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Abstract Weprove a (sharp) pointwise estimate for positive dyadic shifts of complex-
itym which is linear in the complexity. This can be used to give a pointwise estimate for
Calderón-Zygmund operators and to answer a question originally posed by Lerner.
Several applications to weighted estimates for both multilinear Calderón-Zygmund
operators and square functions are discussed.

1 Introduction

One particularly useful way to study many important operators in Harmonic Analysis
is that of decomposing them into sums of simpler dyadic operators. An example of
a recent striking result using this strategy is the proof of the sharp weighted estimate
for the Hilbert transform by Petermichl [23]. This was a key step towards the full A2
theorem for general Calderón-Zygmund operators, finally proven by Hytönen in [9].
Of course there are many instances of this useful technique, but we will not try to give
a thorough historical overview here.
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The proof in [9] was a tour de force which was the culmination of many previous
partial efforts by others, see [9] and the references therein. Hytönen did not only prove
the A2 theorem, but he also showed that general Calderón-Zygmund operators could
be represented as averages of certain simpler “Haar shifts” in the spirit of [23]. The
sharp weighted bound then followed from the corresponding one for these simpler
operators.

Later, Lerner gave a simplification of the A2 theorem in [15] which avoided the use
of most of the complicated machinery in [9]; it mainly relied on a general pointwise
estimate for functions in terms of positive dyadic operators which had already been
proven in [14]. The weighted result for the positive dyadic shifts that this contribution
reduced the problem to had already been shown before in [12], see also [3] and [4].
More precisely, the proof of Lerner (essentially) gave the following pointwise estimate
for general Calderón-Zygmund operators T : for every dyadic cube Q

|T f (x)| �
∞∑

m=0

2−δmAm
S | f |(x) for a.e. x ∈ Q, (1.1)

where δ > 0 depends on the operator T , S are collections of dyadic cubes (belonging
to same dyadic grid for each fixed S) which depend on f , T and m, and Am

S are
positive dyadic operators defined by

Am
S f (x) =

∑

Q∈S
〈 f 〉Q(m)1Q(x),

where Q(m) denotes the mth dyadic parent of Q. Moreover, the collections S in (1.1)
are sparse in the usual sense: given 0 < η < 1, we say that a collection of cubes
S belonging to the same dyadic grid is η-sparse if for all cubes Q ∈ S there exist
measurable subsets E(Q) ⊂ Q with |E(Q)| ≥ η|Q| and E(Q) ∩ E(Q′) = ∅ unless
Q = Q′. A collection is called simply sparse if it is 1

2 -sparse.
From this pointwise estimate Lerner continues the proof by showing that bounding

the operator norm of each Am
S can be reduced to just estimating the operator norm of

A0
S′ in the same space for all possible sparse collections S ′. More precisely, he shows

that
‖Am

S f ‖X � (m + 1) sup
D ,S ′

‖A0
S ′ f ‖X, (1.2)

where the supremum is taken over all dyadic gridsD and all sparse collection S ′ ⊂ D ,
and where X is any Banach function space, in the sense of [1, Chapter 1].

It is at this point where the duality of X is needed in the argument; the operators
Am
S do not lend themselves to Lerner’s pointwise formula, while their adjoints do.

Consequently, the question of what to do when no duality is present was left open. Our
main result answers this question by proving a stronger (though localized) statement:
the operators Am

S are actually pointwise bounded by positive dyadic 0-shifts:

Theorem A Let P be a cube and S a sparse collection of dyadic subcubes Q such
that Q(m) ⊆ P, then for all nonnegative integrable functions f on P there exists
another sparse collection S ′ of dyadic subcubes of P such that
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A pointwise estimate for positive... 1113

Am
S f (x) � (m + 1)A0

S ′ f (x) ∀x ∈ P (1.3)

In fact, we prove Theorem A in a slightly more general setting: first, the statement
is proven for a certain natural multilinear generalization of the operatorsAm

S . Second,
the sparse collection S is replaced by a more general Carleson sequence. The relevant
details are given in the next section.

The novelty in our approach is two-fold: we directly attack the pointwise estimate
for the operatorsAm , instead of bounding their norm in various spaces.Also, in proving
the pointwise bound we develop an algorithm that constructively selects those cubes
which will form the family S ′. This algorithm has “memory” in a certain sense: each
iteration takes into account the previous steps, a feature which is crucial in our method
to ensure that S is sparse.

As a corollary of Theorem A, we find an analogue of (1.1) for Calderón-Zygmund
operators with more general moduli of continuity (see the next section for the precise
definition). In particular, we obtain the following pointwise estimate for Calderón-
Zygmund operators:

Corollary A.1 If P is a dyadic cube, f is an integrable function supported on P and
T is a Calderón-Zygmund operator whose kernel has modulus of continuity ω, then

|T f (x)| �
∞∑

m=0

ω(2−m)(m + 1)A0
Sm

| f |(x) for a.e. x ∈ P, (1.4)

where Sm are sparse collections belonging to at most 3d different dyadic grids.
Moreover, if we know that ω satisfies the logarithmic Dini condition:

∫ 1

0
ω(t)

(
1 + log

(
1

t

))
dt

t
< ∞, (1.5)

then we can find sparse collections {S ′
1, . . . ,S ′

3d }, belonging to possibly different
dyadic grids, such that

|T f (x)| �
3d∑

i=1

A0
S ′

i
| f |(x) for a.e. x ∈ P. (1.6)

The factor m in (1.2) precluded a naive adaptation of the proof in [16] to an A2
theorem with the usual Dini condition:

∫ 1

0
ω(t)

dt

t
< ∞, (1.7)

since the sum

∞∑

m=0

ω(2−m)(m + 1) �
∫ 1

0
ω(t)

(
1 + log

1

t

)
dt

t
(1.8)
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could diverge for some moduli ω satisfying only (1.7). Moreover, it was shown in [8]
that the weak-type (1, 1) norm of the adjoints of the operatorsAm

S was at least linear in
m, even in the unweighted case, so using duality prevented an extension of this type.
However, although our argument does not quite give an A2 theorem for Calderón-
Zygmund operators satisfying the Dini condition (we still need (1.8) to be finite), our
proof avoids the use of duality and the study of the adjoint operators (Am

S )∗. It thus
removes at least one of the obstructions to possible proofs of the A2 theorem with the
Dini condition which follow this strategy. Hence, removing the linear factor of m in
Theorem A remains as an open problem.

