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Abstract We study here a singular limit problem for a Navier–Stokes–Korteweg sys-
tem with Coriolis force, in the domain R

2×]0, 1[ and for general ill-prepared initial
data. Taking the Mach and the Rossby numbers proportional to a small parameter
ε → 0, we perform the incompressible and high rotation limits simultaneously; more-
over, we consider both the constant and vanishing capillarity regimes. In this last case,
the limit problem is identified as a 2-D incompressible Navier–Stokes equation in the
variables orthogonal to the rotation axis; if the capillarity is constant, instead, the limit
equation slightly changes, keeping however a similar structure, due to the presence of
an additional surface tension term. In the vanishing capillarity regime, various rates at
which the capillarity coefficient goes to 0 are considered: in general, this produces an
anisotropic scaling in the system. The proof of the results is based on suitable appli-
cations of the RAGE theorem, combined with microlocal symmetrization arguments.
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982 F. Fanelli

1 Introduction

Let us consider, in space dimension d = 3, the Navier–Stokes–Korteweg system

⎧
⎪⎨

⎪⎩

∂tρ + div (ρ u) = 0

∂t (ρ u)+ div (ρ u ⊗ u)+ ∇ P(ρ)+ e3 × ρu − div (μ(ρ) Du)

−κ ρ ∇(σ ′(ρ)�σ(ρ)) = 0,

which describes the evolution of a compressible viscous fluid under the action both of
the surface tension and of the Coriolis force.

In the previous system, the scalar function ρ = ρ(t, x) ≥ 0 represents the density
of the fluid, while u = u(t, x) ∈ R

3 is its velocity field. The function P(ρ) is the
pressure of the fluid, and throughout this paper we will suppose it to be given by the
Boyle law P(ρ) = ργ /γ , for some 1 < γ ≤ 2 (these conditions will be justified in
Sect. 2). The positive functionμ(ρ) represents the viscosity coefficient, the parameter
κ > 0 is the capillarity coefficient and the term σ(ρ) ≥ 0 takes into account the
surface tension. Here, we will always assume (we will motivate this choice below)

μ(ρ) = ν ρ and σ(ρ) = ρ,

for some fixed number ν > 0. Finally, the term

e3 × ρu := (−ρ u2, ρ u1, 0)

represents the Coriolis force, which acts on the system due to the rotation of the Earth.
Here we have supposed that the rotation axis is parallel to the x3-axis and constant.
Notice that this approximation is valid in regionswhich are very far from the equatorial
zone and from the poles, and which are not too extended: in general, the dependence
of the Coriolis force on the latitude should be taken into account (see e.g. works by
Gallagher and Saint-Raymond [14–16]). On the other hand, for simplicity we are
neglecting the effects of the centrifugal force.

Now, taking a small parameter ε ∈ ]0, 1], we perform the scaling t 	→ εt , u 	→ εu,
μ(ρ) 	→ εμ(ρ) and we set κ = ε2α , for some 0 ≤ α ≤ 1. Then, keeping in mind the
assumptions we fixed above, we end up with the system

⎧
⎪⎪⎨

⎪⎪⎩

∂tρε + div (ρεuε) = 0

∂t (ρεuε)+ div (ρεuε ⊗ uε)

+ 1

ε2
∇ P(ρε)+ 1

ε
e3 × ρεuε − νdiv (ρεDuε)− 1

ε2(1−α)
ρε∇�ρε = 0.

(1)

Notice that the previous scaling corresponds to supposing both the Mach number and
the Rossby number to be proportional to ε (see e.g. paper [19], or Chapter 4 of book
[12]). We are interested in studying the asymptotic behavior of weak solutions to the
previous system, in the regime of small ε, namely for ε → 0. In particular, this means
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Highly rotating viscous compressible fluids… 983

that we are performing the incompressible limit, the high rotation limit and, when
α > 0, the vanishing capillarity limit simultaneously.

Many are the mathematical contributions to the study of the effects of fast rotation
on fluid dynamics, under different assumptions (about e.g. incompressibility of the
fluid, about the domain and the boundary conditions…). We refer e.g. to book [8] and
the references therein for an extensive analysis of this problem for incompressible
viscous fluids. In the context of compressible fluids there are, to our knowledge, few
works, dealing with different models: among others that we are going to present more
in detail below, we quote here [4,16] as important contributions.

In the recent paper [11], Feireisl, Gallagher andNovotný studied the incompressible
and high rotation limits together, for the 3-D compressible barotropic Navier–Stokes
system with Coriolis force, in the general instance of ill-prepared initial data. Their
asymptotic result relies on the spectral analysis of the singular perturbation operator:
by use of the celebrated RAGE theorem (see e.g. books [9,28]), they were able to
prove some dispersion properties due to fast rotation, from which they deduced strong
convergence of the velocity fields, and this allowed them to pass to the limit in the
weak formulation of the system. In paper by Feireisl et al. [10], the effect of the
centrifugal force was added to the previous system. Notice that this term scales as
1/ε2; hence, they got interested in both the isotropic and multi-scale limit: namely,
the Mach number was supposed to be proportional to εm , for m = 1 in the former
instance (as in [11]), m > 1 in the latter. Let us just point out that, in the analysis
of the isotropic scaling (i.e. m = 1), they had to resort to compensated compactness
arguments (used for the first time in [15] in the context of rotating fluids) in order to
pass to the limit in the weak formulation: as a matter of fact, the singular perturbation
operator had variable coefficients, and spectral analysis tools were no more available.
In both previousworks [10,11], it is proved that the limit system is a 2-D viscous quasi-
geostrophic equation for the limit density (or, better, for the limit r of the quantities
rε = ε−1 (ρε − 1)), which can be interpreted as a sort of stream-function for the limit
divergence-free velocity field. We remark also that the authors were able to establish
stability (and then uniqueness) for the limit equation under an additional regularity
hypothesis on the limit-point of the initial velocity fields.

The fact that the limit equation is two-dimensional is a common feature in the
context of fast rotating fluids (see for instance book [8]): indeed, it is the expression
of a well-known physical phenomenon, the Taylor–Proudman theorem (see e.g. [27]).
Namely, in the asymptotic regime, the high rotation tends to stabilize the motion,
which becomes constant in the direction parallel to the rotation axis: the fluid moves
along vertical coloumns (the so called “Taylor–Proudman coloumns”), and the flow
is purely horizontal.

Let us come back now to our problem for the Navier–Stokes–Korteweg system (1).
We point out that the general Navier–Stokes–Korteweg system, that we introduced

at the beginning, has beenwidely studied (mostlywith noCoriolis force), under various
choices of the functions μ(ρ) and σ(ρ): one can refer e.g. to papers [7,18,21]. In fact,
this gives rise to many different models, which are relevant, for instance, in the context
of quantum hydrodynamics.

For the previous system supplemented with our special assumptions and with no
rotation term, in [5], Bresch, Desjardins and Lin proved the existence of global in time
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984 F. Fanelli

“weak” solutions. Actually, they had to resort to a modified notion of weak solution:
indeed, any information on the velocity field u and its gradient is lost when the density
vanishes; on the other hand, lower bounds for ρ seem not to be available in the context
of weak solutions. This makes it impossible to pass to the limit in the non-linear terms
when constructing a solution to the system. The authors overcame such an obstruction
choosing test functions whose support is concentrated on the set of positive density:
namely, one has to evaluate the momentum equation not on a classical test function
ϕ, but rather on ρ ϕ, and this leads to a slightly different weak formulation of the
system (see also Definition 2.2 below). This modified formulation is made possible
exploiting additional regularity for ρ, which is provided by the capillarity term: in
fact, a fundamental issue in the analysis of [5] was the proof of the conservation of a
second energy (besides the classical one) for this system, the so called BD entropy,
which allows to control higher order space derivatives of the density term.

Still using this special energy conservation, in [2], Bresch and Desjardins were able
to prove existence of global in time weak solutions (in the classical sense) for a 2-D
viscous shallow water model in a periodic box (we refer also to [3] for the explicit
construction of the sequence of approximate solutions). The system they considered
there is very similar to the previous one, but it presents two additional friction terms: a
laminar friction and a turbolent friction. The latter plays a similar role to the capillarity
(one does not need both to prove compactness properties for the sequence of smooth
solutions), while the former gives integrability properties on the velocity field u: this
is why they did not need to deal with the modified notion of weak solutions. In the
same work [2], the authors were able to consider also the fast rotation limit in the
instance of well-prepared initial data, and to prove the convergence to the viscous
quasi-geostrophic equations (as mentioned above for papers [10,11]). Let us point out
that their argument in passing to the limit relies on the use of the modulated energy
method.

The recent paper [19], by Jüngel, Lin and Wu, deals with a very similar problem:
namely, incompressible and high rotation limit in the two dimensional torus T2 for
well-prepared initial data, but combined also with a vanishing capillarity limit (more
specifically, like in system (1), with 0 < α < 1). On the one hand, the authors were
able to treatmore general forms of theNavier–Stokes–Korteweg system,with different
functions μ(ρ) and σ(ρ); on the other hand, for doing this they had to work in the
framework of (local in time) strong solutions. Again by use of the modulated energy
method, they proved the convergence of the previous system to the viscous quasi-
geostrophic equation: as a matter of fact, due to the vanishing capillarity regime, no
surface tension terms enter into the singular perturbation operator, and the limit system
is the same as in works [2,10,11].

In the present paper, we consider system (1) in the infinite slab � = R
2×]0, 1[ ,

supplemented with complete slip boundary conditions, and with ill-prepared initial
data. Our goal is to study the asymptotic behavior of weak solutions in the regime of
lowMach number and low Rossby number, possibly combining these effects with the
vanishing capillarity limit.

We stress here the following facts. First of all, we do not deal with general viscosity
and surface tension functions: we fix both μ(ρ) and σ(ρ) as specified above. Second
point: we consider a 3-D domain, but we impose complete slip boundary conditions, in
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order to avoid boundary layers effects, whichwewill not treat in this paper. Finally, our
analysis relies on the techniques used in [11], and this allows us to deal with general
ill-prepared initial data, i.e. initial densities (ρ0,ε)ε (of the form ρ0,ε = 1+ εr0,ε) and
initial velocities (u0,ε)ε, both bounded in suitable spaces, which do not necessarily
belong to the kernel of the singular perturbation operator.

For any fixed ε ∈ ]0, 1], the existence of global in time “weak” solutions to our
system can be proved in the sameway as in [5] (see the discussion in Sect. 2.2 for more
details). As a matter of fact, energy methods still work, due to the skew-symmetry of
the Coriolis operator; moreover, a control of the rotation term (but not uniformly in
ε) is easy to get in the BD entropy estimates: this guarantees additional regularity
for the density, and the possibility to prove convergence of the sequence of smooth
solutions to a weak one. However, a uniform control on the higher order derivatives
of the densities is fundamental in our study, in order to pass to the limit for ε → 0. It
can be obtained (see Sect. 3.2) arguing like in the proof of the BD entropy estimates,
but showing a uniform bound for the rotation term. This is the first delicate point of
our analysis: the problem comes from the fact that we have no control on the velocity
fields uε. For the same reason, we resort to the notion of “weak” solution developed
by Bresch, Desjardins and Lin (see Definition 2.2); notice that this leads to handle
new non-linear terms arising in the modified weak formulation of the momentum
equation.

Let us spend now a few words on the limit system (see the explicit expression in
Theorems 2.4 and 2.6), which will be studied in Sect. 3.3. Both for vanishing and
constant capillarity regimes, we still find that the limit velocity field u is divergence-
free and horizontal and depends just on the horizontal variables (in accordance with
the Taylor–Proudman theorem); moreover, a relation links u to the limit density r ,
which can still be seen as a sort of stream-function for u. In the instance of constant
capillarity, this relation slightly changes, giving rise to a more complicated equation
for r (compare Eqs. (11) and (12) below): indeed, a surface tension term enters into
play in the singular perturbation operator, and hence in the limit equation.

We first focus on the vanishing capillarity case, and more precisely on the choice
α = 1 (treated in Sect. 4). Formally, the situation is analogous to the one of paper [11],
and the analysis of Feireisl et al. still applies, after handling some technical points in
order to adapt their arguments to the modified weak formulation. The main issue is
the analysis of acoustic waves: also in this case, we can apply the RAGE theorem to
prove dispersion of the components which are in the subspace orthogonal to the kernel
of the singular perturbation operator. This is the key point in order to pass to the limit
in the non-linear terms, and to get convergence. In the end we find (as in [11]) that
the weak solutions of our system tend to a weak solution of a 2-D quasi-geostrophic
equation (see (11) below).

Let us now turn our attention to the case of constant capillarity, i.e. α = 0 (see
Sect. 5). Here, the capillarity term scales as 1/ε2, so it is of the same order as the
pressure and the rotation operator.As a consequence, the singular perturbation operator
(say)A0 presents an additional term, and it is no more skew-adjoint with respect to the
usual L2 scalar product. However, on the one handA0 has still constant coefficients, so
that spectral analysis iswell-adapted: direct computations show that the point spectrum
still coincides with the kernel of thewave propagator, as in the previous case α = 1. On
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986 F. Fanelli

the other hand, passing in Fourier variables it is easy to find a microlocal symmetrizer
(in the sense of Métivier, see [24]) for our system, i.e. a scalar product with respect
to which A0 is still skew-adjoint: this allows us to apply again the RAGE theorem
with respect to the new scalar product, and to recover the convergence result by the
same techniques as above. We remark that we use here the additional regularity for the
density (the new inner product involves two space derivatives for r ). We also point out
that, for α = 0, the limit equation becomes (12), which presents a similar structure to
the one of (11), but where new terms appear.

The case 0 < α < 1 (see Sect. 6) is technically more complicated, because this
choice introduces an anisotropy of scaling in the system for acoustic waves. We will
need to treat this anisotropy as a perturbation term in the acoustic propagator: also in
this casewe can resort to spectral analysismethods, andwe can symmetrize our system,
but now both the acoustic propagator and the microlocal symmetrizer depend on ε, via
the perturbation term. So, we first need to prove a RAGE-type theorem (see Theorem
6.8) for families of operators and symmetrizers: the main efforts in the analysis are
devoted to this. Then, the proof of the convergence can be performed exactly as in
the previous cases: again, the limit system is identified as the 2-D quasi-geostrophic
equation (11).

Before going on, let us present the organization of the paper.
In the next section we collect our assumptions, and we state our main results.

Besides, we recall the definition of weak solution we adopt in the sequel and we spend
a few words about the existence theory. Some requirements imposed in this definition
are justified by a priori bounds, which we show in Sect. 3; there, we also identify the
weak limits u and r and establish some of their properties. Section 4 is devoted to
the proof of the result for α = 1, while in Sect. 5 we deal with the case α = 0. The
anisotropic scaling 0 < α < 1 is treated in Sect. 6. Finally, we collect in the appendix
some auxiliary results from Littlewood–Paley theory.

2 Main hypotheses and results

This section is devoted to present our main results. First of all, we collect our working
assumptions. Then, we give the definition of weak solutions we will adopt throughout
all the paper, and which is based on the one of [5]. Finally, we state our main theorems
about the asymptotic limit.

2.1 Working setting and main assumptions

We fix the infinite slab

� = R
2 × ]0, 1[

and we consider in R+ ×� the scaled Navier–Stokes–Korteweg system
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + div (ρu) = 0

∂t (ρu)+ div (ρu ⊗ u)+ 1

ε2
∇ P(ρ)+ 1

ε
e3 × ρu − νdiv (ρDu)

− 1

ε2(1−α)
ρ∇�ρ = 0,

(2)

where ν > 0 denotes the viscosity of the fluid, D is the viscous stress tensor defined
by

Du := 1

2
(∇u +t ∇u),

e3 = (0, 0, 1) is the unit vector directed along the x3-coordinate, and 0 ≤ α ≤ 1 is a
fixed parameter. Taking different values of α, we are interested in performing a low
capillarity limit (for 0 < α ≤ 1), with capillarity coefficient proportional to ε2α , or in
leaving the capillarity constant (i.e. choosing α = 0).

