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Abstract McKay’s original observation on characters of odd degrees of finite groups
is reduced to almost simple groups.
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1 Introduction

In 1971 John McKay made an observation that changed the course of the Represen-
tation Theory of Finite Groups: “In this note we observe that the number m2(G) of
inequivalent irreducible complex representations of odd degree of a finite group G is
a power of two for many groups G” [17].

What McKay was noticing was a particular (but fundamental) case of what later
has become known as the McKay Conjecture: if G is a finite group, p is any prime
and P ∈ Sylp(G), then
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1156 G. Navarro, P. H. Tiep

mp(G) = mp(NG(P)),

where now mp(G) is the number of inequivalent irreducible complex representations
of degree not divisible by p of a finite group G. If true, this is an astonishing fact,
since global information of a finite group G is going to be encoded in a local small
subgroup of G, the Sylow normalizer NG(P).

In the case whereNG(P) = P , one has thatmp(NG(P)) equals the order |P/P ′| of
the largest abelian quotient of P , since the degrees of the irreducible representations of
a finite group divide the order of the group.Hence,whatMcKaywas observingwas that
m2(G) equals the 2-power |P/P ′| in the many finite groups having self-normalizing
Sylow 2-subgroups.

In this paper, we prove that in order to prove McKay’s original observation, it is
enough to check it for certain almost simple groups.

Theorem A Let G be a finite group with a self-normalizing Sylow 2-subgroup P.
Suppose that m2(H) = |Q/Q′| whenever H is an almost simple group involved in
G with a self-normalizing Sylow 2-subgroup Q and H = soc(H)Q. Then m2(G) =
|P/P ′|.

(Recall that a finite group H is almost simple if S � H ≤ Aut(S), where S is a
non-abelian simple group. In particular, S is the unique non-trivial normal subgroup
of H and therefore the socle soc(H) is just S. Also, H is involved in a finite group G
if there exist subgroups Y � X ≤ G such that X/Y ∼= H .)

Our proof of Theorem A uses the Classification of Finite Simple Groups. It is
also independent of the ongoing plan proposed in [8] (later refined in [26]) to prove
the McKay conjecture: a finite group G will satisfy the McKay Conjecture if every
non-abelian simple group S involved in G satisfies the inductive McKay condition.
Essentially, S satisfies the inductive McKay condition if there is a bijection between
the irreducible characters of p′-degree of the universal covering group Ŝ of S, and
those of its p-Sylow normalizer NŜ(Q), where Q ∈ Sylp(Ŝ), that commutes with the

action of the automorphisms in Aut(Ŝ) that stabilize Q, respects central characters,
and satisfies certain delicate cohomology equalities between character correspondents.

In the statement of our Theorem A there are no cohomology conditions nor cov-
ering groups, but a pure reduction of the problem to almost simple groups. This is
only possible because, using the self-normalizing condition, we are able to prove a
perhaps surprising and deep extension theorem of characters (Theorem 3.3 below)
that eliminates cohomology, and that constitutes, we believe, a step further in the plan
to check that every finite simple group satisfies the inductive McKay condition. (We
note that Theorem 3.3 does not hold without the self-normalizing 2-Sylow condition
and that it does not follow from other extendibility results. See Remark 4.15.)

Sowhat is left in order to have a full proof ofMcKay’s original observation?Assume
that S is a non-abelian simple group and that S ≤ H ≤ Aut(S) is such that H/S is a
2-group and H has a self-normalizing Sylow 2-subgroup Q.What is needed is to prove
the existence of a bijection between Irr2′(S) and Irr2′(NS(R)), where R = Q∩ S, that
commutes with Q-action. If H = S, this is a consequence of work byMalle and Späth
[13,24,25]. For H > S, unless another argument is found, we need to understand how
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Irreducible representations of odd degree 1157

Q acts on the odd-degree irreducible characters of S. How Out(S) acts on Irr(S) for
a finite simple group of Lie type S is a fundamental problem, which is yet unsolved
and currently studied by several mathematicians (including M. Cabanes, G. Lusztig,
G. Malle, B. Späth, and others).

In the final section of this paper we offer another application of the extension The-
orem 3.3, by proving a reduction to almost simple groups of a well-known conjecture
on groups with self-normalizing Sylow 2-subgroups.

2 Extending characters

First, we recall the “modern notation” for mp(G) which is

mp(G) = |Irr p′(G)|,

where

Irr p′(G) = {χ ∈ Irr(G) | p � χ(1)}

and Irr(G) is the set of the irreducible complex characters of the finite group G. In
general our notation for characters follows [7].

We start by proving a new extension theorem of characters which uses Galois
conjugation. Let σ ∈ Gal(Q̄/Q) be the unique Galois automorphism such that σ fixes
the 2-power roots of unity and squares the odd roots of unity. This is an automorphism
which is related to the McKay Conjecture by work in [18].

Theorem 2.1 Suppose that N� G,G/N has odd order. Let θ ∈ Irr(N ) beG-invariant,
and assume that θσ = θ . Then θ extends to G, and has a unique extension θ̂ ∈ Irr(G)

such that

(θ̂)σ = θ̂ .

Proof First we prove that if θ extends, then θ has a unique extension θ̂ ∈ Irr(G) such
that (θ̂)σ = θ̂ . Let ψ ∈ Irr(G) be such that ψN = θ . Now, ψσ = λψ for some linear
λ ∈ Irr(G/N ) by Gallagher’s theorem [7, Corollary (6.17)]. Let χ = λ̄ψ . Then χ

extends θ and

χσ = (λ̄ψ)σ = λ−2ψσ = λ−2λψ = λ̄ψ = χ.

Suppose now that τN = θ with τσ = τ ∈ Irr(G). Then τ = μχ for some linear
μ ∈ Irr(G/N ). Now

μχ = τ = τσ = μσ χσ = μσ χ = μ2χ

and therefore μ = μ2, by Gallagher’s theorem. Hence μ = 1, and we have proved
what we claimed.
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1158 G. Navarro, P. H. Tiep

Therefore, it suffices to show that θ extends toG.We argue by induction on |G : N |.
Let M/N be a maximal normal subgroup of G/N . Hence |G : M | = q, an odd prime.
By induction, θ has a unique extension μ ∈ Irr(M) such that μσ = μ. By uniqueness,
μ is G-invariant, because θ is G-invariant. Now, μ extends to G by [7, Corollary
(11.22)], and hence θ extends to G. �	
Corollary 2.2 Suppose that N � G. Let χ ∈ Irr2′(G), and let θ ∈ Irr(N ) be under χ .
Let T = IG(θ) be the stabilizer of θ in G. If θσ = θ , then θ extends to T .

Proof Let ψ ∈ Irr(T ) be the Clifford correspondent of χ over θ . Then ψ has odd
degree, and therefore, we may assume that θ is G-invariant. By [7, Corollary (11.31)],
it suffices to show that θ extends to Q for every Q/N ∈ Sylq(G/N ), q any prime.
If q = 2, then χQ has some odd degree irreducible constituent γ ∈ Irr p′(Q). Now,
γN = θ , by [7, Corollary (11.29)]. If q is odd, then θ extends to Q by Theorem2.1.

�	
The following extension theorem is now a consequence of the McKay-Galois con-

jecture (proposed by the first author in [18]). However, this version of the McKay
conjecture seems to be very deep and only a few cases have been verified. So, in this
form, it can only occasionally be applied.Wewill remove the dependence of Corollary
2.3 on the McKay-Galois conjecture in Theorem 3.3.

Corollary 2.3 Set p = 2. Suppose that N � G, χ ∈ Irr p′(G), and let θ ∈ Irr(N )

be under χ . Suppose that G has self-normalizing Sylow 2-subgroups. If the McKay-
Galois conjecture holds for finite groups with self-normalizing Sylow 2-subgroups,
then θ extends to its stabilizer T = IG(θ).

Proof Letψ ∈ Irr(T )be theClifford correspondent ofχ over θ . Sinceχ has p′-degree,
it follows that T contains some P ∈ Sylp(G). Sinceψ ∈ Irr p′(G), it follows that some
τ ∈ Irr p′(N P) under ψ has p′-degree. We also have that N P has a self-normalizing
Sylow 2-subgroup. Therefore, by the McKay-Galois conjecture [18, Theorem 5.2],
we have that τ ∈ Irr p′(N P) is σ -invariant. Since τN = θ , then we conclude that θ is
σ -invariant, and Corollary 2.2 applies. �	

The following extension lemma is elementary.

Lemma 2.4 Suppose that N � G is a p-group. Let χ ∈ Irr p′(G), and let θ ∈ Irr(N )

be under χ . Then θ extends to IG(θ).

Proof Let T = IG(θ), and let ψ ∈ Irr(T ) be the Clifford correspondent of χ over
θ , which has p′-degree. Hence, we may assume that T = G. Let P ∈ Sylp(G),
which contains N . Then χP has some p′-degree irreducible constituent μ which
necessarily lies over θ and is linear. Thus θ extends to P . But θ extends to NQ
for every Q ∈ Sylq(G) with q 
= p, by [7, Corollary (6.28)]. Thus θ extends to G. �	

If a group A acts by automorphisms on G, we will use the notation IrrA(G) to
denote the set of characters in Irr(G) that are fixed by A, and IrrA,p′(G) to denote
those A-invariant that are of p′-degree. The following is well-known.
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Theorem 2.5 Suppose that G is a finite group, K = Op(G), and P ∈ Sylp(G). Then
every P-invariant irreducible character of K of p′-degree extends to G. In particular,

|Irr p′(G)| = |IrrP,p′(K )| · |P : (P ∩ K )P ′|.

Proof If χ ∈ Irr p′(G), then χK ∈ Irr(K ) by [7, Corollary (11.29)]. Now the theorem
easily follows from [7, Corollary (6.28)] and Gallagher’s theorem. �	

We also need a downstairs version of the previous theorem.

Theorem 2.6 Suppose that G is a finite group, K = Op(G), and let P ∈ Sylp(G).
Let P ≤ V ≤ G and U = V ∩ K. If θ ∈ Irr(U ) has p′-degree and is P-invariant,
then θ extends to V .

Proof We have that

θK =
∑

χ∈IrrP (K )

[θK ,χ ]χ(1) 
≡ 0mod p

[θK , χ ]χ +
∑

χ∈IrrP (K )

[θK ,χ ]χ(1)≡ 0mod p

[θK , χ ]χ

+
∑

χ∈Irr(K )�IrrP (K )

[θK , χ ]χ.