Apart from being interesting in its own right, a bound for Calderón-Zygmund
operators by these sums of positive 0-shifts in cases where there is no duality has
interesting applications, some of which we describe later. Before, let us state a second
corollary to Theorem A.1:

Corollary A.2 Let ‖ · ‖X be a function quasi-norm (see Sect. 2) and T a Calderón-
Zygmund operator satisfying the logarithmic Dini condition, then

‖T f ‖X � sup
D ,S

‖A0
S | f |‖X, (1.9)

where the supremum is taken over all dyadic gridsD and all sparse collectionsS ⊂ D .

We now describe two immediate applications of our result. First we can continue
the program, initiated in [5] and extended in [21], which aims to extend the sharp
weighted estimates for Calderón-Zygmund operators to their multilinear analogues
(as in [6]). In particular we obtain

Theorem B Let T be a multilinear Calderón-Zygmund operator. Suppose 1 <

p1, . . . , pk < ∞, 1
p = 1

p1
+ · · · + 1

pk
and �w ∈ A �P . Then

‖T �f ‖L p(v �w) � [ �w]
max

(
1,

p′
1
p ,...,

p′
k
p

)

A �P

k∏

i=1

‖ fi‖L p(wi ). (1.10)

The same theorem was proven in [21] but with the additional hypothesis that p had
to be at least 1. The proof of this theorem is an application of the result in [21] which
proved the same estimate (without the condition p ≥ 1) but for a multilinear analogue
of the operators Am

S , together with Theorem A. In fact, we will need a multilinear
version of Theorem A which we state and prove in the next section.

Our second application is a sharp aperture weighted estimate for square functions
which extends a result in [17]. In particular:

Theorem C Let α > 0, then the square function Sα,ψ for the cone in Rd+1+ of apper-
ture α and the standard kernel ψ satisfies

‖Sα,ψ f ‖L p,∞(Rd ,w) � αd [w]1/p
Ap

‖ f ‖L p(Rd ,w) for 1 < p < 2
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and
‖Sα,ψ f ‖L2,∞(Rd ,w) � αd [w]1/2A2

(1 + log[w]A2)‖ f ‖L2(Rd ,w). (1.11)

An analogous result was shown in [17] for 2 < p < 3:

‖Sα,ψ f ‖L p,∞(Rd ,w) � αd [w]1/2Ap
(1 + log[w]Ap )‖ f ‖L p(Rd ,w).

The proof relies on the use of Lerner’s pointwise formula and previous results by Lacey
and Scurry [13]. However, in [17] the requirement of p > 2was necessary for the same
reason why the proof of the multilinear weighted estimates required p ≥ 1 (a certain
space had no satisfactory duality properties). Theorem A can be used in almost the
same way as with the weighted multilinear estimates to prove Theorem C. Indeed, the
proofs in [13,17] reduce the problem to estimating certain discrete positive operators
which can be seen to be particular instances of the positive multilinear m-shifts used
in the proof of Theorem B.

As was noted in [13], estimate (1.11) can be seen as an analogue of the result in
[19] stablishing the endpoint weighted weak-type estimate for Calderón-Zygmund
operators

‖T f ‖L1,∞(w) � [w]A1(1 + log[w]A1)‖ f ‖L1(w).

See also [22] for a similar estimate from below and more information on the sharpness
of this estimate, known as theweak A1 conjecture. In this direction, it seems reasonable
that Lacey and Scurry’s proof in [13] could be adapted to the multilinear setting,
however we will not pursue this problem here.

Finally, as a third application of our results, it is possible to give a more direct proof
of the result in [10] for the q-variation of Calderón-Zygmund operators satisfying the
logarithmic Dini condition by using the pointwise estimate analogous to (1.1) in [10]
and then applying Theorem A. However, we will not pursue this argumentation either.

Shortly before uploading this preprint, Andrei Lerner kindly communicated to the
authors that he, jointly with Fedor Nazarov, had independently proven a theorem very
similar to Corollary A.1 [18]. Though the hypothesis are the same, their result differs
from the one in this note in that we give a localized pointwise estimate while their
pointwise estimate is valid for all ofRd . However, our result seems to be as powerful
in the applications.1

2 Pointwise domination

The goal of this section is the proof of Theorem A and its consequences as stated
in the introduction. We will prove the result in the level of generality of multilinear
operators. Given a cube P0 onR

d , we will denote byD(P0) the dyadic lattice obtained
by successive dyadic subdivisions of P0. By a dyadic grid we will denote any dyadic

1 Since we uploaded this document to arXiv, two other articles have appeared: [7,11], in which similar
estimates are obtained.
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1116 J. M. Conde-Alonso, G. Rey

lattice composed of cubes with sides parallel to the axis. A k-linear positive dyadic
shift of complexity m is an operator of the form

Am
P0,α

�f (x) = Am
P0,α( f1, f2, . . . , fk)(x) :=

∑

Q∈D(P0)

Q(m)⊆P0

αQ

(
k∏

i=1

〈 fi 〉Q(m)

)
1Q(x).

As a first step towards the proof of Theorem A, it is convenient to separate the
scales of (or slice) Am

P0,α
as follows:

Am
P0,α

�f (x) =
m−1∑

n=0

∞∑

j=1

∑

Q∈D jm+n(P0)

αQ

(
k∏

i=1

〈 fi 〉Q(m)

)
1Q(x)

=:
m−1∑

n=0

Am,n
P0,α

�f (x).

Note that Dk(P0) denotes the kth generation of the lattice D(P0). Now we rewrite
Am;n

P0,α
as a sum of disjointly supported operators of the form Am;0

P,α . Indeed,

Am;n
P0,α

�f (x) =
∞∑

j=1

∑

Q∈D jm+n(P0)

αQ

(
k∏

i=1

〈 fi 〉Q(m)

)
1Q(x)

=
∑

P∈Dn(P0)

∞∑

j=1

∑

Q∈D jm (P)

αQ

(
k∏

i=1

〈 fi 〉Q(m)

)
1Q(x)

=
∑

P∈Dn(P0)

Am;0
P,α

�f (x),

which leads to the expression

Am
α,P0

�f (x) =
m−1∑

n=0

∑

P∈Dn(P0)

Am;0
P,α

�f (x).

