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Abstract In this note, we generalize our results in Arezzo and Sun (Reine Angew
Math, doi:10.1515/crelle-2013-0097, 2012) to integer p-currents of any degree. We
prove that if the mass of a current, as a functional of the ambient metric, has a critical
or stable point in some special directions, then the current is complex. This holds
for any dimension and codimension. We also study a natural functional on the space
of currents representing a fixed homology class, closely related to the first derivative
of the Mass in our new approach, detecting the deviation of a surface from being
holomorphic.

1 Introduction

In this paper we expand in various directions the study started in [6] about the
relationship between volume minimizers and holomorphic submanifolds of Kähler
manifolds. Let us recall that, while classically known that positively oriented chains
of holomorphic submanifolds are volume minimizers in their homology class thanks
to Wirtinger’s Inequality, the converse is by now known to be largely false (see e.g.
[3–5,19]). On top of this, and in fact not unrelated, the limitation about the positive
orientation of volume minimizers (which appears clearly when looking for example
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250 C. Arezzo, J. Sun

at two parallel flat discs in R4) prevents this classical approach to be of much use in
attacking various natural problems in Algebraic Geometry.

This has indicated the need for the search formore refined functionals,more capable
to detect the holomorphic properties of their minimizers and at the same time to get
rid of this orientation problem so that any integral chain of holomorphic submanifolds
becomes a minimum among its competitors.

In Arezzo and Sun [6] we proposed the following construction: consider a fixed
immersion F of a surface � inside (M2n, ω̄, JM ), a compact symplectic manifold
with compatible almost complex structure JM , and look at the space of potentials
H = {ρ ∈ C∞(M,R) | ω̄ρ := ω̄ + ddcρ tames JM }, which is clearly a nonempty
open subset of C∞(M,R).

Given ρ ∈ H and ω̄ρ(t) = ω̄ρ + ddcϕ(t) which tames JM , we can associate a
family of Riemannian metrics ḡρ(t) on M given by

ḡρ(t)(X,Y ) = 1

2

(
ω̄ρ(t)(X, JMY ) + ω̄ρ(t)(Y, JM X)

)
. (1.1)

(denote ḡρ = ḡρ(0)) and we then define

A(ρ) = Area(F(�), F∗(ḡρ)) =
∫

�

dμρ , (1.2)

where dμρ is the volume form of the induced metric gρ := F∗(ḡρ).
We are then looking at the area functional not on the space of immersions but on

the space of metrics generated by potentials in H in the ambient manifold.
One of the main results in [6] was then

Theorem 1.1 Let (M2n, ω̄, J ) be a compact symplectic manifold with compatible
almost complex structure J and F : �2 → M be an injective immersion. Set d : M →
R any smooth extension from a tubular neighborhood of F(�) to M of the distance
function from F(�), i.e. d(Q) = dist (Q, F(�)) for Q sufficiently near F(�). If

d

dt
|t=0A

(
ω̄ρ + tddc

(
d2

2

))
= 0

for some ρ ∈ H, then the immersion is J -holomorphic. In particular, if the area
functionalA has a critical point inH, then the immersion is J -holomorphic.Moreover
this holds also when F is not injective and has branch points (but one need more than
one function to test the critical property).

In fact the proof of this result shows that the regular part of a union of injectively
immersed surfaces is a chain of holomorphic submanifolds with possibly different
orientations, and indeed it is easy to check that fixing such an object the Area is
constant on the set of potentials (hence it has infinitely many critical points).

The first aim of this paper is to extend the above Theorem to higher dimensional
submanifolds. But equally important is to extend the setup described above to much
less regular objects, building in this way an existence problem in Geometric Measure
Theory with some hope of having a positive solution, very much in the spirit of the
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classical volume-minimizing problemwhich led toAlmgren’s celebratedBigTheorem
([2,9–11]). The area functional above gets then substituted by the Mass (again for a
fixed object and moving metric!) and � by an integer multiplicity p-current. Recall
that an integer current S is called complex, if μS -almost all tangent planes of S are
complex (see Definition 3.1). Since μS(SingS) = 0, in order to prove that an integer
current is complex, we only need to prove that the tangent space at each regular point
is complex.

The main result of this paper is then the following

Theorem 1.2 Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible
almost complex structure JM and S ∈ Rp(M) be an integer p-current in M with
p < 2n. If the Mass has a critical point ρ ∈ H, then any embedded C2 component S j

of Reg(S) is complex.

Wepay the price of allowing singular competitors in our generalized setting by loos-
ing the possibility of studying deformations of metrics in one specific direction (given
by the distance square function in Theorem 1.1). We believe that the C2 assumption
is not necessary in the above result in that even general C1 components will satisfy
the same property, but it naturally arises in our proof to construct some special test
variations.

Thanks toHarvey-Shiffman [17] andAlexander’s results [1] in the case of integrable
complex structures, we immediately get the following

Corollary 1.1 If (M2n, ω̄, JM ) is Kähler, Reg(S) has all C2-components and the
Mass has a critical point inH, then p = 2k andS is a holomorphic k-chain, i.e. it is the
current of integration over a finite integral combination of holomorphic submanifolds.

Of course, the integrability of the ambient complex structure is crucial in applying
Harvey-Shiffman-Alexander’s Theorem and the analogue questions in the non-
integrable case are subject of intensive and deep research (see e.g. Tian-Riviere [23]).
Almgren’s Big Theorem on the other hand easily implies the following

Corollary 1.2 Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compati-
ble almost complex structure JM and S ∈ Rp(M) be an integer p-current in M with
p < 2n. Suppose the mass has a critical point ρ ∈ H and that S is area-minimizing
in (M2n, ḡρ) in the usual sense, then p = 2k and S is a holomorphic k-chain.

The above results show that the first variation of theMass with varyingmetrics does
detect J -holomorphicity, but again as we proved for surfaces in our previous work,
even the second variation (without assuming to be at a critical point of course) does
the same job:

Theorem 1.3 Let (M2n, ω̄, JM , ḡ) be a compact symplecticmanifoldwith compatible
almost complex structure JM and S ∈ Rp(M) be an integer p-zcurrent in M with
p < 2n. If the mass has a stable point ρ ∈ H, then any embedded C2 component S j

of Reg(S) is complex. In particular, if (M2n, ω̄, JM ) is Kähler, Reg(S) has all C2-
components and theMass has a stable point inH, then p = 2k andS is a holomorphic
k-chain.
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252 C. Arezzo, J. Sun

As explained in our previous work [6], this approach is inspired by a classical work
of Lawson-Simons [18], where the ambient manifold is assumed to be projective and
the class of deformations of metrics where restricted to families coming from the
action of the automorphism group of the projective space. In the Sect. 4 of this paper
we extend, in analogywith the results obtained in [6] for regular 2-dimensional objects,
these results to this much more general setting. We believe these results explain, in
connection with Tian celebrated approximation Theorem [22], the naturality of our
approach.

All this suggests to study a new type functionalsFc defined on the space of immer-
sions,which come essentially from the integration of |J⊥|2, which is the first derivative
in the direction of the distance squared of the Mass functional studied up to now. Thus
these functionals can be used to detect the deviation of a submanifold from being
holomorphic. In the surface case, we compute the Euler-Lagrangian equation for Fc,
and prove that similar to minimal surface system, the equation with c > 1 is weakly
elliptic, with null directions coming from those directions tangential to the surface,
i.e. the kernel of the principle symbol arises from the diffeomorphisms of the sub-
manfold. We also conclude that any symplectic Fc-critical surface with c ≥ 1 in
a Kähler-Einstein surface with positive scalar curvature must be holomorphic. One
interesting and challenging problem is whether Almgren’s Big Theorem is true for
these functionals.

As an extension of our previous results in [6], there are some new ideas in the
present papers, besides the analysis of the new family of functionalsFc. In Arezzo and
Sun [6], we considered two-dimensional case, and everything was represented by the
Kähler angle, which of course does not apply to high dimensional case. Furthermore,
geometric measure theory comes in our present proof, which can surely have more
potential applications in the future analysis.

