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Abstract The behavior of norms of roots of univariate trinomials zs+t + pzt + q ∈
C[z] for fixed support A = {0, t, s + t} ⊂ N with respect to the choice of coefficients
p, q ∈ C is a classical late 19th and early 20th century problem.Although algebraically
characterized by P. Bohl in 1908, the geometry and topology of the corresponding
parameter space of coefficients had yet to be revealed. Assuming s and t to be coprime
we provide such a characterization for the space of trinomials by reinterpreting the
problem in terms of amoeba theory. The roots of given norm are parameterized in
terms of a hypotrochoid curve along aC-slice of the space of trinomials, with multiple
roots of this norm appearing exactly on the singularities. As a main result, we show
that the set of all trinomials with support A and certain roots of identical norm, as
well as its complement can be deformation retracted to the torus knot K (s + t, s), and
thus are connected but not simply connected. An exception is the case where the t-th
smallest norm coincides with the (t + 1)-st smallest norm. Here, the complement has
a different topology since it has fundamental group Z

2.
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220 T. Theobald, T. de Wolff

1 Introduction

The investigation of univariate trinomials, i.e., polynomials of the form

zs+t + pzt + q ∈ C[z] with s, t ∈ N
∗ (1.1)

is a truly classical late nineteenth and early twentieth century problem (see, e.g., [4,5,
17,20,30,31,42]). At this time mathematicians started to ask how the s + t complex
roots depend on the choice of the coefficients p, q. For example, how the roots can be
characterized geometrically, howmany of them lie in a disk of given radius or whether
two roots share the same norm.

Algebraically, these questions are well understood—particularly due to P. Bohl’s
results from 1908 ([5]; stated in Theorems 3.1, 3.2 below). And also the geometry of
roots in the complex plane is well described by Nekrassoff in 1887 [42] and Egerváry
in 1922–1931 (see the survey [53]). But, after more than a century has passed and
although the investigation of trinomials went on in modern times (e.g., [13,22,37]),
the parameter space of coefficients and in particular its geometric and topological
properties have still not been understood.

Let TA denote the space of all trinomials with support set A = {0, t, s + t} such
that s and t are coprime. Since we usually assume p, q �= 0, TA can be identified with
the two-dimensional space of parameters (p, q) ∈ (C∗)2. Immediate first questions
on the space of trinomials are:

(A) What is, for given q, the geometric structure of the set of all p such that f has a
root with norm v?

(B) What is, for given q, the geometric structure of the set of all p such that f has
two roots of norm v, respectively of the same norm at all?

Specifically, we aim at semialgebraic and parametric descriptions of these sets.
Denote by U A

j the subset of trinomials in TA whose j-th and ( j + 1)-th smallest
root (ordered by their norm) have distinct norm, 1 ≤ j ≤ s + t − 1. Formally, we also
considerU A

0 andU A
s+t , by declaring f ∈ U A

0 and f ∈ U A
s+t for every trinomial f ∈ TA.

For a given f ∈ TA a classical question is to determine the subset J ⊆ {0, . . . , s + t}
such that f ∈ U A

j if and only if j ∈ J . More globally, we ask:

(C) Which geometric and topological properties do the sets U A
j ⊆ TA and their

complements have?

In this article we reinterpret the classical problems about the norms of roots of
trinomials in terms of amoeba theory and show that this tool-set allows to solve these
problems and to uncover a beautiful geometric and topological structure hidden in the
parameter space of trinomials.

For a given Laurent polynomial f ∈ C[z±1
1 , . . . , z±1

n ] with zero set V( f ) ⊆ (C∗)n
the amoeba A( f ) (introduced by Gelfand, Kapranov and Zelevinsky in [26]) is the
image of V( f ) under the log-absolute-value map

Log | · | : (
C

∗)n → R
n, (z1, . . . , zn) 	→ (log |z1|, . . . , log |zn|) . (1.2)
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Norms of roots of trinomials 221

Amoebas not only have strong structural properties and connections to various fields of
mathematics including complex analysis (e.g., [24,43]), topology of real curves (e.g.,
[38]) and tropical geometry (e.g., [34,36,40]), but also turn out to be a canonical and
powerful tool to understand the connection between varieties and parameter spaces of
polynomials (see, e.g., [26,48,49,54]).

With regard to the trinomial setup, our point of departure is that a trinomial (1.1)
with q �= 0 has a root of a given norm v ∈ R>0 if and only if p is located on
an algebraic hypotrochoid curve depending on q, the exponents s, t and, of course,
v itself (Theorem 4.1). Hypotrochoids are well-known special instances of roulette
curves in the complex plane, see, e.g., [9,23] for many of their nice properties.

We show that two roots share the same norm v if and only if the coefficient p is
located on a singularity (in general, a node) of the particular hypotrochoid (Theorem
4.5). Moreover, there exist two roots with the same norm if and only if p is located
on a particular union of 2(s + t) rays F(s, t, q) in the corresponding C-slice of the
parameter space. F(s, t, q) is thus determined by the support set and q (Theorems 4.4
and 4.9).

By additionally studying the discriminants of trinomials, we provide a complete
answer to question (B) through Theorems 4.9 and Corollary 4.13 below, where it is
somewhat unexpected that there are differences between the characterizations of the
sets U A

j for j ∈ {1, . . . , s + t − 1}\{ j} and for j = t . Furthermore, this allows
one to prove that only particular roots (with respect to the ordering induced by the
norm) can have multiplicity two (Corollary 4.12). Moreover, only particular roots of
real trinomials can be real (Theorem 4.8). Geometrically, in the case of roots with
multiplicity two the hypotrochoid deforms to a hypocycloid and p is located on a cusp
instead of a node.

For the variant of problem (A) in which the coefficient p instead of q is fixed, we
obtain similar results involving epitrochoids instead of hypotrochoids (Theorem 4.16).

This local description of the parameter space then allows us to tackle Problem (C)
and reveal the topology of the parameter space of all trinomials in TA.We show that for
all j ∈ {1, . . . , s + t − 1}\{t} the set U A

j as well as its complement (U A
j )c = TA\U A

j

is a connected but not simply connected set. Namely, both U A
j and (U A

j )c can be
deformation retracted to the torus knot K (s + t, s) (Theorem 5.6), which is a closed
path on a standard torus. Hence, the fundamental group of these setsU A

j and (U A
j )c is

Z. The same holds for (U A
t )c and the zero setV(D) of the discriminant D of trinomials,

where furthermore V(D) is a deformation retract of (U A
t )c.U A

t is also connected and
not simply connected, but its topology is different since it has fundamental group
Z
2 (Theorem 5.8). Note that complements are taken in TA ∼= (C∗)2 and therefore

the fundamental groups of these complements can differ from fundamental groups of
R
3\K (s + t, s).
The article is organized as follows. In Sect. 2, we fix our notation and introduce

some facts from amoeba theory and about fibrations. In Sect. 3 we review the classical
questions and results on trinomials developed mostly during 1880–1930, as well as
some modern facts. Section 4 deals with the local structure of the parameter space
along C-slices given by fixing one of the two coefficients. In Sect. 5 we investigate
the complete parameter space and provide the topological description of the sets U A

j ,
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222 T. Theobald, T. de Wolff

their complements and the zero set V(D) of the discriminant. Section 6 closes the
paper with some final remarks on the (widely open) extension of our trinomial results
to the case of polynomials with general support set.

We remark that parts of the results of this article are contained in the thesis [12] of
the second author.

2 Preliminaries

2.1 Amoebas

We collect some facts and notation from amoeba theory and afterwards restrict our-
selves to the univariate case. For further information, next to the fundamental reference
[26], see, e.g., [12,39,45,49].

For a multivariate polynomial f = ∑
α∈A bαzα ∈ C[z±1] over a finite support

set A ⊆ Z
n the amoeba A( f ) ⊆ R

n as defined in (1.2) is a closed set with non-
empty complement and each component of the complement of A( f ) is convex (see
[26]). Furthermore, every component of the complement of a given amoeba A( f )
corresponds to a unique lattice point in the Newton polytope New( f ) of f via the
order map (see [24]),

ord : Rn\A( f ) → New( f ) ∩ Z
n, w 	→ (u1, . . . , un) with

u j = 1

(2π i)n

∫

Log |z|=w

z j∂ j f (z)
f (z)

dz1 . . . dzn
z1 . . . zn

, 1 ≤ j ≤ n. (2.1)

Notice that this map indeed is constant on each component of the complement of
A( f ). As a consequence, we define for each α ∈ New( f ) ∩ Z

n the set

Eα( f ) = {w ∈ R
n\A( f ) : ord(w) = α},

i.e., the set of all points in the complement of the amoeba A( f ), which have order α.
For a fixed support set A ⊆ Z

n , we can identify every polynomialwith its coefficient
vector. Thus, we can identify the parameter space (C∗)A of polynomials with support
set Awith a (C∗)d , where d = #A. One key problem in amoeba theory is to understand
the sets

U A
α = { f ∈ (C∗)A : Eα( f ) �= ∅},

i.e., the set of all polynomials with Newton polytope A, whose amoebas have a com-
ponent in the complement of order α (see, e.g., [26, Remark 1.10, p. 198]). These
sets were systematically studied first by Rullgård and turn out to have nice structural
properties. E.g., they are open, semi-algebraic sets, which are non-empty for all α ∈ A
(see [48,49]).