We supplement system (2) by complete slip boundary conditions foru andNeumann
boundary conditions for ρ: this allows us to avoid boundary layers effects, which
go beyond the scopes of the present paper and will not be discussed here. If we
denote by n the unitary outward normal to the boundary ∂� of the domain (simply,
∂� = {x3 = 0} ∪ {x3 = 1}), we impose

(u · n)|∂� = u3|∂� = 0, (∇ρ · n)|∂� = ∂3ρ|∂� = 0, ((Du)n × n)|∂� = 0. (3)

In the previous system (2), the scalar function ρ ≥ 0 represents the density of the
fluid, u ∈ R

3 its velocity field, and P(ρ) its pressure, given by the γ -law

P(ρ) := 1

γ
ργ , for some 1 < γ ≤ 2. (4)

The requirement γ ≤ 2 is motivated by the fact that we need, roughly speaking, ρ−1
of finite energy, both for the existence theory and the asymptotic limit. In fact, by point
(i) of Lemma 7.3 in the Appendix, when γ > 2 wemiss the property ρ−1 ∈ L∞

T (L2)

(recall that the pressure term gives informations on the low frequencies of the density).
About the existence theory, notice that no problems of this type appeared in [5], since
the considered domain was bounded; concerning the singular limit analysis, we refer
to estimate (15) and Remark 3.4.

Remark 2.1 Let us point out here that Eqs. (2), supplemented by boundary conditions
(3), can be recast as a periodic problem with respect to the vertical variable, in the new
domain

� = R
2 × T

1, with T
1 := [−1, 1]/ ∼,

where ∼ denotes the equivalence relation which identifies −1 and 1. As a matter of
fact, it is enough to extend ρ and uh as even functions with respect to x3, and u3 as
an odd function: the equations are invariant under such a transformation.
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988 F. Fanelli

In what follows, we will always assume that such modifications have been per-
formed on the initial data, and that the respective solutions keep the same symmetry
properties.

Here we will consider the general instance of ill-prepared initial data (ρ, u)|t=0 =
(ρ0,ε, u0,ε). Namely, we will suppose the following on the family (ρ0,ε, u0,ε)ε>0:

(i) ρ0,ε = 1 + ε r0,ε, with (r0,ε)ε ⊂ H1(�) ∩ L∞(�) bounded;
(ii) (u0,ε)ε ⊂ L2(�) bounded.

Up to extraction of a subsequence, we can suppose that

r0,ε ⇀ r0 in H1(�) and u0,ε ⇀ u0 in L2(�), (5)

where we denoted by⇀ the weak convergence in the respective spaces.

2.2 Weak solutions

In the present paragraph, we define the notion of weak solution for our system: it is
based on the one given in [5]. Essentially, we need to localize the equations on sets
where ρ is positive (see also the discussion in the Sect. 1): this is achieved, formally,
by testing the momentum equation on functions of the form ρψ , where ψ ∈ D is a
classical test function.

First of all, we introduce the internal energy, i.e. the scalar function h = h(ρ) such
that

h′′(ρ) = P ′(ρ)
ρ

= ργ−2 and h(1) = h′(1) = 0 ;

let us define then the energies

Eε[ρ, u](t) :=
∫

�

(
1

ε2
h(ρ)+ 1

2
ρ |u|2 + 1

2 ε2(1−α)
|∇ρ|2

)

dx (6)

Fε[ρ](t) := ν2

2

∫

�

ρ |∇ log ρ|2 dx = 2 ν2
∫

�

∣
∣∇√

ρ
∣
∣2 dx . (7)

We will denote by Eε[ρ0, u0] ≡ Eε[ρ, u](0) and by Fε[ρ0] ≡ Fε[ρ](0) the same
quantities, when computed on the initial data (ρ0, u0).

Here we present the definition. The integrability properties required in points (i)–
(ii)–(v) will be justified by the computations of Sects. 3.1 and 3.2.

Definition 2.2 Fix (ρ0, u0) such that Eε[ρ0, u0] + Fε[ρ0] < +∞.
We say that (ρ, u) is a weak solution to system (2)–(3) in [0, T [ ×� (for some

T > 0) with initial data (ρ0, u0) if the following conditions are fulfilled:

(i) ρ ≥ 0 almost everywhere, ρ − 1 ∈ L∞([0, T [ ; Lγ (�)), ∇ρ and ∇√
ρ ∈

L∞([0, T [ ; L2(�)) and ∇2ρ ∈ L2([0, T [ ; L2(�));
(ii)

√
ρ u ∈ L∞([0, T [ ; L2(�)) and

√
ρ Du ∈ L2([0, T [ ; L2(�));
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(iii) the mass equation is satisfied in the weak sense: for any φ ∈ D([0, T [ ×�) one
has

−
∫ T

0

∫

�

(ρ ∂tφ + ρ u · ∇φ) dx dt =
∫

�

ρ0 φ(0) dx; (8)

(iv) the momentum equation is verified in the following sense: for any ψ ∈
D([0, T [×�) one has
∫

�

ρ20u0 · ψ(0) dx =
∫ T

0

∫

�

(

−ρ2u · ∂tψ − ρu ⊗ ρu : ∇ψ+ρ2 (u · ψ) div u

− γ

ε2(γ + 1)
P(ρ)ρ divψ + 1

ε
e3 × ρ2u · ψ + νρDu : ρ∇ψ +

+νρDu : (ψ ⊗ ∇ρ)+ 1

ε2(1−α)
ρ2�ρ divψ+ 2

ε2(1−α)
ρ�ρ∇ρ · ψ

)

dx dt;
(9)

(v) for almost every t ∈ ]0, T [ , the following energy inequalities hold true:

Eε[ρ, u](t)+ ν

∫ t

0

∫

�

ρ |Du|2 dx dτ ≤ Eε[ρ0, u0]

Fε[ρ](t)+ ν

ε2

∫ t

0

∫

�

P ′(ρ) |∇√
ρ|2 dx dτ

+ ν

ε2(1−α)

∫ t

0

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2

dx dτ ≤ C (1 + T ),

for some constant C depending just on (Eε[ρ0, u0], Fε[ρ0], ν).
Remark 2.3 Notice that, under our hypotheses (recall points (i)–(ii) in Sect. 2.1), the
energies of the initial data are uniformly bounded with respect to ε:

Eε[ρ0,ε, u0,ε] + Fε[ρ0,ε] ≤ K0,

where the constant K0 > 0 is independent of ε.

Let us spend a few words on existence of weak solutions to our equations.

Existence of weak solutions.We sketch here the proof of existence of global in time
weak solutions to our system, in the sense specified by Definition 2.2. The main point
is the construction of a sequence of smooth approximate solutions, which respect the
energy and BD entropy estimates we will establish in Propositions 3.1, 3.2 and 3.3.
This can be done arguing as in paper [3] by Bresch and Desjardins (see also [25,26]):
namely we have to introduce regularizing terms, both for u and ρ, in the momentum
equations, depending on small parameters that we will let vanish in a second moment.

Before presenting the details, let us remark that, in [3], the construction is performed
for a shallow water system with two additional drag terms: a laminar friction and a
turbulent friction. As remarked there, the former item is needed to have integrability
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properties for the velocity field, while the latter plays a role analogous to capillarity
in stability analysis, and one do not need both of them to recover existence of weak
solutions. In any case, precisely due to the laminar friction (which could be also
replaced by a so-called “cold pressure” term), one can get back to the classical notion
of weak solutions; on the contrary, in our case, since we miss integrability properties
for u, we have to resort to the modified notion of Definition 2.2, the problem relying
in proving compactness of the sequence of approximate solutions.

We also point out that this construction works in the simplest case when the density
dependent viscosity coefficient and the surface tension term are taken linear in ρ. For
the general equations written at the beginning of the Sect. 1, the explicit construction of
smooth approximate solutions, which respect the BD entropy structure of the system,
is much more complicated, and deep advances have been obtained just recently. In the
matter of this, we refer e.g. to works [6,22,29,30].

Let us come back to the explicit construction. The parameter ε > 0 is kept fixed
at this level: for any ε, we want to construct a weak solution (ρε, uε) to system (2).
Let us take two additional small parameters δ > 0 and η > 0, and let us consider the
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tρ + div (ρu) = 0

∂t (ρu)+ div (ρu ⊗ u)+ 1

ε2
∇ P(ρ)+ 1

ε
e3 × ρu−

−νdiv (ρDu)− 1

ε2(1−α)
ρ∇�ρ = δρ∇�2s+1ρ − δ∇π(ρ)− η�2u.

(10)

The hypercapillarity ρ∇�2s+1ρ (for some s > 2 large enough) is needed to smooth
out the density function; the artificial “cold pressure” π(ρ) = −ρ−3 serves to keep
it bounded away from 0. Finally, the hyperviscosity term �2u helps to regularize the
velocity field.

Therefore, for any fixed positive δ and η, system (10) becomes parabolic in u,
and then it admits a unique global solution (ρε,δ,η, uε,δ,η). Furthermore, as observed
in [3], the new terms are compatible with the mathematical structure of the original
equations, so that one can find uniform (with respect to (δ, η) parameters) energy and
BD entropy estimates. For the explicit estimates and a proof of them, we refer to Sects.
3.1 and 3.2.

Now, the first step is to pass to the limit for η → 0: this can be done as in Subsection
2.3 of [3]. Notice that we can still recover compactness of the velocity fields thanks
to the uniform (in η but not in δ) upper and lower bounds for ρ. In this way, we get a
solution (ρε,δ, uε,δ) to Eq. (10) supplemented with the choice η = 0. Then, the final
step consists in passing to the limit also for δ → 0: as remarked above, we have to
work with the modified weak formulation of Definition 2.2, for which the stability
analysis performed in [5] applies. We refer to [3,25] for more details.

In the endwe have proved that, under the hypotheses fixed in Sect. 2.1, for any initial
datum (ρ0,ε, u0,ε) there exists a global weak solution (ρε, uε) to problem (2)–(3) in
R+ ×�, in the sense specified by Definition 2.2 above.
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2.3 Main results

We are interested in studying the asymptotic behaviour of a family of weak solutions
(ρε, uε)ε to system (2) for the parameter ε → 0. As we will see in a while (see
Theorems 2.4 and 2.6), one of the main features is that the limit-flow will be two-
dimensional and horizontal along the plane orthogonal to the rotation axis.

Then, let us introduce some notations to describe better this phenomenon. We will
always decompose x ∈ � into x = (xh, x3), with xh ∈ R

2 denoting its horizontal
component. Analogously, for a vector-field v = (v1, v2, v3) ∈ R

3 we set vh =
(v1, v2), and we define the differential operators ∇h and divh as the usual operators,
but acting just with respect to xh . Finally, we define the operator ∇⊥

h := (−∂2, ∂1).
We can now state our main result in the vanishing capillarity case. The particular

choice of the pressure law, i.e. γ = 2, will be commented in Remark 3.4.

Theorem 2.4 Let us take 0 < α ≤ 1 in (2) and γ = 2 in (4).
Let (ρε, uε)ε be a family of weak solutions to system (2)–(3) in [0, T ] × �, in the

sense of Definition 2.2, related to initial data (ρ0,ε, u0,ε)ε satisfying the hypotheses
(i)–(ii) and (5), and the symmetry assumptions of Remark 2.1. Let us define the scalar
quantity rε := ε−1(ρε − 1).

Then, up to the extraction of a subsequence, one has the following properties:

(a) rε ⇀ r in L∞([0, T ]; L2(�)) ∩ L2([0, T ]; H1(�));
(b)

√
ρε uε ⇀ u in L∞([0, T ]; L2(�))and

√
ρε Duε ⇀ Du in L2([0, T ]; L2(�));

(c) rε → r and ρ3/2ε uε → u (strong convergence) in L2([0, T ]; L2
loc(�)),

where r = r(xh) and u = (uh(xh), 0) are linked by the relation uh = ∇⊥
h r . Moreover,

r satisfies (in the weak sense) the quasi-geostrophic type equation

∂t (r − �hr)+ ∇⊥
h r · ∇h�hr + ν

2
�2

hr = 0 (11)

supplemented with the initial condition r|t=0 = r0, where r0 ∈ H1(R2) is the unique
solution of

(Id −�h) r0 =
∫ 1

0
(ω3

0 + r0) dx3,

with r0 and u0 which are defined in (5), ω0 = ∇ × u0 which is the vorticity of u0 and
ω3
0 its third component.

Remark 2.5 Let us point out that, the limit equation being the same, the uniqueness
criterion given in Theorem 1.3 of [11] still holds true under our hypothesis.

Then, if ω3
0 ∈ L2(�), the solution r to Eq. (11) is uniquely determined by the

initial condition in the subspace of distributions such that∇hr ∈ L∞(R+; H1(R2)) ∩
L2(R+; Ḣ2(R2)), and the whole sequence of weak solutions converges to it.

Let us now turn our attention to the case α = 0, i.e. when the capillarity coefficient
is taken to be constant.
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Theorem 2.6 Let us take α = 0 in (2) and 1 < γ ≤ 2 in (4).
Let (ρε, uε)ε be a family of weak solutions to system (2)–(3) in [0, T ] × �, in the

sense of Definition 2.2, related to initial data (ρ0,ε, u0,ε)ε satisfying the hypotheses
(i)− (ii) and (5), and the symmetry assumptions of Remark 2.1. We define rε :=
ε−1 (ρε − 1), as before.

Then, up to the extraction of a subsequence, one has the convergence properties

(a*) rε ⇀ r in L∞([0, T ]; H1(�)) ∩ L2([0, T ]; H2(�))

and the same (b) and (c) stated in Theorem 2.4, where, this time, r = r(xh) and u =
(uh(xh), 0) are linked by the relation uh = ∇⊥

h (Id −�h) r . Moreover, r solves(in
the weak sense) the modified quasi-geostrophic equation

∂t (r − �hr +�2
hr)+ ∇⊥

h (Id −�h)r · ∇h�
2
hr + ν

2
�2

h(Id −�h)r = 0 (12)

supplemented with the initial condition r|t=0 = r̃0, where r̃0 ∈ H3(R2) is the unique
solution of

(Id −�h +�2
h) r̃0 =

∫ 1

0
(ω3

0 + r0) dx3.

3 Preliminaries and uniform bounds

The present section is devoted to stating the main properties of the family of weak
solutions of Theorems 2.4 and 2.6.

First of all, we prove energy and BD entropy estimates for our system, uniformly
with respect to the parameter ε. This will justify the properties required in Definition
2.2. From them, we will infer additional uniform bounds and further properties the
family (ρε, uε)ε enjoys. Finally, we will derive some constraints on its weak limit.

3.1 Energy and BD entropy estimates

Suppose that (ρ, u) is a smooth solution to system (2) in [0, T [ ×� (for some T > 0),
related to the smooth initial datum (ρ0, u0).

The first energy estimate, involving Eε, is obtained in a standard way.

Proposition 3.1 Let (ρ, u) be a smooth solution to system (2) in [0, T [ ×�, with
initial datum (ρ0, u0), for some positive time T > 0.

Then, for all ε > 0 and all t ∈ [0, T [ , one has

d

dt
Eε[ρ, u] + ν

∫

�

ρ |Du|2 dx = 0.

Proof First of all, we multiply the second relation in system (2) by u: by use of the
mass equation and due to the fact that e3 × ρu is orthogonal to u, we arrive at the
identity:
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1

2

d

dt

∫

�

ρ |u|2 dx + 1

ε2

∫

�

P ′(ρ)∇ρ · u dx

+ν
∫

�

ρ Du : ∇u dx + 1

2 ε2(1−α)
d

dt

∫

�

|∇ρ|2 dx = 0.

On the one hand, we have the identity Du : ∇u = |Du|2; on the other hand, multi-
plying the equation for ρ by h′(ρ)/ε2 gives

1

ε2

∫

�

P ′(ρ)∇ρ · u dx = 1

ε2

d

dt

∫

�

h(ρ) dx .