2 Variational formulas for the Mass in a symplectic manifold

Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible almost complex
structure JM . As in [6], let H = {ρ ∈ C∞(M,R) | ω̄ρ := ω̄ + ddcρ tames JM },
which is clearly a nonempty open subset of C∞(M,R). Given ρ ∈ H and ω̄ρ(t) =
ω̄ρ +ddcϕ(t)which tames JM , we can associated a family of Riemanianmetrics ḡρ(t)
on M given by

ḡρ(t)(X,Y ) = 1

2

(
ω̄ρ(t)(X, JMY ) + ω̄ρ(t)(Y, JM X)

)
. (2.1)

Denote ḡρ = ḡρ(0).
Let S be an Hp-measurable countably p-rectifiable set in M . Then we know that

the approximate tangent space Tx S exists forHp-a.e. x ∈ S. Actually, we can express
S as the disjoint union ∪∞

j=0S j [13,21], where Hp(S0) = 0, S j is Hp-measurable,

and S j ⊂ N j , with N j an embedded p-dimensional C1 submanifold of M . We have

Tx S = Tx N j , Hp − a.e. x ∈ S j .

123



A variational characterization of complex submanifolds 253

We will denote SingS = S0 and RegS = ∪∞
j=1S j . ThenHp(SingS) = 0, and RegS

is the disjoint union of pieces, each of which is a part of an embedded p-dimensional
C1 submanifold of M .

Let S be an integer multiplicity p-current in (M, ḡρ) (27.1 of [21]). Namely, it can
be represented as

S(ω) =
∫

S
〈ω(x), ξ(x)〉θ(x)dHp(x), ω ∈ �pM, (2.2)

where S is an Hp-measurable countably p-rectifiable subset of M , θ is a locally
Hp-integrable positive integer-valued function on S, and ξ : S → �p(M) is an Hp-
measurable function such that forHp-a.e. point x ∈ S, ξ(x) can be represented in the
form τ1 ∧ · · · ∧ τp, where τ1, · · · , τp form an orthonormal basis for the approximate
tangent space Tx S with respect to the metric ḡρ . Furthermore, denote μS the Radon
measure associated with the current S, then we see that (26.7 and 27.1 of [21])

dμS = θdHp, (2.3)

and (2.2) can be written as

S(ω) =
∫

S
〈ω(x), ξ(x)〉dμS (x), ω ∈ �pM. (2.4)

We plan to compute the first and second variation formulas for the mass of the current
when the target metric varies by ω̄ρ(t) = ω̄ρ + ddcϕ(t). When the variation of the
target metric is induced by a vector field on M , the formulas are well-known. (See,
for example, Theorem 1 of [18].) In our case, ḡρ(t) are not induced by a vector field
on M . So we need to modify the argument. By Nash Embedding Theorem, we know
that there exists a family of isometric embeddings

iρ(t) : (M2n, ḡρ(t)) → (RN , gNeuc), (2.5)

i.e., iρ(t)∗gNeuc = ḡρ(t). Here, gNeuc is the standard Euclidean metric onRN . (Actually,
we can take N = n(6n + 11) if M is compact and N = n(2n + 1)(6n + 11) if M
in noncompact.) It is obvious that i(t) is smooth in t if ϕ(t) is. Then the mass of the
current S with respect to ḡρ(t) is given by (27.2 of [21])

Mρ(t) = Mρ(iρ(t)
S) =
∫

S
JSiρ(t)dμS , (2.6)

where JSiρ(t) is the Jacobian of iρ(t) relative to S, that is,

JSiρ(t)(x) =
√
det (dSiρ(t)x )∗ ◦ dSiρ(t)x . (2.7)

Here, dSiρ(t)x : Tx S → RN is the gradient of iρ(t) restricting on S, which is well-
defined Hp-a.e. on S and (dSiρ(t)x )∗ : RN → Tx S is its adjoint. (See section 12 of
[21].) From (2.6), we see that
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254 C. Arezzo, J. Sun

d

dt
|t=0Mρ(t) =

∫

S

d

dt
|t=0 JSiρ(t)dμS , (2.8)

and
d2

dt2
|t=0Mρ(t) =

∫

S

d2

dt2
|t=0 JSiρ(t)dμS . (2.9)

We will compute the integrand at the point x ∈ S j for j ≥ 1, where S j is a piece of a
C1 submanifold of M . Then JSi(t) is well-defined near x . We take a local coordinate
around x . Namely, let W ⊂ Rp be an open set, and the coordinate on W is given by
{x1, · · · , xp}. Let � : W → M be a C1 immersion such that �(0) = x , �(W ) =
U ∩ S j , for some open setU ⊂ M containing x . Then Tx S j is spanned by { ∂�

∂xi
(0)}pi=1.

We further assume that, the coordinate {xi } is chosen so that {ei = ∂�
∂xi

(0)} is an
orthonormal basis of Tx S j = Tx S with the induced metric by iρ(0) (thus orthonormal
by the induced metric from (M, ḡρ)). Note that (dSiρ(t)x )∗ ◦ dSiρ(t)x : Tx S → Tx S
can be represented as a p × p matrix. It is easy to check that

(
(dSi(t)x )

∗ ◦ dSi(t)x
)

i j
= gNeuc

(
∂(i(t) ◦ �)

∂xi
,
∂(i(t) ◦ �)

∂x j

)
= ḡρ(t)(

∂�

∂xi
,

∂�

∂x j
).

Note that we have ḡρ(0)( ∂�
∂xi

(0), ∂�
∂x j

(0)) = δi j . Therefore, we have at x :

d

dt
|t=0 JT iρ(t)(x) = 1

2

p∑

i=1

ḡ′
ρ(0)(ei , ei )

and, as μS(S0) = 0, by (2.3), we have

d

dt
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S
ḡ′
ρ(0)(ei , ei )dμS . (2.10)

Here, the integrand is an Hp-measurable function, and {ei }pi=1 is any orthonormal
basis of Tx S with respect to the metric induced from ḡρ forHp-a.e. x ∈ S. If ḡρ(t) is
given by (2.1), then we have

d

dt
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S
ω̄′

ρ(0)(ei , Jei )dμS . (2.11)

If furthermore, we assume ω̄ρ(t) = ω̄ρ + ddcϕ(t) for a family of C2 functions ϕ(t)
on M with ϕ(0) ≡ 0, then we have

d

dt
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S
(ddcψ)(ei , Jei )dμS , (2.12)

where ψ = ∂ϕ(t)
∂t |t=0.
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Similarly, by computing on the regular part of S and proceeding in the same way
as for smooth case (see [6] for p = 2), if

∂ϕ

∂t
|t=0 = ψ,

∂2ϕ

∂t2
|t=0 = η,

then we have

d2

dt2
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S

[
(ddcη)(ei , Jei )

]
dμS

−1

4

∑

1≤i< j≤p

∫

S

[
(ddcψ)(ei , Je j ) + (ddcψ)(e j , Jei )

]2
dμS

−1

4

∑

1≤i< j≤p

∫

S

[
(ddcψ)(ei , Jei ) − (ddcψ)(e j , Je j )

]2
dμS

+ p − 2

4

p∑

i=1

∫

S

[
(ddcψ)(ei , Jei )

]2
dμS . (2.13)

For our later use, let’s recall the following simple facts:

Lemma 2.1 1. For any smooth function ψ on M, we have

dcψ = −dψ ◦ J. (2.14)

2. For any C2 function ψ on M and any tangent vector fields X,Y on M, we have

(ddcψ)(X,Y ) = −(∇2
ψ)(X, JY )+(∇2

ψ)(Y, J X)+〈∇ψ, (∇Y J )X−(∇X J )Y 〉.
(2.15)

Here, 〈·, ·〉 is any Riemannian metric on M and ∇ is its Levi-Civita connection.

3 Proof of the main results

In this section, we will prove that, each C2 component of an integer current in a
symplectic manifold for which the mass has a critical point or stable point is complex.
In the following, we will denote Rp(M) the space of integer multiplicity p-currents
in M . Let us first recall the definition of complex current.

Definition 3.1 Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible
almost complex structure JM . Then an integer p-current S is said to be complex if
μS -almost all tangent planes of S are complex, i.e., for μS -a.e. x ∈ S, (JM )x maps
Tx S onto itself.

Recall that when p = 2 and S is a smooth submanifold of (M2n, ω̄, J, ḡ), we can
define the Kähler angle of the surface ([8]). In the current case, we can also define
this similarly. The cosine of the Kähler angle of a rectifiable 2-current S = (S, θ, ξ)
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256 C. Arezzo, J. Sun

is a μS -measurable function cosα : S → R such that for μS -almost all x ∈ S with
ξx = e1 ∧ e2, cosα = ω̄(e1, e2). Here, {e1, e2} is any orthonormal basis of Tx S.