We describe the lopsidedness condition introduced by Purbhoo in [47] and similarly
used before by Passare, Rullgård et al. [24,49]. For a given f = ∑d

j=1 b jzα( j) ∈
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Norms of roots of trinomials 223

C[z±1
1 , . . . , z±1

n ] and v ∈ R
n
>0 we say that f is lopsided at Log |v| if one of the entries

in the list

f {v} =
[
|b1vα(1)|, . . . , |bdvα(d)|

]

is larger than the sum of all of the others. Clearly, if f is lopsided at Log |v| then
Log |v| /∈ A( f ). Furthermore, if |b jvα( j)| is the dominating term in the lopsided list
f {v}, then ord(Log |v|) = α( j) (see [24, Proposition 2.7] and [47, Proposition 4.1]).
In this article we investigate complex univariate trinomials f = zs+t + pzt + q ∈

C[z] with s, t ∈ N
∗ (i.e., A = {0, s, s + t} ⊆ N). Mostly, we assume q ∈ C

∗. Further-
more, we always assume that s, t are coprime, because all other cases can be traced
back to those instances via the substitution zgcd(s,t) 	→ z. For univariate polynomials,
most objects from amoeba theory are represented by well-known (classical) objects
and theorems, as explained in the following. This is convenient, since it allows us to
argue in, say, classical terms and let the amoeba machinery run in the background.

Let us assume that f = (z − a1) . . . (z − as+t ), where multiple roots of f are
allowed. We can always assume |a1| ≤ · · · ≤ |as+t |. Hence, the amoeba A( f ) is the
set of s + t points log |a1|, . . . , log |as+t | on the real line. In the case of univariate
polynomials the ordermap for amoebas coincideswith the classical argument principle
from complex analysis (in fact, the order map is nothing else than an extension of the
argument principle to the multivariate case; see [24] for further details). Recall that
for a univariate complex Laurent polynomial f ∈ C[z±1] and a region R ⊆ C such
that ∂R is a closed curve satisfying ∂R ∩ V( f ) = ∅ the argument principle (see, e.g.,
[25]) states that

1

2π i

∫

∂R

f ′(z)
f (z)

dz = # roots − # poles inside R.

Since a trinomial f of the form (1.1) has no poles, for every w ∈ R\A( f ) we have
ord(w) = k with k = max{0 ≤ j ≤ s + t : log |a j | < w}, i.e., the number of roots
of f with norm smaller than w. Since we defined Eα( f ) as the set of points in the
amoeba complement with order α, the univariate situation specializes to

E j ( f ) = {w ∈ R : log |a j | < w < log |a j+1|} for 0 ≤ j ≤ s + t. (2.2)

For trinomials with support set A, and restricting to the case that the coefficient p
is non-zero, the sets U A

α specialize to

U A
j = { f ∈ TA ∼= (C∗)2 : |a j | �= |a j+1|} , 0 ≤ j ≤ s + t.

If the context is clear, thenwe use the short notationUj instead ofU A
j . Further note that

with one exception in Sect. 5, which we point out explicitly, for our investigations of
the setsU A

j , it does not matter if we considerU A
j as a subset of (C∗)2 or if we consider

the slight extension allowing p = 0. Since for p = 0 all roots have the same norm
s+t
√|q|, we know that in this situation all the setsU A

j are empty for 1 ≤ j ≤ s + t −1.
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224 T. Theobald, T. de Wolff

In the univariate case, the lopsidedness condition coincides with Pellet’s classical
theorem (see [46]). Here, with respect to trinomials, we refer to Sect. 3, where we will
see that it specializes to a classical result by Bohl (Theorem 3.1).

2.2 Fibers

It is a well-known fact that the Log | · |-map comes with a fiber bundle (S1)n →
(C∗)n → R

n given by the homeomorphism

LogC : (C∗)n → R
n × (S1)n, (z1, . . . , zn) 	→ (logC(z1), . . . , logC(zn))

for some chosen local branch of the holomorphic logarithm logC : C∗ → C, z 	→
log |z| + i arg(z) (see, e.g., [38,39]; see also [12]). That is, the following diagram
commutes.

(C∗)n
LogC

Log |·|

R
n × (S1)n

Re

R
n

Since the fibration works component-wise, we restrict ourselves to the univariate
case n = 1 (i.e., the fiber bundle given by log | · |). For a given point w ∈ R≥0 the
fiber Fw is

Fw = {z ∈ C
∗ : log |z| = w},

which is obviously homeomorphic to the complex unit circle. For this article, the
key fact is that the fiber bundle induces a fiber function f v for every polynomial
f = ∑d

j=−k b j z j ∈ C[z±1] and v ∈ R>0 given by

f v : S1 → C, φ 	→ f
(
elog |v|+i ·φ)

=
d∑

j=−k

b j |v| j · ei ·φ j .

That is, f v is the pullback (ιv)
∗( f ) of f under the homeomorphism

ιv : S1 → Flog |v| ⊆ C
∗, φ 	→ elog |v|+i ·φ.

The zero set V( f v) satisfies V( f v) = V((ιv)
∗( f )) = V( f ) ∩ Flog |v|, and, in

particular,

log |v| ∈ A( f ) iff V( f v) �= ∅. (2.3)

For an overview on fiber bundles see, e.g., [28,50].
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Norms of roots of trinomials 225

In Sect. 5 we also need the Arg-map, the natural counterpart of the Log | · |-map,
given by

Arg : (C∗)n → (S1)n, (z1, . . . , zn) 	→ (arg(z1), . . . , arg(zn)).

The key fact for us is that with the same argument as above the Arg-map also yields
a natural fiber bundle structure Rn → (C∗)n → (S1)n , which can be regarded as the
canonical counterpart of the fibration of the Log | · |-map, since the following diagram
commutes

(C∗)n
LogC

Arg

R
n × (S1)n

Im

(S1)n

. (2.4)

3 Classical problems, classical results and modern developments

Since the late 19th century, the connection between the roots of trinomials (often, in
particular their norms) and the choice of their coefficients was studied intensively. We
compile these classical as well as some modern results.

An initial result, which attracted people to trinomial equations, was given by Bring
in 1786 [10] showing that every univariate quintic can be transformed into a trinomial
normal form z5+az+b via a suitable affine transformation. This result was (indepen-
dently) reproven and generalized by Jerrard in 1852 [29]; the resulting normal form is
known asBring-Jerrard (quintic) form. For additional information see, e.g., the survey
[1].

In 1832/33Bolyai showed that for a trinomial of the form zs−z−awith s ∈ N>1 and
a > 0 the recursive sequence (xn)n∈N given by x0 = 0, xn = s

√
a + xn−1 converges

to one of the trinomial roots for n → ∞ [6]. This Bolyai algorithm was extended by
Farkas in 1881 to trinomials of the form zs − bz − a with a > 0 and b ∈ R

∗, where
the sequence is not always converging if b < 0 (see [19]; also [20]). See the survey
[53] for further details.

The first article investigating the geometric properties of roots of trinomials is, to
the best of our knowledge, the fundamental work [42] by Nekrassoff from 1887. He
describes how roots of trinomials zs+t + pzt +q with p, q ∈ C

∗ are located in certain
disjoint regions (“Contouren”) of the complex plane. In other words, he gives bounds
for the norms (described by converging series) and arguments for the different roots of
the trinomials in dependence of s, t, p and q. Similar results were obtained by Kemper
in 1922 in a more general article about complex roots [30].

In 1907, Landau proved that the minimal norm of the roots of a trinomial of the
form zs+ pz+q is bounded from above by 2|q/p| and hence in particular independent
of s [31]. Furthermore, he proved a similar bound for the minimal norm of a root of
a tetranomial. These results were generalized to arbitrary univariate polynomials by
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226 T. Theobald, T. de Wolff

Fejér 1 year later [21] and also by Biernaky in 1923, who gave an upper bound for the
first t roots of an arbitrary trinomial [4]; see also [22].

The inverse of this question, i.e., to determine the number of roots k ∈ Nwith norm
lower than a given v ∈ R>0, can be answered with a result by Bohl from 1908, see
[5]. Specifically, he showed the following two theorems.

Theorem 3.1 (Bohl 1908) Let f = zs+t + pzt + q a trinomial with p, q ∈ C. Let
v ∈ R>0 and k be the number of roots with norm smaller than v. Then the following
holds.

If |q| > vs+t + |p| · vt , then k = 0.
If vs+t > |q| + |p| · vt , then k = s + t.

If |p| · vt > |q| + vs+t , then k = t.

This first theoremwas already known before, since it is a special instance of Pellet’s
Theorem ([46]; see also [35]), which is concerned with arbitrary, univariate polyno-
mials.

Note that, from the viewpoint of amoeba theory, this theorem is also obvious since
it treats the situation that f is lopsided at v and k = ord(log |v|), which coincides with
the exponent of the dominating term of the list f {v} (see Sect. 2.1). In other words,
Theorem3.1 is exactly the classical representation of lopsidedness fromamoeba theory
[47] for the special case of univariate trinomials.

The interesting, nontrivial case is described in a second statement. If none of the
upper inequalities in Theorem 3.1 holds, then there exists a (possibly degenerate)
triangle � with edges of lengths vs+t , |p| · vt and |q|. Let α = �(|p| · vt , |q|) and
β = �(vs+t , |q|).
Theorem 3.2 (Bohl 1908) Let the notation be as in Theorem 3.1. If there exists a
triangle � with edge lengths vs+t , |p| · vt and |q|, then the number k of roots with
norm smaller than v ∈ R>0 is given by the number of integers located in the open
interval with endpoints

(s + t)(π + arg(p) − arg(q)) − t (π − arg(q))

2π
− (s + t)α + tβ

2π
(3.1)

and

(s + t)(π + arg(p) − arg(q)) − t (π − arg(q))

2π
+ (s + t)α + tβ

2π
. (3.2)

To illustrate the theorem, we give an example.