Note that the characters in Irr(K )� IrrP (K ) lie in P-orbits of nontrivial p-power size
and occur with the same multiplicity in the P-invariant character θK . Since θK has
p′-degree, we deduce that there exists χ ∈ Irr(K ) of p′-degree, P-invariant, such that
[χ, θK ] = [χU , θ ] is not divisible by p. Now, χ extends to G by [7, Corollary (6.28)].
Let ψ ∈ Irr(G) be an extension of χ . Then [ψU , θ ] = [χU , θ ] is not divisible by p.
Now,

[ψU , θ ] =
∑

τ∈Irr(V )

[ψV , τ ][τU , θ ]

and we deduce that there exists τ ∈ Irr(V ) such that [τU , θ ] is not divisible by p. Since
θ is P-invariant, [τV , θ ] = τ(1)/θ(1) divides |V : U | which is a p-power. Hence,
τU = θ , as desired. �	
Corollary 2.7 Suppose that K = Op(G) and let P ∈ Sylp(G). Let P ≤ V ≤ G and
U = V ∩ K. Then V ′ ∩U = [U, V ].
Proof We have that U ′ ≤ [U, V ] ≤ V ′ ∩U . Let λ ∈ Irr(U/[U, V ]). Then λ is linear
and V -invariant. In particular, it is P-invariant. Hence, it has an extension λ̂ ∈ Irr(V )

by Theorem 2.6. Now, V ′ ≤ Ker(λ̂) and V ′ ∩ U ≤ Ker(λ). Since this is true for all
λ ∈ Irr(U/[U, V ]), we have that V ′ ∩U ≤ [U, V ]. �	

Finally, we will need an extension theorem from minimal normal subgroups under
certain fairly usual circumstances.
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1160 G. Navarro, P. H. Tiep

Lemma 2.8 Suppose that N � G, and that N = S1 × · · · × St is the direct product of
the set of subgroups 	 = {S1, . . . , St } of N which are transitively permuted by G by
conjugation. Write S = S1 and view S/Z(S) � A = Aut(S). Let θ = θ1 × · · · × θt ∈
Irr(N ) be G-invariant, where θi ∈ Irr(Si ) and θ1 ∈ Irr(S/Z(S)). If θ1 extends to
IA(θ1), then θ extends to G.

Proof Write H = NG(S), Si = Sxi , where G = ⋃t
j=1 Hx j is a disjoint union. We

claim that θi = (θ1)
xi . If s ∈ S, then we have that θ(sxi ) = ∏

j 
=i θ j (1)θi (sxi ). Also,

using that θ isG-invariant, we have that θ(sxi ) = θ(s) = ∏
j>1 θ j (1)θ1(s). Thus θ x−1

i

and θ1 are multiple of each other, and therefore they coincide by irreducibility. The
claim follows. Now, we notice that θ1 is H -invariant because θ is G-invariant. Let
C = CG(S). Now, view S/Z(S) ∼= SC/C ≤ H/C ≤ A and θ1 ∈ Irr(SC/C). Since
θ1 extends to IA(θ1), we have that θ1 extends to IH (θ1) = H . Let ψ ∈ Irr(H/C) be
an extension of θ1. Now, let

ρ = ψ⊗G

be the tensor induced character. (See Section 4 of [6] for the definition.) By Lemma
(4.1) of [6], we have that

ρ(n) =
t∏

j=1

ψ(x j nx
−1
j )

for n ∈ N . Write T = ∏t
j=2 S

x j , so that N = S × T . Notice that T ≤ C ≤ Ker(ψ).
If we write n = s1 · · · st with si ∈ Si , then we have that

ρ(n) =
t∏

j=1

θ1(s
x j−1

j ) =
t∏

j=1

(θ
x j
1 )(s j ) = θ(n),

and this completes the proof of the lemma. �	

3 Proof of Theorem A

In this section, we prove Theorem A assuming Theorem 3.1 on simple groups, which
will be proved in later sections. From now on we set p = 2.

Theorem 3.1 Let S be a finite non-abelian simple group, and let A = Aut(S). View
S � A. Suppose that θ ∈ Irr2′(S). Let I = IA(θ) and let X/S be a Sylow 2-subgroup
of I/S. Suppose that X has a self-normalizing Sylow 2-subgroup. Then θ extends to
IA(θ).

The self-normalizing hypothesis is conveniently inherited in a key situation.

Lemma 3.2 Suppose that N � G, and that N = S1 × · · · × Sk is the direct product
of the set of groups 	 = {S1, . . . , Sk} which are permuted by G by conjugation.
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Let P ∈ Sylp(G) and assume that P = NN P (P). Then there exists Si such that
Q = P ∩ NG(Si ) ∈ Sylp(NG(Si )) and Q = NSi Q(Q).

Proof Work by induction on |G|. First, note by [21, Lemma2.1(ii)] that ifY � X , where
Y/X is a p-group and P ∈ Sylp(X), thenNX (P) = P if andonly ifCNY (R)/R(P) = 1,
where R = P∩Y . Now, bySylow theory, there is some g ∈ G such thatNG(S1)∩Pg ∈
Sylp(NG(S1)). Now, (S1)g

−1 = Si for some i , and therefore Q = P ∩ H ∈ Sylp(H),
where H = NG(Si ).

Write now N = M × K , where M is the product over the P-orbit of Si and K is
the product of the rest. Notice that P is self-normalizing in MP , because it is in N P .
Assume thatMP < G. By induction, there is some x ∈ P such that R = NMP (Sxi )∩P

is a Sylow p-subgroup of NMP (Sxi ), and R is self-normalizing in Sx1 R. Now, R
x−1

is

self-normalizing in Si Rx−1
and Rx−1 = NMP (Si ) ∩ P = NG(Si ) ∩ MP ∩ P = Q,

so Q is self-normalizing in Si Q, as desired. Hence, we may assume that MP = G,
and that P transitively permutes the set 	. In particular, N P = G.

Now, write S = S1, and N = Sx1 × · · · × Sxt , where xi ∈ P and x1 = 1. Recall
that G = N P . Write U = Q ∩ N = P ∩ N ∈ Sylp(N ). Then P ∩ S = Q ∩ S = V ,

U = V x1 × · · · × V xt and NN (U ) = NS(V )x1 × · · · × NS(V )xt .

Byhypothesis,wehave that P is self-normalizing inG = N P .HenceCNN (U )/U (P) =
1.

Suppose finally that zV ∈ CNS(V )/V (Q), where z ∈ NS(V ). Let y = ∏t
j=1 z

x j ∈
NN (U ). We show that [yU, P] = U . In this case y ∈ U = V x1 × · · · × V xt , and
therefore z ∈ V , which will prove that Q is self-normalizing in SQ. Let x ∈ P . We
have that

P =
t⋃

j=1

Qx j .

Hence Qx j x = Qxσ( j), where σ is a permutation of {1, . . . , k}. Since zV is fixed by
Q, we have that

(zx j V x j )x = (zV )x j x = (zV )xσ( j) .

Then

(yU )x = (zx1V x1 · · · zxt V xt )x =
∏

j

(zV )xσ ( j)U = yU,

as desired. �	
The following is the fundamental idea to prove Theorem A. (Recall that its proof

uses the Classification of Finite Simple Groups.) The case were p is odd was recently
proved in [22], with a totally different type of proof, and inspired us to resolve the
case p = 2 here.
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Theorem 3.3 Let G be a finite group. Set p = 2. Let P ∈ Sylp(G), and assume that
P = NG(P). Let N � G, χ ∈ Irr p′(G) and θ ∈ Irr(N ) be under χ . Then θ extends to
IG(θ).

Proof Let (G, N ) be a counterexample with |N | + |G| as small as possible. Let
T = IG(θ), and let ψ ∈ Irr p′(T ) be the Clifford correspondence of χ over θ . Now, T
has p′-index, and therefore T contains a Sylow p-subgroup of G which is therefore
self-normalizing in T . By minimality, we may assume that T = G and so

χN = eθ. (3.1)

Suppose that M � G, where M < N , and write χM = f
∑t

i=1 τi for a G-orbit
{τ1, . . . , τt } on Irr(M). Since p � χ(1), we may assume that τ = τ1 is P-invariant.
Set I = IG(τ ), so that t = [G : I ]. By (3.1) we also have that θM = ( f/e)

∑t
i=1 τi ,

and so N permutes τ1, . . . , τt transitively, i.e. t = [N : I ∩ N ] and

G = I N . (3.2)

Let ρ ∈ Irr(I ∩ N ) be the Clifford correspondent of θ over τ . Since θ and τ are both
I -invariant, ρ is I -invariant by uniqueness in the Clifford correspondence.

Next, since χ lies over ρ, it follows that some irreducible constituent χ1 of χI lies
over ρ. Hence χ1 lies over τ and necessarily χ = (χ1)

G by the Clifford correspon-
dence. In particular, χ1 has p′-degree. Now, P is self-normalizing in I , and so by
induction hypothesis we have that ρ extends to some μ ∈ Irr(I ). Applying (3.2) we
obtain

(μG)N = (μI∩N )N = ρN = θ,

and so we are done in this case. Hence, we may assume that N is a minimal normal
subgroup of G.

If N is a p-group, then we know that θ extends by Lemma 2.4. If N is a p′-group,
then NG(P) = P implies that CN (P) = 1, and so θ = 1N by the Glauberman
correspondence, whence we are done too.

Therefore we may assume that N is a direct product of isomorphic non-abelian
simple groups {S1, . . . , St } which are transitively permuted by G. By Lemma 3.2,
there is some Si , say i = 1, and write S1 = S, such that if H = NG(S), then
Q = H ∩ P ∈ Sylp(H) and Q is self-normalizing in SQ. Write θ = θ1 × · · · × θt ,
where θi = (θ1)

gi for some gi ∈ G with Sgi = Si . Now, we have that S1 ≤ N ≤ H .
Since χ has p′-degree, it follows that some irreducible constituent ξ ∈ Irr(H) under
χ has p′-degree. Since χS is a multiple of θ1, it follows that ξS is a multiple of θ1. In
particular, θ1 has odd degree and is H -invariant. Let C = CG(S). Then θ̄1 = θ1 × 1C
is H -invariant of odd degree. Now, let H̄ = H/C and use the bar convention. View
θ̄1 ∈ Irr(SC/C) = Irr(S̄), which is H̄ -invariant.Wehave that Q̄ is a Sylow2-subgroup
of H̄ , and that Q̄ is self-normalizing in S̄ Q̄. Write A = Aut(S̄), so we can view S̄ � A,
and S̄ ≤ H̄ ≤ J = IA(θ̄1) ≤ A. Now let Y be a Sylow 2-subgroup of J containing
Q̄. Then S̄ Q̄ ∩ Y = Q̄, and it easily follows that Y is self-normalizing in S̄Y = X
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because Q̄ is self-normalizing in Q̄ S̄. By Theorem 3.1, we conclude that θ̄1 extends
to J . By Lemma 2.8, we now see that θ extends to G, contradicting the choice of G
as a minimal counterexample. �	

In order to prove our main result, we need a relative version of it which implies
Theorem A by setting N = 1.

