a contradiction

with our assumption (10), hence (66) holds, as required.
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5 Proof of Theorem 2

We first show that ϕ is proper and that M is diffeomorphic to the interior of a compact
manifold with boundary. Both the properties are consequence of the following lemma
due to [6], which improves on [1,4,10,20].

Lemma 3 Let ϕ : Mm → Nn be an immersed submanifold into an ambient manifold
N with a pole and suppose that N satisfies (9) for some k ≥ 0. Denote by Bs = {x ∈
M; ρ(x) ≤ s} the intrinsic ball on M. Assume that

(i) lim sup
s→+∞

s‖II‖L∞(∂Bs ) < 1 if k = 0 in (9), or

(ii) lim sup
s→+∞

‖II‖L∞(∂Bs ) <
√
k if k > 0 in (9).

(83)

Then, ϕ is proper and there exists R > 0 such that |∇r | > 0 on {r ≥ R}, where r
is the extrinsic distance function. Consequently, the flow

� : R+ × {r = R} → {r ≥ R}, d

ds
�s(x) = ∇r

|∇r |2 (�s(x)) (84)

is well defined, and M is diffeomorphic to the interior of a compact manifold with
boundary.

The properness of ϕ enables us to apply Proposition 4. Therefore, to show that
�(+∞) < +∞ it is enough to check that

sn′
k(s)

snk(s)

∫
�s

[|∇r |−1 − |∇r |]
∫
�s

|∇r | ∈ L1(+∞). (85)

To achieve (85), we need to bound from above the rate of approaching of |∇r | to 1
along the flow � in Lemma 3. We begin with the following

Lemma 4 Suppose that N has a pole and radial sectional curvature satisfying (9),
and that ϕ : Mm → Nn is a proper minimal immersion such that |∇r | > 0 outside
of some compact set {r ≤ R}. Let � denote the flow of ∇r/|∇r |2 as in (84) and let
γ : [R,+∞) → M be a flow line starting from some x0 ∈ {r = R}. Then, along γ ,

d

ds

(
snk(r)

√
1 − |∇r |2) ≤ snk(r)|II(γ (s))| (86)

Proof Observe that r(γ (s)) = s − R. By the chain rule and the Hessian comparison
Theorem 23,

d

ds
|∇r |2 = 2Hess r(∇r, γ̇ ) = 2

|∇r |2 Hess r(∇r,∇r)

= 2

|∇r |2 Hess (ρ̄)(dϕ(∇r), dϕ(∇r)) + 2

|∇r |2
(∇̄ρ̄, II(∇r,∇r)

)

≥ 2
sn′

k(r)

snk(r)
(1 − |∇r |2) − 2|∇̄⊥ρ̄||II|,
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where ∇̄⊥ρ̄ is the component of ρ̄ perpendicular to dϕ(T M) and |∇̄⊥ρ| =√
1 − |∇r |2. Then,

d

ds
|∇r |2 ≥ 2

sn′
k(r)

snk(r)
(1 − |∇r |2) − 2|II|

√
1 − |∇r |2.

Multiplying by sn2k(r) gives

d

ds
(sn2k(r)(1 − |∇r |2)) ≤ 2sn2k(r)|II|

√
1 − |∇r |2,

which implies (86).

The above lemma relates the behaviour of |∇r | to that of the second fundamen-
tal form. The next result makes this relation explicit in the two cases considered in
Theorem 2.

Proposition 5 In the assumptions of the above proposition, suppose further that either

(i) ‖II‖L∞(∂Bs ) ≤ C

s logα/2 s
if k = 0 in (9), or

(ii) ‖II‖L∞(∂Bs ) ≤ C√
s logα/2 s

if k > 0 in (9).
(87)

for s ≥ 1 and some constants C > 0 and α > 0. Here, ∂Bs is the boundary of the
intrinsic ball Bs(o). Then, |∇r |(γ (s)) → 1 as s diverges, and if s > 2R and R is
sufficiently large,

in the case (i), 1 − |∇r(γ (s))|2 ≤ Ĉ

logα s

in the case (i i), 1 − |∇r(γ (s))|2 ≤ Ĉ

s logα s

(88)

for some constant Ĉ depending on R.