Example 3.3 Let f = z3 + z + √
2 and v = 1. Then α = β = π/4. Thus, k is the

number of integers between

3(π + 0 − 0 − π)

2π
− 3/4π + 1/4π

2π
= −1

2
and

123



Norms of roots of trinomials 227

3(π + 0 − 0 − π)

2π
+ 3/4π + 1/4π

2π
= +1

2
.

Since this is only the origin, we have k = 1. A double check with Maple yields that
the roots of f have approximately norm

0.83403883, 1.30216004 and 1.30216004.

Unfortunately, these theorems give, using the notation from Sect. 2.1, no explana-
tion for the geometric or topological structure of the parameter space TA or the setsU A

j
in it. Amazingly, despite the fact that these theorems were proven over a century ago
and people kept on investigating trinomials until nowadays (see below), no evident
progress was made with respect to this geometric and topological structure. This fact
will be the initial point for our own investigation.

Prior to this, we recall some fundamental results by Egerváry [15–18] from 1922–
1931 about trinomials. Again, we refer to the survey [53] by Szabó, where these
classical results (partially written inHungarian in the original) are presented inmodern
terminology. Egerváry calls two trinomials f1, f2 with coefficients p1, q1 and p2, q2 ∈
C

∗ and (both) with exponents s, t coprime equivalent if and only if

f1(z) = f2(z · eiψ) or f1(z) = f2(z · eiψ)

for some ψ ∈ R.

Theorem 3.4 (Egerváry 1930) For trinomials f1, f2 given as above, the following
holds:

(1) f1 and f2 are equivalent if and only if

−(s + t)(arg(p1) ± arg(p2)) + s(arg(q1) ± arg(q2)) ≡ 0 mod 2π.

(2) If |p1| = |p2| and |q1| = |q2|, then the roots of f1 and f2 have the same norms if
and only if f1 and f2 are equivalent. Further, a trinomial has two roots with the
same norm if and only if it is equivalent to a real trinomial.

(3) A trinomial has a root of multiplicity larger than one if and only if the coefficients
p, q of its equivalent real trinomial satisfy (−1)s+t qs(s + t)s+t = ps+t ss t t .

Egerváry showed not only algebraic properties of the roots of trinomials, but also
gave a beautiful geometric description of their location in the complex plane, which
explain why roots are located in the sections, which were described by Nekrassoff.
For a trinomial f of the form (1.1), we define two polytopes in the complex plane

Ps = conv

{
s

√
(2s + t)|p|

s + t
· ei arg(p)+(2 j+1)π

s : 1 ≤ j ≤ s

}

,

Ps+t = conv

{
s+t

√
(2s + t)|q|

s
· ei arg(q)+(2 j+1)π

s+t : 1 ≤ j ≤ s + t

}

.
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228 T. Theobald, T. de Wolff

Theorem 3.5 (Egerváry 1930) Let f be of the form (1.1). Then the roots of f are
exactly the equilibrium points of the force field of the unit masses at the vertices of Ps
and Ps+t .

The investigation of trinomials went on in modern times. In 1980 Fell gave a
geometric description of trajectories of roots of real trinomials in the complex plane
under changing their coefficients [22]. In 1992 Dilcher, Nulton and Stolarsky study
(among other things) the zero distribution of the special trinomial t zs+t − (s+ t)zt + s
with s, t ∈ N

∗ [13]. And recently, in 2012, Melman improved Nekrassoffs results in
[37].

4 The local structure of the parameter space of trinomials

Given A = {0, s, s + t}, our goal is to describe the space TA of trinomials. More
precisely, we determine the geometry of all trinomials with a root of a certain norm as
well as the geometry and topology of the setsU A

j in TA, as defined in the Introduction.
First we investigate the special case of a fixed q ∈ C

∗. In other words, we study
C-slices

(TA)q = { f = xs+t + pxt + q : p ∈ C} ∼= C

of TA (or C∗-slices in case of assuming p �= 0) and solve the initial questions locally
along this slice. This allows us to provide two key results answering Problems (A) and
(B).

We first observe that f has a root with norm v ∈ R>0 if and only if the coefficient
p of f is located on a certain hypotrochoid curve depending on s, t, q and v, which is
located in the C-slice (TA)q of the parameter space TA (Theorem 4.1). Secondly, we
show that f has two roots with identical norm if and only if p is located on a union
of rays in C ∼= R

2, which yields the desired local description of the sets U A
j and their

complements (Theorems 4.4 and 4.9). This union of rays in the C-slice (TA)q of the
parameter space TA is precisely the geometric picture that corresponds to Egerváry’s
Theorem 3.4 (2), which we already sketched at the end of Sect. 3.

By combining both results, we show that f has two roots of the same norm v if p is
located on a singularity of the particular hypotrochoid corresponding to v (Theorem
4.5). As a corollary we re-prove a classical result by Sommerville on the location of
singularities on hypotrochoid curves (Corollary 4.6). Furthermore, we show a result
similar toTheorem4.1 involving epitrochoids instead of hypotrochoids for theC∗-slice
(TA)p of TA given by fixing the coefficient p instead of q (Theorem 4.16). Finally, we
deduce some results about the discriminant of trinomials (Corollaries 4.12 and 4.13).

Recall that a hypotrochoid with parameters R, r ∈ Q>0, d ∈ R>0 satisfying R ≥ r
is the parametric curve γ in R2 ∼= C given by

γ : [0, 2π) → C, φ 	→ (R − r) · ei ·φ + d · ei ·
(
r−R
r

)
·φ

. (4.1)

See Fig. 1 for some examples and references [9,23] for detailed information. Geomet-
rically, a hypotrochoid is the trajectory of some fixed point with distance d from the
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Fig. 1 Hypotrochoids for (R, r, d) = (8/3, 5/3, 1/2), (7/2, 5/2, 5/2) and (5, 4, 1). The second curve is
a hypocycloid and the third one is a rhodonea curve, which are both special instances of hypotrochoids

Fig. 2 A geometric explanation
of a hypotrochoid. The green
(small) circle with radius r rolls
inside the red (big) circle of
radius R. The hypotrochoid
describes the trajectory of the
blue (fat) point with distance d
to the center of the green circle.
The trajectory has finite length if
R/r ∈ Q (color figure online)

center of a circle with radius r rolling in the interior of a circle with radius R > r (see
Fig. 2). Further note that hypotrochoids belong to the family of roulette curves, see [33,
Chapter 17] for an overview. Hypotrochoids have certainwell-known special instances
themselves, in particular ellipses (if R = 2r ), hypocycloids (if d = r ) and rhodonea
curves (or rose curves; if R − r = d). We say that a curve γ is a hypotrochoid up to
a rotation if there exists some reparametrization ρk : [0, 2π) → [0, 2π), φ 	→ k + φ

mod 2π with k ∈ [0, 2π), such that γ ◦ ρ−1
k is a hypotrochoid.

We can now give the following answer to Problem (A) from the Introduction.

Theorem 4.1 Let f = zs+t + pzt + q with p ∈ C and q ∈ C
∗ be a trinomial and

v ∈ R>0. f has a root of norm v if and only if p is located on a hypotrochoid up to a
rotation with parameters R = vs/t · (t + s), r = vs/t · s and d = |q| · v−t .

Proof By (2.3), the trinomial f has a root with norm v ∈ R>0 if and only if the fiber
function f v has non-empty zero set, i.e.,

p + vs · ei ·s·φ + |q| · v−t · ei ·(arg(q)−t ·φ) = 0 for some φ ∈ [0, 2π). (4.2)

Using R− r = (t + s) · vs/t − s · vs/t = vs as well as (r − R)/r = −vs/(s · vs/t) =
−t/s, and setting φ′ = φ · s, we obtain

− p ∈ {
(R − r) · ei ·φ′ + d · ei ·

(
arg(q)+ (r−R)

r ·φ′
)

: φ′ ∈ [0, 2π)
}
. (4.3)
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By (4.1), the right hand side, and thus also its negative, is a hypotrochoid up to a
rotation. ��
Example 4.2 Let f = z8 + pz3 + 1

2 , g = z7 + pz2 + 5
2 , h = z5 + pz + 1. Then f, g

respectively h has a root of norm one if and only if p ∈ C is located on the trajectory of
the hypotrochoids with parameters (R, r, d) = (8/3, 5/3, 1/2), (7/2, 5/2, 5/2) and
(5, 4, 1), depicted in Fig. 1.

In order to tackle the question on trinomials with multiple roots of the same norm,
i.e., Problem (B) from the Introduction, we start from Bohl’s Theorems to show the
following initial fact.

Proposition 4.3 Let f = zs+t + pzt + q with p, q ∈ C
∗ and v ∈ R>0. Then at most

two roots of f have norm v.

Proof Let v ∈ R>0 such that there exists a root with norm v. Then there is a triangle
� (possibly degenerated to a line segment) with edges of lengths vs+t , |p|vt and |q|.
Let k be the cardinality of |V( f )| ∩ {z ∈ C

∗ : |z| < v}. By Theorem 3.2, k equals the
number of integers in the open interval I bounded by (3.1) and (3.2).

Assume first that � is non-degenerate. Clearly, by Theorem 3.2 an infinitesimal
increase of v can only increase the number of integers in the resulting open interval
by at most two. Hence, there can exist at most two roots of norm v.