Similar to the smooth case, we can easily see that

Proposition 3.1 Let (M2n, ω̄, J, ḡ) be a compact symplectic manifold with compati-
ble almost complex structure JM. A current S ∈ R2(M) is complex if and only if sin α

vanishes as a measurable function, namely, sin α(x) = 0 for μS -a.e. x ∈ S.

Now can now give the following

Definition 3.2 Given a current S ∈ Rp(M) in M , we say that the mass M has a
critical point ρ ∈ H if for any ϕ(t) ∈ H with ϕ(0) = ρ

d

dt
|t=0M(t) = 0.

Definition 3.3 Given a current S ∈ Rp(M) in M , we say that the mass M has a
stable point ρ ∈ H if

d2

dt2
|t=0M(t) ≥ 0

for any ϕ(t) ∈ H, ϕ(0) = ρ.

As before, let (M2n, ω̄ρ, JM , ḡρ) be a compact symplectic manifold with compatible
almost complex structure JM and S = (S, θ, ξ) be an integer p-current in M . We have
shown that, for ω̄ρ(t) = ω̄ρ + ddcϕ(t) with ∂ϕ

∂t |t=0 = ψ , the first variation formula is
given by (2.12). We already know that Hp(SingS) = 0, and RegS can be expressed
as disjoint unions RegS = ∪∞

j=1S j , where each component S j ( j ≥ 1) is contained

in an embedded p-dimensional C1 submanifold of M . Our main result in this section
is as follows:

Theorem 3.1 Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible
almost complex structure JM and S ∈ Rp(M) be an integer p-current in M with
p < 2n. If the mass has a critical point ρ ∈ H, then any embedded C2 component S j

of RegS is complex.

Proof By our assumption, for any x ∈ S j , there exists a ball B3r (x) ⊂ M , such that
B3r (x)∩ S = B3r (x)∩ S j is aC2 submanifold of M , and d(y, S) = d(y, B3r (x)∩ S j )

for y ∈ B2r (x). Here, the distance is measured by the metric ḡρ , and we will denote
d(y) = d(y, S). Then it is known that ξ = 1

2d
2 is a C2 function in B2r (x) for r small.

Taking a cutoff function ζ ∈ C∞
0 (B2r (x)) on M , so that ζ ≡ 1 in Br (x). Thenψ = ζ ξ

is a C2 function on M with the property that: suppψ ⊂ B2r (x) and ψ = ξ = 1
2d

2 in
Br (x). By (2.15) and (2.12), we have

d

dt
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S

[
(∇2

(ζ ξ))(ei , ei ) + (∇2
(ζ ξ))(JMei , JMei )

]
dμS

+1

2

p∑

i=1

∫

S
〈∇(ζ ξ), (∇ JMei JM )ei − (∇ei JM )JMei 〉dμS . (3.1)
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A variational characterization of complex submanifolds 257

Note that by the choice of ξ , we have ξ = 0 and∇ξ = 0 on B2r (x)∩ S j . Furthermore,
ζ = 0 outside B2r (x). Therefore,

d

dt
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S j

[
ζ(∇2

ξ)(ei , ei ) + ζ(∇2
ξ)(JMei , JMei )

]
dμS .

Recall that (Proposition 2.5 of [6]) for any x0 ∈ S j , Hess(ξ)(x0) represents the
orthogonal projection on the normal space to S j at x0. Namely, for eachU, V ∈ Tx0M
and x0 ∈ S j , we have

(∇2
ξ)(U, V )(x0) = 〈U⊥, V⊥〉, (3.2)

where Tx0M = Tx0 S j ⊕ Nx0 S j and U⊥ is the projection of U onto Nx0 S j . With ψ

chosen as above, we have

d

dt
|t=0Mρ(t)) = 1

2

p∑

i=1

∫

S j
ζ

∣∣∣(JMei )
⊥
∣∣∣
2
dμS .

In particular, by the definition of critical point, we have that (JM )⊥ = 0 on Br (x)∩S j .
In particular, JM maps Tx S j onto itself. As x ∈ S j is arbitrary, by Definition 3.1, we
see that S j is complex. ��
Remark 3.1 In the proof of Theorem 3.1, we see that we actually only need themass to
have a critical point along some special directions at each regular point.More precisely,
at each regular point, if the mass has a critical point in the direction d2

2 locally, then the
tangent space at this point is complex. When S is a closed C2 embedded submanifold
of M , we can define the function d2 globally in a neighborhood of � in M . In this
case, we only need one special direction d2

2 , and Theorem 3.1 reduces to a higher
dimensional generalization of Theorem 1.1.

Let us now recall the following definition due to Harvey and Shiffman (Definition
1.7 of [17]):

Definition 3.4 Let (M2n, ω̄, JM , ḡ) be a compactKählermanifold.A currentT is said
to be a holomorphic k-chain in M , if it can be written as a finite sum T = ∑

n j [Vj ],
where each n j ∈ Z and V = ∪Vj is a pure p-dimensional subvariety of M with
irreducible components {Vj }.

Roughly speaking, a holomorphic k-chain is a locally finite integral combination of
complex subvariaties. It is known that (Proposition 3.1 of [17]), a positive holomorphic
current is homologically area-minimizing, while a holomorphic k-chain is stable in
the usual sense. It is obvious that a holomorphic k-chain is a complex 2k-current. The
main result of Harvey-Shiffman (Theorem 2.1 of [17]) says that a complex 2k-current
S with dS = 0 and H2k+1(suppS) = 0 is a holomorphic k-chain and later Alexander
[1] removed the support hypothesis.

Corollaries 1.1 and 1.2 follow then immediately (in the second case applying Alm-
gren’s Big Theorem) from our main result.
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258 C. Arezzo, J. Sun

The case of a stable point can be easily handled thanks to

Proposition 3.2 If ρ ∈ H is a stable point of the mass M, then it is also a critical
point of the mass M.

Proof To this end, we consider special path in H, which is given by ϕ(t) = ρ + t2
2 η

with η ∈ C∞(M,R). In this case, we have ϕ′(0) = ψ = 0 and ϕ′′(0) = η. By (2.13),
we have

d2

dt2
|t=0Mρ(t) = 1

2

p∑

i=1

∫

S

[
(ddcη)(ei , Jei )

]
dμS

Suppose ρ ∈ H is a stable point of the massM, then by definition, d2

dt2
|t=0Mρ(t) ≥ 0

for any ϕ(t) ∈ H, ϕ(0) = ρ. In particular, for ϕ1(t) = ρ + t2
2 η and ϕ2(t) = ρ − t2

2 η,
we have

1

2

p∑

i=1

∫

S

[
(ddcη)(ei , Jei )

]
dμS ≥ 0

and

−1

2

p∑

i=1

∫

S

[
(ddcη)(ei , Jei )

]
dμS ≥ 0.

In particular, we have

1

2

p∑

i=1

∫

S

[
(ddcη)(ei , Jei )

]
dμS = 0

for every η ∈ C∞(M,R). By the first variation formula (2.12) and Definition 3.2, we
see that ρ is a critical point. ��

Combining Proposition 3.2 and Theorem 3.1, we obtain:

Theorem 3.2 Let (M2n, ω̄, JM , ḡ) be a compact symplecticmanifoldwith compatible
almost complex structure JM and S ∈ Rp(M) be an integer p-current in M with
p < 2n. If the mass has a stable point ρ ∈ H, then any embedded C2 component S j

of RegS is complex.

Remark 3.2 As in Remark 3.1, to obtain the conclusion of Theorem 3.2, we only need
to ask for the mass to have a stable point in the directions ±ψ around each regular
point, where ψ is defined in the proof of Theorem 3.1. ψ is essentially d2

2 locally.

Corollary 3.1 Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compati-
ble almost complex structure JM and S ∈ Rp(M) be an integer p-current in M with
p < 2n. Suppose the mass has a stable point ρ ∈ H and that S is area-minimizing
(M2n, ḡρ) in the usual sense, then p = 2k and S is a holomorphic k-chain.

In particular, by Remark 3.1 and Remark 3.2, when � is a smooth manifold and
F : � → M is an injective immersion, Theorem 3.1 and Theorem 3.2 generalize
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the first two theorems of [6] to arbitrary dimension and codimension. Note that, by
definition, an immersion F : � → M is ±JM -holomorphic if and only if F(S) is a
complex current.