We say that a sequence {αQ}Q∈D(P0) is Carleson if its Carleson constant
‖α‖Car(P0) < ∞, where

‖α‖Car(P0) = sup
P∈D(P0)

1

|P|
∑

Q∈D(P)

αQ |Q|.

The following intermediate step is the key to our approach:
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Proposition 2.1 Let m ≥ 1 and α be a Carleson sequence. For integrable functions
f1, . . . , fk ≥ 0 on P0 there exists a sparse collection S of cubes in D(P0) such that

Am;0
P0,α

�f (x) ≤ C1‖α‖Car(P0)

∑

Q∈S

(
k∏

i=1

〈 fi 〉Q

)
1Q(x),

where C1 only depends on k and d, and in particular is independent of m.

To prove Proposition 2.1 we will proceed in three steps: we will first construct the
collection S, then show that we have the required pointwise bound, and finally that S
is sparse. By homogeneity, we will assume that ‖α‖Car(P0) = 1. Also, we will assume
that the sequence α is finite, but our constants will be independent of the number of
elements in the sequence.

Let �P0 = 0 and, for each Q ∈ Dmj (P0) with j ≥ 0, define the sequence {γQ}Q

by

γQ = max
R∈Dm(Q)

αR .

For each Q ∈ Dmj (P0) with j ≥ 0, we will inductively define the quantities �Q

and βQ as follows:

βQ =
{
0 if �Q −

(∏k
i=1〈 fi 〉Q

)
γQ ≥ 0

22(k+1)CW otherwise,

where CW is the boundedness constant of the unweighted endpoint weak-type of the
operators Am proved in Theorem 4.1 in the Appendix. Also, for every R ∈ Dm(Q)

we define

�R = �Q + (βQ − αR)

(
k∏

i=1

〈 fi 〉Q

)
.

Note that the definition only applies to cubes inDmj (P0) for some j . For all other cubes
in DP0 , we set βQ = �Q = 0. The collection S consists of those cubes Q ∈ D(P0)

for which βQ �= 0. Note that, since 22(k+1)CW > 1 = ‖α‖Car(P0) ≥ αR for all R and
by the definition of γQ , we must have �Q ≥ 0 for all Q. This can be easily seen by
induction.

Remark 2.2 We are trying to construct a sparse operator of complexity 0 which domi-
natesAm;0

P0,α
. One way to achieve this is to let S be the collection of all dyadic subcubes

of P0, but of course this does not yield a sparse collection. A better way would be to let
S consist of all dyadic cubes in P0 for which at least one of its mth generation children
R satisfies αR > 0; unfortunately this yields a collection S which is not sparse, and
in fact it can be seen that the Carleson sequence β associated with this collection can
have a Carleson norm ‖β‖Car(P0) which grows exponentially in m.
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1118 J. M. Conde-Alonso, G. Rey

Themain problemwith this approach is that, when the time comes to decidewhether
a cube should be in S or not, we do not take into account which cubes have been
selected in the previous steps. Note that whenever we add a cube Q to S we are not
only “helping” to dominate the portion of Am;0

P0,α
coming from Q, but also what may

come from any of its descendants.
One can account for this by having the algorithm use a sort of “memory” to, essen-

tially, keep track of how many cubes in S (appropriately weighted with the averages
of �f ) lie above any particular cube. This is the purpose of �Q . This can also be seen
as the stopping time algorithm which selects a cube whenever the previously selected
cubes do not provide enough height to dominate the operator until that point.

Lemma 2.3 We have the pointwise bound

Am;0
P0,α

�f (x) ≤
∑

Q∈D(P0)

βQ

(
k∏

i=1

〈 fi 〉Q

)
1Q(x). (2.1)

Proof We will prove by induction the following claim: if P ∈ D jm(P0) for some
j ≥ 0, then

Am;0
P,α

�f (x) ≤ �P +
∑

Q∈D(P)

βQ

(
k∏

i=1

〈 fi 〉Q

)
1Q(x). (2.2)

Note that, when P = P0, this is exactly (2.1). Since α is finite, there is a smallest
j0 ∈ N such that αQ = 0 for all cubes Q ∈ D≥ j0m(P0).2 Let Q be any cube in
D j0m(P0), we obviously have

Am;0
Q,α

�f ≡ 0 in Q.

Since �Q ≥ 0, the claim (2.2) is trivial for P ∈ D j0m(P0). Now, assume by induction
that we have proved (2.2) for all cubes P ∈ D jm(P0) with 1 ≤ j1 ≤ j and let P be
any cube in D( j1−1)m(P0). By definition,

Am;0
P,α

�f (x) =
∑

Q∈Dm (P)

(
αQ

(
k∏

i=1

〈 fi 〉P

)
1Q(x) + Am;0

Q,α
�f (x)

)
.

Let x ∈ Q ∈ Dm(P), then by the induction hypothesis and the definition of �Q :

Am;0
P,α

�f (x) ≤ αQ

(
k∏

i=1

〈 fi 〉P

)
+ �Q +

∑

R∈D(Q)

βR

(
k∏

i=1

〈 fi 〉R

)
1R(x)

= αQ

(
k∏

i=1

〈 fi 〉P

)
+ �P + (βP − αQ)

(
k∏

i=1

〈 fi 〉P

)

2 We use D≥k (P) to denote those cubes Q in D(P) of generation at least k, so |Q| ≤ 2−dk |P|.

123



A pointwise estimate for positive... 1119

+
∑

R∈D(Q)

βR

(
k∏

i=1

〈 fi 〉R

)
1R(x)

= �P + βP

(
k∏

i=1

〈 fi 〉P

)
+

∑

R∈D(Q)

βR

(
k∏

i=1

〈 fi 〉R

)
1R(x)

= �P +
∑

R∈D(P)

βR

(
k∏

i=1

〈 fi 〉R

)
1R(x),

which is what we wanted to show. ��

Lemma 2.4 The collection S is sparse.

Proof Let P ∈ S, we have to show that the set

F :=
⋃

Q�P,Q∈S
Q

satisfies |F | ≤ 1
2 |P|. To this end, letR be the collection of maximal (strict) subcubes

of P which are inS, Note that for all R ∈ Rwe have R ∈ DNRm(P) for some NR ≥ 1.
We thus have

F =
⊔

R∈R
R.