If � degenerates to a line segment then one of the terms vs+t , |p|vt and |q| is the
sum of the other two. First assume vs+t = |p|vt + |q|. Then the open interval I with
endpoints (3.1) and (3.2) has length s + t , and thus I contains s + t − 1 or s + t
integers. Hence, Bohl’s Theorem 3.2 asserts that there are s + t − 1 or s + t roots of
norm less than v. Since vs+t > |p|vt , infinitesimally increasing v to v + ε leads to
applicability of Bohls’ first Theorem 3.1, which then states that there are exactly s + t
roots of norm less than v + ε. Hence, in the case vs+t = |p|vt + |q| there can only
exist a single root of norm v.

In the case |q| = vs+t + |p|vt , in Bohl’s Theorem 3.2 we have α = β = 0 and
thus the open interval I has length 0. Infinitesimally increasing v to v + ε leads to a
non-degenerate triangle and to at most one integer in the resulting open interval. There
is at most one root with norm less than v + ε, and thus, by our initial assumption on v,
exactly one root with norm v. In the case |p|vt = vs+t +|q| infinitesimally increasing
v leads to a non-degenerate triangle, and we can argue as in case of a non-degenerate
triangle �. ��

For parameters s, t ∈ N
∗ and q ∈ C

∗, given by a trinomial f = zs+t + pzt + q,
we define a union of rays

F(s, t, q) =
⋃

0≤k≤2(s+t)−1

R≥0 · ei ·(s arg(q)+k·π)/(s+t). (4.4)

Note that F(s, t, q) ⊆ C, where C can be regarded as the C-slice (TA)q of the
augmented parameter space

T̃A = TA ∪ {zs+t + q : q ∈ C
∗} ∼= C × C

∗ .
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We write F(s, t, q) = Fodd(s, t, q) ∪ Feven(s, t, q), where Fodd(s, t, q) and
Feven(s, t, q) consists of the rays with odd k (even k), see Fig. 3. If the context is
clear, we just write Fodd and Feven.

First we show that F(s, t, q) is closely related to the question about multiple roots
of the same norm.

Theorem 4.4 Let f = zs+t + pzt +q with p ∈ C and q ∈ C
∗ such that for two roots

a1, a2 ∈ V( f ) we have |a1| = |a2|. Then ((s + t) arg(p) − s arg(q))/π ∈ Z and thus
p ∈ F(s, t, q). In particular, (U A

j )c ⊆ F(s, t, q) for every 1 ≤ j ≤ s + t − 1.

Note that Theorem 4.4 also covers the case a1 = a2.

Proof Let a1, a2 ∈ V( f ) with |a1| = |a2| = v ∈ R>0. We can apply Bohl’s Theorem
3.2 since there are roots with norm v and hence the triangle� is well-defined. Theorem
3.2 yields that for v both the numbers (3.1) and (3.2) are integers. Since these numbers
are symmetric around the number

k = (s + t)(π + arg(p) − arg(q)) − t (π − arg(q))

2π
,

we have 2k ∈ Z and therefore ((s + t) arg(p)− s arg(q))/π ∈ Z. Now p ∈ F(s, t, q)

follows from the Definition (4.4) of the union of rays and (U A
j )c ⊆ F(s, t, q) follows

from the definition of U A
j . ��

If a trinomial has two roots which share the same norm v, then this fact has a nice
interpretation in terms of the hypotrochoid curves given by our first Theorem 4.1,
since it corresponds to their singularities.

Theorem 4.5 Let f = zs+t + pzt +q with p ∈ C and q ∈ C
∗. There exist a j , a j+1 ∈

V( f ) with |a j | = |a j+1| = v ∈ R>0 if and only if p is a singular point of the
hypotrochoid f v − p determined in (4.3). In detail

(1) f has two distinct roots with identical norm v if and only if p is located on a real
double point of the hypotrochoid,

(2) f has a root of multiplicity two with norm v if and only if the corresponding
hypotrochoid is a hypocycloid and p is a cusp of it, and

(3) f has more than two roots with norm v if and only if p = 0 if and only if the
hypotrochoid is a rhodonea curve with a point of multiplicity s + t in the origin.

Proof There exist two roots a j , a j+1 ∈ V( f ) with |a j | = |a j+1| = v ∈ R and a j �=
a j+1 if and only if there exist φ,ψ ∈ [0, 2π) with φ �= ψ and f v(φ) = f v(ψ) = 0
i.e., equivalently, f v(φ) − p = f v(ψ) − p = −p. This is the case if and only if
the hypotrochoid f v − p attains the value −p twice, i.e., it has a real double point at
−p ∈ C.

If a j = a j+1, i.e., f has a double root, then we can consider this case as the limit
of a family of trinomials given by the limit of φ → ψ and therefore a j → a j+1 in
the upper case. That is, the node at f v(φ) − p degenerates to a cusp. Conversely,
if the hypotrochoid f v(φ) − p has a cusp, then it is a hypocycloid, i.e., d = r in
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(4.1) (see [9]). Moreover, the cusp properties f v(φ) = 0 and ∂
∂φ

f v(φ) = 0 imply

for the parameter values φ∗ of the cusps: p = − s+t
t vseisφ

∗
. Hence, the derivative

∂ f
∂z = (s + t)zs+t−1 + tpzt−1 vanishes at v · eiφ∗

, and thus f has a double root with
norm v.

Assume finally f has more than two roots with norm v. By Theorem 4.3 this is
equivalent to p = 0 and hence v = s+t

√|q|. Theorem 4.1 then implies R − r = d
for the corresponding hypotrochoid f v − p = f v . But R − r = d means that the
hypotrochoid is a rhodonea curve with a point of multiplicity s + t in the origin. On
the other hand, if a hypotrochoid has a point of multiplicity greater than two, then it
is always a rhodonea curve and the singularity is located in the origin. Thus, p = 0
and R − r = d, and further, by Theorem 4.1, vs+t = |q|. ��

As an immediate corollary of Theorems 4.4 and 4.5, we regain a statement about
hypotrochoids by Sommerville from 1920 [52].

Corollary 4.6 (Sommerville)Letγ : [0, 2π) → C,φ 	→ vsei ·sφ+|q|v−t ei ·(arg(q)−tφ)

be a hypotrochoid. Then all singularities of γ are located on F(s, t, q).

Remark 4.7 In order to see that Sommerville’s result (stated in different notation)
indeed matches with the preceding corollary, express his variables p and q by R and
r in his equation for θ in [52, §10, p. 390] to obtain θ = kπr

R = kπs
s+t with k ∈ N.

To describe which subsets of F(s, t, q) belong to the complement of a set U A
j , we

make use of the following observation about real trinomials.

Theorem 4.8 Let f = zs+t + pzt + q with p, q ∈ R
∗ and V( f ) = {a1 . . . , as+t },

such that |a1| ≤ · · · ≤ |as+t |. Assume a j is real. Then j ∈ {1, t, t + 1, s + t}.
Furthermore, if at or at+1 is real, then f is lopsided at every point in the interval
Et ( f ) = {w ∈ R : log |at | < w < log |at+1|}.

Consistent with Déscartes’ Rule of Signs, Theorem 4.8 in particular implies that a
real trinomial f always has exactly one or three (respectively zero, two or four) real
roots when s + t is odd (respectively even). Indeed, since s or t is odd, a simultaneous
application of Déscartes Rule on f (z) and f (−z) straightforwardly reveals that the
case of four real roots (i.e., two positive ones and two negative ones) cannot occur.

Proof Let a j be a real root of f . By Proposition 4.3 a j is a single or a double root.
Furthermore, all the three terms as+t

j , patj and q are real, and one of the monomials
equals the sum of the two others. Hence, if we continuously increase the norm of the
dominating monomial by ε > 0, then the resulting polynomial g is lopsided at log |a j |
(see Sect. 2.1) and the ordering of the zeros is preserved (under the right labeling for
the case that f has a multiple real root). Hence, we can apply Bohl’s Theorem 3.1
(the analog for lopsidedness for univariate trinomials; see Sect. 3), which implies that
g contains 0, t or s + t roots in the interior of the circle with radius |a j |. Hence, the
component E j (g) of the complement of the amoeba A(g), which contains log |a j |,
has order 0, t or s + t (see Sect. 2.1). Since a j is a root of f it follows that log |a j | is
contained in the boundary of the closure of the components E0( f ), Et ( f ) or Es+t ( f )
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of the complement (where Et ( f ) degenerates to the empty set in the case that a j is a
multiple real root).

If a j is a single root then the definition of Et ( f ) directly implies j ∈ {1, t, t +
1, s + t}.

In case of a double root a j = a j+1 �= 0, the condition f ′(a j ) = 0 implies |a j |s =
|p| · t/(s + t) and (by considering the derivative of zs + p+ qz−t ) |a j |s+t = |q| · t/s.
Division yields |a|t = |q|/|p| · (s + t)/s, and we conclude

|patj | = |q| s + t

s
= |q| + |a j |s+t . (4.5)

Hence, the complement component E j (g) ofA(g), which contains log |a j |, has order
t with Theorem 3.1. With regard to the trinomial f , this shows j = t . ��

With Theorem 4.8 at hand, we now have all the tools to distinguish which subsets
of F(s, t, q) are part of the complement of which U A

j . Thus, together with Theorem
4.4, the following theorem solves Problem (B) from the Introduction.

Theorem 4.9 For fixed q ∈ C
∗, let f p = zs+t + pzt + q be a parametric family of

trinomials with parameter p ∈ C. For j ∈ {1, . . . , s + t − 1}\{t} the following holds.