Corollary 3.2 Let (M2n, ω̄, JM ) be a compact symplectic manifold with compatible
almost complex structure J and F : � p → M be an injective immersion. Set d : M →
R any smooth extension from a tubular neighborhood of F(�) to M of the distance
function from F(�), i.e. d(Q) = dist (Q, F(�)) for Q sufficiently near F(�). If

d

dt
|t=0A(ω̄ + tddc(

d2

2
)) = 0,

or

d2

dt2
|t=0A(ω̄ ± t2ddc(

d2

2
)) ≥ 0

for some ρ ∈ H, then the immersion is ±JM-holomorphic.

Remark 3.3 Comparingwith Theorem3.2 of [6] (with p = 2),we even do not need the
stable point to be compatible with respect to the almost complex structure JM here.
Moreover, for any immersion (without injectivity assumption), existence of critical
points or stable points is enough to guarantee that the immersion is±JM -holomorphic.
In this case we can not find one special direction as in the injective case.

Corollary 3.3 Let (M2n, ω̄, JM , ḡ) be a compact symplectic manifold with compati-
ble almost complex structure JM and F : � p → M2n be an immersion with p < 2n.
If p is odd, then the area functionalA does not have any critical point or stable point
inH.

4 Approximation results

In order to understand the nature of the new stability previously introduced, we take
any holomorphic vector field V on a Kähler manifold M . Then V will generate a
family of holomorphic diffeomorphisms of M , denoted by �t . We know that �∗

t ω̄ =
ω̄ + √−1∂∂̄ϕ(t) for a family of smooth functions ϕ(t) on M . Furthermore, as V is a
holomorphic vector field, we know that if we denote ḡ(t) = �∗

t ḡ, then (ω̄(t), ḡ(t), J )

is a compatible triple for each t . Note that the former (namely, ḡ(t) = �∗
t ḡ) is in the

classical category, while the latter is in our category. In particular, if the area functional
is stable in our sense, then the second variation of the area functional in the classical
sense is nonnegative when the variation is induced by �t .

In fact, we can say more about this, relating the classical case to our case. If we
denote ϕ̇ = ψ , and ϕ̈ = η, then in our language, the second variation formula is
given by (2.13), where ψ and η are two independent functions. However, when ϕ(t)
is induced by a holomorphic vector field V as above, we know that both ψ and η are
determined by V . In fact, we have

√−1∂∂̄ψ = LV ω̄,
√−1∂∂̄η = LV (LV ω̄) = LV (

√−1∂∂̄ψ),
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which shows thatψ and η are not independent in this case. Actually, we can give more
precise relation between ψ and η. By Moser’s trick, it is easy to see that, if we take
X (t) = − 1

2∇
t
ϕ̇(t) and �t the family of diffeomorphisms generated by X (t), then we

have �∗
t ω̄(t) = ω̄. Here, ∇ t

is the gradient taken with respect to the metric ḡ(t). In
particular, combining with the choice of ω̄(t), we see that we have �t = �−1

t . It is
easy to see that

V = −(�t )∗X (t) = 1

2
(�t )∗∇ t

ϕ̇(t). (4.1)

Then we have V = −X (0) = 1
2∇ψ . Using this fact and taking derivative with respect

to t on both side of (4.1), we can obtain

d

dt
|t=0∇ t

ϕ̇(t) = 0. (4.2)

Using the fact that ḡ(t)(U, V ) = ω̄(t)(U, JV ), we can finally get that

dη = −(
√−1∂∂̄ψ)(J∇ψ, ·). (4.3)

The point we want to explore now is that one should not restrict only to holomorphic
vector fields on M , but to the effect any holomorphic vector field of an ambient
projective space.

In fact, in the projective case looking at the space of metrics in a given cohomology
class induced by an embedding into projective spaces of increasing dimension (the
so-called Bergman space Bk), thanks to Tian’s celebrated approximation result ([22]))
we know we can approximate any potential inH and moreover such approximation is
sufficiently strong that we can also approximate tangent directions and accelerations
of curves in H with corresponding objects in the Bergman spaces (this boils down to
the uniformity of the Tian-Yau-Zelditch expansion as noted in [12], Proposition 6).

This immediately implies that our stability can be thought as the limit of the stability
of the volume functional of the triple (� ⊂ M ⊂ CPNk ), i.e. when restricted to the
Bergmann space of degree k. This gives the following

Theorem 4.1 If for any k sufficiently big there exists a function ρk ∈ Bk s.t. ρk is a
stable point forM|Bk

and ρk converges to ρ isH, then ρ is a stable point for M.

It is then natural to ask whether the existence of a stable point of M|Bk
for a given

fixed k is enough to guarantee our conclusion. That’s the problem we address in the
next subsections under various conditions (for p = 2).

4.1 Algebraic case (Lawson-Simons [18])

Let us now assume that the target manifold is an algebraic manifold that embeds into
some complex projective space CPN holomorphically and isometrically, namely that
there is an embedding

ι : (M, ω̄, J, ḡ) → (CPN , ωFS, JFS, gFS),

123



A variational characterization of complex submanifolds 261

which is holomorphic, such that

ι∗ωFS = ω̄, ι∗gFS = ḡ. (4.4)

Denote by HN and KN the space of holomorphic vector fields and Killing vector
fields onCPN . Then it is well-known thatHN = KN ⊕ JKN . Given anyW ∈ JKN , it
will generate a one parameter family of diffeomorphisms �t of CPN . It is known that
there exists a family of smooth functions φ(t) on CPN , such that ω̃(t) = �∗

t ωFS =
ωFS + ddcφ(t). Set ϕ(t) = φ(t) ◦ ι, which is a family of smooth functions on M . Set
ϕ̇ = d

dt |t=0ϕ(t).

Definition 4.1 Given a current S ∈ Rp(M) in M , we say that the mass M has a
linearly projectively stable point at ρ ∈ H if ω̄ρ is projectively induced and

d2

dt2
|t=0M(t) ≥ 0

for any ω̄ρ(t) = ω̄ρ + tddcϕ̇, where ϕ(t) is defined with ω̄ replaced by ω̄ρ as above.

We can then give a new more geometric proof of the following result of [18] (in
fact they proved it without restrictions on p) :

Theorem 4.2 Let (M, ω̄, J, ḡ) be an algebraic manifold with all structures induced
by the projective space as above and S ∈ R2(M) be a current in M. If the mass has
a linearly projectively stable point, then the current S is a holomorphic 1-chain.

Proof As J is compatible with any Kähler metric in [ω̄], without loss of generality,
we assume that ρ ≡ 0 so that ω̄ρ = ω̄. Recall that for ω̄(t) = ω̄ + tddcψ , the second
variation formula is given by [see (2.13)]

d2

dt2
|t=0M(t) = −1

4

∫

S
D2
1dμS − 1

4

∫

S
D2
2dμS ≥ 0,

where

D1 = sin α[−(ddcψ)(e1, e4) + (ddcψ)(e2, e3)],
D2 = sin α

[
(ddcψ)(e1, e3) + (ddcψ)(e2, e4)

]
.

By the choice of ψ , we can see that (see Section 4 of [6])

D2(W ) = −2 sin α
[
〈∇N

ẽ1V, ẽ3〉 + 〈∇N
ẽ2V, ẽ4〉

]
.

We know that cosα is well-defined and continuous on RegS. Now, we by our assump-
tion, we see that

D2(W ) = 0, on Mj , j ≥ 1.

Using Lemma 4.2 of [6], similar to the proof for smooth case, we see that we must
have sin α = 0 on RegS. As H2(SingS) = 0, we have μS(SingS) = 0. Therefore,
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we see that sin α = 0 μS -a.e. on S. By Proposition 3.1, we see that the current is
complex. Then the conclusion follows from Harvey-Shiffman-Alexander’s Theorem.