Putting this relation into the previous one concludes the proof of the proposition. ��

Let us now consider the function Fε: we have the following estimate.

Proposition 3.2 Let (ρ, u) be a smooth solution to system (2) in [0, T [ ×�, with
initial datum (ρ0, u0), for some positive time T > 0.

Then there exists a “universal” constant C > 0 such that, for all t ∈ [0, T [ , one
has

1

2

∫

�

ρ(t) |u(t)+ ν ∇ log ρ(t)|2 dx + ν

ε2(1−α)

∫ t

0

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2

dx dτ +

+ 4ν

ε2

∫ t

0

∫

�

P ′(ρ)
∣
∣∇√

ρ
∣
∣2 dx dτ ≤ C(Fε[ρ0] + Eε[ρ0, u0])

+ν

ε

∣
∣
∣
∣

∫ t

0

∫

�

e3 × u · ∇ρ dx dτ

∣
∣
∣
∣ . (13)

Proof We will argue as in Section 3 of [5]. First, by Lemma 2 of that paper we have
the identity

1

2

d

dt

∫

�

ρ |∇ log ρ|2 +
∫

�

∇div u · ∇ρ +
∫

�

ρ Du : ∇ log ρ ⊗ ∇ log ρ = 0. (14)

Next, we multiply the momentum equation by ν ∇ρ/ρ and we integrate over �:
we find

ν

∫

�

(∂t u + u · ∇u) · ∇ρ + ν2
∫

�

Du :
(

∇2ρ − 1

ρ
∇ρ ⊗ ∇ρ

)

+ ν

ε

∫

�

e3 × u · ∇ρ + ν

ε2(1−α)

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2 + 4 ν

ε2

∫

�

P ′(ρ)
∣
∣∇√

ρ
∣
∣2 = 0.
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Now we add (14), multiplied by ν2, to this last relation, getting

ν2

2

d

dt

∫

�

ρ |∇ log ρ|2 + ν

ε2(1−α)

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2 + 4ν

ε2

∫

�

P ′(ρ)
∣
∣∇√

ρ
∣
∣2

+ν

ε

∫

�

e3 × u · ∇ρ

= − ν

∫

�

∂t u · ∇ρ − ν2
∫

�

∇div u · ∇ρ − ν

∫

�

(u · ∇u) · ∇ρ

− ν2
∫

�

Du : ∇2ρ.

Using the mass equation and the identities

−
∫

�

u · ∇div (ρu) −
∫

�

(u · ∇u) · ∇ρ =
∫

�

ρ∇u : t∇u

−
∫

�

∇div u · ∇ρ −
∫

�

Du : ∇2ρ = 0

we end up with the equality

d

dt
Fε + ν

ε2(1−α)

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2

dx + 4ν

ε2

∫

�

P ′(ρ)
∣
∣∇√

ρ
∣
∣2 dx

+ ν

ε

∫

�

e3 × u · ∇ρ dx = − ν
d

dt

∫

�

u · ∇ρ dx + ν

∫

�

ρ ∇u : t∇u dx .

We notice that this relation can be rewritten in the following way:

1

2

d

dt

∫

�

ρ |u+ν ∇ log ρ|2 dx+ ν

ε2(1−α)

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2

dx+ 4ν

ε2

∫

�

P ′(ρ)
∣
∣∇√

ρ
∣
∣2 dx

+ ν

ε

∫

�

e3 × u · ∇ρ dx = 1

2

d

dt

∫

�

ρ |u|2 dx + ν

∫

�

ρ ∇u : t∇u dx .

Now we integrate with respect to time and we use Proposition 3.1. ��
Observe that, writing e3 × u · ∇ρ = 2 e3 × (√

ρu
) · ∇√

ρ and using Young’s
inequality and Proposition 3.1, one can control the last term in (13) and bound the
quantity

Fε[ρ](t)+ ν

ε2(1−α)

∫ t

0

∫

�

∣
∣
∣∇2ρ

∣
∣
∣
2

dx dτ + ν

ε2

∫ t

0

∫

�

P ′(ρ)
∣
∣∇√

ρ
∣
∣2 dx dτ.

Such a bound is enough to get additional regularity for the sequence of smooth approx-
imate densities when constructing a weak solution, but it is not uniform with respect
to ε: so it is not suitable to fully exploit the BD entropy structure of the system in our
study.
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Nonetheless, in Proposition 3.3 belowwe are going to show that, under our assump-
tions, it is possible to control the right-hand side of (13) in a uniform way with respect
to ε. This is a key point in order to prove our results.

3.2 Uniform bounds

Now, we are going to establish uniform properties the family (ρε, uε) satisfies.
First of all, by Proposition 3.1 and Remark 2.3, we infer the following properties:

• (ε−2 h(ρε)
)

ε
⊂ L∞(R+; L1(�)) is bounded;

• (√ρε uε
)

ε
is bounded in L∞(R+; L2(�));

• (√ρε Duε
)

ε
is a bounded subset of L2(R+; L2(�));

• (∇ρε)ε ⊂ L∞(R+; L2(�)), with

‖∇ρε‖L∞(R+;L2(�)) ≤ C ε1−α,

for some positive constant C .

Furthermore, arguing as in the proof to Lemma 2 of [19], from the uniform bound
on the internal energy h we infer the control

‖ρε − 1‖L∞(R+;Lγ (�)) ≤ C ε.

In particular, under our assumptions on α and γ , we always find (see point (i) of
Lemma 7.3)

‖ρε − 1‖L∞(R+;L2(�)) ≤ C ε. (15)

Now, as announced above, we are going to show how to derive, under our assump-
tions, BD entropy bounds which are uniform in ε. Of course, all the computations are
justified for smooth functions: however, by a standard approximation procedure, the
final bounds will be fulfilled also by the family of weak solutions.

Proposition 3.3 Let (ρ0,ε, u0,ε)ε be a family of initial data satisfying the assumptions
(i)–(ii) of Sect.2.1, and let (ρε, uε)ε be a family of corresponding weak solutions.

Then there exist an ε0 > 0 and a constant C > 0 (depending just on the constant
K0 of Remark 2.3 and on the viscosity coefficient ν) such that the inequality

Fε[ρε](t)+ ν

ε2

∫ t

0

∫

�

P ′(ρε) |∇√
ρε|2 dx dτ + ν

ε2(1−α)

∫ t

0

∫

�

∣
∣
∣∇2ρε

∣
∣
∣
2

dx dτ

≤ C (1 + t)

holds true for any t > 0 and for all 0 < ε ≤ ε0.

Proof Our starting point is the inequality stated in Proposition 3.2: we have to control
the last term in its right-hand side. For convenience, let us omit for a while the index
ε in the notation.
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First of all, we can write

∫

�

e3 × u · ∇ρ =
∫

�

ρ(γ−1)/2 e3 × u · ∇ρ +
∫

�

(
1 − ρ(γ−1)/2

)
e3 × u · ∇ρ

= 2
∫

�

e3 × (√ρ u
) · ∇√

ρ ρ(γ−1)/2 +
∫

�

(
1 − ρ(γ−1)/2

)
e3

×u · ∇ρ.

Now we focus on the last term: integrating by parts we get

∫

�

(
1 − ρ(γ−1)/2

)
e3 × u · ∇ρ =

∫

�

ρ ω3
(
1 − ρ(γ−1)/2

)

+γ − 1

2

∫

�

ρ(γ−1)/2 e3 × u · ∇ρ,

where we denoted by ω = ∇ × u the vorticity of the fluid. Therefore, we find

∫

�

e3 × u · ∇ρ=(γ + 1)
∫

�

e3 × (√ρ u
) · ∇√

ρ ρ(γ−1)/2+
∫

�

ρ ω3
(
1−ρ(γ−1)/2

)
.

Let us deal with the first term: we have

ν

ε

∣
∣
∣
∣

∫ t

0

∫

�

e3 × (√ρ u
) · ∇√

ρ ρ(γ−1)/2
∣
∣
∣
∣ ≤ ν

ε

∫ t

0

∥
∥√ρ u

∥
∥

L2

∥
∥
∥ρ

(γ−1)/2 ∇√
ρ

∥
∥
∥

L2

≤ C ν t + ν

2 ε2

∫ t

0

∥
∥
∥ρ

(γ−1)/2 ∇√
ρ

∥
∥
∥
2

L2
,

(16)

where we have used the uniform bounds for (
√
ρε uε)ε and Young’s inequality. Notice

that, as P ′(ρ) = ργ−1, the last term can be absorbed in the left-hand side of (13).
Nowweconsider the term involving the vorticity.Notice that, since 0 < (γ−1)/2 ≤

1/2, we can bound |ρ(γ−1)/2−1|with |ρ−1|; then, using also the established uniform
bounds, we get

ν

ε

∣
∣
∣
∣

∫ t

0

∫

�

ρ ω3
(
1 − ρ(γ−1)/2

)∣∣
∣
∣ ≤ ν

ε

∫ t

0
‖ρ − 1‖L2

∥
∥√ρ Du

∥
∥

L2 ‖ρ‖1/2L∞

≤ C ν

(∫ t

0
‖ρ‖L∞

)1/2

.

In order to control the L∞ norm of the density, we write ρ = 1 + (ρ − 1): for the
second term we use Lemma 7.3 with p = 2 and δ = 1/2. Keeping in mind also

123



Highly rotating viscous compressible fluids… 997

estimate (15), we get

C ν

(∫ t

0
‖ρ‖L∞

)1/2

≤ C ν

(∫ t

0

(
1 +

∥
∥
∥∇2ρ

∥
∥
∥

L2

))1/2

≤ C ν

2
(1 + t)+ C ν

2

∫ t

0

∥
∥
∥∇2ρ

∥
∥
∥

L2

≤ C ′ ν (1 + t)+ ν

4

∫ t

0

∥
∥
∥∇2ρ

∥
∥
∥
2

L2
,

where we used twice Young’s inequality. Hence, in the end we obtain

ν

ε

∣
∣
∣
∣

∫ t

0

∫

�

ρ ω3
(
1 − ρ(γ−1)/2

)∣∣
∣
∣ ≤ C ν (1 + t)+ Cε

ν

ε2(1−α)
∥
∥
∥∇2ρ

∥
∥
∥
2

L2
t (L2)

, (17)

with Cε = ε2(1−α)/4. Then, for any α ∈ [0, 1] we can absorb the last term of this
estimate into the left-hand side of (13).

Therefore, thanks to inequalities (16) and (17), combined with (13), we get the
result. ��
Remark 3.4 Theapproachwe followed seems to suggest that having‖ρε−1‖L∞

T (L2) ∼
O(ε) is necessary to control the term coming from rotation in (13) and so to close the
estimates (see in particular the bounds for the term involving vorticity).

This is the only (technical) reason for which we assumed γ = 2 when 0 < α ≤ 1
(low capillarity limit), while for α = 0 (constant capillarity case) we can take more
general pressure laws, namely any 1 < γ ≤ 2, since we still have inequality (15).

By the bounds established in Proposition 3.3, we infer also the following properties:

• (√ρε ∇ log ρε
)

ε
is bounded in the space L∞

loc(R+; L2(�));

•
(
ε−1 ρ

(γ−1)/2
ε ∇√

ρ
ε

)

ε
⊂ L2

loc(R+; L2(�)) bounded;

• (ε−(1−α) ∇2ρε
)

ε
is bounded in L2

loc(R+; L2(�)).

In particular, from the last fact combined with estimate (15) and Lemma 7.3, we also
gather that, for any fixed positive time T ,

‖ρε − 1‖L2([0,T ];L∞(�)) ≤ CT ε1−α, (18)

where we denote by CT a quantity proportional (for some “universal” constant) to
1 + T .

Note that, thanks to the equality
√
ρ ∇ log ρ = 2∇√

ρ, from the previous bounds
we get also that

(∇√
ρε
)

ε
is bounded in L∞([0, T ]; L2(�)), for any T > 0 fixed.

Let us also remark that we have a nice decay of the first derivatives of ρε even in
the low capillarity regime: namely, for 0 < α ≤ 1 (and then γ = 2), one has

‖∇ρε‖L2
T (L

2) ≤ CT ε (19)
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for any T > 0 fixed (see the second point of the previous list of bounds). Notice that
the constant CT does not depend on α (recall Proposition 3.3).

Finally, let us state an important property on the quantity D(ρ3/2ε uε). First of all,
we write

D(ρ3/2ε uε) = ρε
√
ρε Duε + 3

2
√
ρε uε Dρε

= √
ρε Duε + (ρε − 1)

√
ρε Duε + 3

2
√
ρε uε Dρε. (20)

The first term in the right-hand side clearly belongs to L2
T (L

2), while, by uniform
bounds and Sobolev embeddings, the second and the third ones are uniformly bounded
in L2

T (L
3/2). Therefore, we infer that (D(ρ3/2ε uε))ε is a uniformly bounded family in

L2
T (L

2 + L3/2).

3.3 Constraints on the limit

As specified in the introduction,wewant to study theweak limit of the family (ρε, uε)ε,
i.e. we want to pass to the limit for ε → 0 in Eqs. (8)–(9) when computed on (ρε, uε).

The present paragraph is devoted to establishing some properties the weak limit
has to satisfy.

By uniform bounds, seeing L∞ as the dual of L1, we infer, up to extraction of
subsequences, the weak convergences

√
ρε uε

∗
⇀ u in L∞(R+; L2(�))√

ρε Duε ⇀ U in L2(R+; L2(�)).

Here
∗
⇀ denotes the weak-∗ convergence in L∞(R+; L2(�)).

On the other hand, thanks to the estimates for the density, we immediately deduce
that ρε → 1 (strong convergence) in L∞(R+; L2(�)), with convergence rate of order
ε. So, we can write ρε = 1+ ε rε, with the family (rε)ε bounded in L∞(R+; L2(�)),
and then (up to an extraction) weakly convergent to some r in this space.

Notice that, in the case α = 0, we know that actually (ρε)ε strongly converges to
1 in the space L∞(R+; H1(�)) ∩ L2

loc(R+; H2(�)), still with rate O(ε). Then we
infer also that

rε ⇀ r in L∞(R+; H1(�)) ∩ L2
loc(R+; H2(�)). (21)

In the case 0 < α ≤ 1, thanks to (19) we gather instead that

rε ⇀ r in L2
loc(R+; H1(�)). (22)

Notice also that, as expected, one has U = Du, and then u ∈ L2(R+; H1(�)). As
a matter of fact, consider Eq. (20): using again the trick ρε = 1 + (ρε − 1) together
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with (15), it is easy to check that

D(ρ3/2ε uε) −→ Du in D′.

On the other hand, the bounds (15) and (19) imply that the right-hand side of (20)
weakly converges to U , and this proves our claim.

Let us also point out that

ρε uε ⇀ u in L2([0, T ]; L2(�)). (23)

In fact, we can write ρεuε = √
ρεuε + (√ρε − 1

)√
ρεuε. By

∣
∣√ρε − 1

∣
∣ ≤ |ρε − 1|

and Sobolev embeddings, we get that the second term in the right-hand side converges
strongly to 0 in L∞([0, T ]; L1(�) ∩ L3/2(�)) ∩ L2([0, T ]; L2(�)).

Exactly in the same way, we find that

ρε Duε ⇀ Du in L1([0, T ]; L2(�)) ∩ L2([0, T ]; L1(�) ∩ L3/2(�)). (24)

We conclude this part by proving the following proposition, which can be seen as
the analogue of the Taylor–Proudman theorem in our context.

Proposition 3.5 Let (ρε, uε)ε be a family of weak solutions (in the sense of Definition
2.2 above) to system (2)–(3), with initial data (ρ0,ε, u0,ε) satisfying the hypotheses
fixed in Sect.2. Let us define rε := ε−1 (ρε − 1), and let (r, u) be a limit point of the
sequence (rε, uε)ε.

Then r = r(xh) and u = (uh(xh), 0), with divhuh = 0. Moreover, r and u are
linked by the relation

{
uh = ∇⊥

h r if 0 < α ≤ 1
uh = ∇⊥

h (Id −�)r if α = 0.