For s + j even we have: f ∈ U A
j if and only if p /∈ Feven.

For s + j odd we have: f ∈ U A
j if and only if p /∈ Fodd.

(4.6)

In particular, the set {p ∈ C
∗ : f p ∈ U A

j } is not connected, and this remains true

for the set {p ∈ C : f p ∈ U A
j } when the sets U A

j are considered in C × C
∗. For

U A
t , the conditions (4.6) hold as well, with the modification that we have additionally
f p ∈ U A

t if there exists a v ∈ R>0 such that f p is lopsided with dominating term pvt .

Proof Let a1, . . . , as+t ∈ C
∗ denote the roots of f p (depending on p) with |a1| ≤

· · · ≤ |as+t |. By Theorem 4.4, it suffices to consider the case p ∈ F(s, t, q).
By rescaling the norms of the roots, we can assume |q| = 1, and moreover, by

uniformly adding an offset to the arguments, we can even assume q = 1. For p = 0
every root has norm 1 and thus f0 /∈ U A

j for every j ∈ {1, . . . , s + t − 1}, i.e., we can
always assume p ∈ C

∗. Since Bohl’s Theorem 3.1 is only relevant for the case j = t ,
we first consider the complementary cases j ∈ {1, . . . , s + t − 1}\{t}. Following the
argument in the proof of Theorem 4.4, the midpoint

k = (s + t)(π + arg(p) − arg(q)) − t (π − arg(q))

2π
, (4.7)

of the interval in Bohl’s Theorem 3.2 is in 1
2Z for p ∈ F(s, t, q). Since the interval is

symmetric around k and the number of integers in the interval determines the number
of roots of a particular norm, we have for all j ∈ {1, . . . , s + t − 1}\{t}

f ∈ U A
j with j even iff k /∈ Z, and
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f ∈ U A
j with j odd iff k ∈ Z.

Thus, it only remains to show for which choices of s, t and arg(p) we have k ∈ Z.
Since arg(q) = 0, we have p ∈ F(s, t, q) if and only if arg(p) = lπ/(s + t) with l ∈
{0, . . . , 2(s + t) − 1}. Hence, (4.7) simplifies to k = s+l

2 . Since finally p ∈ F(s, t, q)

satisfies p ∈ Feven (respectively p ∈ Fodd) if and only if (s + t) arg(p)/π is even
(respectively odd), i.e., l is even (respectively odd), the statement follows.

The non-connectedness of U A
j along the C-slice (TA)q for q = 1 follows directly

from the fact that C\F(s, t, q)odd respectively C\F(s, t, q)even is not connected.
It only remains to investigate the special case j = t . The argument above remains

valid for j = t with the exception that, by the Theorems 3.1 and 4.8, we have addi-
tionally f ∈ U A

t if there exists a z ∈ C
∗ such that f (z) is lopsided with dominating

term pzt . ��
Example 4.10 We illustrate the different situations of the theorem.

(1) Let f = x5 + 6x2 + 1, i.e., s is odd, t is even and p ∈ Feven(s, t, q). By
Theorem 4.9, f ∈ U A

2 ∩ U A
4 . Since always f ∈ U A

0 and f ∈ U A
s+t , this gives

f ∈ U A
0 ∩U A

2 ∩U A
4 ∩U A

5 . We verify this by determining the absolute values of
V( f ) approximately:

0.4082, 0.4082, 1.8030, 1.8030, 1.8462.

(2) Let f = x5−6x2+1, i.e., s is odd, t is even and p ∈ Fodd(s, t, q). ByTheorem4.9,
f ∈ U A

1 ∩ U A
3 , and clearly at the point v = 1 the function f is lopsided with

dominating term 6v2. Hence, altogether, f ∈ U A
0 ∩ U A

1 ∩ U A
2 ∩ U A

3 ∩ U A
5 . The

approximate absolute values of V( f ) do verify this:

0.4060, 0.4106, 1.7849, 1.8332, 1.8332.

(3) f = x5 +6x3 +1, i.e., s is even, t is odd and p ∈ Feven(s, t, q). By Theorem 4.9,
f ∈ U A

1 ∩U A
3 . Hence, altogether, f ∈ U A

0 ∩U A
1 ∩U A

3 ∩U A
5 . The absolute values

of V( f ) are approximately

0.5416, 0.5546, 0.5546, 2.4498, 2.4498.

i.e., a1 is the unique real root and thus f ∈ U A
0 ∩U A

1 ∩U A
3 ∩U A

5 .
(4) Let f = x4 + 0.5x1 + 1, i.e., s is odd, t is odd and p ∈ Feven(s, t, q). By

Theorem 4.9, f ∈ U A
2 , so that altogether f ∈ U A

0 ∩ U A
2 ∩ U A

4 . The absolute
values of V( f ) are approximately

0.916, 0.916, 1.091, 1.091.

In the following we investigate the discriminant D of trinomials f , Recall that
the discriminant is a polynomial function depending on the coefficients of f , i.e.,
D : TA → C, which vanishes when f has a double root (see, e.g., [26]). For general
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monic polynomials of degree n, the discriminant D( f ) can be defined by D( f ) =
(−1)n(n−1)/2 Res( f, f ′), where Res( f, f ′) is the resultant of f and its derivative f ′.
An explicit formula for the discriminant of univariate trinomials is well-known; see
also part (3) of Egerváry’s Theorem 3.4:

Lemma 4.11 (Greenfield, Drucker [27]) Let f = zs+t + pzt + q be a trinomial with
p, q ∈ C and gcd(s, t) = 1. Then the discriminant D( f ) of f is given by

D( f ) = (−1)
(s+t)(s+t−1)

2 qs
(
qs(s + t)s+t − (−1)s+t ps+t ss t t

)
.

From our earlier statements, we can conclude additional information about D.

Corollary 4.12 Any trinomial lying on the hypersurface defined by the discriminant
D lies on the boundary of the complement (U A

t )c of U A
t . In particular, if a trinomial

f = zs+t + pzt + q with p, q ∈ C
∗ has a double root a j = a j+1, then j = t .

Proof In the proof of Part (2) of Theorem 4.5 we have seen that for fixed q ∈ C
∗

there is a unique choice |p∗| for the norm of p such that a j = a j+1. For every p′
with |p′| > |p∗|, the resulting trinomial f p′ is lopsided in the interval Et ( f p′). Thus,
f p′ ∈ U A

t for every |p′| > |p∗|.
It remains to show that if f has a double root a j = a j+1 �= 0, then |p| = |p∗| and

j = t . Since the argument for the case of a double real root in the proof of Theorem
4.8 also holds in the complex case, we can deduce j = t and |patj | = |q| s+t

s =
|q| + |a j |s+t , which shows that |p| coincides with the unique choice |p∗| introduced
above. Altogether, V(D) ⊆ ∂((U A

t )c). ��
Corollary 4.13 For fixed q ∈ C

∗, let f p = zs+t + pzt + q be a parametric family of
trinomials with parameter p ∈ C. Then:

For s + j even we have: f ∈ U A
t if and only if p /∈ Feven ∩ Br (0),

For s + j odd we have: f ∈ U A
t if and only if p /∈ Fodd ∩ Br (0),

where r = |q|s/(s+t)
(
(t/s)s/(s+t) + (s/t)t/(s+t)

)
and Br (0) is the closed disk with

radius r around the origin. Furthermore, the s + t intersection points of F(s, t, q)

with the boundary of this disk equal the intersection of (TA)q with the C-slice of the
discriminant zero set V(D) obtained by fixing q.

Remark 4.14 For the special case of a quadratic equation, s = t = 1, the corollary
yields that there exist two roots of the same norm if and only if p ∈ C

∗ satisfies
arg(p) = 1

2 (arg(q) + πk) for some k ∈ {0, 2} and |p| ≤ 2|q|1/2.
Proof By Theorem 4.9 (U A

t )c restricted to the C-slice given by fixing q ∈ C
∗ is

the subset of F(s, t, q)odd (respectively F(s, t, q)even) where f is not lopsided with
dominating term pzt . It is well-known that lopsidedness is independent of arguments
of coefficients (see [54, Proposition 5.2] or [12, Proposition 4.14]), it holds on an open
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Fig. 3 Three hypotrochoids: The trajectory of the fiber functions f 1 − p, g1 − p and h1 − p for the
norm v = 1 and trinomials f = z8 + pz3 + 0.5, g = z7 + pz2 + 2.5 and h = z5 + pz + 1 with their
corresponding union of rays F(s, t, q) (the blue dotted rays). The hypotrochoids and F(s, t, q) are located
in a complex plane, which is a C-slice of the parameter space T̃A (color figure online)

subset ofU A
t (by definition of lopsidedness; see Sect. 2.1) and is kept under increasing

of |p|. Thus, (U A
t )c along the C-slice (TA)q for fixed q is given by F(s, t, q)odd

(respectively F(s, t, q)even) intersected with a closed disk. By the reasoning in the
proof of Corollary 4.12, the boundary of this disk is given by the choice of |p| > 0
such that f = zs+t +|p|zt +|q| has a double root at = at+1 (and thus the discriminant
vanishes). Since f|p|+ε is lopsided at at for every ε > 0, we know from that proof
|at | = s+t

√|q|t/s and, from (4.5),

|p||qt/s|t/(s+t) = |q|t/s + |q| ,

whence |p| = |q|s/(s+t)
(
(t/s)s/(s+t) + (s/t)t/(s+t)

)
. ��

Example 4.15 As in Example 4.2, let f = z8 + pz3 + 0.5, g = z7 + pz2 + 2.5 and
h = z5 + pz + 1. Then f, g, h have two roots with the same norm if and only if p is
located on the blue (dotted) union of rays in Fig. 3.