Theorem 3.4 Let G be a finite group with P = NG(P), where P ∈ Sylp(G) and
p = 2. Let N � G and θ ∈ Irr p′(N ) that extends to N P. Assume that Irr p′(H) =
|Q/Q′| whenever H is an almost simple group involved in G with a self-normalizing
Sylow 2-subgroup Q and H = soc(H)Q. Then

|Irr p′(G|θ)| = |P : P ′(P ∩ N )|.

Proof Let (G, N ) be a counterexample minimizing |N | + |G|. Let T = IG(θ) which
contains P; in particular, P is self-normalizing in T . Then

|Irr p′(G|θ)| = |Irr p′(T |θ)|

by the Clifford correspondence, and we may assume that T = G. Since θ extends to
N P and has p′-degree, θ lies under some χ ∈ Irr p′(G) (because θG has p′-degree).
By Theorem 3.3, we have that θ extends to G. Thus |Irr p′(G|θ)| = |Irr p′(G/N )| by
Gallagher’s theorem. If N > 1, then PN is self-normalizing inG/N and by induction
|Irr p′(G/N )| = |PN/P ′N | = |P : P ′(P ∩ N )|, and we are done by induction.

Thus we may assume that N = 1. Let L be a minimal normal subgroup of G.
Suppose that L is a p′-group. Then every χ ∈ Irr p′(G) lies over some P-invariant
τ ∈ Irr(L). Since by hypothesisCL(P) = 1, we have that τ = 1L , by the Glauberman
correspondence. Hence Irr p′(G/L) = Irr p′(G), and we are easily done by induction.

Now let � be the set of p′-degree irreducible characters of L that extend to LP .
Then

Irr p′(G) =
⊔

μ∈�

Irr p′(G|μ) (3.3)

is a disjoint union. Indeed, if χ ∈ Irr p′(G), then some irreducible constituent τ of
χLP has p′-degree, and τL ∈ �. Conversely, suppose that χ ∈ Irr p′(G) lies over
some P-invariant μ ∈ Irr(L). If ν ∈ Irr(L) is any P-invariant character lying under
χ , then we can write ν = μg for some g ∈ G. Now the P-invariance of ν implies that
gPg−1 ∈ IG(μ). Note that IG(μ) ≥ P andNG(P) = P by hypothesis. It follows that
g ∈ IG(μ) and ν = μ. Thus μ is unique, showing that the union in (3.3) is disjoint.

Write Q0 = L ∩ P and R0 = Q0P ′. By induction, we have that

|Irr p′(G|μ)| = |P : R0|

for all μ ∈ �. Hence (3.3) implies that

|Irr p′(G)| = |�||P : R0|. (3.4)
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1164 G. Navarro, P. H. Tiep

We claim that
|�||P : R0| = |Irr p′(LP)|. (3.5)

If Op(L) = L , then this follows from Theorem 2.5. If L is a p-group, then � is the
set of different restrictions to L of the linear characters of P . This set has size

|�| = |P : P ′|
|P : P ′L| = |P : P ′|

|P : R0| ,

and the claim also follows. Combining (3.4) and (3.5), we conclude that

|Irr p′(G)| = |Irr p′(LP)|.

By induction, we may assume that LP = G, and certainly that G is not a p-group.
Hence we have that L (and every other minimal normal subgroup of G) is a direct
product of t non-abelian simple groups of order divisible by p which are transitively
permuted by P .

Next, we show that we may assume that t = 1. The argument is more delicate
than expected. Write L = Sx1 × · · · × Sxt , where G = ⋃t

j=1 Hx j with x1 = 1, and
H = NG(S). Thus G = HP and P ∩ H ∈ Sylp(H). Write Q = P ∩ H . We have
that Q is self-normalizing in SQ by Lemma 3.2. Let R = L ∩ P = L ∩ Q, and let
R1 = R ∩ S = P ∩ S = Q ∩ S. Notice that

R = Rx1
1 × · · · × Rxt

1 .

Furthermore, we claim that Q = NP (R1). Since R1 = P ∩ S and Q = NP (S), it
follows that Q ≤ NP (R1). Conversely, suppose that z ∈ NP (R1). Let 1 
= v ∈ R1.
Then vz ∈ R1 ≤ S. On the other hand vz ∈ Sz = Sx j for some j and vz ∈ S ∩ Sx j .
Necessarily Sx j = S = Sz and z ∈ NP (S) = Q. Now, by [21, Lemma 4.1(ii)], we
deduce that

|Irr p′,P (R)| = |Irr p′,Q(R1)|. (3.6)

Now, by applying Corollary 2.7 to the groups G = LP and SQ, we have that

P ′ ∩ R = [P, R] and Q′ ∩ R1 = [Q, R1].

Combining this with Eq. (3.6), we obtain that

|R : P ′ ∩ R| = |R1 : Q′ ∩ R1|. (3.7)

Now, again by [21, Lemma 4.1(ii)] we know that

|IrrP,p′(L)| = |IrrQ,p′(S)|. (3.8)

By Theorem 2.5, we have that

|Irr p′(SQ)| = |IrrQ,p′(S)| · |Q : Q′R1| (3.9)
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and
|Irr p′(G)| = |IrrP,p′(L)| · |P : P ′R| (3.10)

Suppose that t > 1. Then SQ < G, and by induction applied to SQ, we have that

|Irr p′(QS)| = |Q/Q′|. (3.11)

Now, by using Eqs. (3.10), (3.8), (3.9), (3.11) and (3.7), in this order, we obtain that

|Irr p′(G)| = |P : P ′|.

Hence we may assume that t = 1, L = S, and that G = SP . Since all minimal
normal subgroups of G are non-abelian, we also have that CG(S) = 1. In this case,
the theorem follows by our hypothesis. �	

4 Proof of Theorem 3.1

The goal of this section is to prove Theorem 3.1.

4.1 Preliminaries

We begin with a reduction.

Lemma 4.1 To prove Theorem 3.1, it suffices to show that θ extends to R, whenever
R/S ∈ Sylr (I/S) is non-cyclic, r > 2 a prime, θ is non-real, and (S, r) is one of the
following:

(i) S = PSLε
n(q) with q = p f for some prime p, ε = ±, r | f , and 2 < r | gcd(n, q −

ε);
(ii) S = Eε

6(q) with q = p f for some prime p 
= 3, ε = ±, r = 3| f , and r |(q − ε).

Furthermore, one may assume that θ is not a unipotent character of S.

Proof By Corollaries (11.31) and (11.22) of [7], it suffices to prove that, for every
prime r such that R/S ∈ Sylr (I/S) is non-cyclic, θ extends to R. Now if r = 2, then
we are done by [7, Corollary (8.16)], as o(χ) = 1 and 2 � χ(1). Also, if θ is real, then
θ extends to I by [19, Theorem 2.3].

Note that Out(S) is a 2-group if S is an alternating or sporadic simple group. It
remains to consider the simple groups S of Lie type, defined over Fq where q = p f

for some prime p. If S = P	+
8 (q), then all θ ∈ Irr(S) are real by [27, Theorem 1.2],

and so we may assume S is not of type D4. Using the description of Out(S) as given
in [5, Theorem 2.5.12], one can check that the condition R/S is non-cyclic implies
that (S, r) is as listed in (i) or (ii). Finally, if θ is unipotent, then the result follows
from [14, Theorem 2.4]. �	
Proposition 4.2 Theorem 3.1 holds if S is a simple group of Lie type in characteris-
tic 2.
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1166 G. Navarro, P. H. Tiep

Proof (i) By Lemma 4.1, we need to handle the pairs (S, r) as listed in (i) or (ii) of
the Lemma, with p = 2. We can find a simple algebraic group H of adjoint type
and a Frobenius endomorphism F : H → H such that S = [H, H ] for H := HF .
For instance, H = PGLε

n(q) in the case (i) of Lemma 4.1. Let (H∗, F∗) be dual to
(H, F) and let H∗ := (H∗)F∗

be dual to H . According to the Lusztig classification of
irreducible characters of H , cf. [3], each χ ∈ Irr(H) is labeled by the H∗-conjugacy
class sH

∗
of some semisimple element s ∈ H∗ and a unipotent characterψ ofCH∗(s).

As H has trivial center, CH∗(s) is connected, and so CH∗(s) is a finite connected
reductive group defined over Fq .

Assume now that 2 � χ(1). Note that q = 2 f ≥ 8 in the cases under consideration.
It follows by [13, Theorem 6.8] that any finite non-abelian simple group of Lie type
defined over any extension of Fq has exactly one unipotent character of odd degree,
namely the principal character. It follows (e.g. by inspecting the structure of CH∗(s))
that the same is true forCH∗(s), whence χ = χs , the semisimple character labeled by
sH

∗
.
(ii) Let τ be the involutory graph automorphism of S (mentioned for instance in

the proof of [16, Proposition 4.7]). Here we consider the case θ is τ -invariant. As
H � A = Aut(S), τ also acts on H and preserves the set Irr(H |θ). Note that J/S is
cyclic of odd order for J := IH (θ), as so is H/S. By the Clifford correspondence,
| Irr(H |θ)| = | Irr(J |θ)| = |J/S| is odd. It follows that τ fixes some χ ∈ Irr(H |θ),
and χ(1) = |H/J | ·θ(1) is odd. By (i), χ = χs for some semisimple element s ∈ H∗.
Now, by Proposition 4.3 and Lemma 4.6 of [16],

χ = χτ = χτ(s) = χs−1 = χ,

i.e. χ is real. Hence the complex conjugation acts on the set Irr(S|χ) (of irreducible
characters of S lying under χ ) which is of odd cardinality. This implies that some
character θ ′ ∈ Irr(S|χ) is real. As θ is H -conjugate to θ ′, we see that θ is real and so
we are done by Lemma 4.1.

In fact, if θa is τ -invariant for some a ∈ A, then θa is real as shown above, and so
extends to IA(θa) = I a (again by [19, Theorem 2.3]), whence θ extends to I and we
are done. From now on we will assume that θ is not τ a-invariant for any a ∈ A.

In the cases where H = 2E6(q)ad or H = PGUn(q), we have Out(S) = H/S �
C2 f . If furthermore X > S, then X/S contains an H -conjugate of the coset τ S and
so θ is invariant under some H -conjugate of τ , contrary to our assumption. Hence
X = S. But in this case, NX (Q) > Q for Q ∈ Syl2(S) (indeed, Q is normalized by
some torus of order q + 1 in 2E6(q)sc, respectively in SUn(q)).