By maximality, for all R ∈ R and dyadic cubes Q with R � Q � P we have
βQ = 0. For all R ∈ R and 1 ≤ j ≤ NR we now claim that

�R((NR− j)m) ≥ βP

(
k∏

i=1

〈 fi 〉P

)
−

j∑

ν=1

αR((NR−ν)m)

(
k∏

i=1

〈 fi 〉R((NR−ν+1)m)

)
. (2.3)

Indeed, one can prove this by induction on j . If j = 1 then by definition we have

�R((NR−1)m) = �P + (βP − αR((NR−1)m) )

(
k∏

i=1

〈 fi 〉P

)

≥ βP

(
k∏

i=1

〈 fi 〉P

)
− αR((NR−1)m)

(
k∏

i=1

〈 fi 〉P

)
,

since �P ≥ 0.
To prove the induction step, observe that (by the induction hypothesis) for j > 1
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1120 J. M. Conde-Alonso, G. Rey

�R((NR− j)m) = �R((NR− j+1)m) + (βR((NR− j+1)m) − αR((NR− j)m) )

(
k∏

i=1

〈 fi 〉R((NR− j+1)m)

)

= �R((NR− j+1)m) − αR((NR− j)m)

(
k∏

i=1

〈 fi 〉R((NR− j+1)m)

)

≥ βP

(
k∏

i=1

〈 fi 〉P

)
−

j∑

ν=1

αR((NR−ν)m)

(
k∏

i=1

〈 fi 〉R((NR−ν+1)m)

)
.

From (2.3) with j = NR , we have (since the terms are nonnegative)

�R ≥ βP

(
k∏

i=1

〈 fi 〉P

)
− Am;0

P,α
�f (x)

for all x ∈ R. Since βR �= 0, we must have

(
k∏

i=1

〈 fi 〉R

)
γR − �R > 0,

i.e.:

(
k∏

i=1

〈 fi 〉R

)
γR + Am;0

P,α
�f (x) > 22(k+1)CW

(
k∏

i=1

〈 fi 〉P

)

for all x ∈ R. Let GP �f = ∑
R∈R γR

(∏k
i=1〈 fi 〉R

)
1R , then for all x ∈ R we have

GP f (x) + Am;0
P,α

�f (x) > 22(k+1)CW

(
k∏

i=1

〈 fi 〉P

)
,

hence

|F | ≤
∣∣∣∣∣

{
x ∈ P : GP �f (x) + Am;0

P,α
�f (x) > 22(k+1)CW

(
k∏

i=1

〈 fi 〉P

)}∣∣∣∣∣

≤

∥∥∥GP + Am;0
P,α

∥∥∥
1/k

L1(P)×···×L1(P)→L1/k,∞(P)
(
22(k+1)CW

(∏k
i=1〈 fi 〉P

))1/k

(
k∏

i=1

‖ fi‖L1(P)

)1/k

=

∥∥∥GP + Am;0
P,α

∥∥∥
1/k

L1(P)×···×L1(P)→L1/k,∞(P)

(22(k+1)CW )1/k
|P|
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Let us compute the operator norm ‖GP‖L1(P)×···×L1(P)→L1/k,∞(P). Observe that,
since γQ ≤ 1 for all Q, the operator G is pointwise bounded by the multi-linear
projection

PP �f (x) =
∑

R∈R

(
k∏

i=1

〈 fi 〉R

)
1R(x) =

k∏

i=1

(
∑

R∈R
〈 fi 〉R1R(x)

)
.

For each 1 ≤ i ≤ k, we have ‖∑
R∈R〈 fi 〉R1R‖L1(P) ≤ ‖ fi‖L1(P). Therefore, by

Hölder’s inequality we get

‖PP �f ‖L1/k,∞(P) ≤
k∏

i=1

∥∥∥∥∥
∑

R∈R
〈 fi 〉R1R

∥∥∥∥∥
L1(P)

≤
k∏

i=1

‖ fi‖L1(P).

On the other hand we have

‖Am;0
P,α

�f ‖L1/k,∞(P) ≤ CW

k∏

i=1

‖ fi‖L1(P)

by Theorem 4.1. Combining these estimates we get

‖GP + Am;0
P,α‖L1(P)×···×L1(P)→L1/k,∞(P) ≤ 2k+1(1 + CW ) ≤ 2k+2CW

and the result follows. ��
From Lemmas 2.3 and 2.4 Proposition 2.1 follows at once. The proof shows that

one can actually take C1 = 22+k(7+d(2k−1)). We are now ready to finish the proof of
Theorem A, which we state here in full generality:

Theorem 2.5 Let α be a Carleson sequence and let P0 be a dyadic cube. For every
k-tuple of nonnegative integrable functions f1, . . . , fk on P there exists a sparse
collection S of cubes in D(P) such that

Am
P,α

�f (x) ≤ C2

∑

Q∈S

(
k∏

i=1

〈 fi 〉Q

)
1Q(x).

Proof If m = 0 we can just apply Proposition 2.1 after noting that A0
P0,α

can be

written as A1;0
P0,β

, where

βQ = αQ(1) .

One easily sees that ‖α‖Car(P0) = ‖β‖Car(P0). Hence, we may assume that m ≥ 1.
Recall the expression
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1122 J. M. Conde-Alonso, G. Rey

Am
P0,α

�f (x) =
m−1∑

n=0

∑

P∈Dn(P0)

Am;0
P,α

�f (x).

from the beginning of the section. By Proposition 2.1, for each 0 ≤ n ≤ m − 1 and
each P ∈ Dn(P0) we can find a sparse collection of cubes Sn

P ⊂ D(P) such that

Am;0
P,α

�f (x) ≤ C1‖α‖Car(P0)

∑

Q∈Sn
P

(
k∏

i=1

〈 fi 〉Q

)
1Q(x).

Observe that the collection Sn = ∪P∈Dn(P0)Sn
P is also sparse, so

Am
P0,α

�f (x) ≤ C1‖α‖Car(P0)

m−1∑

n=0

∑

Q∈Sn

(
k∏

i=1

〈 fi 〉Q

)
1Q(x). (2.4)

For 0 ≤ n ≤ m − 1 define

μn
Q =

{
1 if Q ∈ Sn

0 otherwise.