Finally, we investigate the local situation along a C∗-slice of TA as in Theorem 4.1
but for fixed p and variable q. That is, we like to know when a trinomial f has a root
of norm v ∈ R>0 in dependence of the choice of q ∈ C

∗. It turns out that the natural
objects needed to describe this situation are epitrochoids, which can be regarded as
canonical counterparts of hypotrochoids.

An epitrochoid with parameters R, r ∈ Q>0, d ∈ R>0 is a parametric curve γ ∈
R
2 ∼= C given by

γ : [0, 2π) → C, φ 	→ (R + r) · ei ·φ − d · ei ·
(
R+r
r

)
·φ

. (4.8)

We say that a curve γ is an epitrochoid up to a rotation if there exists some repara-
metrization ρk : [0, 2π) → [0, 2π), φ 	→ k+φ mod 2π with k ∈ [0, 2π), such that
γ ◦ ρ−1

k is an epitrochoid.
In Fig. 4 we give some examples of epitrochoids. Like hypotrochoids, epitrochoids

also belong to the family of roulette curves and have certain well-known special
instances themselves, in particular epicycloids given by d = r and limacons given by
R = r (see, e.g., [9]).
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Fig. 4 Epitrochoids for (R, r, d) = (15/16, 9/16, 1), (5/2, 1, 1) and (4/5, 1/5, 1) in the complex plane.
As we have r = d in the second example, we see that the epitrochochoid in fact is an epicycloid

Geometrically, an epitrochoid is the trajectory of some fixed point with distance
d from the center of a circle with radius r rolling along the exterior of a circle with
radius R.

With epitrochoids we can now obtain a counterpart to Theorem 4.1 regarding Prob-
lem (A) from the Introduction.

Theorem 4.16 Let f = zs+t + pzt + q with p ∈ C and q ∈ C
∗ be a trinomial and

v ∈ R>0. f has a root of norm v ∈ R>0 if and only if q is located, up to a rotation,
on an epitrochoid with parameters R = vt · |p| · s/(s + t), r = vt · |p| · t/(s + t) and
d = vs+t .

Proof By the same argument as in the proof of Theorem 4.1 we know that f has a
root of norm v ∈ R>0 if and only if the corresponding fiber function f v satisfies

q = |p|vt · ei ·(π+arg(p)+t ·φ) − vs+t · ei ·(s+t)·φ for some φ ∈ [0, 2π). (4.9)

The right hand side of the equation describes an epitrochochoid Namely, by definition
of R and r we have R + r = vt · |p| · (s/(s + t) + t/(s + t)) = vt · |p| and

R + r

r
= vt · |p|

vt · |p| · t/(s + t)
= s + t

t
.

Thus, by setting φ′ = tφ, (4.9) is equivalent to

q = (R + r) · ei ·(π+arg(p)+φ) − d · ei · R+r
r ·φ for some φ ∈ [0, 2π).

By the definition of the epitrochoid in (4.8) the statement follows. ��
Example 4.17 As canonical counterpart to Example 4.2 we investigate the trinomials
f = z8 + 3

2 z
3 +q, g = z7 − 7

2 z
2 +q and h = z5 + z+q. Then f, g and h have a root

of norm one if and only if q is located on the epitrochoids with parameters (R, r, d) =
(15/16, 9/16, 1), (5/2, 1, 1) and (4/5, 1/5, 1), which we depicted in Fig. 4.

5 The topological structure of the parameter space of trinomials

The aim of this section is to determine the fundamental groups of the sets U A
j ⊆ TA

and their complements (U A
j )c ⊆ TA. That is, we provide an answer to Problem (C).
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As a main result we show that for every j ∈ {1, . . . , s + t − 1}\{t} both the set
U A

j ⊆ TA and its complement (U A
j )c = TA\U A

j as well as the discriminant zero

set V(D) can be deformation retracted to a torus knot K (s + t, s). (U A
t )c can be

deformation retracted to V(D). Thus, all these sets are connected, but not simply
connected and have fundamental group Z (see Theorem 5.6). U A

t has a different
topology; it has fundamental group Z

2 (see Theorem 5.8). Finally, we describe the
amoeba and the coamoeba ofV(D) (Corollary 5.9). For background information about
torus knots, see [11,28].

Note that, by Theorem 4.9, for j �= t the setsU A
j are not connected along aC-slice

given by a fixing q ∈ C
∗.

As a motivation and to provide an intuition about the structure of TA we give an
example showing that a set U A

j ⊆ TA can be connected although none of the sets U A
j

intersected with a C-slice of TA given by fixing q ∈ C
∗ is connected.

Example 5.1 Let f = z3+1.5 ·ei ·arg(p)z+ei ·arg(q) with f = (z−a1)(z−a2)(z−a3)
and |a1| ≤ |a2| ≤ |a3|. Assume, we want to construct a path γ in TA from (p1, q1) =
(1.5 · ei ·π/2, 1) to (p2, q2) = (1.5 · e−i ·π/6, 1) such that γ ⊆ U A

2 , i.e., |a2| �= |a3| for
every point on γ . Theorem4.9 implies that this is impossible if arg(q) remains constant
for every point on γ . Similarly, we do not have |a2| �= |a3| for all points on an arbitrary
path on a C-slice of TA given by fixing arg(p) or in general by fixing an affine linear
relation between arg(p) and arg(q).We illustrate this by investigating two closed paths
starting and ending at (p1, q1) given by η1 : [0, 1] → TA, k 	→ (1.5 · ei ·π/2, ei ·2kπ )

and η2 : [0, 1] → TA, k 	→ (1.5 · ei(1/4+k)·2π , ei ·2kπ ) (see Fig. 5). But there exists a
path γ as desired given by γ : [0, 1] → TA, k 	→ (1.5 · ei(1/4+2k/3)·2π , ei ·2kπ ) from
(p1, q1) to (p2, q2) that is completely contained in U A

2 (see Fig. 5).

First, we investigate the sets U A
j ⊆ TA and their complements for j �= t . Initially,

we show that for these sets it suffices to investigate the situation of fixed |p| and |q|.
Lemma 5.2 Every set U A

j ⊆ TA with j ∈ {1, . . . , s + t − 1}\{t} and its comple-

ment (U A
j )c can be deformation retracted to a subset Û A

j (respectively (Û A
j )c) of the

standard torus T(1,1) = {(ei ·arg(p), ei ·arg(q)
) : p, q ∈ C

∗} ⊆ TA.

The idea of the lemma is that for containment in U A
j (with j �= t) the norms of

the coefficients p and q are irrelevant. Thus, we can deform the complete space to the
standard torus where p and q have norm one.
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Fig. 5 The norms of the roots of f along the paths η1, η2 and γ (from left to right). The vertical axis is k,
the horizontal axis represents the norms of particular roots
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Proof Recall from (2.4) in Sect. 2.2 that TA ∼= (C∗)2 comes with a fiber bundle
R
2 → TA → (S1)2 given by the Arg map.
Let h be the homeomorphism given by applying LogC on the coefficients of poly-

nomials in TA. Let T(1,1) = h−1((S1)2 × {0}) = {(ei ·arg(p), ei ·arg(q)
) : p, q ∈ C

∗} be
the canonical embedding of the standard torus in TA . We investigate the homotopy

F : TA × [0, 1] → TA, ((p, q), l) 	→
(

p

(1 − l) + l · |p| ,
q

(1 − l) + l · |q|
)

.

(5.1)

Obviously, F is the identity for l = 0 and F is the projection from TA × [0, 1] to
T(1,1) for l = 1. Recall that by Theorem 4.9 U A

j is invariant under changing |q| and,
for q ∈ C

∗ fixed, it holds that (p, q) ∈ U A
j implies (λp, q) ∈ U A

j for every λ ∈ R>0.

Since, by construction, every (ei ·φ1 , ei ·φ2) ∈ T(1,1) satisfies

F−1((ei ·φ1 , ei ·φ2)) ∼= {(p, q) ∈ (C∗)2 : arg(p) = φ1, arg(q) = φ2} = Arg−1((φ1, φ2)),

F respects the fiber bundle structure of TA described above and hence F|U A
j
is indeed

a deformation retraction of U A
j to a subset of T(1,1). For the complements of the U A

j
the argument works the same way. ��

In the following we say that two polynomials f, g ∈ C[z] are equivalent if the
complements of their amoebas have the same components (with respect to the order
map), i.e.,

f ∼ g ⇐⇒ f ∈ U A
j if and only if g ∈ U A

j for all j ∈ {0, . . . , s + t}. (5.2)

Lemma 5.3 Let f = zs+t + pzt + q with p, q ∈ C
∗. Then f ∼ g for every g on the

path γ(p,q) : [0, 1] → TA, φ 	→ (p · ei ·2πsφ/(s+t), q · ei ·2πφ). In particular, we have
f ∼ g for polynomials f and g with coefficient vectors (p, q) and (p · ei ·2πs/(s+t), q)

located on the torus

T(|p|,|q|) = {(|p|ei ·2πφ, |q|ei ·2πψ) : φ,ψ ∈ [0, 1)} ⊆ TA. (5.3)

Proof Let f = γ(p,q)(0) and g = γ(p,q)(φ) for some φ ∈ (0, 1]. By Definition
(4.4), f is located on a particular ray of F(s, t, q) if and only if g is located on the
corresponding ray of F(s, t, q · ei ·2πφ). Thus, by Theorem 4.9, f ∈ U A

j if and only

if g ∈ U A
j for all j ∈ {0, . . . , s + t}. Note particularly that the equivalence also holds

for j = t since the coefficients of all trinomials on T(|p|,|q|) have the same norm and
lopsidedness is either given for every point on a torus T(|p|,|q|) or for none (see also
[54, Proposition5.2] or [12, Proposition 4.14]). Hence, by (5.2), we have f ∼ g. Since
φ was arbitrarily chosen, the statement follows. ��

By considering the union of rays (4.4) for varying arg(q) we make the transition
from the sliced version of U A

j to the global version. In the following, we provide an

explicit parameterization of the torus version Û A
j of U A

j .