��

4.2 Symplectic case with rational class

Let (M2n, ω̄, ḡ, JM ) be a compact symplectic manifold with symplectic form ω̄, com-
patible almost complex structure JM and associated Riemannian metric ḡ, such that
for any X,Y ∈ T M ,

ḡ(X,Y ) = ω̄(X, JMY ). (4.5)

Since ω̄ defines a rational cohomology class, by a Theorem of Borthwick and Uribe
(Theorem 1.1 of [7]), we known that there exists a sequence of embeddings

ιk : M → (CPNk , ωFS, gFS, JFS), (4.6)

such that, if we put
ω̄k = ι∗kωFS, ḡk = ι∗k gFS, (4.7)

then for k ≥ k0 ∣∣∣∣

∣∣∣∣
1

k
ω̄k − ω̄

∣∣∣∣

∣∣∣∣
C0

≤ C1

k
, (4.8)

and ∣∣∣∣

∣∣∣∣
1

k
ḡk − ḡ

∣∣∣∣

∣∣∣∣
C0

≤ C2

k
, (4.9)

for some constants C1 and C2 and large integer k0.
LetS be an integermultiplicity p-current inM . Denoteα andαk theKähler angle of

RegS in (M2n, ω̄, ḡ, JM ) and (CPNk , ωFS, gFS, JFS), respectively. More precisely,
for x ∈ RegS, let {e1, e2} be an orthonormal basis of Tx S with respect to the induced
metric from ḡ, and {e1,k, e2,k} be any orthonormal basis of Tx S with respect to the
induced metric from ḡk = ι∗k g

k
FS , then

cosα(x) = ω̄(e1, e2)(x), cosαk(x) = ω̄k(e1,k, e2,k)(x).

We can take

e1,k = e1
|e1|ḡk

, e2,k = e2 − ḡk(e2, e1,k)e1,k
|e2 − ḡk(e2, e1,k)e1,k |ḡk

.

By (4.8) and (4.9), we see that

cosαk(x) → cosα(x), sin αk(x) → sin α(x) f or x ∈ regS. (4.10)

Set Kk the space of Killing vector fields on CPNk . Given any holomorphic vector
field W ∈ JFSKk , let �t be the one-parameter family of diffeomorphisms generated
by W . Set ωk(t) = �∗

t ωFS = ωFS + ddcFSϕ(t) for a family of smooth functions ϕ(t)
on CPNk .
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Note that 1
k ω̄k and ω̄ are in the same cohomology class. Thus, there exists a smooth

one form γk on M , such that ω̄ = 1
k ω̄k + dγk . We consider a family of projectively

induced symplectic forms on M given by

ω̄(t) = 1

k
ι∗kωk(t) = 1

k
ι∗k�∗

t ωFS = 1

k
ω̄k + d(

1

k
ι∗kdcFSϕ(t)) ≡ ω̄ + dβk(t),

where βk(t) = 1
k ι

∗
kd

c
FSϕ(t) − γk is a family of smooth 1-forms on M .

Definition 4.2 Given a current S ∈ Rp(M) in M , we say that M has a compatible
linearlyMk-stable point at ρ ∈ H if ω̄ρ is compatible with J and

d2

dt2
|t=0M(t) ≥ 0

for any ω̄(t) = ω̄ + tdβ̇k , where βk(t) is defined with ω̄ replaced by ω̄ρ in the above
construction.

Similar to the proof of Theorem 5.1 in [6] and the proof of Theorem 4.2 above, we
can show that:

Theorem 4.3 Let (M2n, ω̄, JM , ḡ) be a symplectic manifold as above and S ∈
R2(M) be a current in M. There exists an integer K1, such that if the mass has a
compatible linearlyMk-stable point for some k ≥ K1, then the current S is holomor-
phic 1-chain.

4.3 Kähler case with possibly non rational Kähler class

We now assume that (M, J ) is an algebraic manifold, that is, a submanifold of some
complex projective space. When [ω̄] is a rational class and ḡ is the metric induced by
the Fubini-Study metric, we showed in Sect. 4.1 that, existence of linearly projectively
stable point also implies holomorphicity. In this subsection we allow [ω̄] to be any
real Kähler class and ḡ any J -induced metric. Take any Kähler metric ω̄ on M with
[ω̄] ∈ H2(M,R) ∩ H1,1(M,C). Let ḡ be the Riemannian metric associated to ω̄ and
J .

As (M, J ) is an algebraic manifold it is easy to see that there exists a sequence of
Kähler forms τm with [τm] ∈ H2(M,Q) ∩ H1,1(M,C), such that

||τm − ω̄||C2 ≤ εm, (4.11)

with εm → 0 asm → ∞. Here, theC2 norm is takenwith respect to themetric ω̄. Since
[τm] is rational, there exists, for everym ∈ N, a holomorphic line bundle (Lm, hm) →
M carrying a hermitian connection Dm of curvature

√−1
2π D2

m = τm . In particular,
c1(Lm) = [τm]. For each positive integer k > 0, the hermitian metric hm induces a
hermitian metric hkm on Lk

m . Choose an orthonormal basis {Skm,0, · · · , Skm,Nm,k
} of the

space H0(M, Lk
m) of all holomorphic global sections of Lk

m . Here, the inner product
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on H0(M, Lk
m) is the natural one induced by the Kähler metric τm and the hermitian

metric hkm on Lk
m . By Kodaira embedding theorem, there exists an integer km,0 such

that if k ≥ km,0, then such a basis induces a holomorphic embedding �m,k of M into
CPNm,k given by

�m,k : M → CPNm,k , �m,k(z) := [Skk,0(z) : · · · : Skm,Nk,m
(z)]. (4.12)

Let ωFS be the standard Fubini-Study metric on CPNm,k . Then 1
k�

∗
m,kωFS is a Kähler

form on M which lies in the same Kähler class as τm . We call 1k�
∗
m,kωFS the Bergman

metric. A famous Theorem proved by Tian ([22]) tells us that

∣
∣∣∣

∣
∣∣∣
1

k
�∗

m,kωFS − τm

∣
∣∣∣

∣
∣∣∣
C2

≤ C√
k
. (4.13)

Here the C2 norm is taken with respect to the metric τm and the constant C depends
on τm . Because of (4.11), we can assume that the constant is uniformly bounded with
respect to m. Although the Bergman metric 1

k�
∗
m,kωFS depends on the Kähler metric

τm , the set of Bergman metrics

Pm,k :=
{
1

k
�∗

m,kσ
∗(ωFS)|σ ∈ Aut (CPNm,k )

}
, (4.14)

is independent of the choice of τm in [τm] and Pm := ∪∞
k=1Pk,m is dense in [τm] ∩

Ka(M) in the C2-topology induced by the one on �2M . Here, Ka(M) is the space
of Kähler metrics on M . It is known that Pm,k has finite dimension for each k and m.
Set

Qm :=
{

1

k(m)
�∗

m,k(m)σ
∗(ωFS)|σ ∈ Aut (CPNm,k(m) )

}
, (4.15)

where k(m) ≥ km,0 is a sequence of integers such that k(m) → ∞ asm → ∞. Define

Bm := {ω̄}−{τm}+Qm =
{
ω̄ − τm + 1

k(m)
�∗

m,k(m)σ
∗(ωFS)|σ ∈ Aut (CPNm,k(m) )

}

Then Bm is a finitely dimensional submanifold of [ω̄]. In particular, for any σ(t) ⊂
Aut (CPNm,k(m) ), there exists a smooth function ϕ(t) on M , such that

ω̄(t) := ω̄ − τm + 1

k(m)
�∗

m,k(m)σ (t)∗(ωFS) = ω̄ + 2
√−1∂∂̄ϕ(t) = ω̄ + ddcϕ(t).

(4.16)

Definition 4.3 Given a current S ∈ Rp(M) in M , we call the mass M has an m-
linearly projectively stable point at ρ ∈ H if there exists a smooth function ρ on M ,
such that ω̄ρ ∈ Ka(M) and

d2

dt2
|t=0M(t) ≥ 0
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for any ω̄(t) = ω̄ + tddcϕ̇, where ϕ(t) is given with σ(0) = id and ω̄ replaced by ω̄ρ

in the above construction.

Similar to the proof of Theorem 6.1 in [6] and the proof of Theorem 4.2 above, we
can show that:

Theorem 4.4 Let (M, J ) be an algebraic manifold, ω̄ be any Kähler metric and
S ∈ R2(M) be a current in M. Then there exists an integer K , such that if the mass
has an m-linearly projectively stable point at ρ ∈ H for some m ≥ K, then the current
S is holomorphic 1-chain.

5 Fc-functional

All we have seen up to now naturally induces to study a new type of functionals which
measure the deviation of a surface from a holomorphic curve. We will carry out this
analysis which resembles what Han-Li have done in [14] and [16] for a different type
of functionals defined on the space of symplectic surfaces in a 4-manifold.

Let M2n be a compact Kähler manifold with Kähler form ω̄, complex structure J ,
and compatible Kähler metric ḡ, such that for any U, V ∈ T M ,

ḡ(U, V ) = ω̄(U, JV ). (5.1)

Let � be a compact real surface. Fix an immersion

F : � → (M, ḡ).