Proof We begin by observing that, in (87), ∂Bs can be replaced by �s . Indeed, since
r(x) ≤ r(o) + ρ(x), we can choose R large enough depending on r(o), α in such a
way that, for instance in (i),

|II(x)| ≤ C

ρ(x) logα/2 ρ(x)
≤ C1

r(x) logα/2 r(x)

for some absolute C1 and for each r ≥ R. Thus, from (i) and (ii) we infer the bounds

‖II‖L∞(�s ) ≤ C1

s logα/2 s
for (i), ‖II‖L∞(�s ) ≤ C1√

s logα/2 s
for (ii). (89)

Because of (89), up to enlarging R further there exists a uniform constant C2 > 0
such that, on [R,+∞),
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snk(s)|II(γ (s))| ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C1

logα/2 s
≤ C2

d

ds

(
s

logα/2 s

)
if k = 0;

C1snk(s)√
s logα/2 s

≤ C2
d

ds

(
snk(s)√
s logα/2 s

)
if k > 0.

(90)

Integrating on [R, s] and using (86) we get

√
1 − |∇r(γ (s))|2 ≤

⎧
⎪⎪⎨

⎪⎪⎩

C3(R)

s
+ C4

logα/2 s
≤ C5

logα/2 s
if k = 0,

C3(R)

snk(s)
+ C4√

s logα/2 s
≤ C5√

s logα/2 s
if k > 0,

for some absolute constants C4,C5 > 0 and if s > 2R and R is large enough. The
desired (88) follows by taking squares.

We are now ready to conclude the proof of Theorem 2 by showing that M has finite
density or, equivalently, that (85) holds.

Let η(s) be either

1

logα s
when k = 0, or

1

s logα s
when k > 0, (91)

where α > 1 and C is a large constant. In our assumptions, we can apply Lemma 4
and Proposition 5 to deduce, according to (88), that, for large enough R,

1 − |∇r(γ (s))|2 ≤ Cη(s) on (R,+∞),

where γ (s) is a flow curve of� in (84) andC = C(R) is a large constant. In particular,
|∇r(γ (s))| → 1 as s → +∞. We therefore deduce the existence of a constant
C2(R) > 0 such that

sn′
k(s)

snk(s)

∫
�s

[|∇r |−1 − |∇r |]
∫
�s

|∇r | ≤ C
sn′

k(s)

snk(s)
η(s)

∫
�s

|∇r |−1

∫
�s

|∇r | ≤ C2
sn′

k(s)

snk(s)
η(s).

In both our cases k = 0 and k > 0, since α > 1 it is immediate to check that
sn′

kη/snk ∈ L1(+∞), proving (85).
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Appendix 1: Finite total curvature solutions of Plateau’s problem

In this appendix, we show that (smooth) solutions of Plateau’s problem at infinity
Mm → H

n have finite total curvature whenever M is a hypersurface and the boundary
datum � ⊂ ∂∞H

n is sufficiently regular. Consider the Poincaré model of Hn , and let
M → H

n be a proper minimal submanifold. We say that M is Ck,α up to ∂∞H
n if its

closure M in the topology of the closed unit ballHn = H
n ∪∂∞H

n is aCk,α-manifold
with boundary. We begin with a lemma, whose proof have been suggested to the Mari
by Mazet.

Lemma 5 Let ϕ : Mm → H
n be a proper minimal submanifold. If M is of class C2

up to ∂∞H
n, then M has finite total curvature.

Proof The Euclidean metric 〈 , 〉 is related to the Poincaré metric 〈 , 〉 by the formula

〈 , 〉 = λ2〈 , 〉, with λ = 1 − |x |2
2

.