Proof Let us consider first the mass equation in the (classical) weak formulation, i.e.
(8): writing ρε = 1 + ε rε as above, for any φ ∈ D([0, T [ ×�) we have

− ε

∫ T

0

∫

�

rε ∂tφ −
∫ T

0

∫

�

ρε uε · ∇φ = ε

∫

�

r0,ε φ(0).

Letting ε → 0, we deduce that
∫ T
0

∫

�
u · ∇φ = 0, which implies

div u ≡ 0 almost everywhere in [0, T ] ×�. (25)

After that, we turn our attention to the (modified) weak formulation of the momen-
tum equation, given by (9): we multiply it by ε and we pass to the limit ε → 0. By
uniform bounds, it is easy to see that the only integrals which do not go to 0 are the ones
involving the pressure, the rotation and the capillarity: let us analyse them carefully.
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First of all, let us deal with the pressure term: we rewrite it as

1

ε

∫ T

0

∫

�

∇ P(ρε) · ρε ψ = 1

ε

∫ T

0

∫

�

∇ P(ρε) · (ρε − 1) ψ + 1

ε

∫ T

0

∫

�

∇ P(ρε) · ψ

=
∫ T

0

∫

�

rε ρ
γ−1
ε ∇ρε · ψ + 1

ε

∫ T

0

∫

�

∇ P(ρε) · ψ.

Using the boundedness of (rε)ε in L∞
T (L2) and the strong convergence of ∇ρε → 0

in L∞
T (L2) and (as 0 < γ − 1 ≤ 1) of ργ−1

ε → 1 in L2
T (L

∞), one infers that the
former term of the last equality goes to 0. The latter, instead, can be rewritten in the
following way:

1

ε

∫ T

0

∫

�

∇ P(ρε) · ψ = −1

ε

∫ T

0

∫

�

(P(ρε)− P(1)− P ′(1) (ρε − 1))divψ

+1

ε
P ′(1)

∫ T

0

∫

�

∇ρε · ψ.

Notice that the quantity P(ρε) − P(1) − P ′(1) (ρε − 1) coincides, up to a factor
1/(γ − 1), with the internal energy h(ρε): since h(ρε)/ε2 is bounded in L∞

T (L1) (see
Sect. 3.2), the first integral tends to 0 for ε → 0. Finally, thanks also to bounds (21)
and (22), we find

1

ε

∫ T

0

∫

�

∇ P(ρε) · ρε ψ −→
∫ T

0

∫

�

∇r · ψ.

We now consider the rotation term: by (23) and the strong convergence ρε → 1 in
L∞

T (L2), we immediately get

∫ T

0

∫

�

e3 × ρ2ε uε · ψ −→
∫ T

0

∫

�

e3 × u · ψ.

Finally, we deal with the capillarity terms: on the one hand, thanks to the uniform
bounds for (ε−(1−α) ∇ρε)ε and (ε−(1−α) ∇2ρε)ε, we get

2 ε

ε2(1−α)

∫ T

0

∫

�

ρε �ρε ∇ρε · ψ −→ 0.

On the other hand, splitting ρ2ε = 1 + (ρε − 1) (ρε + 1) and using uniform bounds
again, one easily gets that the quantity

ε

ε2(1−α)

∫ T

0

∫

�

ρ2ε �ρε divψ = εα

ε1−α

∫ T

0

∫

�

ρ2ε �ρε divψ

converges to 0 in the case 0 < α ≤ 1, while it converges to
∫ T
0

∫

�
�r divψ in the

case α = 0.
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Let us now restrict for a while to the case α = 0. To sum up, in the limit ε → 0,
the equation for the velocity field (tested against ε ρε ψ) gives the constraint

e3 × u + ∇r̃ = 0, with r̃ := r − �r. (26)

This means that
⎧
⎪⎨

⎪⎩

∂1̃r = u2

∂2̃r = − u1

∂3̃r = 0,

which immediately implies that r̃ = r̃(xh) depends just on the horizontal variables.
From this, it follows that also uh = uh(xh).

Moreover, from the previous system we easily deduce that

divh uh = 0, (27)

which, together with (25), entails that ∂3u3 ≡ 0. Due to the complete slip boundary
conditions, we then infer that u3 ≡ 0 almost everywhere in [0, T ] ×�.

In the end, we have proved that the limit velocity field u is two-dimensional, hori-
zontal and divergence-free.

Finally, let us come back to r : by what we have said before, ∂3r fulfills the elliptic
equation

−�∂3r + ∂3r = 0 in �.

By passing to Fourier transform in R
2 × T

1, or by energy methods (because ∂3r ∈
L∞

T (H1)), or by spectral theory (since the Laplace operator has only positive eigen-
values), we find that

∂3r ≡ 0 �⇒ r = r(xh). (28)

The same arguments as above also apply when 0 < α ≤ 1, working with r itself
instead of r̃ . Notice that the property r = r(xh) is then straightforward, because of
the third equation in (26).

The proposition is now completely proved. ��

4 Vanishing capillarity limit: the case α = 1

In this section we restrict our attention to the vanishing capillarity limit, and we prove
Theorem 2.4 in the special (and simpler) case α = 1. In fact, when 0 < α < 1 the
system presents an anisotropy in ε, which requires a modification of the arguments of
the proof: we refer to Sect. 6 for the analysis.

We first study the propagation of acoustic waves, from which we infer (by use of
the RAGE theorem) the strong convergence of the quantities (rε)ε and (ρ

3/2
ε uε)ε in

L2
T (L

2
loc(�)). We are then able to pass to the limit in the weak formulation (8)–(9),

and to identify the limit system.
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4.1 Analysis of the acoustic waves

The present paragraph is devoted to the analysis of the acoustic waves. The main goal
is to apply the well-known RAGE theorem to prove dispersion of the components of
the solutions which are orthogonal to the kernel of the singular perturbation operator.

We shall follow the analysis performed in [11].

4.1.1 The acoustic propagator

First of all, we rewrite system (2) in the form

{
ε ∂t rε + div Vε = 0

ε ∂t Vε + (e3 × Vε + ∇rε) = ε fε,
(29)

where we have defined Vε := ρε uε and

fε := − div (ρεuε ⊗ uε)+ ν div (ρεDuε)

− 1

ε2
∇(P(ρε)− P(1)− P ′(1) (ρε − 1))+ ρε ∇�ρε. (30)

Of course, system (29) has to be read in the weak sense specified by Definition 2.2:
for any scalar φ ∈ D([0, T [ ×�) one has

− ε

∫ T

0

∫

�

rε ∂tφ dx dt −
∫ T

0

∫

�

Vε · ∇φ dx dt = ε

∫

�

r0,ε φ(0) dx,

and, for any ψ ∈ D([0, T [ ×�) with values in R3,

∫ T

0

∫

�

(− ε Vε · ∂t (ρεψ)+ ρεe
3 × Vε · ψ − rε div(ρεψ))

= ε

∫

�

ρ20,ε u0,ε ψ(0)+ ε

∫ T

0
〈 fε, ρεψ〉,

where we have set

〈 fε, ζ 〉 :=
∫

�

(ρεuε ⊗ uε : ∇ζ − ν ρεDuε : ∇ζ − �ρε ∇ρε · ζ −

− ρε �ρε div ζ + 1

ε2
(P(ρε)− P(1)− P ′(1) (ρε − 1))div ζ )dx

=
∫

�

( f 1ε : ∇ζ + f 2ε : ∇ζ + f 3ε · ζ + f 4ε div ζ + f 5ε div ζ ) dx .

Since (
√
ρεuε)ε ⊂ L∞

T (L2) and f 5ε ∼ h(ρε), uniform bounds imply that ( f 1ε )ε and
( f 5ε )ε are uniformly bounded in L∞

T (L1). Since ∇ρε ∈ L∞
T (L2) and ∇2ρε ∈ L2

T (L
2)

are uniformly bounded, we get that ( f 3ε )ε ⊂ L2
T (L

1) is bounded, and so is ( f 4ε )ε in
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Highly rotating viscous compressible fluids… 1003

L2
T (L

2 + L1) (write ρε = 1+ (ρε − 1) and use (15) for the second term). Finally, by
writing ρε = √

ρε + (
√
ρε − 1)

√
ρε and arguing similarly as for (24), we discover

that ( f 2ε )ε is bounded in L2
T (L

2 + L1).
Then we get that ( fε)ε is bounded in L2

T (W
−1,2(�)+ W −1,1(�)).

This having been established, let us turn our attention to the acoustic propagator,
i.e. the operator A defined by

A : L2(�) × L2(�) −→ H−1(�) × H−1(�)

(r , V ) 	→ (div V , e3 × V + ∇r).

We remark that A is skew-adjoint with respect to the L2(�)× L2(�) scalar product.
Notice that, by Proposition 3.5, any limit point (r, u) of the sequence of weak

solutions has to belong to KerA.
Moreover, the following proposition holds true. For the proof, see Subsection 3.1

of [11].

Proposition 4.1 Let us denote by σp(A) the point spectrum of A. Then σp(A) = {0}.
In particular, if we define by EigenA the space spanned by the eigenvectors of A,

we have EigenA ≡ KerA.

4.1.2 Application of the RAGE theorem

Let us first recall the RAGE theorem and some of its consequences. The present form
is the same used in [11] (see [9], Theorem 5.8).

Theorem 4.2 Let H be a Hilbert space and B : D(B) ⊂ H −→ H a self-adjoint
operator. Denote by �cont the orthogonal projection onto the subspace Hcont, where

H = Hcont ⊕ Eigen (B)

and � is the closure of a subset � in H. Finally, let K : H −→ H be a compact
operator.

Then, in the limit for T → +∞ one has

∥
∥
∥
∥
1

T

∫ T

0
e−i t B K �cont ei t B dt

∥
∥
∥
∥L(H)

−→ 0.

Exactly as in [11], from the previous theorem we infer the following properties.

Corollary 4.3 Under the hypothesis of Theorem 4.2, suppose moreover that K is
self-adjoint, with K ≥ 0.

Then there exists a function μ, with μ(ε) → 0 for ε → 0, such that:

(1) for any Y ∈ H and any T > 0, one has

1

T

∫ T

0

∥
∥
∥K1/2 ei t B/ε �contY

∥
∥
∥
2

H dt ≤ μ(ε) ‖Y‖2H ;
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(2) for any T > 0 and any X ∈ L2([0, T ];H), one has

1

T 2

∥
∥
∥
∥K1/2�cont

∫ t

0
ei (t−τ)B/ε X (τ ) dτ

∥
∥
∥
∥

2

L2([0,T ];H)

≤ μ(ε) ‖X‖2L2([0,T ];H)
.

We now come back to our problem. For any fixed M > 0, define the Hilbert space
HM by

HM :=
{
(r, V ) ∈ L2(�)× L2(�) | r̂(ξ h, k) ≡ 0 and V̂ (ξ h, k) ≡ 0

if |ξ h | + |k| > M
}
, (31)

and let PM : L2(�) × L2(�) −→ HM be the orthogonal projection onto HM . For
a fixed θ ∈ D(�) such that 0 ≤ θ ≤ 1, we also define the operator

KM,θ (r, V ) := PM (θ PM (r, V ))

acting on HM . Note thatKM,θ is self-adjoint and positive; moreover, it is also compact
by Rellich–Kondrachov theorem, since its range is included in the set of functions
having compact spectrum.

We want to apply the RAGE theorem to

H = HM , B = i A , K = KM,θ and �cont = Q⊥,

where Q and Q⊥ are the orthogonal projections onto respectivelyKerA and (KerA)⊥.
Let us set

(
rε,M , Vε,M

) := PM (rε, Vε), and note that, thanks to a priori bounds,
for any M it makes sense to apply the term fε to any element of HM . Hence, from
system (29) we get

ε
d

dt
(rε,M , Vε,M )+ A(rε,M , Vε,M ) = ε (0, fε,M ), (32)

where (0, fε,M ) ∈ H∗
M

∼= HM is defined by

〈(0, fε,M ), (s, PM (ρε W ))〉HM :=
∫

�

( f 1ε : ∇ PM (ρεW )+ f 2ε : ∇ PM (ρεW )

+ f 3ε · PM (ρεW )+ f 4ε div PM (ρεW )

+ f 5ε div PM (ρεW ))dx

for any (s,W ) ∈ HM . Moreover, by Bernstein inequalities (due to the localization in
the phase space) it is easy to see that, for any T > 0 fixed and any W ∈ HM ,

‖PM (ρεW )‖L2
T (W

1,∞∩H1) ≤ C(M) ‖ρεW‖L2
T (L

2)

≤ C(M)
(
‖W‖L2

T (L
2) + ‖ρε − 1‖L∞

T (L2) ‖W‖L2
T (L

∞)

)
,
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for some constant C(M) depending only on M . This fact, combined with the uniform
bounds we established on fε, entails

∥
∥(0, fε,M )

∥
∥

L2
T (HM )

≤ C(M). (33)

By use of Duhamel’s formula, solutions to Eq. (32) can be written as

(rε,M , Vε,M )(t) = ei t B/ε(rε,M , Vε,M )(0)+
∫ t

0
ei (t−τ)B/ε (0, fε,M ) dτ. (34)

Note that, by definition (and since [PM , Q] = 0),

∥
∥
∥
(KM,θ

)1/2
Q⊥(rε,M , Vε,M )

∥
∥
∥
2

HM
=
∫

�

θ

∣
∣
∣Q⊥(rε,M , Vε,M )

∣
∣
∣
2

dx .

Therefore, a straightforward application of Corollary 4.3 (recalling also Proposition
4.1) gives that, for T > 0 fixed and for ε going to 0,

Q⊥(rε,M , Vε,M ) −→ 0 in L2([0, T ] × K ) (35)

for any fixed M > 0 and any compact set K ⊂ �.
On the other hand, applying operator Q to Eq. (34) and differentiating in time,

by use also of bounds (33) we discover that (for any M > 0 fixed) the family
(∂t Q(rε,M , Vε,M ))ε is uniformly bounded (with respect to ε) in the space L2

T (HM ).
Moreover, as HM ↪→ Hm for any m ∈ N, we infer also that it is compactly embedded
in L2(K ) for any M > 0 and any compact subset K ⊂ �. Hence, Ascoli–Arzelà
theorem implies that, for ε → 0,

Q(rε,M , Vε,M ) −→ (rM , uM ) in L2([0, T ] × K ). (36)

4.2 Passing to the limit

In the present subsection we conclude the proof of Theorem 2.4 when α = 1. First of
all, we show strong convergence of the rε’s and the velocity fields; then we pass to the
limit in the weak formulation of the equations, and we identify the limit system.

4.2.1 Strong convergence of the velocity fields

The goal of the present paragraph is to prove the following proposition, which will
allow us to pass to the limit in the weak formulation (8)–(9) of our system.

Proposition 4.4 Let α = 1 and γ = 2. For any T > 0, for ε → 0 one has, up to
extraction of a subsequence, the strong convergences

rε −→ r and ρ3/2ε uε −→ u in L2([0, T ]; L2
loc(�)).
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Proof We start by decomposing ρ3/2ε uε into low and high frequencies: namely, for
any M > 0 fixed, we can write

ρ3/2ε uε = PM (ρ
3/2
ε uε)+ (Id − PM ) (ρ

3/2
ε uε).

Let us consider the low frequencies term first: again, it can be separated into the
sum of two pieces, namely

PM (ρ
3/2
ε uε) = ε PM (ε

−1 (√ρε − 1
)
ρε uε)+ PM (ρε uε).

By uniform bounds (recall also Sect. 3.3), we have that (ρε uε)ε is bounded in L2
T (L

2),
while (ε−1

(√
ρε − 1

)
)ε is clearly bounded in L∞

T (L2). Then, using also Bernstein’s
inequalities, we infer that the former item in the previous equality goes to 0 in L2

T (L
2),

in the limit for ε → 0.
On the other hand, by properties (35) and (36) we immediately get that PM (ρε uε)

converges to uM = PM (u) strongly L2
T (L

2
loc). Recall that u is the limit velocity field

identified in Sect. 3.3, and which has to satisfy, together with r , the constraints given
in Proposition 3.5.