(iii) In the remaining cases, Out(S) = H/S � D, where D = C2 × C f . Let σ

denote the field automorphism of S coming from the map x �→ x2 of F2.
Consider the case S = PSLn(q) (recall n ≥ r ≥ 3) and let L = SLn(q) = SL(V ),

where V = 〈e1, . . . , en〉Fq . We can embed Q ∈ Syl2(S) in L as the subgroup of
all upper unitriangular matrices and have NL(Q) = QT , where T is the diagonal
subgroup. Also, QT is normalized by σ and by ϕ := ντ , where ν is the conjugation
by the element of L that sends ei to en+1−i , 1 ≤ i ≤ n, and τ(g) = tg−1 for all
g ∈ L . Note that we can choose D so that D = 〈ϕ〉 × 〈σ 〉. Replacing θ by a suitable
H -conjugate, we may assume that X/S ≤ D. Now, ϕ acts on T via
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diag(t1, t2, . . . , tn−1, tn) �→ diag(t−1
n , t−1

n−1, . . . , t
−1
2 , t−1

1 ).

Write f = 2c f1 with 2 � f1 and consider σ1 := σ f1 . Then 〈ϕ, σ1〉 is the unique Sylow
2-subgroup of D, and it acts trivially on the subgroup

T1 := {diag(t, 1, . . . , 1, t−1) | t2 f1−1 = 1}

of T . As r | f , we see that f1 ≥ r ≥ 3, and so |T1| ≥ 7; furthermore, T1 ∩ Z(L) = 1.
Embedding Q in a Sylow 2-subgroup R of QT �〈ϕ, σ1〉, we now see that R ∈ Syl2(Y )

for Y := S � 〈ϕ, σ1〉 and that CNS(Q)/Q(R) 
= 1. Hence R is not self-normalizing
in Y by [21, Lemma 2.1]. As S � X ≤ Y , X cannot have a self-normalizing Sylow
2-subgroup, a contradiction.

Finally, in the case S is of type E6, we can view S = M/Z(M) for M := E6(q)sc.
We can embed Q ∈ Syl2(S) first in M and then in a D-invariant maximal parabolic
subgroup of type A5 with Levi subgroup SL6(q) ·Cq−1. The above arguments applied
to SL6(q) (which is D-invariant) show that X cannot have a self-normalizing Sylow
2-subgroup, a contradiction. �	

Lemma 4.3 Let p > 2 be a prime, q = p f , and let ε = ±.

(i) Suppose that n = 2m for some natural integer m. Then |GLε
n(q)|/|GLε

m(q)|2 is
even for all m, and is divisible by 4 if 2 � m > 1.

(ii) Suppose that n = k+l for some odd integers k, l ≥ 1. Then |GLn(q) : GLk(q)×
GLl(q)| is even.

(iii) Suppose that n = 2am for some natural integers a,m. Then

22
a−1| |GLε

n(q)|
|GLε

m(q)|2a .

(iv) Suppose that n = km for some integers k ≥ 2 and m ≥ 1. Then

2| |GLε
n(q)|

|GLε
m(q)|k .

Proof We prove the statements for ε = +. The case ε = − is proved in the same way,
replacing q by −q.

(i) Note that

N := |GL2m(q) : GLm(q) × GLm(q)|p′

= (qm + 1) · |GL2m−1(q) : GLm(q) × GLm−1(q)|p′

is even. Moreover, if m = 2k + 1 ≥ 3, then
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N = (q2k+2 − 1)(q2k+3 − 1) . . . (q4k+2 − 1)

(q − 1)(q2 − 1) . . . (q2k+1 − 1)

= (q2k+3 − 1)(q2k+5 − 1) . . . (q4k+1 − 1)

(q3 − 1)(q5 − 1) . . . (q2k+1 − 1)

× (q2k+2 − 1)(q2k+4 − 1) . . . (q4k − 1)

(q2 − 1)(q4 − 1) . . . (q2k − 1)
· q

4k+2 − 1

q − 1
.

The first factor in the last product has 2-adic valuation 0. The second factor equals

(q2k + 1) · [GL2k−1(q
2) : GLk(q

2) × GLk−1(q
2)]p′

and so is even. The third is also even, and so we are done.
(ii) We have

|GLn(q) : GLk(q) × GLl(q)|p′ = |GLn−1(q) : GLk(q) × GLl−1(q)|p′

×qn − 1

q − 1
· q − 1

ql − 1
.

Since the last factor has 2-adic valuation 0 and the middle is even, this product is even.
(iii) We proceed by induction on a ≥ 2, with the induction base a = 1 following

from (i). Suppose that the statement holds for n = 2am. Then

|GL2a+1m(q)|
|GLm(q)|2a+1 = |GL2n(q)|

|GLn(q)|2 ·
( |GL2am(q)|

|GLm(q)|2a
)2

is divisible by 21+2(2a−1) = 22
a+1−1, as desired.

(iv) We proceed by induction on k ≥ 2, with the induction base again following
from (i). For the induction step, note

|GL(k+1)m(q)|
|GLm(q)|k+1 = |GLm(k+1)(q)|

|GLkm(q)| · |GLm(q)| · |GLkm(q)|
|GLm(q)|k .

�	
Lemma 4.4 Let n, k be integers with 0 ≤ k ≤ n, and let q 
= ±1 be an odd integer.

(i)
(n
k

)
is odd if and only if

f (q) := (q − 1)(q2 − 1) . . . (qn − 1)

(q − 1)(q2 − 1) . . . (qk − 1) · (q − 1)(q2 − 1) . . . (qn−k − 1)

is odd.
(ii) If n = 2a then 2 �

(n
k

)
precisely when k = 0, n. If n = 2a+2b with a > b ≥ 0,

then 2 �
(n
k

)
precisely when k ∈ {0, n, 2a, 2b}.
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Proof (i) It is well known that f (q) is a polynomial in q with integer coefficients. It
follows that f (q) ≡ f (−q)(mod 2 ). Replacing q by−q if necessary, wemay assume
that q ≡ 1(mod 4 ). In this case, (q j − 1)2 = (q − 1)2 · j2 for 1 ≤ j ≤ n, whence
f (q)2 = (n

k

)
2.

(ii) Suppose first that n = 2a and 0 < k < n. Then

�n/2a� − �k/2a� − �(n − k)/2a� = 1,

whence 2|(nk
)
. Next suppose that n = 2a + 2b and 0 < k < n/2; in particular, k < 2a .

If moreover k > 2b, then n − k < 2a and so

�n/2a� − �k/2a� − �(n − k)/2a� = 1,

implying 2|(nk
)
. If k < 2b, then 2a−b < (n − k)/2b < 2a−b + 1, and so

�n/2b� − �k/2b� − �(n − k)/2b� = 1,

again implying 2|(nk
)
. If k = 2b, then one can check that 2 �

(n
k

)
. �	

4.2 Groups of type A

Adescription of height 0 characters of finite groups of Lie type (in cross characteristic)
was obtained in [14]. However, for our purposes it is more convenient to have another
description of these characters in the cases of types A and E6.

Lemma 4.5 Let L = SLn(q) and G = GLn(q) with n ≥ 3 and q = p f for some
odd prime p. Let θ ∈ Irr2′(L) be non-unipotent and let χ ∈ Irr(G|θ). Identify G∗
with G and let s ∈ G be a semisimple element such that χ belongs to the rational
Lusztig series E(G, (s)) labeled by sG. Then one of the following statements holds for
C := CG(s).

(a) χ(1) = θ(1) andC ∼= ∏m
i=1 GLki (q)withm > 1, k1 < · · · < km, and

∑m
i=1 ki =

n. Moreover, s is G-conjugate to

diag(α1, . . . , α1︸ ︷︷ ︸
k1

, . . . , αm, . . . , αm︸ ︷︷ ︸
km

)

for some pairwise distinct α1, . . . , αm ∈ F×
q .

(b) χ(1) = 2θ(1), C ∼= GLk(q)2, n = 2k, and 2|k. Moreover, s is G-conjugate to

diag(α, . . . , α︸ ︷︷ ︸
k

,−α, . . . ,−α︸ ︷︷ ︸
k

)

for some α ∈ F×
q .
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Proof (i) Note that [G : C]p′ |χ(1) by Lusztig’s parametrization of Irr(G). SinceG/L
is cyclic of order q−1 and 2 � θ(1), we see that 2(q−1) � χ(1); in particular, 2(q−1) �
[G : C]. It is well known that there are some integers m ≥ 1, ki , ai ≥ 1, 1 ≤ i ≤ m,
such that n = ∑m

i=1 kiai and C ∼= ∏m
i=1 GLki (q

ai ), where the factor GLki (q
ai )

corresponds to an eigenvalue αi of s of degree ai over Fq and with multiplicity ki .
Now, if kiai ≥ 3 and ai ≥ 2 for some i , then [GLkiai (q) : GLki (q

ai )]p′ is divisible
by

∏

1≤ j<ki ai , ai � j

(q j − 1),

which is divisible by (q − 1)2, a contradiction. Similarly, if k1a1 = k2a2 = 2 and
a1 = a2 = 2, then

[GLk1a1+k2a2(q) : GLk1(q
a1) × GLk2(q

a2)]p′ = [GL4(q) : GL1(q
2) × GL1(q

2)]p′

is again divisible (q − 1)2, a contradiction. So either ai = 1 for all i , or, say, a1 =
k1a1 = 2 and a2 = · · · = am = 1.

(ii) Next, we consider

J := {λ ∈ Irr(G/L) | χλ = χ}

as a cyclic group under multiplication, of order dividing q − 1 = |G/L|. By [9,
Lemma3.2(i)], χ(1)/θ(1) = |J |. There is a group isomorphism z �→ λz between
Z(G) and Irr(G/L) such that the multiplication by λz sends the rational Lusztig
series E(G, (s)) to E(G, (sz)), cf. [12, (7.4.2),(7.5.5)]. As Lusztig series are disjoint,
it follows that s and sz are conjugate in G whenever λz ∈ J .