123



240 T. Theobald, T. de Wolff

Let Zm = Z/mZ for m ∈ N
∗. Note that since gcd(s, t) = 1 we have 2π · ks/(s +

t) ≡ 0 mod 2π if and only if k ∈ (s + t)Z. And since (p, q) ∼ (p · ei ·2πs/(s+t), q),
everyU A

j and (U A
j )c with j ∈ {1, . . . , s+ t −1}\{t} is invariant under the group Zs+t

acting on T(|p|,|q|) by

∗ : Zs+t × T(|p|,|q|) → T(|p|,|q|), (5.4)

(k, (|p| · ei ·2πφ, |q| · ei ·2πψ)) 	→ (|p| · ei ·2π(φ+ks/(s+t)), |q| · ei ·2πψ).

For (p, q) ∈ T(|p|,|q|) and k ∈ Zs+t we denote the image of the group action as
k ∗ (p, q). Note that this group action is conformal with the regular torus action of
TA ∼= (C∗)2 on itself.

Let γ(p,q) be a path on T(|p|,|q|) as defined in Lemma 5.3 and k ∗ (p, q) denote
the image under the group action of Zs+t on T(|p|,|q|) introduced in (5.4). Note that
γ(p,q) has startpoint (p, q) and endpoint (p · ei ·2π ·s/(s+t), q). Thus, for every k ∈ N

the endpoint of γk∗(p,q) is the starting point of γ(k+1)∗(p,q).
Let ρ(p,q) denote the path on the torus T(|p|,|q|) given by

ρ(p,q) = γ(s+t−1)∗(p,q) ◦ γ(s+t−2)∗(p,q) ◦ · · · ◦ γ1∗(p,q) ◦ γ0∗(p,q) (5.5)

for some (p, q) ∈ T(|p|,|q|) ⊆ TA.
To denote paths ρ(p,q) with |p| = |q| = 1 on the standard torus T(1,1) =

{(ei ·arg(p), ei ·arg(q)
) : p, q ∈ C

∗} ⊆ TA we also write ρ(arg(p),arg(q)) with slight
abuse of notation.

We observe that in case of s+ j even the curve ρ(0, 0) parameterizes the set (Û A
j )c,

and in case of s + j odd the curve ρ(π/(s + t), 0) parameterizes (Û A
j )c.

Note that ρ(arg(p),arg(q)) is closed and not contractable on T(1,1) by construction.
See Fig. 6 for a visualization. But it has an even stronger, well-known structure, as we
show in the following corollary.

Fig. 6 The curve ρ(0, 0) for s = 2 and s + t = 3 on a torus. By Corollary 5.4 it corresponds to the
K (3, 2)—the trefoil knot
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Corollary 5.4 Every pathρ(arg(p),arg(q)) is homeomorphic to the torus knot K (s+t, s).

Proof By construction, every ρ(arg(p),arg(q)) is homeomorphic to ρ(0,0). ρ(0,0) is given
by S1 → (S1)2, φ 	→ (eisφ·2π , ei(s+t)φ·2π ). This is a closed curve on (S1)2 such that
the meridians are intersected (s + t) respectively s times. Thus, it is the torus knot
K (s + t, s) (see [11, p. 46 et seq.], see also [28]). ��

With the construction of ρ(arg(p),arg(q)) we can describe the sets Û A
j and its com-

plements on the standard torus T(1,1).

Lemma 5.5 Let j ∈ {1, . . . , s + t − 1}\{t}. Then
For s + j even we have: ρ(0,0) = (Û A

j )c and ρ(π/(s+t),0) is a deformation retract of Û A
j .

For s + j odd we have: ρ(π/(s+t),0) = (Û A
j )c and ρ(0,0) is a deformation retract of Û A

j .

Proof We consider the case s+ j be even and j �= t . Recall that by Lemma 5.2, Û A
j is

the deformation retract ofU A
j to a subset of the standard torus T(1,1). Hence, it suffices

to show that a given point on the standard torus T(1,1) belongs to (U A
j )c if and only if it

is located on ρ(0,0). By Theorem 4.9, f = zs+t + pzt +q does not belong toU A
j if and

only if p ∈ F(s, t, q)even. And it follows from (4.4) that if f is additionally in T(1,1),
i.e., |p| = |q| = 1, then f ∈ U A

j if and only if arg(p) �= (arg(q)s + 2πk)/(s + t)
for k ∈ {1, . . . , s + t}. By definition of ρ(arg(p),arg(q)) these are exactly the points on
ρ(0,0) ⊆ T(1,1).

Now, we investigate Û A
j = T(1,1)\(Û A

j )c = T(1,1)\ρ(0, 0). Since ρ(π/(s+t),0)
is obtained from ρ(0,0) by the translation (arg(p), arg(q)) 	→ (arg(p) + π/(s +
t), arg(q)), we have ρ(π/(s+t),0) ⊆ Û A

j . We investigate the homotopy

F̂ : T(1,1) × [0, 1] → T(1,1),

((arg(p), arg(q)), l) 	→
(
arg(p) + l ·

(
arg(q)s + π

s + t
−

(
arg(p) mod

2π

s + t

))
, arg(q)

)
.

Obviously, we have F̂(Û A
j , 0) = Û A

j and since (arg(p), arg(q)) ∈ ρ(π/(s+t),0) ⇔
arg(p) = (arg(q)s + (1+ 2k)π)/(s + t) for k ∈ {1, . . . , s + t} we have F̂(Û A

j , 1) =
ρ(π/(s+t),0) (see Fig. 7).

Since F̂ is continuous in arg(q) and the second coordinate of the image is inde-
pendent of l, it suffices to prove the homotopy for the first image coordinate for
an arbitrary, fixed arg(q). For a fixed arg(q) the set Û A

j is given by all arg(p) �=
(arg(q)s+2πk)/(s+t) for k ∈ {1, . . . , s+t}. Thus, it consists of s+t separated, open
segments with midpoints (arg(q)s+ (1+2k)π)/(s+ t), where k ∈ {0, . . . , s+ t −1}.
Each segment is contracted to its midpoint by F̂ and hence F̂ indeed is a deformation
retraction of Û A

j to ρ(π/(s+t),0). For s+ j odd with j �= t the proof works analogously.
��

Nowwehave all tools to prove thefirstmain theoremof this section,which describes
the topology of the sets U A

j for all j �= t and their complements.
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Fig. 7 Situation for s + t = 5 and arg(q) = 0. For a fixed arg(q), the set Û A
j is the union of s + t open

segments between the red (dark) points (one is exemplarily depicted in green (light) color here). Each of
the segments is retracted to their green (light) midpoint under F̂ . For a point arg(p) (the blue (very dark)
point here), the corresponding value arg(p) mod 2π

s+t is the length of the blue (very dark) segment. Thus,

indeed, F̂(Û A
j , 1) = ρ(π/(s+t),0) (color figure online)

Fig. 8 The set
{ f = z5 + pz3 + ei ·arg(q) : p ∈
C, |p| ≤ 1, arg(q) ∈ [0, 2π)} in
the corresponding subset (a real
full torus) of its parameter space
(considered as (p, q) ∈ C × C).
Note that we need restrict to
|p| > 0 if we want to investigate
sets in TA

Theorem 5.6 Let A = {0, t, s+t}. For each j ∈ {1, . . . , s+t−1}\{t} bothU A
j ⊆ TA

and (U A
j )c ⊆ TA are isotopic to the torus knot K (s + t, s). Hence, U A

j and (U A
j )c are

connected but not simply connected and we have π1(U A
j ) = π1((U A

j )c) = Z.

Proof By Lemmas 5.2 and 5.5, U A
j and (U A

j )c can be deformation retracted to the
closed paths ρ(0,0) and ρ(π/(s+t),0) on the standard torus T(1,1). By Corollary 5.4 both
ρ(0,0) and ρ(π/(s+t),0) are homeomorphic to K (s+ t, s). Since a torus knot K (s+ t, s)
is an embedding S1 → S3 we have in particular π1(K (s + t, s)) = Z (see [11,28] for
further details) and the statement follows. ��

Note that for s = 1 the torus knot K (s + t, s) is a trivial knot. Therefore, e.g., the
cubics x3 + px2 + q and x3 + px + q result topologically in non homotopic sets
U A
1 and U A

2 although from an algebraic point of view this difference would not be
expected a priori. Namely, U A

1 of x3 + px2 + q is isotopic to the trivial knot and U A
2

of x3 + px + q is isotopic to the trefoil knot. See also Fig. 8.
Finally, we describe the topology of U A

t , its complement and the topology of the
discriminant for A = {0, t, s + t}. We need the following well-known fact; see for
example [28, Exercise 13, Page 39].