We consider the functional

F0(�) := 1

2

∫

�t

|J⊥|2dμ. (5.2)

Notice that this precisely (up to amultiple) the functional associated to every embed-
ded � when computing the first derivative of the Mass in the direction of the distance
squared.

Fix a point x ∈ �, it is easy to see that we can choose a ḡ-orthonormal
frame {e1, e2, e3, · · · , e2n} of TxM , such that {e1, e2} spans the tangent space of �,
{e3, · · · , e2n} spans the normal space of �, and the complex structure takes the form

J =
(

(J1)4×4 04×(2n−4)
0(2n−4)×4 (J2)(2n−4)×(2n−4)

)
, (5.3)

where

J1 =

⎛

⎜⎜
⎝

0 cosα sin α 0
− cosα 0 0 − sin α

− sin α 0 0 cosα

0 sin α − cosα 0

⎞

⎟⎟
⎠ , (5.4)
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and J2 = diag

((
0 1

−1 0

)
, . . . ,

(
0 1

−1 0

))
. From (5.3), we can easily see that

|J⊥|2 =
2n∑

α=3

2∑

i=1

(ḡ(Jei , eα))2 = 2 sin2 α. (5.5)

Therefore, actually we have

F0 =
∫

�

sin2 αdμ. (5.6)

For our later use, it is natural and does not matter to add a constant in the integrand
and we will consider the functional

Fc(�) =
∫

�

(c + sin2 α)dμ =
∫

�

(c + 1 − cos2 α)dμ, c ∈ R. (5.7)

5.1 The first variation formula

In this subsection, we first compute the first variation formula. Given a family of
immersions

Ft : � × (−δ, δ) → M.

At a fixe point x ∈ �, let {xi } be the normal coordinate on � around x . The induced
metric on Ft (�) is

gi j (t) = 〈∂Ft
∂xi

,
∂Ft
∂x j

〉.

For simplicity, we denote ∂F0
∂xi

by ei , gi j (t) by gi j and Ft by F . Suppose V = ∂Ft
∂t |t=0

is the variational vector field. Then it is easy to see that

∂

∂t
|t=0 gi j = 〈∇eiV, e j 〉 + 〈ei ,∇e jV〉. (5.8)

Since

cosαt = ω̄( ∂F
∂x1

, ∂F
∂x2

)
√
det(gi j )

, (5.9)

we have

Fc(Ft ) =
∫

�

(c + 1) det(gi j ) − ω̄2( ∂F
∂x1

, ∂F
∂x2

)
√
det(gi j )

dx1 ∧ dx2. (5.10)

Denote

Ic = (c + 1) det(gi j ) − ω̄2( ∂F
∂x1

, ∂F
∂x2

)
√
det(gi j )

. (5.11)

Then using (5.8), we can easily get

∂ Ic
∂t

|t=0= (c+1+cos2 α)〈∇eiV, ei 〉−2 cosα(ω̄(∇e1V, e2)+ω̄(e1,∇e2V)). (5.12)
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Therefore, we have

F ′
c(0) =

∫

�

[(c + 1+ cos2 α)〈∇eiV, ei 〉 − 2 cosα(ω̄(∇e1V, e2) + ω̄(e1,∇e2V))]dμ.

(5.13)
In order to obtain Euler-Lagrangian equation for the functional V , we suppose the

variational vector field V is a normal vector field. Then we have by (5.13)

F ′
c(0) =−

∫

�

(c+1+cos2 α)〈V,H〉dμ−2
∫

�

cosα(ω̄(∇e1V, e2)+ω̄(e1,∇e2V))dμ

= −
∫

�

(c + 1 + cos2 α)〈V,H〉dμ

−2
∫

�

cosα
(
e1[ω̄(V, e2)] + e2[ω̄(e1,V)] + ω̄(V,∇e2e1 − ∇e1e2)

)
dμ

= −
∫

�

(c + 1 + cos2 α)〈V,H〉dμ

+2
∫

�

[ω̄(V, e2)∇e1 cosα + ω̄(e1,V)∇e2 cosα]dμ

=
∫

�

〈V, 2J (∇e2 cosαe1 − ∇e1 cosαe2) − (c + 1 + cos2 α)H〉dμ. (5.14)

Therefore, the Euler-Lagrangian equation is given by

(c + 1 + cos2 α)H + 2(J (∇e1 cosαe2 − ∇e2 cosαe1))
⊥ = 0. (5.15)

We call a surface satisfying (5.15) an Fc-critical surface.
Using (5.3), we can easily obtain that ([14])

(J∇ cosα)T = (∇e1 cosαe2 − ∇e2 cosαe1) cosα. (5.16)

If we further assume that � is simplectic, i.e., cosα > 0, then we see from (5.16) that
(5.15) is equivalent to

cosα(c + 1 + cos2 α)H + 2(J (J∇ cosα)T )⊥ = 0. (5.17)

It is known that the minimal surface equation H = 0 is a weakly elliptic system,
where the kernel of the principle symbol arises from the diffeomorphisms of �. By
computing the principle symbol of the equation (5.15), we can obtain the following
for the Fc-critical equation:

Proposition 5.1 The equation (5.15) is an elliptic systemmodulo the diffeomorphisms
of � for c > 1.

We will present the proof of the proposition in the appendix.
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5.2 Elliptic equation of Kähler angle on Fc-critical surfaces

In this subsection, we will compute the elliptic equation satisfied by cosα on an Fc-
critical surface. We assume that M is a Kähler surface, i.e., n = 2. Let’s first recall
the following result proved in [14]:

Proposition 5.2 Let M be a Kähler surface with Kähler form ω̄ and let J be the
complex structure compatible with ω on M. If � is a surface which is smoothly
immersed in M with Kähler angle α, then

� cosα = cosα(−|h31k − h42k |2 − |h41k + h32k |2)
+ sin α(H4

,1 + H3
,2) − Ric(Je1, e2) sin

2 α, (5.18)

where Ric is the Ricci curvature tensor of (M, ḡ) and Hα
,i = 〈∇̄N

ei H, vα〉.
The main result in this subsection is as follows:

Theorem 5.1 Suppose that M is a Kähler surface and � is an Fc-critical surface in
M with Kähler angle α. Then we have

(3 cos2 α+c − 1)� cosα = −2(c2+2c+3) cosα+4(c − 1) cos3 α+6 cos5 α

c + 1 + cos2 α
|∇α|2

− sin2 α(c + 1 + cos2 α)Ric(Je1, e2). (5.19)

In particular, if M is a Kähler-Einstein surface with scalar curvature R, then

(3 cos2 α+c−1)� cosα = −2(c2 + 2c + 3) cosα+4(c−1) cos3 α+6 cos5 α

c + 1 + cos2 α
|∇α|2

− R

4
sin2 α cosα(c + 1 + cos2 α). (5.20)

Proof Note that the we can choose local coordinate around the fix point p such that
at p, the complex structure J takes the form of (5.4). However, we can not assure that
it is of this form in a neighborhood of p. Since we will take derivatives with respect
to the components of J , so around p, we assume that J takes the form

J =

⎛

⎜
⎜
⎝

0 x y z
−x 0 z −y
−y −z 0 x
−z y −x 0

⎞

⎟
⎟
⎠ , (5.21)

where x2 + y2 + z2 = 1. By definition of the Kähler angle, we know that

x = cosα = ω(e1, e2) = 〈Je1, e2〉.
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Note also that at the fixed point p, we have that y = sin α and z = 0. Now we have
around p that

(J (∇e1 cosαe2 − ∇e2 cosαe1))
⊥ = ∂1 cosα(Je2)

⊥ − ∂2 cosα(Je1)
⊥

= − sin α∂1α(ze3 − ye4) + sin α∂2α(ye3 + ze4)

= sin α(y∂2α − z∂1α)e3 + sin α(y∂1α + z∂2α)e4.

Combining this with (5.15), we finally get that

H3 = − 2 sin α

c + 1 + cos2 α
(y∂2α − z∂1α), H4 = − 2 sin α

c + 1 + cos2 α
(y∂1α + z∂2α).