Suppose that a1 = k1a1 = 2 and a2 = · · · = am = 1. Then s isGLn(Fq)-conjugate
to

diag(α1, α
q
1 , α2, . . . , α2︸ ︷︷ ︸

k2

, . . . , αm, . . . , αm︸ ︷︷ ︸
km

),

where α1 ∈ Fq2 � Fq , and α2, . . . , αm ∈ F×
q are pairwise distinct. Note that

[GLk1a1(q) : GLk1(q
a1)]p′ = [GL2(q) : GL1(q

2)]p′ = q − 1 (4.1)

and so (q − 1)|[G : C]p′ . In particular, if 2 � |J |, then θ(1) = χ(1)/|J | is even, a
contradiction. Thus |J | is even, and so λt ∈ J , where t = −1V and V = Fn

q denotes
the natural G-module. This in turn implies that s and −s are G-conjugate. As n > 2,
we see that m ≥ 2 and the multiplication by −1 preserves the multi-set Spec(s) of
eigenvalues of s (counted with multiplicities). Renaming the αi ’s if necessary, we may
assume that α3 = −α2 and k3 = k2. By Lemma 4.3(i),

[GLk2+k3(q) : GLk2(q) × GLk3(q)]p′
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is even. Together with (4.1), this implies that 2(q − 1)|[G : C]p′ , a contradiction.
(iii) We have shown that a1 = · · · = am = 1. As θ is non-unipotent, [12, (7.5.5)]

implies that s /∈ Z(G), and so m ≥ 2.
Assume first that |J | is odd. If not all ki are distinct, for instance, k1 = k2, then

[GLk1+k2(q) : GLk1(q) × GLk2(q)]p′

is even by Lemma 4.3(i) and so θ(1) = χ(1)/|J | is even, a contradiction. Hence the
ki ’s are pairwise distinct. If in addition |J | > 1, then J � λz for some 1 
= z =
β · 1V ∈ Z(G), and s and sz are G-conjugate. Hence the multiplication by β acts on
Spec(s), sending, say, α1 to α2 and then forcing k1 = k2, again a contradiction. Thus
we have arrived at the conclusion (a).

It remains to consider the case |J | = 2at with a ≥ 1 and 2 � t ≥ 1. Then J � λz ,
where z = γ · 1V ∈ Z(G) and γ ∈ F×

q has order 2a . As above, the multiplication by
γ acts semi-regularly on Spec(s). Without loss, we may assume that {α1, α2, . . . , αr }
is one orbit for this action, where r = 2a . In this case, k1 = · · · = kr , and

[GLk1+k2+···+kr (q) : GLk1(q) × GLk2(q) × · · · × GLkr (q)]p′

is divisible by 2r−1 by Lemma 4.3(iii). If a > 1 in addition, then r − 1 ≥ a + 1, and
so θ(1) = χ(1)/2at is even, a contradiction. It follows that a = 1 and γ = −1. Now,
if m > 2, then we may assume that (k2, α2) = (k1,−α1), (k4, α4) = (k3,−α3), and
Lemma 4.3(i) implies that

[GLk1+k2+k3+k4(q) : GLk1(q) × GLk2(q) × GLk3(q) × GLkr (q)]p′

is divisible by 4, in which case θ(1) = χ(1)/2t is even. Som = 2, and s has precisely
two distinct eigenvalues α = α1 and α2 = −α, both with multipliticity k = n/2 > 1.
Choosing a generator λδ·1V for J , where δ ∈ F×

q has order 2t , we again have that
the multiplication by δ acts on Spec(s). It follows that δ = −1 and t = 1. Applying
Lemma 4.3(i) again, we see that 2|k, yielding the conclusion (b). �	

In what follows, we denote by μq+1 the group {α ∈ F×
q2

| αq+1 = 1} (under

multiplication). We will also sometimes denote by μq−1 the multiplicative group F×
q .

Lemma 4.6 Let L = SUn(q) and G = GUn(q) with n ≥ 3 and q = p f for some
odd prime p. Let θ ∈ Irr2′(L) be non-unipotent and let χ ∈ Irr(G|θ). Identify G∗
with G and let s ∈ G be a semisimple element such that χ belongs to the rational
Lusztig series E(G, (s)) labeled by sG. Then one of the following statements holds for
C := CG(s).

(a) χ(1) = θ(1) andC ∼= ∏m
i=1 GUki (q)withm > 1, k1 < · · · < km, and

∑m
i=1 ki =

n. Moreover, s is G-conjugate to

diag(α1, . . . , α1︸ ︷︷ ︸
k1

, . . . , αm, . . . , αm︸ ︷︷ ︸
km

)

for some pairwise distinct α1, . . . , αm ∈ μq+1.
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(b) χ(1) = 2θ(1), C ∼= GUk(q)2, n = 2k, and 2|k. Moreover, s is G-conjugate to

diag(α, . . . , α︸ ︷︷ ︸
k

,−α, . . . ,−α︸ ︷︷ ︸
k

)

for some α ∈ μq+1.

Proof As in the proof of Lemma 4.5, we have that 2(q + 1) � χ(1). Next,

C := CG(s) ∼=
u∏

i=1

GUki (q
ai ) ×

v∏

j=1

GLl j (q
2b j ),

where ki , l j , ai , b j ≥ 1 are integers, 2 � ai , and
∑u

i=1 kiai + 2
∑v

j=1 l j b j = n.
Furthermore, χ(1)/θ(1) = |J |, where J := {λ ∈ Irr(G/L) | λχ = χ}. Again,
there is a group isomorphism z �→ λz between Z(G) and Irr(G/L) such that the
multiplication by λz sends the rational Lusztig series E(G, (s)) to E(G, (sz)), and s
and sz are conjugate in G whenever λz ∈ J . Arguing as in (i) of the proof of Lemma
4.5, we see that ai = 1 for all i .

Suppose that v > 0. Note that

[GU2lb(q) : GLl(q
2b)]p′ =

∏

1≤i<2lb, 2b�i

(qi − (−1)i )

is divisible by (q + 1)2 if lb ≥ 2. Hence the condition 2(q + 1) � χ(1) implies that
l j b j = 1 for all j . If moreover v ≥ 2, then

[GU2l1b1+2l2b2(q) : GLl1(q
2b1)×GLl2(q

2b2)]p′ =[GU4(q) : GL1(q
2)×GL1(q

2)]p′

is again divisible (q + 1)2, a contradiction. Thus v = 1, and, as n > 2, we see that s
is G-conjugate to

diag(α1, . . . , α1︸ ︷︷ ︸
k1

, . . . , αm, . . . , αm︸ ︷︷ ︸
km

, β, β−q),

where β ∈ F×
q2

� μq+1, and α1, . . . , αm ∈ μq+1 are pairwise distinct. Since

[GU2l1b1(q) : GLl1(q
2b1)]p′ = [GU2(q) : GL1(q

2)]p′ = q + 1 (4.2)

is even and2 � θ(1) = χ(1)/|J |, wemust have that |J | is even. It follows that J � λ−1V
(where V = Fn

q2
is the natural G-module), and so s and −s are G-conjugate. Thus,

the multiplication by −1 acts on the multi-set Spec(s), and this action leaves μq+1
invariant. Renaming the αi ’s if necessary, we may therefore assume that α2 = −α1
and k2 = k1. By Lemma 4.3(i) we have that

[GUk1a1+k2a2(q) : GUk1(q
a1) × GUk2(q

a2)]p′
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is even. Together with (4.2), this implies that 2(q + 1) � [G : C]p′ , a contradiction.
We have shown that v = 0 and ai = 1 for all i . Now we can argue as in part (iii)

of the proof of Lemma 4.5. �	
Lemma 4.7 Let S = PSLε

n(q) and H = PGLε
n(q) with n ≥ 3, ε = ±, and q = p f

for some odd prime p. Let θ ∈ Irr2′(S) be non-unipotent and let χ ∈ Irr(H |θ). If
s ∈ H∗ ∼= L = SLε

n(q) is a semisimple element such that χ belongs to the rational
Lusztig series E(H, (s)) labeled by sH

∗
, then one of the following statements holds.

(a) χ(1) = θ(1) and s is H∗-conjugate to

diag(α1, . . . , α1︸ ︷︷ ︸
k1

, . . . , αm, . . . , αm︸ ︷︷ ︸
km

)

for some pairwise distinct α1, . . . , αm ∈ μq−ε , where m > 1, k1 < · · · < km,
and

∑m
i=1 ki = n.

(b) χ(1) = 2θ(1) and s is H∗-conjugate to

diag(α, . . . , α︸ ︷︷ ︸
k

,−α, . . . ,−α︸ ︷︷ ︸
k

)

for some α ∈ μq−ε , where 2|k = n/2.

Proof We can identify H∗ with L and set G = GLε
n(q). Again, as H/S is cyclic of

order dividing q − ε and 2 � θ(1), 2(q − ε) � χ(1). Also, χ(1)/θ(1) = |J |, where
J := {λ ∈ Irr(H/S) | λχ = χ}, and J can be embedded in Z(L) via λz �→ z. As in
the proof of Lemma 4.5, s and sz are L-conjugate whenever λz ∈ J . Note that s is
contained in a maximal torus T of G, and LT = G, whence LCG(s) = G. It follows
that [L : CL(s)]p′ = [G : CG(s)]p′ . Now we can view χ as a character of G and
repeat the proofs of Lemmas 4.5 and 4.6 verbatim to identify possible s. �	

Recall [5, Theorem 2.5.12] that, if S = PSLε
n(q) (with n ≥ 3, q = p f , p a prime,

and (n, q, ε) 
= (3, 2,−)), then Aut(S) ∼= H/S � D, where H = PGLε
n(q), and

the abelian group D of order 2 f is generated by graph and field automorphisms (as
specialized eg. in [2, §3.2]). In particular, D contains an automorphism ϕ = ντ , where
τ(g) = tg−1 and ν is an involutory inner automorphism of S.

Lemma 4.8 Suppose we are in case (i) of Lemma 4.1 and moreover conclusion (b) of
Lemma 4.7 holds. Then θ extends to R.

Proof Recall that χ ∈ Irr(H |θ) is labeled by the semisimple conjugacy class sL with
s described in Lemma 4.7(b) and a unipotent character ψ of CL(s) = (GLε

k(q) ×
GLε

k(q)) ∩ L (where we have again identified H∗ with L). Next, D also acts on H
and L . As H is of adjoint type, the Jordan decomposition for Irr(H) can be chosen
to be equivariant under D, see [1, Theorem 3.1]. We may assume that R ≤ R̃, where
R̃/S ∈ Sylr (Out(S)) and R̃ contains the unique Sylow r -subgroup D1 of D. Note that
D1 is cyclic, consists of field automorphisms, and D1 induces field automorphisms of
CL(s).
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Now 1 = det(s) = αn , and so αd = 1 for d := gcd(n, q − ε) = |Z(L)|. In
particular, z := α−1 ·1V ∈ Z(L), where V is again the natural L-module. Multiplying
χ by λz ∈ Irr(H/S), we may assume that α = 1. But now, sL is fixed by D1. On the
other hand,ψ is also fixed by field automorphisms, cf. for instance [14, Theorem 2.5].
The D-equivariance of the Jordan decomposition now implies that χ is D1-invariant,
and so χ extends to a character χ̃ of HD1 ≥ R̃. We have shown that χ̃R is a character
of degree 2θ(1) that lies above θ . On the other hand, as 2 � |R/S|, any irreducible
character of R lying above θ has degree an odd multiple of θ(1). It follows that χ̃R is
the sum of two irreducible characters of R, both of degree θ(1), and (at least) one of
them extends θ . �	
Lemma 4.9 Suppose we are in case (i) of Lemma 4.1 and moreover conclusion (a) of
Lemma 4.7 holds. Assume in addition that θ is τ -invariant, where τ is the transpose-
inverse automorphism. Then θ extends to R.