We deal now with the high frequencies term. Recall that, by decomposition (20),
we have already deduced the uniform inclusion (D(ρ3/2ε uε))ε ⊂ L2

T (L
2 + L3/2).

Then by Lemma 7.3 and Proposition 7.4, we get

∥
∥
∥(Id − PM ) (ρ

3/2
ε uε)

∥
∥
∥

L2
T (L

2)
≤ cM ,

for some constant cM , depending just on M (and not on ε) and which tends to 0 for
M → +∞.

For the convergence of rε to r one can argue in an analogous way. The control
of the high frequency part is actually easier, thanks to (22). For the low frequencies,
we decompose again PMrε = Q PMrε + Q⊥ PMrε, for which we use (36) and (35)
respectively.

The proposition is then proved. ��

4.2.2 The limit system

Thanks to the convergence properties established in Sect. 3.3 and by Proposition 4.4,
we can pass to the limit in the weak formulation (8)–(9). For this, we evaluate the
equations on an element which already belongs to KerA.
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So, let us take φ ∈ D([0, T [ ×�), with φ = φ(xh), and use ψ = (∇⊥
h φ, 0

)
as a

test function in Eq. (9): since divψ = 0, we get

∫ T

0

∫

�

(−ρ2ε uε · ∂tψ − ρεuε ⊗ ρεuε : ∇ψ

+ρ2ε (uε · ψ) div uε + 1

ε
e3 × ρ2ε uε · ψ +

+ νρεDuε : ρε∇ψ + νρεDuε : (ψ ⊗ ∇ρε)+ 2 ρε�ρε∇ρε · ψ) dx dt

=
∫

�

ρ20,ε u0,ε · ψ(0) dx . (37)

Now, we rewrite the rotation term in the following way:

1

ε

∫ T

0

∫

�

e3 × ρ2ε uε · ψ = 1

ε

∫ T

0

∫

�

ρ2ε uh
ε · ∇hφ

= 1

ε

∫ T

0

∫

�

ρεu
h
ε · ∇hφ +

∫ T

0

∫

�

rερεu
h
ε · ∇hφ

= −
∫

�

r0,ε φ(0) −
∫ T

0

∫

�

rε ∂tφ +
∫ T

0

∫

�

rε ρε uh
ε · ∇hφ,

where the last equality comes from the mass equation (8) tested on φ. Notice that the
last term in the right-hand side converges, due to (23) and the strong convergence of
rε in L2

T (L
2) (which is guaranteed by Proposition 4.4).

Using again the trick ρε = 1 + (ρε − 1), we can also write

2
∫ T

0

∫

�

ρε�ρε∇ρε · ψ=2
∫ T

0

∫

�

�ρε ∇ρε · ψ+2
∫ T

0

∫

�

(ρε − 1) �ρε ∇ρε · ψ :

by uniform bounds and (19), it is easy to see that both terms goes to 0 for ε → 0.
Putting these last two relations into (37) and using convergence properties estab-

lished above in order to pass to the limit, we arrive at the equation

∫ T

0

∫

�

(− u · ∂tψ − u ⊗ u : ∇ψ − r ∂tφ

+ r uh · ∇hφ + νDu : ∇ψ) dx dt =
∫

�

(u0 · ψ(0)+ r0 φ(0)) dx . (38)
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Now we use that ψ = (∇⊥
h φ, 0) and that, by Proposition 3.5, u = (∇⊥

h r, 0). Keeping
in mind that all these functions don’t depend on x3, by integration by parts we get

−
∫ T

0

∫

�

u · ∂tψ dx dt =
∫ T

0

∫

R2
�hr ∂tφ dxh dt

−
∫ T

0

∫

�

u ⊗ u : ∇ψ dx dt = −
∫ T

0

∫

R2
∇⊥

h r · ∇h�hr φ dxh dt

ν

∫ T

0

∫

�

Du : ∇ψ dx dt = ν

2

∫ T

0

∫

R2
�2

hr φ dxh dt.

In the same way, one can show that the following identity holds true:

∫ T

0

∫

�

r uh · ∇hφ dx dt =
∫ T

0

∫

R2
∇hr · ∇⊥

h r φ dxh dt = 0.

Putting all these equalities together completes the proof of Theorem 2.4 in the case
α = 1.

5 The case α = 0

We consider now the case of constant capillarity coefficient, i.e. α = 0: the present
section is devoted to the proof of Theorem 2.6.

The main issue of the analysis here is that, now, the singular perturbation operator
becomes

A0 : L2(�) × L2(�) −→ H−1(�) × H−3(�)

( r , V ) 	→ (div V, e3 × V + ∇(Id −�)r), (39)

which is nomore skew-adjointwith respect to the usual L2 scalar product.Nonetheless,
it is possible to symmetrize our system, i.e. it is possible to find a scalar product on
the space HM , defined in (31), with respect to which the operator A0 becomes skew-
adjoint.

Indeed, passing in Fourier variables, one can easily compute a positive self-adjoint
4 × 4 matrix S such that S A0 = −A∗

0 S, which is exactly the condition for A0 to
be skew-adjoint with respect to the scalar product defined by S. Hence, one can apply
the RAGE theorem to A0, acting on HM endowed with the scalar product S.

After this brief introduction, let us go back to the proof of Theorem 2.6. As before,
we first analyse the acoustic waves, proving strong convergence for the velocity fields,
and then we will pass to the limit.
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5.1 Propagation of acoustic waves

In the case α = 0, the equation for acoustic waves is the same as (29), with operator
A replaced by A0: namely, we have

{
ε ∂t rε + div Vε = 0

ε ∂t Vε + (e3 × Vε + ∇(Id −�)rε) = ε f̃ε,
(40)

where f̃ε is analogous to fε, which was defined in Sect. 4.1.1, but with the last term
of formula (30) replaced by

1

ε2
(ρε − 1)∇�ρε.

In particular, we have

〈 f̃ε, φ〉 :=
∫

�

(ρεuε ⊗ uε : ∇φ − ν ρεDuε : ∇φ − 1

ε2
�ρε ∇ρε · φ

− 1

ε2
(ρε − 1)�ρε div φ + 1

ε2
(P(ρε)− P(1)− P ′(1) (ρε − 1))div φ)dx .

Exactly as before, by uniform bounds we get that ( f̃ε)ε is bounded in L2
T (W

−1,2(�)+
W −1,1(�)).

Recall also that, as in the previous case, Eq. (40) hold true when computed on test
functions of the form (ϕ, ρε ψ).

Let us turn our attention to the acoustic propagator A0, defined in (39). We have
the following statement, which is the analogous of Proposition 4.1.

Proposition 5.1 One has σp(A0) = {0}. In particular, EigenA0 ≡ KerA0.

Proof We have to look for λ ∈ C for which the following system

{
div V = λ r

e3 × V + ∇(r − �r) = λ V

has non-trivial solutions (r, V ) �= (0, 0).
Denoting by v̂ the Fourier transform of a function v in the domainR2 ×T

1, defined
for any (ξ h, k) ∈ R

2 × Z by the formula

v̂(ξ h, k) := 1√
2

∫ 1

−1

∫

R2
e−i xh ·ξh

v(xh, x3) dxh e−i x3k dx3,

123



1010 F. Fanelli

we can write the previous system in the equivalent way

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

i
(
ξ h · V̂ h + k V̂ 3

) = λ r̂

−V̂ 2 + i ξ1
(
1 + ∣∣ξ h

∣
∣2 + k2

)
r̂ = λ V̂ 1

V̂ 1 + i ξ2
(
1 + ∣∣ξ h

∣
∣2 + k2

)
r̂ = λ V̂ 2

i k
(
1 + ∣∣ξ h

∣
∣2 + k2

)
r̂ = λ V̂ 3,

where
∣
∣ξ h
∣
∣2 = ∣∣ξ1∣∣2+∣∣ξ2∣∣2. For notation convenience, let us set ζ(ξ h, k) = ∣∣ξ h

∣
∣2+k2:

after easy computations, we arrive to the following equation for λ,

λ4 + (1 + ζ(ξ h, k)+ ζ 2(ξ h, k)) λ2 + k2 (1 + ζ(ξ h, k)) = 0,

from which we immediately infer that

λ2 = − 1

2

(

1 + ζ + ζ 2 ±
√
(
1 + ζ + ζ 2

)2 − 4 k2 (1 + ζ )

)

.

To have λ in the discrete spectrum of A0, we need to delete its dependence on ξ h :
since 1 + ζ > 0, the only way to do it is to have k = 0, for which λ = 0. ��

Now, for any fixed M > 0, we consider the space HM , which was defined in (31),
endowed with the scalar product

〈(r1, V1), (r2, V2)〉HM := 〈r1, (Id −�)r2〉L2 + 〈V1, V2〉L2 . (41)

In fact, it is easy to verify that the previous bilinear form is symmetric and posi-
tive definite. Moreover, we observe that ‖(r, V )‖2HM

= ∥∥(Id −�)1/2r
∥
∥2

L2 + ‖V ‖2
L2 .

Straightforward computations also show that A0 is skew-adjoint with respect to this
scalar product, namely

〈A0(r1, V1), (r2, V2)〉HM = −〈(r1, V1), A0(r2, V2)〉HM .

Now, let us set PM : L2(�) × L2(�) −→ HM to be the orthogonal projection
onto HM , as in Sect. 4.1.2. This time, for a fixed θ ∈ D(�) such that 0 ≤ θ ≤ 1, we
define the operator

K̃M,θ (r, V ) := ((Id −�)−1PM (θ PMr), PM (θ PM V )).

Note that K̃M,θ is self-adjoint and positive with respect to the scalar product 〈 ·, · 〉HM .
Moreover, as before, it is compact by Rellich–Kondrachov theorem.

Now, exactly as done in Sect. 4.1.2, we apply the RAGE theorem to

H = HM , B = i A0 , K = K̃M,θ and �cont = Q⊥,
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where Q and Q⊥ are still the orthogonal projections onto respectively KerA0 and
(KerA0)

⊥.
Since, with our definitions, we still have

∥
∥
∥
(K̃M,θ

)1/2
Q⊥(rε,M , Vε,M )

∥
∥
∥
2

HM
=
∫

�

θ

∣
∣
∣Q⊥(rε,M , Vε,M )

∣
∣
∣
2

dx,

a direct application of the RAGE theorem (or better of Corollary 4.3) immediately
gives us

Q⊥(rε,M , Vε,M ) −→ 0 in L2([0, T ] × K ) (42)

for any fixed M > 0 and any compact K ⊂ �.
On the other hand, exactly as we did in Sect. 4.1.2, by Ascoli–Arzelà theorem we

can deduce the strong convergence

Q(rε,M , Vε,M ) −→ (rM , uM ) in L2([0, T ] × K ). (43)

5.2 Passing to the limit

Thanks to relations (42) and (43), Proposition 4.4 still holds true: namely, we have the
strong convergences of

rε −→ r and ρ3/2ε uε −→ u in L2([0, T ]; L2
loc(�)),

and this allows us to pass to the limit in the non-linear terms. Note that we get in
particular the strong convergence of (∇rε)ε in L2

T (H
−1
loc ) (up to extraction of a subse-

quence); on the other hand, by uniform bounds we know that this family is bounded
in L2

T (H
1). Then, by interpolation we have also the strong convergence in all the

intermediate spaces, and especially

∇rε −→ ∇r in L2([0, T ]; L2
loc(�)). (44)

In order to compute the limit system, let us takeφ ∈ D([0, T [ ×�),withφ = φ(xh),
and useψ = (∇⊥

h φ, 0
)
as a test function in Eq. (9). Since divψ = 0, as before we get

∫ T

0

∫

�

(−ρ2ε uε · ∂tψ − ρεuε ⊗ ρεuε : ∇ψ + ρ2ε (uε · ψ) div uε + 1

ε
e3 × ρ2ε uε · ψ

+ νρεDuε : ρε∇ψ + νρεDuε : (ψ ⊗ ∇ρε)+ 2

ε2
ρε�ρε∇ρε · ψ) dx dt

=
∫

�

ρ20,ε u0,ε · ψ(0) dx . (45)

Also in this case, we rewrite the rotation term by using the mass Eq. (8):
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1

ε

∫ T

0

∫

�

e3 × ρ2ε uε · ψ = 1

ε

∫ T

0

∫

�

ρεu
h
ε · ∇hφ + 1

ε

∫ T

0

∫

�

(ρε − 1) ρεu
h
ε · ∇hφ

= −
∫

�

r0,ε φ(0) −
∫ T

0

∫

�

rε ∂tφ +
∫ T

0

∫

�

rε ρε uh
ε · ∇hφ.

Again, the last term in the right-hand side converges, due to (23) and the strong
convergence of rε in L2

T (L
2).

For analysing the capillarity term, we write

2

ε2

∫ T

0

∫

�

ρε�ρε∇ρε · ψ = 2

ε2

∫ T

0

∫

�

�ρε ∇ρε · ψ

+ 2

ε2

∫ T

0

∫

�

(ρε − 1) �ρε ∇ρε · ψ.

By uniform bounds, we gather that the second term goes to 0; on the other hand,
combining (44) with the weak convergence of �rε in L2

T (L
2) implies that also the

first term converges for ε → 0.
Putting these last two relations into (45) and using convergence properties estab-

lished above in order to pass to the limit, we arrive at the equation

∫ T

0

∫

�

(− u · ∂tψ − u ⊗ u : ∇ψ − r ∂tφ

+ r uh · ∇hφ + νDu : ∇ψ + 2�r ∇r · ψ) dx dt

=
∫

�

(u0 · ψ(0)+ r0 φ(0)) dx . (46)

Now we use that ψ = (∇⊥
h φ, 0) and that, by Proposition 3.5, u = (∇⊥

h r̃ , 0), where
we have set r̃ := (Id −�) r . Keeping in mind that all these functions do not depend
on x3, by integration by parts we get

−
∫ T

0

∫

�

u · ∂tψ dx dt =
∫ T

0

∫

R2
�hr̃ ∂tφ dxh dt

−
∫ T

0

∫

�

u ⊗ u : ∇ψ dx dt = −
∫ T

0

∫

R2
∇⊥

h r̃ · ∇h�hr̃ φ dxh dt

= −
∫ T

0

∫

R2
∇⊥

h r · ∇h�hr φ dxh dt +

+
∫ T

0

∫

R2
∇⊥

h r · ∇h�
2
hr φ dxh dt

−
∫ T

0

∫

R2
∇⊥

h �hr · ∇h�
2
hr φ dxh dt

ν

∫ T

0

∫

�

Du : ∇ψ dx dt = ν

2

∫ T

0

∫

R2
�2

hr̃ φ dxh dt.

123



Highly rotating viscous compressible fluids… 1013

Moreover, it is also easy to see that the following identities hold true:

∫ T

0

∫

�

r uh · ∇hφ dx dt = −
∫ T

0

∫

R2
∇⊥

h r · ∇h�hr φ dxh dt

2
∫ T

0

∫

�

�r ∇r · ψ dx dt = 2
∫ T

0

∫

R2
∇⊥

h r · ∇h�hr φ dxh dt.

Then, these terms, together with the first one coming from the transport part u ⊗ u,
cancel out.

Hence, putting all these equalities together gives us the quasi-geostrophic type
equation stated in Theorem 2.6, which is now completely proved.

6 Vanishing capillarity limit: anisotropic scaling

In this section we complete the proof of Theorem 2.4, focusing on the remaining
cases 0 < α < 1. The results of Sect. 3 still holding true, we just have to analyse the
propagation of acoustic waves and to prove strong convergence of the velocity fields.

First of all, let us write system (2) in the form

{
ε ∂t rε + div Vε = 0

ε ∂t Vε + (e3 × Vε + ∇rε) = ε fε,α + εα gε.

Here, like in the previous section, fε,α is obtained from fε of Sect. 4.1.1, by replacing
the last term of formula (30) with

1

ε2(1−α)
(ρε − 1)∇�ρε;

moreover, we have defined

gε := 1

ε1−α
∇�(ρε − 1).