Given a proper, minimal submanifold ϕ : (Mm, g) → (Hn, 〈 , 〉), we associate the
isometric immersion ϕ̄ : (M, (λ2 ◦ ϕ)g) → (Hn, 〈 , 〉), ϕ̄(x)

.= ϕ(x). Fix a local
Darboux frame {ei , eα} on (M, g) for ϕ, with {ei } tangent to M and {eα} in the normal
bundle, and let ēi = ei/λ, ēα = eα/λbe the correspondingDarboux frameon (M, λ2g)
for ϕ̄. Let dV and dV̄ = λmdV be the volume forms of (M, g) and (M, λ2g), and
denote with hα

i j and h̄α
i j the coefficients of the second fundamental forms of ϕ and ϕ̄,

respectively. A standard computation shows that

h̄α
i j = 1

λ
hα
i j − λα

λ
δi j ,

where λα = eα(λ). Evaluating the norms of II and ĪI, since hα
i j is trace-free by

minimality we obtain

|ĪI|2 = λ−2|II|2 + m|∇⊥ log λ|2 ≥ λ−2|II|2,

and thus |ĪI|mdV̄ ≥ |II|mdV . Integrating on M it holds

∫

M
|II|mdV ≤

∫

M
|ĪI|mdV̄ .

However, the last integral is finite since M is C2 up to ∂∞H
n , and thus ϕ has finite

total curvature.

In view of Lemma 5, we briefly survey on some boundary regularity results for
solutions of Plateau’s problem. To the best of our knowledge, we just found regularity
results for hypersurfaces. Let Mm → H

m+1 be a solution of Plateau’s problem for
a compact, (m − 1)-dimensional submanifold �m−1 ⊂ ∂∞H

m+1. Then, a classical
result of Hardt and Lin [29] states that if �m−1 ↪→ ∂∞H

m+1 is properly embedded
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and C1,α , with 0 ≤ α ≤ 1, near � each solution Mm → H
m+1 of Plateau’s problem

is a finite collection of C1,α-manifolds with boundary, which are disjoint except at the
boundary. Therefore, near �, M can locally be described as a graph, and the higher
regularity theory in [38,39,51,52] applies to give the following: if � is C j,α , then M
is C j,α up to ∂∞H

m+1 whenever

– 1 ≤ j ≤ m − 1 and 0 ≤ α ≤ 1, or
– j = m and 0 < α < 1, or
– j ≥ m + 1 and 0 < α < 1 (if m is odd, under a further condition on �).

The reader can consult the statement and references in [39]. In particular, because of
Lemma 5, if� isC2,α for some 0 < α < 1 then M has finite total curvature (provided
that it is smooth).

Appendix 2: The intrinsic monotonicity formula

We conclude by recalling an intrinsic version of the monotonicity formula. To state it,
we permit the following observation due to Donnelly and Garofalo, Proposition 3.6
in [23].

Proposition 6 For k ≥ 0, the function

Vk(s)

vk(s)
is non-decreasing on R

+. (92)

Proof The ratio v′
k/vk is monotone decreasing by the very definition of vk . Then, since

v′
k > 0, the desired monotonicity follows from a lemma at p. 42 of [12].

Proposition 7 (The intrinsic monotonicity formula) Suppose that N has a pole ō and
satisfies (9), and let ϕ : Mm → Nn be a complete, minimal immersion. Suppose that
ō ∈ ϕ(M), and choose o ∈ M be such that ϕ(o) = ō. Then, denoting with ρ the
intrinsic distance function from o and with Bs = {ρ ≤ s},

vol(Bs)

Vk(s)
(93)

is monotone non-decreasing on R+.
Proof We refer to Proposition 3 for definitions and computations. We know that the
function ψ = f ◦ r , with f as in (43), solves �ψ ≥ 1 on M . Integrating on Bs and
using the definition of ψ we obtain

vol(Bs) ≤
∫

Bs
�ψ =

∫

∂Bs
〈∇ψ,∇ρ〉 ≤

∫

∂Bs

Vk(r)

vk(r)
.

Next, since ō = ϕ(o), it holds r(x) ≤ ρ(x) on M . Using then Proposition 6, we
deduce

vol(Bs) ≤ Vk(s)

vk(s)
vol(∂Bs).

Integrating we obtain the monotonicity of the desired (93).
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