Since the collections Sn are sparse, the sequences μn are Carleson sequences with
‖μn‖Car(P0) ≤ 2, therefore the sequence

μQ :=
m−1∑

n=0

μn
Q

is also Carleson with ‖μ‖Car(P0) ≤ 2m.
With this we can continue the argument using estimate (2.4) and the case m = 0:

Am
P0,α

�f (x) ≤ C1‖α‖Car(P0)

m−1∑

n=0

∑

Q∈Sn

(
k∏

i=1

〈 fi 〉Q

)
1Q(x)

= C1‖α‖Car(P0)

m−1∑

n=0

∑

Q∈D(P0)

μn
Q

(
k∏

i=1

〈 fi 〉Q

)
1Q(x)

= C1‖α‖Car(P0)

∑

Q∈D(P0)

μQ

(
k∏

i=1

〈 fi 〉Q

)
1Q(x)

= C1‖α‖Car(P0)A0
P0,μ

�f (x)

≤ C1‖α‖Car(P0)C12m
∑

Q∈S

(
k∏

i=1

〈 fi 〉Q

)
1Q(x),

which yields the result with C2 = 2C2
1 . ��
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Remark 2.6 The above procedure does not rely on any specific property of the
Lebesgue measure. In fact, Theorem A also holds when we replace all averages—
both in complexity 0 and complexity m operators—by averages with respect to any
other locally finite Borel measure, because the proof is unaffected.

We nowdetail how to use TheoremA to derive themultilinear version of Corollaries
A.1 and A.2. For us, a multilinear Calderón-Zygmund operator will be an operator T
satisfying

T ( f1, . . . , fk) =
∫

Rdk
K (x, y1, . . . , yk) f1(y1) . . . fk(yk)dy1 . . . dyk

for all x /∈ ∩k
i=1 supp fi for appropriate fi . Also we will require that T extends to a

bounded operator from Lq1 × · · · Lqk to Lq where

1

q
= 1

q1
+ · · · + 1

qk
,

and that it satisfies the size estimate

|K (y0, . . . , yk)| ≤ A
(∑k

i, j=0 |yi − y j |
)kd

.

ω will be the modulus of continuity of the kernel of the operator i.e. a positive nonde-
creasing continuous and doubling function that satisfies

|K (y0, . . . , y j , . . . , yk) − K (y0, . . . , y′
j , . . . , yk)|

≤ Cω

( |y j − y′
j |∑k

i, j=0 |yi − y j |

)
1

(∑k
i, j=0 |yi − y j |

)kd

for all 0 ≤ j ≤ k, whenever |y j − y′
j | ≤ 1

2 max0≤i≤k |y j − yi |. We can now prove
Corollary A.1:

Proof of Corollary A.1 Fix a measurable f , and a cube Q0 ⊂ R
d . Our starting point

is the formula

|T �f (x) − mT �f (Q0)| �
∑

Q∈S

∞∑

m=0

ω(2−m)

m∏

i=1

〈| fi |〉2m Q1Q(x),

which holds for a sparse subcollection S ⊂ D(Q0) (see [5,10], we are implicitly
using a slight improvement of Lerner’s formula which can be found in [8, Theorem
2.3]). Here m f (Q) denotes the median of a measurable function f over a cube Q (see
[16] for the precise definition), which satisfies

|m f (Q)| �
‖ f ‖L1,∞(Q)

|Q| .
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Hence we can just write

|T �f (x)| �
∞∑

m=0

ω(2−m)

m∏

i=1

〈| fi |〉2m Q1Q(x), (2.5)

By an elaboration of
∑

Q∈S the well-known one-third trick, it was proven in [10] that
there exist dyadic systems {Dρ}ρ∈{0,1/3,2/3}d such that for every cube Q in R

d and
every m ≥ 1, there exists ρ ∈ {0, 1/3, 2/3}d and RQ,m ∈ Dρ such that

Q ⊂ RQ,m, 2m Q ⊂ Q(m), 3�(Q) < �(RQ,m) ≤ 6�(Q).

Also, we may assume that for each ρ ∈ {0, 1/3, 2/3}d there exists a cube P(ρ) such
that Q0 ⊂ P(ρ) ⊂ cd P(ρ) for some dimensional constant cd . Using this, we can
further write (2.5) as

|T �f (x)| �
∑

ρ∈{0, 13 , 23 }d

∞∑

m=0

ω(2−m)
∑

Q∈SRQ,m∈Dρ

(
k∏

i=1

〈| fi |〉R(m)
Q,m

)
1RQ .

Let Fρ
m = {RQ,m : RQ ∈ Dρ} ⊂ D(P(ρ)). Then, we can estimate

|T �f (x)| � 6d
∑

ρ∈{0, 13 , 23 }d

∞∑

m=0

ω(2−m)
∑

R∈Fρ
m

(
k∏

i=1

〈| fi |〉R(m)

)
1R,

since at most 6d cubes Q inD aremapped to the same cube RQ,m . Define the sequence

α
ρ
Q =

{
1 if Q ∈ Fρ

m

0 otherwise.

The collections Fρ
m are 2−1 · 6−d -sparse, and hence Carleson with constant 2 · 6d . In

order to apply Theorem A, for each fixed ρ ∈ {
0, 1

3 ,
2
3

}d
, m ≥ 0, we now split the

sum as follows:

∑

Q∈Dρ

α
ρ
Q

(
k∏

i=1

〈| fi |〉Q(m)

)
1Q(x) =

∑

Q∈D≥m (P(ρ))

α
ρ
Q

(
k∏

i=1

〈| fi |〉Q(m)

)
1Q(x)

+
∞∑

�=1

∑

Q∈Dm−�(P(ρ))

α
ρ
Q

(
k∏

i=1

〈| fi |〉Q(m)

)
1Q(x)

= I + II.
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Now, since fi is supported on Q0 ⊂ P(ρ) for 1 ≤ i ≤ k and all ρ ∈ {
0, 1

3 ,
2
3

}d
, we

claim that II ≤ I. Indeed, compute

∞∑

�=1

∑

Q∈Dm−�(P(ρ))

α
ρ
Q

(
k∏

i=1

〈| fi |〉Q(m)

)
1Q(x) ≤

∞∑

�=1

∑

Q∈Dm−�(P(ρ))

(
k∏

i=1

〈| fi |〉Q(m)

)
1Q(x)

=
∞∑

�=1

(
k∏

i=1

〈| fi |〉P(ρ)(�)

)
.