Notice that ( fε,α)ε is bounded in L2
T (W

−1,2(�)+W −1,1(�)) for anyα, while uniform
bounds imply that (gε)ε is bounded in L2

T (W
−1,2(�)).

For 0 < α < 1, we remark that the term gε is of higher order than fε,α: then, we
cannot treat it as a remainder. Then, the first step is to put it on the left-hand side of the
equation, and to read it as a small perturbation of the acoustic propagator A (defined
in Sect. 4.1.1). Hence, we are led to consider a one-parameter continuous family of
operators, each one of which admits a symmetrizer on the Hilbert space HM .

Roughly speaking, all these operators have the same point spectrum (we will be
much more precise below, see Sect. 6.2): the idea is then to apply a sort of RAGE theo-
rem for one-parameter family of operators and metrics, in order to prove dispersion of
the components of the solutions orthogonal to the kernels of the acoustic propagators.
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1014 F. Fanelli

In what follows, first of all we will set up the problem in an abstract way, showing a
RAGE-type theorem for families of operators and metrics. This having been done, we
will apply the general theory to our particular case, and this will complete the proof
of Theorem 2.4 for α ∈ ]0, 1[.

6.1 RAGE theorem depending on a parameter

As just said, we want to extend the RAGE theorem to the case when both operators
and metrics depend on a small parameter η (for us, η = ε2α).

For the sake of completeness, we start by presenting some variants of the Wiener
theorem, which is the basis to prove the RAGE theorem.

6.1.1 Variants of the Wiener theorem

First of all, some definitions are in order.

Definition 6.1 Given two positive measures μ and ν defined on a measurable space
(X, �), we say μ ≤ ν if μ(A) ≤ ν(A) for any measurable set A ∈ �.

Definition 6.2 Let (μη)η be a one-parameter family of positive measures on a mea-
surable space (X, �). We say that it is a continuous family (with respect to η) if, for
any A ∈ �, the map η 	→ μη(A) is continuous from [0, 1] to R+.

The notion of continuity we adopt corresponds then to the strong topology in the space
of measures on (X, �). Notice that this notion requires no uniformity with respect to
A ∈ �.

The first result is a very simple adaptation of the original Wiener theorem, which
can be found e.g. in [28] (see the Appendix to Section XI.17). Its proof goes along the
lines of the original one: for later use, however, we give the most of the details.

Proposition 6.3 Let (μη)η∈[0,1] be a family of finite Baire measures on R, such that

μη1 ≤ μη2 ∀ 0 ≤ η1 ≤ η2 ≤ 1. (47)

For any η ∈ [0, 1], let us define the Fourier transform of μη by the formula

Fη(t) :=
∫

R

e−i xt dμη(x).

Then one has

lim
η→0

lim
T →+∞

1

2T

∫ T

−T

∣
∣Fη(t)

∣
∣2 dt =

∑

x∈R
|μ0 ({x}) |2.

In particular, if μ0 has no pure points, then the limit is 0.
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Proof Like in the proof of the original statement, for any fixed η we can write

1

2T

∫ T

−T

∣
∣Fη(t)

∣
∣2 dt =

∫

R

dμη(x)

(∫

R

dμη(y)

(
1

2T

∫ T

−T
e−i(x−y)t dt

))

=
∫

R

dμη(x)

(∫

R

dμη(y)
sin(T (x − y))

T (x − y)

)

by Fubini’s theorem. Let us now define

Hη(T, x) :=
∫

R

sin(T (x − y))

T (x − y)
dμη(y) :

the integrand in Hη is pointwise bounded by 1; moreover, for T −→ +∞, it converges
to 0 if y �= x , and to 1 if y = x . Hence, by dominated convergence theorem we have

lim
T →+∞ Hη(T, x) = μη ({x}) .

Moreover, |Hη(T, x)| ≤ μη(R); then, by dominated convergence theorem again we
infer that

lim
T →+∞

∫

R

dμη(x)

(∫

R

dμη(y)
sin(T (x − y))

T (x − y)

)

=
∑

x∈R
|μη ({x}) |2.

Finally, we take the limit for η −→ 0 and we apply the monotone convergence
theorem. ��
Remark 6.4 Note that, if monotonicity hypothesis (47) is not fulfilled, then one gets

lim
η→0

lim
T →+∞

1

2T

∫ T

−T

∣
∣Fη(t)

∣
∣2 dt = lim

η→0

∑

x∈R
|μη ({x}) |2.

In particular, if μη has no pure points for any η, then still the limit is 0.

We are now interested in linking the parameters η and T together, and in performing
the two limits at the same time. In this case, we can no more apply the dominated
convergence theorem, as themeasures themselves changewhen T increases. However,
the next statement says that the previous result still holds true.

Theorem 6.5 Let σ : [0, 1] −→ [0, 1] be a continuous increasing function, such that
σ(0) = 0 and σ(1) = 1. Let (μσ(ε))ε∈[0,1] be a family of finite Baire measures on R,
such that one of the two following conditions holds true:

• (μη)η∈[0,1] is monotone increasing in the sense of inequality (47);
• (μη)η∈[0,1] is a continuous family, in the sense of Definition 6.2.
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For any ε ∈ [0, 1], let us denote by Fε the Fourier transform of the measure μσ(ε).
Then we have

lim
ε→0

1

2T

∫ T

−T
|Fε(t/ε)|2 dt =

∑

x∈R
|μ0 ({x}) |2.

In particular, the limit is 0 if μ0 has no pure points.

Proof First of all, by the change of variable τ = t/ε, we are reconducted to prove
that

lim
ε→0

ε

2T

∫ T/ε

−T/ε
|Fε(t)|2 dt =

∑

x∈R
|μ0 ({x}) |2.

Next, as done in the previous proof, the following equalities hold true:

ε

2T

∫ T/ε

−T/ε
|Fε(t)|2 dt =

∫

dμσ(ε)(x)

(∫

dμσ(ε)(y)
sin(T (x − y)/ε)

T (x − y)/ε

)

=
∫

dμσ(ε)(x)

(

μσ(ε)({x})

+
∫

y �=x
dμσ(ε)(y)

sin(T (x − y)/ε)

T (x − y)/ε

)

=
∑

x∈R
|μσ(ε) ({x}) |2

+
∫

dμσ(ε)(x)

(∫

y �=x
dμσ(ε)(y)

sin(T (x − y)/ε)

T (x − y)/ε

)

.

By monotone convergence theorem (in the case of a monotone family) or dominated
convergence theorem (in the case of a continuous family), the first term on the right-
hand side converges to the same quantity computed in ε = 0. So, we have just to prove
that

lim
ε→0

∫

dμσ(ε)(x)

(∫

y �=x
dμσ(ε)(y)

∣
∣
∣
∣
sin(T (x − y)/ε)

T (x − y)/ε

∣
∣
∣
∣

)

= 0. (48)

We first consider the case when the family of measures is monotone decreasing.
Let us fix a δ > 0, and let εδ be such that ε/T ≤ δ for all ε ≤ εδ . Moreover, let us

define the sets Y≤ := {y �= x | |x − y| ≤ g(δ)} and Y≥ := {y �= x | |x − y| > g(δ)},
for a suitable continuous function g(δ), going to 0 for δ → 0, to be determined later.

Then we can split the second integral in (48) into the sum of the integrals on Y≤
and Y≥, and elementary inequalitites give us

∫

y �=x
dμσ(ε)(y)

∣
∣
∣
∣
sin(T (x − y)/ε)

T (x − y)/ε

∣
∣
∣
∣ ≤

∫

Y≤
dμσ(ε)(y)+

∫

Y≥

ε

T |x − y| dμσ(ε)(y).
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We first focus on the former term: we have
∫

dμσ(ε)(x)
∫

Y≤
dμσ(ε)(y) ≤

∫

μσ(ε)([x − g(δ), x + g(δ)]\{x}) dμσ(ε)(x)

≤
∫

μ1([x − g(δ), x + g(δ)]\{x}) dμσ(ε)(x)

≤
∫

μ1([x − g(δ), x + g(δ)]\{x}) dμ1(x),

where the last inequality follow from the monotonicity property of the family of
measures (and from the fact that the integrand does not depend on ε anymore). From
dominated convergence theorem, one can show that

lim
δ→0

∫

μ1([x − g(δ), x + g(δ)]\{x}) dμ1(x) = 0

(recall that g(δ) → 0 for δ → 0), and from this fact we deduce

∫

dμσ(ε)(x)
∫

Y≤
dμσ(ε)(y) ≤ Cδ, (49)

for some suitable Cδ converging to 0 for δ → 0.
We now consider the integral over Y≥. By definition of δ, for any ε ≤ εδ one has

∫

dμσ(ε)(x)

(∫

Y≥

ε

T |x − y| dμσ(ε)(y)

)

≤ δ

g(δ)

∫

μσ(ε)(R) dμσ(ε)(x)

≤ δ

g(δ)
|μσ(ε) (R) |2.

The term on the right-hand side can be bounded by the same quantity computed in
μ1; therefore, if we take for instance g(δ) = √

δ, we find, for all ε ≤ εδ ,

∫

dμσ(ε)(x)

(∫

Y≥

ε

T |x − y| dμσ(ε)(y)

)

≤ C
√
δ. (50)

In the end, putting inequalities (50) and (49) together gives us relation (48), and
this completes the proof of the theorem.

Let us now prove (48) in the case of a continuous family of measures. As before,
we split the domain of the second integral into Y≤ and Y≥.

The control of the integral over Y≥ can be performed exactly as done above:

∫

dμσ(ε)(x)

(∫

Y≥

ε

T |x − y| dμσ(ε)(y)

)

≤ δ

g(δ)
|μσ(ε) (R) |2 ≤ C

δ

g(δ)

for any ε ≤ εδ . Again, the choice g(δ) = √
δ gives us (49).
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For the integral over Y≤, we still have
∫

dμσ(ε)(x)
∫

Y≤
dμσ(ε)(y) ≤

∫

μσ(ε)([x − g(δ), x + g(δ)]\{x}) dμσ(ε)(x).

The term (say) I on the right-hand side of the previous inequality can be written as
the sum of three terms: I = I1 + I2 + I3, where we have defined

I1 :=
∫
(
μσ(ε) − μ0

)
([x − g(δ), x + g(δ)]\{x}) dμσ(ε)(x)

I2 :=
∫

μ0([x − g(δ), x + g(δ)]\{x}) d
(
μσ(ε)(x)− μ0(x)

)

I3 :=
∫

μ0([x − g(δ), x + g(δ)]\{x}) dμ0(x).

By dominated convergence theorem, one can easily check that I3 → 0 for δ → 0.
Moreover, the following controls hold true:

|I1| ≤ μσ(ε)(R)
∣
∣μσ(ε) − μ0

∣
∣ (R) and |I2| ≤ μ0(R)

∣
∣μσ(ε) − μ0

∣
∣ (R).

By continuity hypothesis on the family of measures, hence, we have that for any
ε ≤ ε′

δ , the quantity |I1| + |I2| is bounded by C
√
δ, where C is a universal constant,

independent of δ and ε.
In the end, we infer that there exists a C > 0 such that, for all δ > 0 fixed and for

any ε ≤ min
{
εδ, ε

′
δ

}
, one has

∫

dμσ(ε)(x)

(∫

y �=x
dμσ(ε)(y)

∣
∣
∣
∣
sin(T (x − y)/ε)

T (x − y)/ε

∣
∣
∣
∣

)

≤ C
√
δ,

which completes the proof of (48) and of the theorem. ��

6.1.2 RAGE-type theorems

We are now ready to prove some results in the same spirit as the RAGE theorem, for
families of operators and metrics.

Despite our attempt of generality, we have to make very precise assumptions for
such families, which are modelled on our problem issued from the Navier–Stokes–
Korteweg system. On the other hand, these hypothesis seem to us to be important in
order to prove our result: we will point out where they will be used.

First of all, let us introduce some notations.
We are going to work in a fixed spaceH; we will consider inH a continuous family

of scalar products (Sη)η∈[0,1], each one of which induces a Hilbert structure onH. In
general, we will write (H,Sη) if we consider the Hilbert structure on H induced by
the scalar product Sη; if we do not specify the scalar product (for instance, in speaking
of a self-adjoint operator), we mean we are referring to S0. In fact, S0 will be a sort
of “reference metric” for us, and we will consider the Sη’s like perturbations of it.
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Moreover, we will use equivalently the notations Sη(X,Y ) = 〈X,Y 〉η, and we
will denote by ‖ · ‖η the induced norm. We will also write X ⊥η Y if X and Y are
orthogonal with respect to Sη; equally, given two subspaces E1, E2 ⊂ H, we write
E1 ⊕η E2 if they are orthogonal with respect to Sη. For a linear operator P defined on
H, we will set ‖P‖L(η) its operator norm with respect to the scalar product Sη; for
η = 0 we will use the notations ‖ · ‖L(0) and ‖ · ‖L(H) in an equivalent way. Finally,
the adjoint of P with respect to Sη will be denoted by P∗(η).

In the same time, we will consider a one-parameter family of operators (Bη)η∈[0,1],
and we will see each Bη as a perturbation of a self-adjoint operator B0 (recall that we
mean self-adjoint with respect to S0).

From the original statement (see Theorem 4.2 above), we immediately infer the
following one-parameter variant of the RAGE theorem.

Proposition 6.6 Let (H,S0) be a Hilbert space, and let (Sη)η∈[0,1] be a one-
parameter family of scalar products on H, and suppose that they induces equivalent
metrics, independently of η.

Let (Bη)η∈[0,1] be a family of operators on H such that Bη is self-adjoint with
respect to the inner product Sη for all η ∈ [0, 1].

Let �cont,η the orthogonal (with respect to Sη) projection onto Hcont,η, where we
defined

H = Hcont,η ⊕η Eigen (Bη).

Then, for any family of compact operators (Kη)η on H, one has

lim
η→0

lim
T →+∞

∥
∥
∥
∥
1

T

∫ T

0
e−i tBη Kη �cont,η eitBη dt

∥
∥
∥
∥L(η)

= 0.

As a matter of fact, by Theorem 4.2 the limit in T → +∞ is 0 at any η fixed.
Remark that, for simplicity,we assumed that all the scalar productsSη are equivalent

to each other. However, such a hypothesis is not really needed at this level: it is enough
to suppose that each operatorKη onH is compact with respect to the topology induced
by Sη.

In view of the application to the Navier–Stokes–Korteweg system, we are interested
now in linking the parameters η and T together. In this case, in order to prove a result
in the same spirit of the RAGE theorem we need some additional hypotheses.

More precisely, we suppose that both (Sη)η and (Bη)η are defined by use of a family
of automorphisms (�η)η ofH (again, wemean here that they are boundedwith respect
to the reference metric S0). Let us make an important remark.

Remark 6.7 Wewill always suppose that the family of automorphisms (�η)η is (real)
bounded-holomorphic in the sense of [20], Chapter VII (see Section 1). This will be
important to have series expansions in η for �η and its inverse �−1

η (see also [20],
Chapter VII, Paragraph 6.2).

Note however that the situation we consider in Sect. 6.2 will be much simpler: we
will have �η = 1 + η�, and everything will be explicit.
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We aim at proving the following statement.

Theorem 6.8 Let (H,S0) be a Hilbert space, and B0 ∈ L(H) be a self-adjoint
operator. Let (�η)η∈[0,1] be a bounded-holomorphic family of automorphisms of H,
with �0 = Id , such that each �η is self-adjoint and such that the monotonicity
property

�η1 ≤ �η2 ∀ 0 ≤ η1 ≤ η2 ≤ 1

(in the sense of self-adjoint operators) is verified. For any η ∈ [0, 1], let Sη be the
scalar product onH induced by�η: for all X,Y ∈ H, we setSη(X,Y ) := 〈X,�ηY 〉0.
Define also Bη := B0 ◦�η, and suppose that σp(Bη) = {0} for all η. Let Hcont,η the
orthogonal complement of Ker Bη in H with respect to Sη:

H = Hcont,η ⊕η Ker Bη, (51)

and let �cont,η be the orthogonal (with respect to Sη) projection onto Hcont,η. Let us
now take η = σ(ε), where σ : [0, 1] −→ [0, 1] is a continuous increasing function
such that σ(0) = 0 and σ(1) = 1.