Lemma 5.7 Let X be a topological space with a path connected subspace A such
that x0 ∈ A. Then the map π1(A, x0) → π1(X, x0) induced by the inclusion A ↪→ X
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is surjective if and only if every path in X with endpoints in A is homotopic to a path
in A.

Theorem 5.8 The zero set V(D) ⊆ TA of the discriminant D is a deformation retract
of the set (U A

t )c and Theorem 5.6 literally also holds for the set V(D). For U A
t we

have π1(U A
t ) = Z

2.

Proof Let f = zs+t + pzt +q and without loss of generality s + t odd (for s + t even
the proof works analogously). First, we deal with (U A

t )c. By definition f ∈ (U A
t )c

only if f is nowhere lopsidedwith dominating term p. This is reflected in the following
way. We define for every q ∈ C

∗ the closed punctured disk

B•
q =

{
p ∈ C

∗ : |p| ≤ |q|s/(s+t)
(
(t/s)s/(s+t) + (s/t)t/(s+t)

)}

in the C
∗-slice of TA given by fixing q ∈ C

∗. By Corollary 4.13 we know that for
every fixed q ∈ C

∗ we have f ∈ (U A
t )c if and only if p ∈ F(s, t, q)odd ∩ B•

q , which
is an arrangement of s + t half open segments in C

∗, and f ∈ V(D) if and only if
p ∈ (F(s, t, q)odd ∩ ∂B•

q)\{0}. Thus, we can deformation retract (U A
t )c to V(D) via

the homotopy

F1 : TA × [0, 1] → TA,

((p, q), l) 	→
(

p

(1 − l) + l|p| · (|q|s/(s+t)
(
(t/s)s/(s+t) + (s/t)t/(s+t)

))−1 , q

)

,

i.e., we retract every half-open ray segment in Fodd(s, t, q) ∩ B•
q to its intersection

point with ∂B•
q .

Recall the definition of the homotopy F in (5.1) in Lemma 5.2. Since for a fixed
q the zero set V(D) intersects every half ray of F(s, t, q)odd in exactly one point
(Corollary 4.13) and F maps every ray of F(s, t, q)odd to exactly one point located on
the closed path ρ(π/(s + t), 0) [see Lemma 5.2, Definition (5.5) and Lemma 5.5] on
the standard 2-torus T(1,1) ⊆ TA, F|V(D) deformation retracts V(D) to ρ(π/(s+ t), 0)
and is a homeomorphism on the subspace of TA given by fixing |q|. Now, the statement
follows with Theorem 5.6.

Finally, we compute the fundamental group π1(U A
t ). Let now T(|p∗|,1) ⊆ TA be the

torus given by |p∗| = (t/s)s/(s+t) + (s/t)t/(s+t) + 1 (and |q| = 1). By Theorem 4.9
we have T(|p∗|,1) ⊆ U A

t since every trinomial in T(|p∗|,1) is lopsided with dominating
term pzt . Let x0 be the origin in T(|p∗|,1). We investigate the following inclusions.

(S1)2 � T(|p∗|,1) ↪→ U A
t ↪→ TA � (C∗)2.

Let γ be an arbitrary closed path in U A
t with start- and endpoint in T(|p∗|,1). Since

q is the constant term of every trinomial in TA, we can, by continuously rescaling
the norms of the roots, first retract γ to a path γ ′, which is contained in the subspace
of TA given by |q| = 1. Since for every point (p, q) ∈ γ ⊆ U A

t and every λ > 1,
Theorem 4.9 implies (λp, q) ∈ U A

t , γ
′ is homotopy equivalent to a path γ ′′ ∈ T(|p∗|,1).
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An analogous statement holds for an arbitrary path γ in TA with start- and endpoints
in U A

t , since we can simply retract γ to a path in T(|p∗|,1) ⊆ U A
t .

Since every point inU A
t is path connected to T(|p∗|,1) ⊆ U A

t by the upper argumen-
tation,U A

t is path connected (alternatively, this fact can also be derived fromCorollary
4.13). Thus, we can apply Lemma 5.7 and obtain surjective maps

π1(T(|p∗|,1), x0) � π1(U
A
t , x0) � π1(TA, x0).

Since we know π1(T(|p∗|,1), x0) = π1(TA, x0) = Z
2, we can conclude π1(U A

t , x0) =
Z
2. ��
Note that the statements about U A

j remain true in T̃A = TA ∪ {zs+t + q : q ∈ C
∗}

sinceU A
j ∩ {zs+t + q : q ∈ C

∗} = ∅ for all 1 ≤ j ≤ s + t − 1. Similarly π1((U A
t )c)

still equals Z since it can easily be deformation retracted to {zs+t + q : q ∈ C
∗}

with Theorem 4.9. However, the topology of (U A
j )c for j �= t might be different in

T̃A since the homotopy F in Lemma 5.2 cannot be extended to T̃A. We do not discuss
this last case in further detail.

Instead, we close the article with some remarks about the zero set V(D) of the
discriminant D of trinomials and its amoeba and coamoeba.

Corollary 5.9 Let D be the discriminant of all trinomials with support set A =
{0, t, s + t} with zero set V(D) ⊆ TA. Then the amoeba A(D) is a line given by

log |p| = (s/(s + t)) · log |q| + log |(t/s)s/(s+t) + (s/t)t/(s+t)|,

and the coamoeba coA(D) is isotopic to the torus knot K (s + t, s).

Proof The amoeba statement follows immediately fromCorollaries 4.12 and 4.13. For
the coamoeba statement recall that V(D) ⊆ (U A

t )c and (U A
t )c deformation retracts to

K (s + t, s) by Theorem 5.8. Since by Lemma 5.2 the deformation retraction is given
by retracting every fiber of the Arg-map to its intersection point with the unit torus,
we can conclude that Arg(V(D)) is isotopic to K (s + t, s). ��

We remark that the statement about the amoeba A(D) is exactly what we would
expect a priori from amoeba theory. Due to a result by Passare, Sadykov and Tsikh [44,
Corollary 8], amoebas of principal A-determinants are solid, i.e., every component of
the amoeba complement corresponds to a vertex in the Newton polytope via the order
map.This implies in particular that amoebas of discriminants of univariate polynomials
are solid; see [44, Corollary 9]. Since in our case the discriminant D is a bivariate
binomial it follows that the complement of A(D) has exactly two components. Since
each of these components is convex [26], A(D) has to be a line.

Furthermore, the Theorems 5.6 and 5.8 are a generalization of the well-known
Milnor-fibration for the case of discriminants of trinomials. Recall that Milnor’s fibra-
tion theorem states that for every (n+1)-variate complex polynomial f with a singular
point in the origin and every sufficient small ε > 0 we have that

f

| f | : (S2n+1
ε \V( f )) → S1 (5.6)
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is a fibration. Here Skε denotes the sphere of real dimension k around the origin with
radius ε and V( f ) denotes the zero set of f . Each fiber of the fibration is a smooth
parallelizable manifold of real dimension 2n. The boundary of this fiber corresponds
to the intersection S2n+1

ε ∩V( f ) and is a compact manifold of real dimension 2n − 1,
which is called Milnor fiber. In the special case of n = 1 the Milnor fiber is a fibered
knot. In general, this fibration does not extend to arbitrary radii of the sphere. For
further details see e.g. [14,41].

If we embed the space TA in the parameter space C2 (i.e., we allow p, q = 0), then
Milnor’s fiber theorem states that the zero set V(D) of the discriminant D intersected
with a 3-sphere of small radius ε around the origin is diffeomorphic to a fibered knot.
Our Theorems 5.6 and 5.8 show that this knot, the Milnor fiber, is the K (s+ t, s) torus
knot and in particular that this diffeomorphism extends to the whole space TA. Thus,
the fibration (5.6) extends to the whole space and hence is a fibration TA\V(D) →
S1 × R>0 in our case.

Our results about the discriminant furthermore reprove and generalize a large part of
a Theorem by Libgober [32, Theorem B]. He had shown that for trinomials with t = 1
the space TA\V(D) has the fundamental group given by the torus knot K (s + 1, s).
Libgober showed additionally that (for arbitrary t) the space TA\V(D) is the Eilenberg
MacLane space for s + t and t .

6 Final remarks

In this paper, we focussed on trinomials and have studied the geometry and topology
of the space of trinomials with respect to the norms of their roots. Beyond trinomials,
studying the geometry of polynomials is a well-established field (see, e.g., Marden’s
book [35]), which in the last years has seen a lot of renewed interest, notably through
the work of Brändén and Borcea (see e.g., [7,8] and the survey [57]). Extending
the trinomial situation from the current paper to general polynomials leads to the
following question: Given a fixed support A ⊆ {0, . . . , n}, what is the geometry and
the topology of the space of univariate polynomials of degree n with support A, with
regard to the norms of their roots. In [56], Vassiliev has studied for general polynomials
the topology of discriminants and their complements. Topologically, this question has
a long history. In 1970 Arnold proved in [2] that for an arbitrary parameter space CA

with A = {0, . . . , d} ⊆ Z with discriminant D the space CA\V(D) is diffeomorphic
to the spaceR2(d) of all subsets ofR2 with cardinality d. Particularly, the fundamental
group ofR2(d) is the d-th braid group. Braid groups go back to Artin in the 1920’s; see
[3]. Complements of discriminants have various applications in and are connected to
different branches of mathematics, e.g. Smale’s topological complexity of algorithms
[51]. See Vassiliev’s book [55] for an overview and further details.

However, studying our trinomial questions in the more general context of poly-
nomials with a fixed support would correspond to study a “norm discriminant” for
polynomials which has yet to be developed.
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