Now observe that, by the support condition on the tuple �f ,

k∏

i=1

〈| fi |〉P(ρ)(�) = 2−dk�
k∏

i=1

〈| fi |〉P(ρ),

which is enough to prove the claim. Therefore, we only need to work in the localized

cubes P(ρ), ρ ∈ {
0, 1

3 ,
2
3

}d
. Therefore, we can obtain the first assertion of Corollary

A.1 applying Theorem A:

|T �f (x)| �
∑

ρ∈{0, 13 , 23 }d

∞∑

m=0

ω(2−m)
∑

Q∈Dρ, Q⊂P(ρ)(m)

α
ρ
Q

(
k∏

i=1

〈| fi |〉Q(m)

)
1Q(x)

�
∑

ρ∈{0, 13 , 23 }d

∞∑

m=0

ω(2−m)(m + 1)
∑

Q∈Sm, �f

(
k∏

i=1

〈| fi |〉Q

)
1Q

=
∑

ρ∈{0, 13 , 23 }d

∞∑

m=0

ω(2−m)(m + 1)ASm, �f
�f (x),

for sparse collections Sm, �f that may depend both on m and �f (and which are subfam-
ilies of D(P(ρ)) for each value of ρ). Now, reorganizing the sum above we obtain

|T �f (x)| �
∑

ρ∈{0, 13 , 23 }d

∑

Sm, �f ⊂Dρ

ω(2−m)(m + 1)ASm, �f
�f (x)

=:
∑

ρ∈{0, 13 , 23 }d

Aρ
�f (x).

Now, by the logarithmic Dini condition, each of the operatorsAρ is bounded above by
some absolute constant times a 0-shift whose associated sequence is 1-Carleson (and
localized in P(ρ)) to which we can apply again Theorem A. Therefore, we obtain
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1126 J. M. Conde-Alonso, G. Rey

|T �f (x)| �
∑

ρ∈{0, 13 , 23 }d

ASρ
�f (x),

for some sparse families Sρ ⊂ Dρ which depend on �f . ��
We now introduce the notion of function quasi-norm. We say that ‖ · ‖X, defined

on the set of measurable functions, is a function quasi-norm if:

(P1): There exists a constant C > 0 such that

‖ f + g‖X ≤ C (‖ f ‖X + ‖g‖X) ,

(P2): ‖λ f ‖X = |λ|‖ f ‖X for all λ ∈ C.
(P3): If | f (x)| ≤ |g(x)| almost-everywhere then ‖ f ‖X ≤ ‖g‖X.
(P4): ‖ lim infn→∞ fn‖X ≤ lim infn→∞ ‖ fn‖X

Fix some dyadic system D such that there exists an increasing sequence of
dyadic cubes {P�}� ⊂ D whose union is the whole space R

d , and denote 1P�
�f =

(1P�
f1, . . . ,1P�

fk). Now, taking into account properties (P1) and (P3), if we take
quasi-norms in the second assertion of Corollary A.1, we have

‖1P�
T (1P�

�f )‖X � sup
D ,S

‖AS(1P�
�f )‖X ∀�.

On the one hand, since �f is integrable, T (1P�
�f ) converges pointwise to T ( �f ). There-

fore, we have

1P�
T (1P�

�f ) → T ( �f )

pointwise. Finally, we apply property (P4) and we get

‖T �f ‖X =
∥∥∥∥lim inf

�
1P�

T (1P�
�f )

∥∥∥∥
X

≤ lim inf
�

∥∥∥1P�
T (1P�

�f )

∥∥∥
X

� sup
D ,S

∥∥∥AS �f
∥∥∥

X

.

This is exactly Corollary A.2.

Remark 2.7 We note that the dependence on m in the pointwise estimate of shifts of
complexity m must be at least linear in m. To see this, let us work in dimension one
and fix a large integer m. For any interval I = [a, b) let I j be the j-th interval of
Dm(I ):

I j = a + |I |[ j2−m, ( j + 1)2−m).

Define a tower over an interval I to be the collection of intervals

TI =
{
[a, a + 2−k |I |) : k ∈ N

}
.

The collection of intervals S = ⋃
J∈Dm(I ) TJ is a sparse collection. Now consider

a function f on I which is defined by
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f (x) =
{
0 if x ∈ I j with j even,

2 otherwise.

Denote gen(J ) = log2(�(I )�(J )−1) for cubes J ∈ D(I ). Observe that for any
dyadic interval J ⊆ I with gen(J ) ≤ m − 1 we have

〈 f 〉J = 1.

Consider now the action of Am
S on f . If x ∈ (I j )0 with j even then

Am
S f (x) = m.

In order to construct a collection S ′ of intervals in I for which we have

Am
S f (x) ≤ CA0

S ′ f (x),

we would need to select every interval J ⊂ I with gen(J ) ≥ m − 1. Indeed, let I k(x)

be the interval in Dk(I ) which contains x and let αJ be 1 if J ∈ S ′ and 0 otherwise.
Then

CA0
S ′ f (x) = C

m−1∑

k=0

αI k (x) ≥ m

for all x ∈ (I j )0 with j even. This implies that at least m/C of these intervals must
be in S ′. But this implies that the height

∑

J∈S ′
αJ1J (x) ≥ m/C

on half of the interval I , which contradicts the hypothesis of S ′ being sparse if m is
large enough.

3 Applications

We are now ready to fully state and prove the applications of the pointwise bound as
stated in the introduction. We begin with the multilinear sharp weighted estimates:

3.1 Multilinear A2 theorem

We need some more definitions first. These were introduced in [20].

Definition 3.1 (A �P weights) Let �P = (p1, . . . , pk) with 1 ≤ p1, . . . , pk < ∞ and
1
p = 1

p1
+ · · · + 1

pk
. Given �w = (w1, . . . , wk), set
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1128 J. M. Conde-Alonso, G. Rey

v �w =
k∏

i=1

w
p/pi
i .