(5.22)
Furthermore,

∂1 cosα = ω(∇̄e1e1, e2) + ω(e1, ∇̄e1e2)

= hβ
11〈Jeβ, e2〉 + hβ

12〈Je1, eβ〉
= (h411 + h312)y + (h412 − h311)z. (5.23)

Similarly, we can get that,

∂2 cosα = (h322 + h412)y + (h422 − h312)z. (5.24)

In particular, at p, we have

∂1α = −(h411 + h312), ∂2α = −(h322 + h412). (5.25)

If we set V = ∂2αe3 + ∂1αe4, then by direct computation, we have at p

|h31k − h42k |2 + |h41k + h32k |2 = |H|2 + 2|V|2 + 2H · V
=
(

4 sin4 α

(c + 1 + cos2 α)2
+ 2 − 4 sin2 α

c + 1 + cos2 α

)
|∇α|2

= 2(c2 + 1) + 4(2c − 1) cos2 α + 10 cos4 α

(c + 1 + cos2 α)2
|∇α|2. (5.26)

Furthermore, using (5.22), we have at p,

sin α(H4
,1 + H3

,2) = sin α(〈∇̄e1H, e4〉 + 〈∇̄e2H, e3〉)
= sin α(∂1(H

4) + H3〈∇̄e1e3, e4〉 + ∂2(H
3) + H4〈∇̄e2e4, e3〉)

= − sin α

{
∂1

[
2 sin α

c + 1 + cos2 α
(y∂1α + z∂2α)

]

+ ∂2

[
2 sin α

c + 1 + cos2 α
(y∂2α − z∂1α)

]}

+ sin α(H3〈∇̄e1e3, e4〉 + H4〈∇̄e2e4, e3〉)
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= − sin2 α

[
∂1

(
2 sin α

c+1+cos2 α
∂1α

)
+∂2

(
2 sin α

c+1+cos2 α
∂2α

)]

− 2 sin2 α

c + 1 + cos2 α
(∂1α∂1y + ∂2α∂2y)

− 2 sin2 α

c + 1 + cos2 α
(∂2α∂1z − ∂1α∂2z)

+ sin α(H3〈∇̄e1e3, e4〉 + H4〈∇̄e2e4, e3〉)=− 2 sin3 α

c+1+cos2 α
�α

−2(c + 3) cosα − 2(c + 4) cos3 α + 2 cos5 α

(c + 1 + cos2 α)2
|∇α|2

− 2 sin2 α

c + 1 + cos2 α
(∂1α∂1y + ∂2α∂2y)

− 2 sin2 α

c + 1 + cos2 α
(∂2α∂1z − ∂1α∂2z)

+ sin α(H3〈∇̄e1e3, e4〉 + H4〈∇̄e2e4, e3〉). (5.27)

From y = 〈Je1, e3〉, we have at p,

∂1α∂1y + ∂2α∂2y = ∂1α(〈J ∇̄e1e1, e3〉 + 〈Je1, ∇̄e1e3〉)
+∂2α(〈J ∇̄e2e1, e3〉 + 〈Je1, ∇̄e2e3〉)

= ∂1α(hβ
11〈Jeβ, e3〉 + 〈cosαe2 + sin αe3, ∇̄e1e3〉)

+∂2α(hβ
12〈Jeβ, e3〉 + 〈cosαe2 + sin αe3, ∇̄e2e3〉)

= − cosα(h411 + h312)∂1α − cosα(h412 + h322)∂2α

= cosα|∇α|2. (5.28)

Here, we have used (5.25). Similarly, from z = 〈Je1, e4〉, we have at p,

∂2α∂1z − ∂1α∂2z = (c − 1) cosα + 3 cos3 α

c + 1 + cos2 α
|∇α|2

− sin α(〈∇̄e1e3, e4〉∂2α + 〈∇̄e2e4, e3〉∂1α). (5.29)

Putting (5.28) and (5.29) into (5.27) and using (5.22) yields

sin α(H4
,1 + H3

,2) = 2 sin2 α

c + 1 + cos2 α
� cosα

+−4(c + 1) cosα + 4c cos3 α + 4 cos5 α

(c + 1 + cos2 α)2
|∇α|2. (5.30)

Then (5.19) follows from (5.26), (5.30) and Proposition 5.2. ��
Applying the maximum principle to (5.20), we have
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Corollary 5.1 Suppose that M is a Kähler-Einstein surface with positive scalar cur-
vature. Then any symplectic Fc-critical surface with c ≥ 1 in M is a holomorphic
curve.

By a standard computation as above and in [20], [15], [16], we can obtain the second
variation formula:

Proposition 5.3 Let M be a Kähler-Einstein surface with scalar curvature R. If we
choose X = x3e3 + x4e4 and Y = −JνX = x4e3 − x3e4, then the second variation
formula of the functional Fc on a Fc-critical surface is

I Ic(X) + I Ic(Y) = −2(c + 1)
∫

�

|X|2K1234dμ + 2(c + 1)
∫

�

|∇⊥
X|2dμ

−1

2

∫

�

(c+1+cos2 α)|X|2R sin2 αdμ+
∫

�

(2 cos2 α − 1)|∂̄X|2

−2
∫

�

|X|2 (2 cos2 α+c)(3 cos2 α+c−1)

c + 1 + cos2 α
|∇α|2dμ. (5.31)

6 Appendix

In this appendix, we will prove Proposition 5.1. Before we prove the proposition, we
first recall some basic facts on principle symbols.

Let � be a smooth manifold and suppose E is a smooth vector bundle over M . To
a linear differential operator P : �(E) → �(E) of order k, at every point x ∈ M
and for every ξ ∈ T ∗

x M one can associated an algebraic object, the principle symbol
σξ (P; x), often written simply by σξ (P). If, in local coordinate,

Pu =
∑

|α|≤k

aα(x)∂αu, (6.1)

where aα are dimE × dimE matrices, then σξ (P; x) is the matrix

σξ (P; x) =
∑

|α|=k

aα(x)ξα. (6.2)

Here, ξα = ξ
α1
1 · · · ξαn

n .

Definition 6.1 A linear differential operator P : �(E) → �(E) is (strictly) elliptic
if there exists λ > 0 such that

〈σξ (P; x)v, v〉 ≥ λ|ξ |2|v|2, (6.3)

for all (x, ξ) ∈ T ∗(M) and v ∈ �(E).
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For a nonlinear differential operator P(x, ∂ku), its linearization at u is the linear
operator

DP(u)v = d

dt
P(x, ∂k(u + tv))|t=0. (6.4)

The nonlinear equation P(x, ∂ku) = 0 is elliptic at u, if its linearization at u is
elliptic in the sense of Definition 6.1.

Now we can prove the following proposition:

Proposition 6.1 The equation (5.15) is a weakly elliptic system for c > 1. The kernel
of the principle symbol arises from the tangential directions of �.

Proof For simplicity, we suppose that� is a surface inCn . The general case is similar.
In local coordinate, we can express the surface as

F : � −→ Cn = R2n

(x1, x2) �−→ F(x1, x2) = (F1(x1, x2), . . . , F
2n(x1, x2)).

We will use the following conventions:

1 ≤ i, j, . . . ≤ 2, 3 ≤ α, β, . . . ≤ 2n, 1 ≤ A, B, . . . ≤ 2n.

The tangent space of � at a fixed point x ∈ � is spanned by {e1, e2} given by

e1 = ∂F

∂x1
= ∂F A

∂x1
EA, e2 = ∂F

∂x2
= ∂F A

∂x2
EA, (6.5)

where {E1, . . . , E2n} is the standard orthonormal basis ofR2n . Therefore, the induced
metric on � is given by

gi j = 〈ei , e j 〉 = ∂F A

∂xi

∂F A

∂x j
. (6.6)

We can take the coordinate so that at the fixed point x ∈ �, we have gi j (x) = δi j . We
will also take the standard complex structure J on Cn given by

J =

⎛

⎜⎜⎜⎜⎜
⎝

0 −1
1 0

. . .

0 −1
1 0

⎞

⎟⎟⎟⎟⎟
⎠

. (6.7)

Then we have {
J E2k−1 = E2k,

J E2k = E2k−1.
(6.8)

Furthermore, we choose any orthonormal basis {nα}2nα=3 of the normal space. Denote

P = (c + 1 + cos2 α)H + 2(J (∇e1 cosαe2 − ∇e2 cosαe1))
⊥. (6.9)
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We will compute the principle symbol of P .
First we consider the principal part of H. Note that by (6.6), we can easily see that

the Christoffel symbol of the induced metric is:

�k
i j = 1

2
gkl

{
∂gil
∂x j

+ ∂g jl

∂xi
− ∂gi j

∂xl

}
= gkl

∂2FB

∂xi∂x j

∂FB

∂xl
.