Then, for any compact operator K on H and any T > 0 fixed, defining Kσ(ε) =
�−1
σ(ε)K, one has that

lim
ε→0

∥
∥
∥
∥
1

T

∫ T

0
exp

(

−i
t

ε
Bσ(ε)

)

Kσ(ε) �cont,σ (ε) exp

(

i
t

ε
Bσ(ε)

)

dt

∥
∥
∥
∥L(ε)

= 0.

Before proving the theorem, let us make some comments.

Remark 6.9 (i) Notice that, by definitions of Sη and Bη, it immediately follows that
each operator Bη is self-adjoint with respect to the scalar product Sη. Then, the
orthogonal decomposition (51) and the definition of the semigroup exp(i tBη)
make sense.

(ii) Decomposition (51) is based on the hypothesis σp(Bη) = {0} for all η. Such a
spectral condition is important for stating Lemma 6.10 and deriving Corollary
6.11, which will be used in the proof.

(iii) On the other hand, the hypothesis σp(Bη) = {0} for all η looks quite strong,
but it actually applies to the problem we want to deal with (see Proposition
6.16). We will not pursue here the issue of weakening this condition; moreover,
in Proposition 6.15 we will give a sufficient condition in order to guarantee it
(again, such a condition applies to our case, see also Remark 6.17).

(iv) The monotonocity of the family of automorphisms (�η)η implies an analogous
property for the scalar products (Sη)η; moreover, since �1 is in particular con-
tinuous on (H,S0), we have also ‖ · ‖1 ≤ C ‖ · ‖0. Then, themetrics (and so the
topologies) induced by the Sη’s are all equivalent: hence, saying that an operator
K is compact, without any other specification, makes sense in this context.

(v) The fact that the compact operatorsKη depend on η is important for us, because
in the end we want to obtain an analogue of Corollary 4.3 (the compact operator
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has to be self-adjoint with respect to each scalar product we consider). However,
workingwithK (independent ofη)would not have been really useful: in the proof
we will need to compute its adjoint with respect to Sη, and there a dependence
on η would arise in any case.

(vi) We also remark the following points. On the one hand, the fact that the Kη’s
are perturbations of a fixed compact operator K allows us to reduce the proof
to the case of an operator of rank 1 (as in the original RAGE theorem, see [9]):
indeed, we need that the approximation by finite rank operators is, in some sense,
uniform in η. On the other hand, in the proof we will exploit also the particular
form Kη = �−1

η K of the perturbations: it allows us to “play” with the special
definition of the scalar productsSη. Notice that such a hypothesis is well-adapted
to the case we want to consider (see Sect. 6.2).

This having been pointed out, some preliminary results are in order.

Lemma 6.10 Under the hypotheses of Theorem 6.8, for all η ∈ [0, 1] one has the
equality Ker Bη = �−1

η Ker B0. In particular, Hcont,η ≡ Hcont,0 for all η.

Proof Let X ∈ Ker B0. Then, by definition of Bη = B0 ◦ �η, one immediately has
Bη�−1

η X = 0, and hence �−1
η Ker B0 ⊂ Ker Bη.

On the other hand, if Y ∈ Ker Bη, the element X := �ηY belongs to Ker B0. So
Y = �−1

η X , which proves the other inclusion Ker Bη ⊂ �−1
η Ker B0.

Let us now work with the orthogonal complements of the kernels.
Fix E ∈ Hcont,η: we want to prove 〈E, X〉0 = 0 for all X ∈ Ker B0. In fact, from

writing X = �ηY , with Y ∈ Ker Bη, one infers

〈E, X〉0 = 〈E,�ηY 〉0 = 〈E,Y 〉η = 0.

Then Hcont,η ⊂ Hcont,0.
The reverse inclusion is obtained in a totally analogous way. ��
Notice that, a priori, the previous proposition does not tell us anything about the

orthogonal projections onto these subspaces. For instance, if�K ,η denotes the orthogo-
nal (with respect toSη) projectionontoKer Bη,we cannot infer that�K ,η = �−1

η �K ,0.
Nonetheless, we can state the following corollary.

Corollary 6.11 For all η ∈ [0, 1], we have

�cont,η = �cont,0 + ηRη , with sup
η∈[0,1]

∥
∥Rη

∥
∥L(H)

≤ C.

Proof First of all, since Hcont,η ≡ Hcont,0 by Lemma 6.10, we infer

�cont,η ◦�cont,0 = �cont,0.

Now, any X ∈ H can be decomposed into X = �cont,0X +�K ,0X . Hence, from the
previous equality we get

�cont,ηX = �cont,0X +�cont,η�K ,0X.
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Then, we have just to understand the action of �cont,η on Ker B0.
Let Z ∈ Ker B0. By Lemma 6.10 we know that Zη := �−1

η Z ∈ Ker Bη. On the
other hand, by hypothesis on the family (�η)η, we can write �η = Id + ηDη, for a
suitable bounded family of self-adjoint operators (Dη)η ⊂ L(H). Then one gathers

�cont,ηZ = �cont,η�ηZη = �cont,ηZη + η�cont,ηDη Zη

= η�cont,η Dη Zη,

where the last equality follows from the fact that Zη ∈ Ker Bη.
To complete the proof of the corollary, we have just to show that

∥
∥�cont,η Dη Zη

∥
∥
0 ≤ C ‖Z‖0, (52)

for a constant C > 0 independent of η.
We already know that supη

∥
∥Dη

∥
∥L(H)

≤ C . So, let us estimate
∥
∥�cont,η

∥
∥L(H)

.
For all Y ∈ H, we have

∥
∥�cont,η Y

∥
∥2
0 = 〈�cont,η Y, �cont,η Y 〉0 = 〈�cont,η Y, �−1

η �cont,η Y 〉η
≤ ∥∥�cont,η Y

∥
∥2
η

∥
∥
∥�

−1
η

∥
∥
∥L(η) .

For the former term, we use that �cont,η is an orthogonal projection with respect to
the scalar product Sη, so its η-norm is bounded by 1: using then the monotonicity
property of the �η’s and the continuity of �1 with respect to S0, we finally get

∥
∥�cont,η Y

∥
∥2
η

≤ ‖Y‖2η ≤ C ‖Y‖20 .

For the latter term, we argue exactly as above: for all Y ∈ H,

∥
∥
∥�

−1
η Y

∥
∥
∥
2

η
= 〈�−1

η Y, �−1
η Y 〉η = 〈�−1

η Y, Y 〉0
≤ C ‖Y‖20 ≤ C ‖Y‖2η,

where the last estimate comes from themonotonicity hypothesis. Combining these two
last inequalities together, we easily deduce (52), from which the corollary follows. ��

We need also the following simple lemma.

Lemma 6.12 Under the hypotheses of Theorem 6.8, let us fix a X ∈ H and consider
the spectral measure μη associated to the element �cont,η �

−1
η �cont,0 X.

Then one has μη(R) −→ μ0(R) for η → 0.

Proof By definition of spectral measure and the spectral theorem, one has

μη(R) =
∫

R

dμη(x) =
∥
∥
∥�cont,η �

−1
η �cont,0 X

∥
∥
∥
2

η

= 〈�cont,η �
−1
η �cont,0 X, �−1

η �cont,0 X〉η.
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Now, by definition of Sη and Corollary 6.11, we have

μη(R) = 〈�cont,η �
−1
η �cont,0 X, �cont,0 X〉0 = 〈�−1

η �cont,0 X, �cont,0 X〉0 + O(η),

wherewe used also that�cont,0 is self-adjointwith respect toS0 and�2
cont,0 = �cont,0.

At this point, thanks to the hypothesis over the family (�η)η, we can write �−1
η =

Id + η D̃η, for a suitable bounded family of self-adjoint operators (D̃η)η ⊂ L(H)

(see also Chapter VII of [20], in particular Paragraph 3.2). Then the previous relation
becomes

μη(R) = 〈�cont,0 X, �cont,0 X〉0 + O(η) = μ0(R)+ O(η),

and this proves the claim of the lemma. ��

We can finally prove Theorem 6.8. We will follow the main lines of the proof given
in [9] (see Theorem 5.8, Chapter 5).
Proof of Theorem 6.8 First of all, we notice that, up to perform the change of variable
τ = t/ε, our claim is equivalent to show that

lim
ε→0

∥
∥
∥
∥
ε

T

∫ T/ε

0
exp
(−i t Bσ(ε)

) Kσ(ε) �cont,σ (ε) exp
(
i t Bσ(ε)

)
dt

∥
∥
∥
∥L(ε)

= 0.

For notation convenience, for the moment we keep writing η instead of σ(ε).
Since a compact operator can be approximated (in the norm topology) by finite

rank operators, and each finite rank operator can be written as a finite sum of operators
of rank 1, it is enough to restrict to the case of rkK = 1.

Recall here point (vi) of Remark 6.9: approximatingK gives the “same approxima-
tion” for all Kη (up to the isomorphism �η). We are not able to exploit this reduction
to rank 1 operators if the approximation itself depended on the particular compact
operator Kη, with no relations between them.

Since rkK = 1, we can represent K with respect to the reference scalar product
S0 in the form K ϕ = 〈X, ϕ〉0 Y , for suitable X,Y ∈ H. Hence, by definitions of Kη

and Sη, we have

Kη ϕ = �−1
η K ϕ = 〈X, ϕ〉0 �−1

η Y = 〈�−1
η X, ϕ〉η �−1

η Y

= 〈Xη, ϕ〉η Yη,

where we have denoted Xη = �−1
η X and Yη = �−1

η Y . Therefore, its adjoint K∗(η)
η

(with respect to the scalar product Sη) is given by

K∗(η)
η ϕ = 〈Yη, ϕ〉η Xη.

123



1024 F. Fanelli

Now, as in [9], for any ε ∈ [0, 1] fixed and denoting again η = f (ε), we define the
operator

Qε(T ) := ε

T

∫ T/ε

0
e−i tBη Kη �cont,η eitBη dt

= ε

T

∫ T/ε

0
〈e−i tBη �cont,η Xη, · 〉η e−i tBη Yη dt

and its adjoint (again, with respect to Sη)

Q∗(η)
ε (T ) = ε

T

∫ T/ε

0
〈e−i tBη �cont,η Yη, · 〉η e−i tBη Xη dt.

Then, for all ϕ ∈ H, the following identity holds true:

Qε(T ) Q∗(η)
ε (T ) ϕ = ε

T

∫ T/ε

0
〈e−i tBη �cont,η Xη, Q∗(η)

ε (T ) ϕ〉η e−i tBη Yη dt

= ε2

T 2

∫ T/ε

0

∫ T/ε

0
〈e−i tBη �cont,η Xη, e−isBη �cont,η Xη〉η

×〈eisBη Yη, ϕ〉η e−i tBη Yη ds dt.

Therefore, we can write

∥
∥
∥
∥
ε

T

∫ T/ε

0
e−i tBη Kη �cont,η eitBη dt

∥
∥
∥
∥

2

L(η)
= ‖Qε(T )‖2L(η) =

∥
∥
∥Qε(T ) Q∗(η)

ε (T )
∥
∥
∥L(η)

≤ ε2

T 2

∥
∥Yη
∥
∥2
η

∫ T/ε

0

∫ T/ε

0

∣
∣
∣〈e−i tBη �cont,η Xη, e−isBη �cont,η Xη〉η

∣
∣
∣ ds dt.

By definitions and the continuity of the map η 	→ �η, we infer

∥
∥Yη
∥
∥2
η

= 〈�−1
η Y, �−1

η Y 〉η = 〈�−1
η Y, Y 〉0 ≤ C ‖Y‖20,

and applying the Cauchy–Schwarz inequality we arrive at

∥
∥
∥
∥
ε

T

∫ T/ε

0
e−i tBη Kη �cont,η eitBη dt

∥
∥
∥
∥

2

L(η)

≤ C ‖Y‖20
(
ε2

T 2

∫ T/ε

0

∫ T/ε

0

∣
∣
∣〈�cont,η Xη, ei(t−s)Bη �cont,η Xη〉η

∣
∣
∣
2

ds dt

)1/2

.
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We now focus on the integral term on the right-hand side of the previous inequality.
Notice that, since �−1

η �K ,0X ∈ Ker Bη, one can write

�cont,η Xη = �cont,η �
−1
η X = �cont,η �

−1
η �cont,0 X. (53)

Then, coming back to the notation η = σ(ε), let us consider the quantity

Jε := ε2

T 2

∫ T/ε

0

∫ T/ε

0
∣
∣
∣〈�cont,σ (ε) �

−1
σ(ε) �cont,0 X, ei(t−s)Bσ(ε) �cont,σ (ε) �

−1
σ(ε) �cont,0 X〉σ(ε)

∣
∣
∣
2

ds dt.

We denote by μσ(ε) the spectral measure associated to �cont,σ (ε) �
−1
σ(ε) �cont,0X .

Therefore, repeating the computations in [9], it follows that

Jε = ε2

T 2

∫ T/ε

0

∫ T/ε

0

(∫

R

∫

R

exp(i (t − s) (x − y)) dμσ(ε)(x) dμσ(ε)(y)

)

ds dt

≤
∫

R

∫

R

(
sin((x − y)T/(2ε))

(x − y)T/(2ε)

)2

dμσ(ε)(x) dμσ(ε)(y).

Now, in order to estimate the double integral on the right-hand side of the previous
relation, it is just a matter of reproducing the proof of Theorem 6.5 in the case of
continuous dependence on a parameter. Notice that, here, the family of measures does
not depend continuously on ε: as a matter of facts, we are in the continuous part of the
spectrum, which is highly unstable (see also [20], Chapter X). Nonetheless, it is quite
easy to see that Lemma 6.12, combined with the fact that μσ(ε) has no pure points for
any ε, is enough to make the arguments work, and to prove that the previous quantity
goes to 0 for ε → 0.

This concludes the proof of Theorem 6.8. ��
Remark 6.13 Weproved the previous theorem by direct computations. Notice that one
could also compare the two propagators, related to B0 and to Bσ(ε), and use properties
from perturbation theory of semigroups: we refer e.g. to Theorem 2.19 of [20], Chapter
IX (see also Theorem 13.5.8 of [17]). However, these results fail to provide uniform
bounds on time intervals [0, T/ε] when ε → 0: this is why we preferred to prove
estimates “by hands”.

Alternatively, one could use the Baker–Campbell–Hausdorff formula (see for
instance [13,23]) in order to write the propagator exp(i tBσ(ε)) as the propagator
exp(i tB0) related to the unperturbed operator, plus a uniformly bounded remainder of
order σ(ε).

Also in this case, we have the analogue of Corollary 4.3.

Corollary 6.14 Under the hypotheses of Theorem 6.8, suppose moreover that K is
self-adjoint, with K ≥ 0.

Then there exist a constant C > 0 and a function μ, with μ(ε) → 0 for ε → 0,
such that:
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(1) for any Y ∈ H and any T > 0, one has

1

T

∫ T

0

∥
∥
∥K1/2

σ(ε) ei t Bσ(ε)/ε �cont,σ (ε)Y
∥
∥
∥
2

σ(ε)
dt ≤ C μ(ε) ‖Y‖20 ;

(2) for any T > 0 and any X ∈ L2([0, T ];H), one has

1

T 2

∥
∥
∥
∥K

1/2
σ(ε) �cont,σ (ε)

∫ t

0
ei (t−τ)Bσ(ε)/ε X (τ ) dτ

∥
∥
∥
∥

2

L2([0,T ];(H,Sσ(ε)))
≤ C μ(ε) ‖X‖2L2([0,T ];H)

.

Let us conclude this part giving a sufficient condition in order to guarantee the
spectral property σp(Bη) = {0} at least for η close to 0: we need 0 to be an isolated
eigenvalue1 of B0.