We say that �w satisfies the k-linear A �P condition if

[ �w]A �P := sup
Q

(
1

|Q|
∫

Q
v �w

) k∏

i=1

(
1

|Q|
∫

Q
w

1−p′
i

i

)p/pi

.

Wecall [ �w]A �P the A �P constant of �w. As usual, if pi = 1 thenwe interpret 1
|Q|

∫
Q w

1−p′
i

i

to be (essinfQ wi )
−1.

The following theorem was proved in [21]:

Theorem 3.2 Suppose 1 < p1, . . . , pk < ∞, 1
p = 1

p1
+· · ·+ 1

pk
and �w ∈ A �P . Then

‖AS �f ‖L p(v �w) � [w]
max

(
1,

p′
1
p ,...,

p′
k
p

)

A �P

k∏

i=1

‖ fi‖L p(wi ),

whenever S is sparse.

We can now use Corollary A.2 to extend the above result to general k-linear
Calderón-Zygmund operators:

Theorem 3.3 Under the conditions of Theorem 3.2, for any k-linear Calderón-
Zygmund operator T , we have

‖T �f ‖L p(v �w) � [ �w]
max

(
1,

p′
1
p ,...,

p′
k
p

)

A �P

k∏

i=1

‖ fi‖L p(wi ).

Proof We just need to apply Corollary A.2 with ‖ · ‖X := ‖ · ‖L p(v �w), which clearly is
a function quasi-norm. The assumption of �f being integrable is a qualitative one and
can be trivially removed by the usual density arguments. ��

3.2 Sharp aperture weighted Littlewood-Paley theorem

Herewe followLerner [17], the reader can find a nice introduction and some references
there. We begin with some definitions:

Let ψ ∈ L1(Rd) with
∫
Rd ψ(x) dx = 0 satisfy

|ψ(x)| � 1

(1 + |x |)d+ε
(3.1)

∫

Rd
|ψ(x + h) − ψ(x)| dx � |h|ε. (3.2)
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We will denote the upper half-space R
d × R by R

d+1+ and the α-cone at x by

�α(x) =
{
(y, t) ∈ R

d+1+ : |y − x | ≤ αt
}

.

Let ψt be the dilation of ψ which preserves the L1 norm, i.e.: ψt (x) = t−dψ(x/t),
then we can define the square function Sα,ψ f by

Sα,ψ f (x) =
(∫

�α(x)

|( f ∗ ψt )(y)|2 dy dt

td+1

)1/2

.

We will also need a regularized version. Let � be a Schwartz function such that

1B(0,1)(x) ≤ �(x) ≤ 1B(0,2)(x).

We define the regularized square function S̃α,ψ by

S̃α,ψ f (x) =
(∫

R
d+1+

�

(
x − y

tα

)
|( f ∗ ψt )(y)|2 dy dt

td+1

)1/2

.

The regularized version can be used instead of Sα,ψ in most cases since we have

Sα,ψ f (x) ≤ S̃α,ψ f (x) ≤ S2α,ψ f (x).

It was proved in [17] that

|(S̃α,ψ f (x))2 − (m Q0(S̃α,ψ f )2)| � α2d
∞∑

m=0

2−δm
∑

Q∈S
〈| f |〉22m Q1Q(x)

By the same Theorem A in its bilinear formulation (with f1 = f2 = f ), the last
expression can be bounded, up to a constant, by an expression of the form

α2d
∑

ρ∈{0, 13 , 23 }d

∞∑

m=0

2−δm(m + 1)
∑

Q∈Sρ,m

〈| f |〉2Q1Q(x).

As in [17], we know (a priori) that m Q0(S̃α,ψ f ) → 0 as |Q| → ∞ so by the
triangle inequality and Fatou’s Lemma we can ignore that term (or by arguing as we
did in the previous section). Finally, arguing as in the proof of Corollaries A.1 and
A.2, we arrive at

‖S̃α,ψ f ‖L p,∞(w) � αd sup
D ,S

‖A0
S( f, f )1/2‖L p,∞(w),
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where the supremum is taken over all dyadic gridsD and all sparse collectionsS ⊂ D .
To finish the argument we recall the following result, which was shown in [13]:

‖A0
S( f, f )1/2‖L p,∞(w) � [w]max( 12 , 1p )

Ap
�p([w]Ap )‖ f ‖L p(w) (3.3)

for 1 < p < 3, where

�p(t) =
{
1 if 1 < p < 2

1 + log t if 2 ≤ p < 3.

We are thus able to extend Lerner’s estimate to 1 < p ≤ 2, obtaining

‖Sα,ψ f ‖L p,∞(w) � αd [w]1/p
Ap

‖ f ‖L p(w) for 1 < p < 2

and
‖Sα,ψ f ‖L2,∞(w) � αd [w]1/2A2

(1 + log[w]A2)‖ f ‖L2(w).

Acknowledgments The authors wish to thank Javier Parcet, Ignacio Uriarte-Tuero and Alexander Volberg
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Appendix: The weak-type estimate for multilinear m-shifts

Here we prove the weak-type estimate for k-linear m-shifts needed in Sect. 2. Notice
that the only important point of the estimates below is the independenceof the constants
from the parameterm. The proof could bemore or less standard by now, but the authors
have not been able to find it elsewhere. Therefore we include it for completeness.

Theorem 4.1

sup
λ>0

λ|
{

x ∈ P0 : Am
P0,α

�f (x) > λ
}

|k ≤ CW ‖α‖Car(P0)

k∏

i=1

‖ fi‖L1(P0), (4.1)

where CW > 0 only depends on k and d, and in particular is independent of m.

We will essentially follow Grafakos-Torres [6,9]. We first prove an L2 bound and
then apply a Calderón-Zygmund decomposition. For the L2 bound we will use a
multilinear Carleson embedding theorem by Chen and Damián [2], from which we
only need the unweighted result:

⎛

⎝
∑

Q∈D(P0)

αQ

(
k∏

i=1

〈 fi 〉Q

)p⎞

⎠

1
p

≤ ‖α‖Car(P0)

k∏

i=1

p′
i‖ fi‖L pi (P0) (4.2)
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whenever
1

p
= 1

p1
+ · · · + 1

pk
.