Proof Fix some χ ∈ Irr(H |θ) and let G = GLε
n(q), Z = Z(G), so that H = G/Z .

It is convenient to view θ as an ZL-character (as ZL/Z ∼= S) and view χ as a G-
character. As χL = θ , case (a) of Lemma 4.5, respectively of Lemma 4.6, occurs.
Note that τ acts on L and G as well. Hence, τ acts on

Irr(G|θ) = {χλ | λ ∈ Irr(G/L)}.

By [1, Theorem 3.2], wemay assume that the Jordan decomposition in consideration is
D-equivariant. As in the proof of Lemma 4.5, we can write Irr(G/L) = {λz | z ∈ Z},
and, if χ ∈ E(G, (s)) then χλz ∈ E(G, (sz)). Now we can write χτ = χλz for some
z = γ · 1V , where γ ∈ μq−ε and V is the natural G-module. The D-equivariance
of the Jordan decomposition implies that χτ ∈ E(G, (sτ )) (note that τ = νϕ with
ν ∈ Inn(G) and ϕ ∈ D). It follows that sτ and γ s are G-conjugate and so the
multiplication by γ sends the multi-set Spec(s), containing αi with multiplicity ki ,
where αi ∈ μq−ε , 1 ≤ i ≤ m, and k1 < · · · < km , to Spec(sτ ) = Spec(s−1). Hence,
γαi = α−1

i and
α2
i = γ −1 (4.3)

for all i . Recall that θ is non-unipotent as an S-character, so m > 1. Furthermore,
α1, . . . , αm are pairwise distinct. Hence (4.3) implies that m = 2, and α2 = −α1.

As 2 � θ(1) = χ(1) = [G : C]p′ψ(1), where ψ is a unipotent character of
C := CG(s), Lemma 4.3(ii) implies that at least one of k1 and k2 must be even.
Renaming the αi ’s if necessary, we may assume that 2|k2. Now we consider

χ∗ = χλ
α−1
1 ·1V ∈ Irr(G|θ)

that belongs to the Lusztig series E(G, (s∗)) and corresponds to the unipotent character
ψ∗ of CG(s∗) = C , where

s∗ := sα−1
1 = diag(1, 1, . . . , 1︸ ︷︷ ︸

k1

,−1,−1, . . . ,−1︸ ︷︷ ︸
k2

).
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Note that s∗ ∈ L = [G,G]. This in turn implies by [20, Lemma4.4(ii)] thatχ∗ is trivial
at Z and so can be viewed as an H -character. Again by [14, Theorem2.5], the unipotent
characterψ∗ ofC ∼= GLε

k1
(q)×GLε

k2
(q) is invariant under field automorphisms. Now

we can finish as in the proof of Lemma 4.8. (Alternatively, we may also observe that
χ∗ is invariant under ϕ and τ . As g and tg are conjugate in G := GLn(Fq) and CG(g)
is connected, it follows by the Lang-Steinberg theorem that g−1 and τ(g) = tg−1 are
conjugate in G. Hence the τ -invariance of χ∗ now implies that χ∗ = χ∗ and so θ is
real.) �	
Lemma 4.10 Let q = p f for some odd prime p and some non-2-power f . Let the
abelian group D = 〈ς, j〉 act on F := F×

q via ς(x) = x p and j (x) = x−1. If E ≤ D
is a 2-subgroup not containing j , then |CO2′ (F)(E)| ≥ 7.

Proof Write f = 2a f0 where f0 is odd, and let q0 = p f0 . Note that f0 ≥ 3 as f 
= 2a ,
whence (q0−1)/(p−1) ≥ 13 and (q0+1)/(p+1) ≥ 7. Suppose that E ≤ 〈ς〉. Then
E ≤ 〈ς f0〉 acts trivially on the subgroup {x ∈ F | x (q0−1)/(p−1) = 1} of O2′(F).

Suppose now that E � 〈ς〉. Since E 
� j by assumption, we must have that

E = 〈ς2b f0 j〉

for some 0 ≤ b ≤ a − 1. If b = 0, then E acts trivially on the subgroup {x ∈
F | x (q0+1)/(p+1) = 1} of O2′(F). If b ≥ 1, then E acts trivially on the subgroup

{x ∈ F | x (q2
b

0 +1)/2 = 1} of O2′(F). �	
Proposition 4.11 Suppose we are in case (i) of Lemma 4.1. Then θ extends to R.

Proof (i) As usual, we identify H∗ with L = SLε
n(q). At the same time we will view

S as LZ/Z with G := GLε
n(q) and Z := Z(G). Let V = Fn

q , respectively Fn
q2
,

denote the natural G-module for ε = +, respectively for ε = −. We can also identify
A = Aut(S) with (G � D)/Z . By Proposition 4.2 and Lemma 4.8, we may assume
that p is odd and that conclusion (a) of Lemma 4.7 holds.

Let D2 denote the unique Sylow2-subgroup of D.Wewill choose P̃ ∈ Syl2(G�D)

containing D2 as follows. Let

n = 2a1 + 2a2 + · · · + 2at

be the 2-adic decomposition of n, with a1 > a2 > · · · > at ≥ 0. Note that t ≥ 2,
as otherwise [L : CL(s)]p′ is even by Lemma 4.4, contrary to the assumption that
2 � θ(1) = χ(1). Now we can decompose

V = V1 ⊕ V2 ⊕ · · · ⊕ Vt

into a direct (orthogonal if ε = −) sum of subspaces, where dim Vi = 2ai . We can
define τ : g �→ tg−1 by writing g ∈ G in a basis consistent with this decomposition.
Furthermore, we can choose the involutory automorphism ν to be induced by an
element of L fixing this decomposition.We also choose σ ∈ D to be the automorphism
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by raising each entry of thematrix of g ∈ G in this basis to its p-th power. Thenϕ = ντ

and σ act on each GLε(Vi ). Now, we can choose a D2-invariant Sylow 2-subgroup
Qi of GLε(Vi ). Note that Q̃ := Q1 × · · · × Qt ∈ Syl2(G); in particular,

Q = (Q1 × Q2 × · · · × Qt ) ∩ L ∈ Syl2(L).

Now we can extend Q̃ (first to a Sylow 2-subgroup of NG�D2(Q̃), and then) to a
Sylow 2-subgroup P̃ of G � D that contains D2. In fact, P̃ = Q̃ � D2.

(ii) Recall that, by the assumption in Theorem 3.1, X/S ∈ Syl2(I/S) for I = IA(θ)

and X has a self-normalizing Sylow 2-subgroup P̄ . Since conclusion (a) of Lemma
4.7 holds, we have that I ≥ H/S � A/S. Replacing θ by a suitable A-conjugate,
we may assume that P̄ = PZ/Z , where the Sylow 2-subgroup P of the full inverse
image of I in G � D is chosen such that P ≤ P̃ . As P ≥ Q̃ and P̃ = Q̃ � D2, we
can write P = Q̃ � E for some subgroup E ≤ D2. Furthermore, by Lemma 4.9 we
may assume that I 
� τ , and so E 
� ϕ.

As P̄ is self-normalizing in X ,

CNS(Q̄)/Q̄(P̄) = 1 (4.4)

by [21, Lemma 2.1(ii)], where Q̄ := QZ/Z .We now show that our assumptions imply
t = 2. Indeed, suppose that t ≥ 3. The construction of Q ensures that P ∩ G = Q̃ is
centralized by

Y := {diag(β1 · 1V1 , . . . βt · 1Vt ) | βi ∈ μq−ε} ∩ L .

Assume that ε = −. Then we can choose β ∈ μq+1 of odd order (q + 1)2′ > 1, so
that

h(β) := diag(β · 1V1 , 1V2 , . . . , 1Vt−1 , β
−2a1−at · 1Vt )

has odd order and belongs toCL(Q̃)�Z . Now the condition (4.4) implies that P > Q̃,
and so I > H . But Aut(S)/H ∼= D ∼= C2 f (as ε = −) and ϕ is the unique involution
in D. Hence we conclude that I � ϕ and so I � τ , contrary to our assumption. In fact,
by considering the element h(β) for t = 2 and using the condition I 
� τ , we see that
h(β) ∈ Z ∩ L = Z(L), and so

(q + 1)2′ |n. (4.5)

We will need this observation later.
Consider the case ε = +. Then D = 〈σ, ϕ〉. By our construction,

σ : β · 1Vi �→ β p · 1Vi , ϕ : β · 1Vi �→ β−1 · 1Vi
for β ∈ F×

q . Thus σ and ϕ induce on F×
q the maps ς and j of Lemma 4.10. By

our assumption, P = Q̃ � E with E 
� ϕ. Hence, by Lemma 4.10, we can choose
1 
= β ∈ CO2′ (F×

q )(E) such that
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diag(β · 1V1 , 1V2 , . . . , 1Vt−1 , β
−2a1−at · 1Vt )

has odd order and belongs to CL(P) � Z , contradicting the condition (4.4).
(iii) We have shown that t = 2, i.e. n = 2u+v +2v , with u ≥ 1 and v ≥ 0. Now, we

view θ as a character of LZ that is trivial at Z and consider χ ∈ Irr(G|θ) belonging to
E(G, (s)) (and identify G∗ with G). Since the condition 4.7(a) holds, we are in case
(a) of Lemma 4.5 when ε = + and of Lemma 4.6 when ε = −. As 2 � χ(1) = θ(1),
[G : CG(s)] is odd. In particular, 2 � [GLε

n(q) : GLε
n−ki

(q) × GLki (q)] for all i .
Since n = 2u+v + 2v , this implies by Lemma 4.4 that ki ∈ {2u+v, 2v}. Hence m = 2
and s is G-conjugate to

diag(α, α, . . . , α︸ ︷︷ ︸
2u+v

, αγ, αγ, . . . , αγ︸ ︷︷ ︸
2v

),

where α, γ ∈ μq−ε . Furthermore, Z ≤ Ker(χ) implies by [20, Lemma 4.4(ii)] that

1 = det(s) = αnγ 2v

. (4.6)

Recall that r | f , so we will write f = 2arc f0 with gcd( f0, 2r) = 1. In what follows
we may assume by [1, Theorem 3.1] that the Jordan decomposition for Irr(G) is D-
equivariant. Changing the notation, we will view I as IG�D(θ). Let R̃ be the complete
inverse image of R in G � D.