Therefore, we have

H = ��F = gi j
(

∂2F

∂xi∂x j
− �k

i j
∂F

∂xk

)

= gi j
(

∂2F

∂xi∂x j
− gkl

∂2FB

∂xi∂x j

∂FB

∂xl

∂F

∂xk

)

= gi j
(

∂2F A

∂xi∂x j
− gkl

∂F A

∂xk

∂FB

∂xl

∂2FB

∂xi∂x j

)
EA. (6.10)

The linearization of the operator at F in the direction G is:

D(H)(F)G = gi j
(

∂2GA

∂xi∂x j
− gkl

∂F A

∂xk

∂FB

∂xl

∂2GB

∂xi∂x j

)
EA + f irst order terms.

(6.11)
Next, we will consider the second part of P . By definition,

cosα = ω̄(e1, e2)√
det (gi j )

= 〈Je1, e2〉√
det (gi j )

. (6.12)

By (6.5) and (6.7), we have:

〈Je1, e2〉 =
n∑

k=1

(
∂F2k−1

∂x1

∂F2k

∂x2
− ∂F2k

∂x1

∂F2k−1

∂x2

)
. (6.13)

Therefore, we have

cosα =
∑n

k=1

(
∂F2k−1

∂x1
∂F2k

∂x2
− ∂F2k

∂x1
∂F2k−1

∂x2

)

√
det (gi j )

,

∂ cosα

∂x1
= 1
√
det (gi j )

{
n∑

k=1

(
∂2F2k−1

∂x21

∂F2k

∂x2
+ ∂F2k−1

∂x1

∂2F2k

∂x1∂x2
− ∂2F2k

∂x21

∂F2k−1

∂x2

−∂F2k

∂x1

∂2F2k−1

∂x1∂x2

)
− 1

2
〈Je1, e2〉gi j

(
∂2F A

∂x1∂xi

∂F A

∂x j
+ ∂F A

∂xi

∂2F A

∂x1∂x j

)}
,
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and

∂ cosα

∂x2
= 1
√
det (gi j )

{
n∑

k=1

(
∂2F2k−1

∂x1∂x2

∂F2k

∂x2
+ ∂F2k−1

∂x1

∂2F2k

∂x22
− ∂2F2k

∂x1∂x2

∂F2k−1

∂x2

−∂F2k

∂x1

∂2F2k−1

∂x22

)

− 1

2
〈Je1, e2〉gi j

(
∂2F A

∂x2∂xi

∂F A

∂x j
+ ∂F A

∂xi

∂2F A

∂x2∂x j

)}

.

By our choice of the frame, at the fixed point x , we have

(J (∇e1 cosαe2 − ∇e2 cosαe1))
⊥

= ∂ cosα

∂x1
(Je2)

⊥ − ∂ cosα

∂x2
(Je1)

⊥

= ∂ cosα

∂x1
〈Je2, nα〉nα − ∂ cosα

∂x2
〈Je1, nα〉nα. (6.14)

Notice that cosα, gi j , ei and nα only involve first order derivative of the immersion
F . Therefore, by (6.11) and (6.14), we know that the linearization of the operator P
at F in the direction G (computed at the point x) is:

D(P)(F)G = (c + 1 + cos2 α)gi j
(

∂2GA

∂xi∂x j
− gkl

∂F A

∂xk

∂FB

∂xl

∂2GB

∂xi∂x j

)
EA

+2

{
n∑

k=1

(
∂2G2k−1

∂x21

∂F2k

∂x2
+ ∂F2k−1

∂x1

∂2G2k

∂x1∂x2
− ∂2G2k

∂x21

∂F2k−1

∂x2
− ∂F2k

∂x1

∂2G2k−1

∂x1∂x2

)

−1

2
〈Je1, e2〉gi j

(
∂2GA

∂x1∂xi

∂F A

∂x j
+ ∂F A

∂xi

∂2GA

∂x1∂x j

)}
〈Je2, nα〉nα

−2

{
n∑

k=1

(
∂2G2k−1

∂x1∂x2

∂F2k

∂x2
+ ∂F2k−1

∂x1

∂2G2k

∂x22
− ∂2G2k

∂x1∂x2

∂F2k−1

∂x2
− ∂F2k

∂x1

∂2G2k−1

∂x22

)

−1

2
〈Je1, e2〉gi j

(
∂2GA

∂x2∂xi

∂F A

∂x j
+ ∂F A

∂xi

∂2GA

∂x2∂x j

)}
〈Je1, nα〉nα

+ f irst order terms. (6.15)

We will denote GT and G⊥ the projection of G ∈ R2n on the tangent bundle and
normal bundle of �, respectively. It is easy to see that

|GT |2 = gkl〈G,
∂F

∂xk
〉〈G,

∂F

∂xl
〉 = gklGAGB ∂F A

∂xk

∂FB

∂xl
.
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Then we see that the principle symbol of P is given by:

〈σ(D(P))(x, ξ)G,G〉
= (c + 1 + cos2 α)gi j

(
ξiξ j |G|2 − gkl

∂F A

∂xk

∂FB

∂xl
ξiξ j G

AGB
)

+2

{
n∑

k=1

(
G2k−1 ∂F2k

∂x2
− G2k ∂F2k−1

∂x2

)
〈Je2,G⊥〉ξ21

+
n∑

k=1

(
G2k−1 ∂F2k

∂x1
− G2k ∂F2k−1

∂x1

)
〈Je1,G⊥〉ξ22

−
n∑

k=1

[(
G2k−1 ∂F2k

∂x1
− G2k ∂F2k−1

∂x1

)
〈Je2,G⊥〉

+
(
G2k−1 ∂F2k

∂x2
− G2k ∂F2k−1

∂x2

)
〈Je1,G⊥〉

]
ξ1ξ2 (6.16)

+ cosαgi jGA
(

∂F A

∂x j
〈Je1,G⊥〉ξ2ξi − ∂F A

∂x j
〈Je2,G⊥〉ξ1ξi

)}
.

By (6.8), we have

〈σ(D(P))(x, ξ)G,G〉 = (c + 1 + cos2 α)|ξ |2|G⊥|2
+ 2

{(
−〈Je2,G⊥〉〈Je2,G〉 − 〈Je1, e2〉〈G, e1〉〈Je2,G⊥〉

)
ξ21

+
(
−〈Je1,G⊥〉〈Je1,G〉 + 〈Je1, e2〉〈G, e2〉〈Je1,G⊥〉

)
ξ22

+
(
〈Je2,G⊥〉〈Je1,G〉 + 〈Je1,G⊥〉〈Je2,G〉

+ 〈Je1, e2〉〈G, e1〉〈Je1,G⊥〉 − 〈Je1, e2〉〈G, e2〉〈Je2,G⊥〉
)

ξ1ξ2

}
.

(6.17)

Note that (Je1)T = 〈Je1, e2〉e2 and (Je2)T = −〈Je1, e2〉e1. Thus we have
〈σ(D(P))(x, ξ)G,G〉 = (c + 1 + cos2 α)|ξ |2|G⊥|2

− 2
(
〈G⊥, Je2〉2ξ21 − 2〈G⊥, Je1〉〈G⊥, Je2〉ξ1ξ2 + 〈G⊥, Je1〉2ξ22

)

=
(
(c + 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je2〉2

)
ξ21

+ 4〈G⊥, Je1〉〈G⊥, Je2〉ξ1ξ2
+

(
(c + 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je1〉2

)
ξ22 . (6.18)

The coefficient matrix is given by

O =
(

(c + 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je2〉2 2〈G⊥, Je1〉〈G⊥, Je2〉
2〈G⊥, Je1〉〈G⊥, Je2〉 (c + 1 + cos2 α)|G⊥|2 − 2〈G⊥, Je1〉2

)
.

(6.19)
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We have

detO = (c+1+cos2 α)|G⊥|2
(
(c+1+cos2 α)|G⊥|2−2(〈G⊥, Je1〉2+〈G⊥, Je2〉2)

)

≥ (c − 1 + cos2 α)(c + 1 + cos2 α)|G⊥|4. (6.20)

From (6.19) and (6.20), we see that if c > 1, then for any (ξ1, ξ2) �= (0, 0) and
G ∈ R2n , we have

〈σ(D(P))(x, ξ)G,G〉 ≥ 0,

and the inequality is strict unless G⊥ = 0, i.e., G is tangential to �. This finishes the
proof of the Proposition. ��
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