Now we can prove

Proposition 4.2

‖Am
P0,α

�f ‖L2(P0) ≤ 4‖α‖Car(P0)

k∏

i=1

‖ fi‖L2k (P0)

Proof We begin by using duality and homogeneity to reduce to showing

∫

P0
g(x)Am

P0,α
�f (x) dx ≤ 4

assuming that ‖ fi‖L2k (P0) = ‖g‖L2(P0) = ‖α‖Car(P0) = 1 and g ≥ 0. By definition
and Cauchy-Schwarz, this is equivalent to

⎛

⎝
∑

Q∈D≥m (P0)

αQ

(
k∏

i=1

〈 fi 〉Q(m)

)2

|Q|
⎞

⎠
1/2 ⎛

⎝
∑

Q∈D≥m (P0)

αQ〈g〉2Q |Q|
⎞

⎠
1/2

.

The second term can be estimated, using (4.2) in the linear case, by

⎛

⎝
∑

Q∈D≥m (P0)

αQ〈g〉2Q |Q|
⎞

⎠
1/2

≤ 2.

For the first term observe that the sequence βQ defined by

βQ = 1

2dm

∑

R∈Dm(Q)

αR

is a Carleson sequence adapted to P0 of the same constant. Indeed:

1

|Q|
∑

R∈D(Q)

βR |R| = 1

|Q|
∑

R∈D(Q)

|R| 1

2dm

∑

T ∈Dm (R)

αT

= 1

|Q|
∑

R∈D(Q)

∑

T ∈Dm (R)

αT |T |

= 1

|Q|
∑

R∈D≥m(Q)

αR |R|

≤ ‖α‖Car(I )

= 1.
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Therefore, we can write the first term as

⎛

⎝
∑

Q∈D(P0)

βQ

(
k∑

i=1

〈 fi 〉Q

)2

|Q|
⎞

⎠
1/2

,

which can also be estimated by (4.2) as follows:

⎛

⎝
∑

Q∈D(P0)

βQ

(
k∑

i=1

〈 fi 〉Q

)2

|Q|
⎞

⎠
1/2

≤
(

2k

2k − 1

)k

≤ 2.

Combining both terms we arrive at

∫

P0
g(x)Am

P0,α
�f (x) dx ≤ 4

which is what we wanted. ��
Now we can prove Theorem 4.1.

Proof By homogeneity we can assume ‖α‖Car(P0) = ‖ fi‖L1(P0) = 1. We now follow
the classical scheme which uses the L2 bound and a standard Calderón-Zygmund
decomposition, see for example Grafakos-Torres [6]. However, we need to be careful
with the dependence on m, so we will adapt the proof in [9] to our operators.

Assume without loss of generality that fi ≥ 0. Define

�i =
{

x ∈ P0 : Md fi (x) > λ1/k
}

.

If 〈 fi 〉P0 > λ1/k then by the homogeneity assumption

|P0| < λ−1/k

and the estimate follows. Therefore, we can assume 〈 fi 〉P0 ≤ λ1/k for all 1 ≤ i ≤ k
and hence we can write �i as a union the cubes in a collection Ri consisting of
pairwise disjoint dyadic (strict) subcubes of P0 with the property

〈 fi 〉R > λ1/k and 〈 fi 〉R(1) ≤ λ1/k .

For each 1 ≤ i ≤ k let bi = ∑
R∈Ri

bR
i , where

bR
i (x) := ( fi (x) − 〈 fi 〉R)1R(x).

We now let gi = fi − bi .
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Observe that we have

|gi (x)| ≤ 2dλ1/k,

as well as

|�i | =
∑

R∈Ri

|R| ≤ λ−1/k .

Define � = ∪k
i=1�i , then we have

|{x ∈ P0 : Am
P0,α

�f (x) > λ}| ≤ |�| + |{x ∈ P0\� : Am
P0,α

�f (x) > λ}|
≤ kλ−1/k + |{x ∈ P0\� : Am

P0,α
�f (x) > λ}|. (4.3)

To estimate the second term observe that

Am
P0,α

�f (x) = Am
P0,α(�g + �b)(x)

= Am
P0,α �g(x) +

2k−1∑

j=1

Am
P0,α(h j

1, . . . , h j
k )(x),

where the functions h j
i are either gi or bi and, furthermore, for each 1 ≤ j ≤ 2k − 1

there is at least one 1 ≤ i ≤ k such that h j
i = bi . Fix j and let i j be such that h j

i j
= bi j ,

then

Am
P0(h

j
1, h j

2, . . . , h j
i j
, . . . , h j

k )(x)

=
∑

Q∈D≥m (P0)

αQ

(
k∏

i=1

〈h j
i 〉Q(m)

)
1Q(x)

=
∑

Q∈D≥m (P0)

αQ〈bi j 〉Q(m)

⎛

⎝
∏

1≤i≤k, i �=i j

〈h j
i 〉Q(m)

⎞

⎠1Q(x)

=
∑

R∈Ri j

∑

Q∈D≥m (P0)

αQ〈bR
i j
〉Q(m)

⎛

⎝
∏

1≤i≤k, i �=i j

〈h j
i 〉Q(m)

⎞

⎠1Q(x)

=
∑

R∈Ri j

∑

Q∈D>m (R)

αQ〈bR
i j
〉Q(m)

⎛

⎝
∏

1≤i≤k, i �=i j

〈h j
i 〉Q(m)

⎞

⎠1Q(x).

So we deduce that Am
P0,α

(h j
1, . . . , h j

k )(x) = 0 for all x /∈ �i j . With this fact we can
see that the second term in (4.3) is actually identical to

|{x ∈ P0\� : Am
P0,α �g(x) > λ}|.
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Now we can use the L2 bound as follows:

|{x ∈ P0\� : Am
P0,α �g(x) > λ}| ≤ 1

λ2
‖Am

P0,α �g‖2L2(P0)

≤ 16

λ2

k∏

i=1

‖gi‖2L2k (P0)

≤ 16

λ2

k∏

i=1

(
2dλ1/k

) 2k−1
k ‖gi‖1/k

L1(P0)

= 16

λ2
2d(2k−1)λ2−1/k

= 24+d(2k−1)λ−1/k .

Putting both estimates together we arrive at

|{x ∈ P0 : Am
P0,α

�f (x) > λ}| ≤ 25+d(2k−1)λ−1/k

which yields the result with CW = 2k(5+d(2k−1)). ��
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