(iv) Now we can complete the case ε = −. In this case, D = 〈σ 〉 ∼= C2 f . Since

I ≥ G and R̃/LZ is non-cyclic, we have that R̃G = G〈σ1〉, where σ1 = σ 2a+1rd f0

for some d < c. Set q1 = p2
ard f0 so that q = qr

c−d

1 and σ1(x) = xq
2
1 for x ∈ Fp. As

σ1 fixes θ , it acts on

Irr(G|θ) = {χλz | z ∈ Z}

and so sends χ to say χλz for some z = δ ·1V . Now χ ∈ E(G, (s)), χλz ∈ E(G, (δs)),
and σ1 sends E(G, (s)) to E(G, (σ1(s))). It follows that σ1(s) and δs are G-conjugate.
Inspecting the multi-sets of eigenvalues, we then see that

αq21 = δα, (αγ )q
2
1 = δαγ,

and so γ q21−1 = 1. As γ ∈ μq+1 and q = qr
c−d

1 , in fact we have

γ q1+1 = 1. (4.7)

On the other hand, n = n′(q +1)2′ for some n′ ∈ Z by (4.5). Hence (4.6) implies that

γ 2v(q+1)2 = α−n(q+1)2 = α−n′(q+1) = 1,
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and so |γ | is a 2-power. Together with (4.7), we have shown that γ (q1+1)2 = 1.
Furthermore, gcd(n, q1 + 1)2|n2 = 2v , so

(γ 2v

)
(q1+1)2

gcd(n,q1+1)2 = 1.

In particular, (γ 2v
)(q1+1)/ gcd(n,q1+1) = 1, and so we can find ε ∈ μq1+1 < μq+1 such

that
γ −2v = εn . (4.8)

Setting χ∗ = χλt with t := (ε/α) · 1V , we have that χ∗ ∈ E(G, (s∗)), where

s∗ = diag(ε, ε, . . . , ε︸ ︷︷ ︸
2u+v

, εγ, εγ, . . . , εγ︸ ︷︷ ︸
2v

). (4.9)

The choice (4.8) yields that det(s∗) = 1, and so Z ≤ Ker(χ∗) by [20, Lemma 4.4(ii)].
Moreover, both ε and γ belong to μq1+1, see (4.7), and so are fixed by σ1. Since
unipotent characters of CG(s∗) are σ1-invariant, we conclude that χ∗ is σ1-invariant
and so extends to a character of G〈σ1〉 = R̃G that is trivial at Z . Consequently, θ

extends to R, as desired.
(v) Now we handle the case ε = +. Since I ≥ G and R̃/LZ is non-cyclic, we

now have that R̃G = G〈σ1〉, where σ1 = σ 2ard f0 for some d < c. We again set
q1 = p2

ard f0 so that σ1(x) = xq1 for x ∈ Fp. As σ1 fixes θ , it acts on

Irr(G|θ) = {χλz | z ∈ Z}
and so sends χ to say χλz for some z = δ · 1V . As in (iv), we then see that σ1(s) and
δs are G-conjugate and so

αq1 = δα, (αγ )q1 = δαγ.

It follows that
γ q1−1 = 1. (4.10)

Recall that P = Q̃� E with ϕ /∈ E ≤ D2. Hence we can write E = 〈σ2ϕ j 〉, where
σ2 = σ 2brc f0 with 0 ≤ b ≤ a and j ∈ {0, 1}. Set q2 := p2

brc f0 and κ = (−1) j .
Note that σ2ϕ

j sends β · 1Vi to βκq2 · 1Vi for any β ∈ μq−1. Moreover, in the case
j = 1, we must have that b < a as E 
� ϕ, and so (q2 + 1)|(q − 1). We certainly
have (q2 − 1)|(q − 1) if j = 0. Thus (q2 − κ)|(q − 1) in either case. Now, for any
β ∈ μq2−κ ≤ μq−1 of odd order, the element diag(β ·1V1 , β−2u ·1V2) of L centralizes
P and so must belong to Z by (4.4). It follows that β = β−2u for any such β, whence
(q2 − κ)2′ |n and we can write

n = 2vnκ(q2 − κ)2′ (4.11)

for some odd nκ ∈ N. Arguing as above, we also see that the σ2ϕ
j -invariance of θ

implies that
γ q2−κ = 1. (4.12)
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Using (4.6) and (4.11), we now obtain that

(γ 2v

)
q−1
q2−κ

·max(1,2−v(q2−κ)2) = α
−nκ · q−1

q2−κ
·max(2v,(q2−κ)2)·(q2−κ)2′ = 1.

Hence, |γ 2v |2′ divides

q − 1

q2 − κ
= q2

a−b

2 − 1

q2 − κ
≡ 2a−bκ(mod ( q2 − κ)).

This implies by (4.12) that |γ | is a 2-power, and (4.10) now yields that γ (q1−1)2 = 1.
But gcd(n, q1 − 1)2|n2 = 2v , so (γ 2v

)(q1−1)2/ gcd(n,q1−1)2 = 1. It follows that

(γ 2v

)
q1−1

gcd(n,q1−1) = 1,

and so we can find ε ∈ μq1−1 < μq−1 such that (4.8) holds. Setting χ∗ = χλt with
t := (ε/α) · 1V , we have that χ∗ ∈ E(G, (s∗)), where s∗ is defined in (4.9). The
choice (4.8) again yields that det(s∗) = 1, and so Z ≤ Ker(χ∗). Moreover, both ε

and γ belong to μq1−1, see (4.10), and so are fixed by σ1. Since unipotent characters
of CG(s∗) are σ1-invariant, we conclude that χ∗ is σ1-invariant and so extends to a
character ofG〈σ1〉 = R̃G that is trivial at Z . Consequently, θ extends to R, as desired.

�	

4.3 Groups of type E6

To handle case (ii) of Lemma 4.1, we will need the following variant of Burnside’s
fusion lemma:

Lemma 4.12 Let G be a finite group with a normal subgroup K , p a prime, and let
Q ∈ Sylp(K ). Then NG(Q) controls G-fusion of elements in Z(NK (Q)). Moreover,
if G = K E for some E ≤ G and Q is E-invariant, then whenever y = xg for
some x, y ∈ Z(NK (Q)) and g ∈ G, we can find d ∈ E such that y = xd and
〈K , g〉 = 〈K , d〉.
Proof Suppose that y = xg for some x, y ∈ Z(NK (Q)) and g ∈ G. Then Qg and
Q are Sylow p-subgroups of CK (y), and so Q = Qgc for some c ∈ CK (y). Now
gc ∈ NG(Q) and y = yc = xgc, whence the first statement follows.

For the second statement, we have NG(Q) = NK (Q)E by assumption. So we
can write gc = nd for some n ∈ NK (Q) and d ∈ E . Now we have x = xn as
x ∈ Z(NK (Q)), and so

y = yc = xgc = xnd = xd .

Furthermore,

〈K , d〉 = 〈K , n−1gc〉 ≤ 〈K , g〉 = 〈K , ndc−1〉 ≤ 〈K , d〉,
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and so we are done. �	
Lemma 4.13 Let p be an odd prime, q = p f ≡ ε(mod 3 ) for some ε = ±.

(i) Let S be the simple group of type Eε
6(q) and Q ∈ Syl2(S). Then NS(Q) =

Q × C(q−ε)2′/3.
(ii) If L = Eε

6(q)sc and Q ∈ Syl2(L), then NL(Q) = Q ×C where C is abelian of
order (q − ε)2′ .

(iii) H = Eε
6(q)ad has exactly 8(q−ε −3) irreducible characters of odd degree that

lie above non-unipotent characters of S = [H, H ]. These characters belong to
q − ε − 3 rational Lusztig series E(H, (s)), 8 in each series, and |CH∗(s)| =
(q − ε)|Spinε

10(q)|. Each of these characters is irreducible over S.

Proof (i) This is [10, Theorem 6(c)].
(ii) We can identify S with L/Z for Z := Z(L) ∼= C3. Now (i) implies that

NL(Q) = Q × C , where C/Z ∼= C(q−ε)2′/3 and so C is abelian of order (q − ε)2′ .
(iii) According to [11], H has 8(q−ε) irreducible characters of odd degree. Among

them, 24 restrict irreducibly to 8 unipotent characters of S, so the remaining 8(q−ε−3)
all lie above non-unipotent characters of S. We identify H∗ with L . Now if s is
the label of any such series, then [L : CL(s)] is odd, and so we may assume that
s ∈ CL(Q) = Z(Q) × C = Z(NL(Q)) for Q ∈ Syl2(L) by (ii).

On the other hand, by [4], L has q−ε−3 conjugacy classes of semisimple elements
t ∈ L with centralizer C in the underlying algebraic group G of type D5T1 (i.e. C is
a connected reductive group where Z(C)◦ is a one-dimensional torus and [C, C] is of
type D5), and |CL(t)| = (q − ε)|Spinε

10(q)|; in particular, 2 � [L : CL(t)].
Next, we note that a finite Lie-type group Y of type Dα

5 over Fq has 8 unipotent
characters of odd degree, and these degrees are:

1, q20, q�5�6, q13�5�6, q3�3�5�8/2, q7�3�5�8/2, q3�5�6�8/2,

q7�5�6�8/2

if α = +, and

1, q20, q�3�10, q13�3�10, q3�3�8�10/2, q7�3�8�10/2, q3�6�8�10/2,

q7�6�8�10/2

if α = +. (This can be checked directly. Another way to see it is that we can choose
α = ± such that q ≡ α(mod 4 ). There is no loss to work with Y = SOα

10(q), and
then, a Sylow �e-torus in Y , as defined in [13, §5], is maximal and isomorphic to
C5
q−α , with the relativeWeyl group isomorphic to theWeyl groupC4

2 �S5 of type D5.
The latter has 8 irreducible characters of odd degree (1,1,5,5,5,5,15,15). It follows by
[13, Corollary 6.6] that Y has 8 unipotent characters of odd degree. As Eα

6 (q)ad has
exactly 8(q − α − gcd(3, q − α)) odd-degree characters lying above non-unipotent
characters of S, this implies that these 8 degrees are as listed above. Replacing q by−q,
we see that SO−α

10 (q) has at least 8, hence exactly 8 (by counting in Irr2′(E−α
6 (q)ad)),

odd-degree unipotent characters.)
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It remains to show that each of the above 8(q−ε −3) characters is irreducible over
S. Let χ ∈ E(H, (s)) be such a character. Consider any z ∈ Z and the corresponding
character λz ∈ Irr(H/S). Then λzχ ∈ E(H, (sz)). As mentioned above, s and sz both
belong to CL(Q) = Z(NL(Q)). By Lemma 4.12 applied to (G, K ) = (L , L), s and
sz can be L-conjugate only when z = 1. Thus

|{λ ∈ Irr(H/S) | λχ = χ}| = 1,

and so χS is irreducible by [9, Lemma 3.2(i)]. �	
Proposition 4.14 Suppose we are in case (ii) of Lemma 4.1. Then θ extends to R.