Proposition 6.15 Let (H,S0) be a Hilbert space. Let B0 ∈ L(H) be a self-adjoint
operator such that σp(B0) = {0}, and suppose also that 0 is an isolated eigenvalue.

Let (�η)η∈[0,1] be a bounded-holomorphic family of automorphisms of H, with
�0 = Id , such that each �η is self-adjoint. For any η ∈ [0, 1], define the operator
Bη := B0 ◦�η. Then σp(Bη) = {0} for η small enough.

Proof By hypothesis, we know that there exists v ∈ H, v �= 0, such that B0 v = 0.
We want to solve the equation

Bη vη = λη vη (54)

and show that λη = 0, at least for small η.
As done above (see Corollary 6.11), by hypothesis we can write �η = Id + ηDη,

for a bounded family (Dη)η of self-adjoint operators.
Moreover, since 0 is an isolated eigenvalue of B0, by perturbation theory (see [20],

Theorem 3.16 of Chapter IV and Theorems 1.7 and 1.8 of Chapter VII), for suitably
small η we also have

λη = λ0 + η λ̃η and vη = v0 + η ṽη,

where the families of remainders (̃λη)η ⊂ R and (̃vη)η ⊂ H are bounded.
We now insert the previous expansions into (54), getting

B0 v0 + ηB0 ṽη + ηB0 Dη v0 + η2 B0 Dη ṽη = λ0 v0 + η λ0 ṽη + η λ̃η v0 + η2 λ̃η ṽη,

and we compare the terms with the same power of η.
From the 0-th order part, we obviously get that λ0 = 0 and v0 = v. Then, the

equality involving the terms of order η reduces to

B0 ṽη + B0 Dη v = λ̃η v.

1 Here, we mean “isolated” in the sense of [20], Chapter III, Paragraph 6.5: it is an isolated point not just
of σp , but of the whole spectrum of the operator.
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Now, we take the S0-scalar product of both sides with v: since B0 is self-adjoint and
v ∈ Ker B0, we immediately get

λ̃η ‖v‖20 = 0.

Using that v �= 0, we infer that λ̃η = 0, which in turn implies λη = 0 (for η small
enough). ��

6.2 Application to the vanishing capillarity limit

Let us apply now the previous results to our case. As pointed out at the beginning of
Sect. 6, for a fixed α ∈ ]0, 1[ we rewrite system (2) in the form

{
ε ∂t rε + div Vε = 0

ε ∂t Vε + (e3 × Vε + ∇(Id − ε2α �)rε) = ε fε,α,
(55)

where the family ( fε,α)ε is bounded in L2
T (W

−1,2(�)+ W −1,1(�)).

Then, we are led to study the family of operators (A(α)
ε )ε, defined by

A(α)
ε : (r , V ) 	→ (div V , e3 × V + ∇(Id − ε2α �)r).

Notice that one has A(α)
0 ≡ A and A(α)

1 ≡ A0, where A is defined in Sect. 4.1.1 and
A0 in formula (39).

As one can expect, one has the following result about the point spectrum of each
operator.

Proposition 6.16 For any 0 ≤ ε ≤ 1, the point spectrum σp

(
A(α)
ε

)
contains only 0.

In particular, EigenA(α)
ε ≡ KerA(α)

ε .

Proof The same computations performed in the proof of Proposition 5.1 give us

λ2 = − 1

2

(

1 + (1 + ε2αζ )ζ ±
√
(
1 + (1 + ε2αζ )ζ

)2 − 4 k2 (1 + ε2αζ )

)

,

where we recall that we have set ζ(ξ h, k) = ∣∣ξ h
∣
∣2 + k2.

As before, to have λ in the discrete spectrumofA0, we need to delete its dependence
on ξ h : since 1+ ε2αζ > 0, the only way to do it is to have k = 0, for which λ = 0. ��
Remark 6.17 Notice that simple computations show also that 0 is an isolated eigen-
value of the operator A(α)

0 (here we have to use that in the space HM the frequencies
are bounded). Then, one could alternatively apply Proposition 6.15.

As done in Sect. 5, it is easy to find a family of scalar products (S(α)ε )ε on the space
HM such that, for each ε, S(α)ε is a symmetrizer for the operator A(α)

ε . Indeed, it is
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enough to define S(α)ε by a formula analogous to (41), where the operator Id − � is
replaced by Id − ε2α� in the first term on the right-hand side of the equality (see Eq.
(56) below). Notice that S(α)0 coincides with the usual L2 scalar product, while S(α)1 is
exactly the inner product defined by formula (41).

Let us point out that eachA(α)
ε can be obtained composing the acoustic propagator

A with an automorphism �
(α)
ε of the Hilbert space HM :

A(α)
ε = A ◦ �(α)

ε , �(α)
ε (r, V ) := ((Id − ε2α �)r, V ).

The same can be said also about the scalar products S(α)ε : namely,

〈(r1, V1), (r2, V2)〉S(α)ε
:= 〈r1, (Id − ε2α�)r2〉L2 + 〈V1, V2〉L2

= 〈(r1, V1), �
(α)
ε (r2, V2)〉S(α)0

. (56)

Now, we define the operator KM,θ as in Sect. 4.1.2:

KM,θ (r, V ) := PM (θ PM (r, V )),

where PM : L2(�) × L2(�) −→ HM is the orthogonal projection onto the space
HM , defined by (31), and θ ∈ D(�) is such that 0 ≤ θ ≤ 1. Recall that KM,θ is
compact, self-adjoint and positive.

Following what we have done before, we want to apply Theorem 6.8 to

H = HM , �σ(ε) = �(α)
ε , B0 = i A(α)

0 , K = KM,θ , �cont,σ (ε) = Q⊥
ε

(obviously, σ(ε) = ε2α here), where Qε and Q⊥
ε denote the orthogonal projections

(orthogonal with respect to the scalar product S(α)
ε ) onto respectively KerA(α)

ε and
(KerA(α)

ε )⊥.
We apply operator PM to the system for acoustic waves (55): adopting the same

notations as in the previous sections, it becomes

ε
d

dt
(rε,M , Vε,M )+ A(α)

ε (rε,M , Vε,M ) = ε (0, fε,α,M ), (57)

where uniform bounds give a control analogous to (33) also for (0, fε,α,M ). Notice
that, all the scalar products being equivalent on HM , it is enough to have the bound
on the S(α)

0 norm.
By use of Duhamel’s formula, solutions to the previous acoustic equation can be

written as

(rε,M , Vε,M )(t) = ei t Bσ(ε)/ε(rε,M , Vε,M )(0)+
∫ t

0
ei (t−τ)Bσ(ε)/ε (0, fε,α,M ) dτ.
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Again, by definition we have

∥
∥
∥
∥
∥

((
�(α)
ε

)−1 ◦ KM,θ

)1/2

Q⊥
ε (rε,M , Vε,M )

∥
∥
∥
∥
∥

2

σ(ε)

=
∫

�

θ

∣
∣
∣Q⊥

ε (rε,M , Vε,M )
∣
∣
∣
2

dx .

Therefore, a straightforward application of Corollary 6.14 implies that, for any T > 0
fixed and for ε going to 0,

Q⊥
ε (rε,M , Vε,M ) −→ 0 in L2([0, T ] × K ) (58)

for any fixed M > 0 and any compact K ⊂ �.
On the other hand, applying operator Qε to Eq. (57), we infer that, for any fixed

M > 0, the family (∂t Qε(rε,M , Vε,M ))ε is bounded (uniformly in ε) in the space
L2

T (HM ). Moreover, as HM ↪→ Hm for any m ∈ N, we infer also that it is compactly
embedded in L2(K ) for any M > 0 and any compact subset K ⊂ �. Hence, as in the
previous sections, Ascoli–Arzelà theorem implies that, for ε → 0,

Qε(rε,M , Vε,M ) −→ (rM , uM ) in L2([0, T ] × K ). (59)

Thanks to relations (58) and (59), the analogue of Proposition 4.4 still holds true:
namely, we have the strong convergence (up to extraction of subsequences)

rε −→ r and ρ3/2ε uε −→ u in L2([0, T ]; L2
loc(�)),

where r and u are the limits which have been identified in Sect. 3.3 and which have to
satisfy the constraints given in Proposition 3.5.

The previous strong convergence properties allow us to pass to the limit in the non-
linear terms. Then, the analysis of the limit system can be performed as in Sect. 4.2.2.

This concludes the proof of Theorem 2.4 in the remaining cases 0 < α < 1.
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Appendix 1: A primer on Littlewood–Paley theory

Let us recall here the main ideas of Littlewood–Paley theory, which we exploited in
the previous analysis. We refer e.g. to [1] (Chapter 2) and [24] (Chapters 4 and 5) for
details.

For simplicity of exposition, let us deal with theRd case; however, the construction
can be adapted to the d-dimensional torus Td , and then also to the case of Rd1 ×T

d2 .
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1030 F. Fanelli

First of all, let us introduce the so called “Littlewood–Paley decomposition”, based
on a non-homogeneous dyadic partition of unity with respect to the Fourier variable.

We, fix a smooth radial function χ supported in the ball B(0, 2), equal to 1 in a
neighborhood of B(0, 1) and such that r 	→ χ(r e) is nonincreasing over R+ for all
unitary vectors e ∈ R

d . Set ϕ (ξ) = χ (ξ) − χ (2ξ) and ϕ j (ξ) := ϕ(2− jξ) for all
j ≥ 0.
The dyadic blocks (� j ) j∈Z are defined by2

� j := 0 if j ≤ −2, �−1 := χ(D) and � j := ϕ(2− j D) if j ≥ 0.

Throughout the paper we will use freely the following classical property: for any
u ∈ S ′, the equality u =∑ j � j u holds true in S ′.

Let us also mention the so-called Bernstein’s inequalities, which explain the way
derivatives act on spectrally localized functions.

Lemma 7.1 Let 0 < r < R. A constant C exists so that, for any nonnegative integer
k, any couple (p, q) in [1,+∞]2 with p ≤ q and any function u ∈ L p, we have, for
all λ > 0,

supp û ⊂ B(0, λR) �⇒ ‖∇ku‖Lq ≤ Ck+1 λ
k+d

(
1
p − 1

q

)

‖u‖L p ;
supp û ⊂ {ξ ∈ R

d | rλ ≤ |ξ | ≤ Rλ} �⇒ C−k−1 λk‖u‖L p

≤ ‖∇ku‖L p ≤ Ck+1 λk‖u‖L p .

Byuse of Littlewood–Paley decomposition,we can define the class ofBesov spaces.

Definition 7.2 Let s ∈ R and 1 ≤ p, r ≤ +∞. The non-homogeneous Besov space
Bs

p,r is defined as the subset of tempered distributions u for which

‖u‖Bs
p,r

:=
∥
∥
∥
∥

(
2 js ‖� j u‖L p

)

j∈N

∥
∥
∥
∥
�r

< +∞.

Besov spaces are interpolation spaces between the Sobolev ones. In fact, for any
k ∈ N and p ∈ [1,+∞] we have the following chain of continuous embeddings:

Bk
p,1 ↪→ W k,p ↪→ Bk

p,∞,

whereW k,p denotes the classical Sobolev space of L p functionswith all the derivatives
up to the order k in L p. Moreover, for all s ∈ R we have the equivalence Bs

2,2 ≡ Hs ,
with

‖ f ‖Hs ∼
⎛

⎝
∑

j≥−1

22 js ‖� j f ‖2L2

⎞

⎠

1/2

.

2 Throughout we agree that f (D) stands for the pseudo-differential operator u 	→ F−1( f Fu).
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Let us nowcollect someboundswhich are straightforward consequences ofBernstein’s
inequalities. The statements are not optimal: we limit to present the properties we used
in our analysis.

Lemma 7.3 (i) For 1 ≤ p ≤ 2, one has ‖ f ‖L2 ≤ C(‖ f ‖L p + ‖∇ f ‖L2).
(ii) For any 0 < δ ≤ 1/2 and any 1 ≤ p ≤ +∞, one has

‖ f ‖L∞ ≤ C

(

‖ f ‖L p + ‖∇ f ‖(1/2)−δ
L2

∥
∥
∥∇2 f

∥
∥
∥
(1/2)+δ
L2

)

.

(iii) Let 1 ≤ p ≤ 2 such that 1/p < 1/d +1/2. For any j ∈ N, there exists a constant
C j , depending just on j , d and p, such that

∥
∥
(
Id − S j

)
f
∥
∥

L2 ≤ C j ‖∇ f ‖B0
p,∞ .

Moreover, denoting β := 1 − d(1/p − 1/2) > 0, we have the explicit formula

C j =
(

1

1 − 2−2β

)1/2

2−β( j−1).

In particular, if ∇ f = ∇ f1 + ∇ f2, with ∇ f1 ∈ B0
2,∞ and ∇ f2 ∈ B0

p,∞, then

∥
∥
(
Id − S j

)
f
∥
∥

L2 ≤ C̃ j

(
‖∇ f1‖B0

2,∞
+ ‖∇ f2‖B0

p,∞

)
,

for a new constant C̃ j still going to 0 for j → +∞.

Proof For the first inequality, it is enough to write f = �−1 f + (Id − �−1) f . The
former term can be controlled by ‖ f ‖L p by Bernstein’s inequalities; for the latter,
instead we can write

‖(Id −�−1) f ‖L2 ≤
∑

k≥0

‖�k(Id −�−1) f ‖L2

≤ C
∑

k≥0

2−k ‖�k(Id −�−1)∇ f ‖L2 ≤ C ‖∇ f ‖L2 ,

where we used again Bernstein’s inequalities and the characterization L2 ≡ B0
2,2.

In order to prove the second estimate, we proceed exactly as before. Again, Bern-
stein’s inequalities allow us to bound low frequencies by ‖ f ‖L p . Next we have:

‖(Id −�−1) f ‖L∞ ≤ C
∑

k≥0

23k/2 ‖�k(Id −�−1) f ‖L2

≤ C
∑

k≥0

2−δk
∥
∥
∥|D|δ+3/2�k(Id −�−1) f

∥
∥
∥

L2
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1032 F. Fanelli

(for any 0 < δ < 1/2), where we denoted |D| the Fourier multiplier having symbol
equal to |ξ |. By interpolation we can write

∥
∥
∥|D|δ+3/2�k(Id −�−1) f

∥
∥
∥

L2
≤ C ‖�k(Id −�−1)∇ f ‖σL2

∥
∥
∥�k(Id −�−1)∇2 f

∥
∥
∥
1−σ
L2

,

for σ ∈ ]0, 1[ (actually, σ = (1/2)− δ), and this immediately gives the conclusion.
Let us finally prove the third claim. By spectral localization we can write

∥
∥
(
Id − S j

)
f
∥
∥2

L2 ≤
∑

k≥ j−1

‖�k f ‖2L2 ≤
∑

k≥ j−1

2−2k‖∇�k f ‖2L2

≤
∑

k≥ j−1

22kd(1/p − 1/2) 2−2k ‖∇�k f ‖2L p .

Keeping in mind that, by hypothesis, d (1/p − 1/2) − 1 = −β < 0, we infer the
desired inequality and the explicit expression for C j . ��

Finally, let us recall that one can rather work with homogeneous dyadic blocks
(�̇ j ) j∈Z, with

�̇ j := ϕ(2− j D) for all j ∈ Z,

and introduce the homogeneous Besov spaces Ḃs
p,r , defined by the condition

‖u‖Ḃs
p,r

:=
∥
∥
∥
∥

(
2 js ‖�̇ j u‖L p

)

j∈Z

∥
∥
∥
∥
�r

< +∞.

We do not enter into the details here; we just limit ourselves to recall refined embed-
dings of homogeneous Besov spaces into Lebesgue spaces (see Theorem 2.40 of [1]).

Proposition 7.4 For any 2 ≤ p < +∞, one has the continuous embeddings Ḃ0
p,2 ↪→

L p and L p′
↪→ Ḃ0

p′,2.
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