Proof (i) Again, we have by [5, Theorem 2.5.12] that A = Aut(S) = H � D, where
H = Eε

6(q)ad, D = 〈σ, τ 〉 is abelian of order 2 f , σ is the field automorphism
coming from the map x �→ x p of Fp, and τ is an involutory graph automorphism
considered in [16, Lemma 4.6]. By Proposition 4.2 we may assume that p > 2. Now
by Lemma 4.13(iii) we have I = IA(θ) ≥ H . We may assume that R ≤ R̃, where
R̃/S ∈ Sylr (A/S) and R̃ contains the unique Sylow r -subgroup D1 of D. Next, we
can write HX = H � D3, where D3 is a 2-subgroup of D2, the unique Sylow 2-
subgroup of D. Then we choose P̃ ∈ Syl2(A) that contains D2, and may assume that
P = P̃ ∩ I ∈ Syl2(X) and Q = P̃ ∩ S ∈ Syl2(S). In particular, Q is D2-invariant,
and P = Q� D3 as |H/S| = 3. We again assume by [1, Theorem 3.1] that the Jordan
decomposition of H is D-equivariant.

(ii) Suppose that θ is τ -invariant. As H � A, τ acts on the set Irr(H |θ), which
consists of |H/S| = 3 characters by Lemma 4.13(iii). Since |τ | = 2, τ fixes some
χ ∈ Irr(H |θ). On the other hand, if χ ∈ E(H, (s)), then the D-equivariance and
Lemma 4.6 of [16] show that χτ ∈ E(H, (τ (s))) = E(H, (s−1)). It follows that s and
s−1 are L-conjugate. Hence, as shown in the proof of [19, Lemma 9.1], the complex
conjugation sends E(H, (s)) to E(H, (s−1)) = E(H, (s)). Thus χ is another character
of odd-degree in E(H, (s)) of degree equal to χ(1). As shown in the proof of Lemma
4.13, Irr2′(H) ∩ E(H, (s)) consists of 8 characters of pairwise distinct degrees. It
follows that χ = χ and so θ is real, whence we are done.

(iii) From now on we may assume that I 
� τ . Note that q ≥ 53 and 3|(q − ε) by
Lemma 4.1(ii). Now if H = 2E6(q)ad, then 3|(q + 1) implies that f is odd, and so τ

is the unique involution in A/H ∼= D. As I ≥ H , |H/S| = 3, and X/S ∈ Syl2(I/S),
we conclude that X = S and P = Q. But then |NS(Q)/Q| = (q + 1)2′/3 > 1 by
Lemma 4.13(i), a contradiction.

So H = E6(q)ad. Write f = 2a f0 with 2 � f0 and let σ0 = σ f0 , q0 = p f0 . Now
we show that σ0 and τ act on Z(NS(Q)) via

σ1(t) = tq0 , τ (t) = t−1 (4.13)

for some generator σ1 of 〈σ0〉. First, by considering irreducible representations of S
over Fp, and recalling that t is semisimple, we see that σ0(t) and tq0 are S-conjugate,
i.e. tq0 and t are conjugate G := S � 〈σ0〉: tq0 = t g with g = hσ0 for some h ∈ S.
Applying Lemma 4.12 with K = S and E = 〈σ0〉 (recall that Q is normalized by
D2 ≥ E), we see that tq0 = σ1(t) for some σ1 ∈ 〈σ0〉, and
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〈S, σ1〉 = 〈S, hσ0〉 = SE = G,

i.e. 〈σ1〉 = E . For the second relation in (4.13), note that τ(t) and t−1 are S-conjugate
by [16, Lemma 4.6]. So we can apply Lemma 4.12 with K = S, E = 〈τ 〉, and
G = SE .

Recall that P = QD3 with D3 ≤ D2 = 〈σ1, τ 〉 and D3 
� τ . Hence we can
write D3 = 〈σ 2b

1 τ j 〉, where 0 ≤ b ≤ a and j ∈ {0, 1}. Set q2 := p2
b f0 = q2

b

0 and
κ = (−1) j . Note that if j = 1 then b < a as D3 
� τ and so (q2+1)|(q−1). Certainly,
(q2 − 1)|(q − 1), and so (q2 − κ)|(q − 1) in all cases. In particular, the cyclic factor
C(q−1)2′/3 of CS(Q) contains a subgroup B of order

(q2 − κ)2′/ gcd(3, (q2 − κ)2′) ≥ 7

(as 2 < r | f0 and p ≥ 5). Now, for any t ∈ B, by (4.13) we have that

σ 2b
1 τ j (t) = tκq2 = t,

and so CNS(Q)/Q(P) 
= 1, a contradiction. �	
Theorem 3.1 now follows from Lemma 4.1 and Propositions 4.11 and 4.14. �

Remark 4.15 (i) Note that Theorem 3.1 does not hold without the assumption that X
has a self-normalizing Sylow 2-subgroup. Indeed, let p > 2 be any prime and let r be
a prime such that

p|(r − 1). (4.14)

Set q = r p, so that p(r − 1)|(q − 1) and consider S = PSLr (q). Let α ∈ F�

q be of
order p(r − 1) and set

s := diag(α, α, . . . , α︸ ︷︷ ︸
p−1

, α1−p) ∈ L = SL p(q).

Viewing L = H∗ for H = PGL p(q), we see that s corresponds to a semisimple
character χ ∈ Irr2′(H) of odd degree (q p − 1)/(q − 1). It is easy to see (for instance
by degree consideration) that θ := χS is irreducible. Next, let σ denote the field
automorphism of order p of H induced by the map x �→ xr . Then

σ(α)

α
= σ(α1−p)

α1−p
= αr−1

and so σ(s)/s = t := αr−1 ·1V ∈ Z(L), where V = F
p
q denotes the natural L-module.

Thus χσ = χλt , where λt ∈ Irr(H/S). As θ = χS , it follows that θ is σ -invariant,
and so I := IAut(S)(θ) contains 〈H, σ 〉. However, θ does not extend to I . Otherwise,
there must be some χ̃ ∈ Irr(〈H, σ 〉) extending θ , and so χ∗ := (χ̃)H is σ -invariant.
As (χ∗)S = θ = χS , we have χ∗ = χλv for some v = β · 1V , with

β p = 1. (4.15)
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Recall that χ ∈ E(H, (s)), so χ∗ ∈ E(H, (βs)). The σ -invariance of χ∗ now implies
that σ(βs) and

βs = diag(αβ, αβ, . . . , αβ︸ ︷︷ ︸
p−1

, α1−pβ)

are L-conjugate. It follows that αβ = σ(αβ) = (αβ)r and so

αr−1 = β1−r = 1

by (4.14) and (4.15). But this is a contradiction, as we chose α of order p(r − 1).
(ii) The example in (i) also shows that extendibility results, eg. [2, Theorem 4.1],

do not imply Theorem 3.1.

5 A consequence of the McKay–Galois conjecture

A consequence of the Galois version of the McKay conjecture is that the character
table of a finite group G determines if G has self-normalizing Sylow p-subgroups
[18]. While for p odd this claim is now a theorem [21], the case p = 2 remains
open. Specifically, it is expected that a finite group G has a self-normalizing Sylow
2-subgroup if and only if every irreducible odd-degree complex character of G is
σ -fixed, where σ is the Galois automorphism defined in §2. A reduction to simple
groups of this statement has been carried out in [23]. Using Theorem 3.3, we can offer
a shorter reduction of one of the implications.

Theorem 5.1 Let G be a finite group with a self-normalizing Sylow 2-subgroup.
Assume that, whenever H is an almost simple group involved in G with a self-
normalizing Sylow 2-subgroup Q and H = F∗(H)Q, every γ ∈ Irr2′(H) is σ -fixed.
Then every χ ∈ Irr2′(G) is σ -fixed.

Proof We argue by induction on |G|. Set p = 2 and let P ∈ Sylp(G). SinceNG(P) =
P , notice that we have that G/G ′ is a 2-group, by the Frattini argument.

Let χ ∈ Irr p′(G). Let N be a minimal normal subgroup of G. Let θ ∈ Irr(N ) be
P-invariant and lying under χ , and let ψ ∈ Irr(T ) be the Clifford correspondent of
χ over θ . If T < G, by induction we have that ψσ = ψ , and therefore χ = ψG is
also fixed by σ . So we may assume that T = G. By Theorem 3.3, we have that θ

extends to G. Let ρ ∈ Irr(G) be an extension of θ . By Gallagher’s theorem, we have
that χ = ρτ for some τ ∈ Irr p′(G/N ). By induction, τ is σ -fixed, so it suffices to
show that we can choose ρ to be σ -fixed.

If N is a p′-group, then N ≤ Ker(χ) by the Glauberman correspondence, and we
are done by induction. Suppose that N is a p-group. Then θ is linear and ρ is linear.
Then ρ has 2-power order and therefore is σ -fixed.

Hence, we may assume that N is a direct product of isomorphic non-abelian simple
groups. Suppose that N P < G. Then ρN P is σ -fixed by induction. In particular,
θ = (ρN P )N is σ -fixed. We now have that ρ and ρσ are two extensions of θ , and
therefore
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ρσ = λρ

for some λ ∈ Irr(G) linear with 2-power order. Now,

ρN P = (ρN P )σ = (ρσ )N P = λN PρN P

and we conclude by Gallagher’s theorem that λN P = 1N P . Then λP = 1P and
therefore λ = 1G (as G/G ′ is a 2-group). Thus ρ is σ -fixed and we are done in this
case too. Therefore, we may assume that G = N P , and that N is the only minimal
normal subgroup of G. We have that N = Sx1 × · · · × Sxt for some non-abelian
simple group S. If H = NG(S) and Q = P ∩ H , then we know that Q is self-
normalizing in QS by Lemma 3.2. Write θ = θ1 × · · · × θt , where θi ∈ Irr p′(Sxi ).
Since θ is P-invariant, we have that θ1 is Q-invariant. In particular θ1 extends to some
γ ∈ Irr(SQ). If t > 1, then by induction we have that γ is σ -invariant, and therefore
θ1 = γS is σ -invariant. Since θi = (θ1)

xi , we deduce that θi and thus θ are σ -invariant.
Now, θ has a canonical extension to G by [7, Corollary (6.28)], which is necessarily
σ -invariant, and so we are done again. This leave us with the case t = 1, which is true
by hypothesis. �	
Added in proof While the paper was in submission, we learned that the McKay con-
jecture for p = 2 was proved by G. Malle and B. Späth [15].
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