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Abstract Given a polar action on a Riemannian manifold, we prove surjectivity of
restriction to the section for general invariant tensors, and a sharper surjectivity result
in the special case of metrics. These are related to the Chevalley Restriction Theorem
andMichor’s Basic Forms Theorem. The proofs rely on results in the Invariant Theory
of finite reflection groups and symmetric pairs, some of which may be of independent
interest.
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1 Introduction

Let (M, g) be a Riemannian manifold and G a Lie group acting on M properly by
isometries. Recall that, by definition (see [13,25]), this action is called polar if there
exists an immersed sub-manifold Σ → M meeting all G-orbits orthogonally. Such a
submanifoldΣ is called a section, and comes with a natural action by a discrete group
of isometries W = W (Σ), called its generalized Weyl group. Sections are always
totally geodesic, and the immersion Σ → M induces an isometry Σ/W → M/G,
so in particular M/G is a Riemannian orbifold.

Denote by C∞(T k,l M)G , respectively C∞(T k,lΣ)W (Σ), the sets of smooth (k, l)-
tensors on M , respectively Σ , which are invariant under G, respectivelyW . Our main
result states that the natural restriction map C∞(T k,l M)G → C∞(T k,lΣ)W (Σ) is
surjective:
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1410 R. A. E. Mendes

Theorem 1 Let M be a polar G-manifold with immersed section i : Σ → M, and
W (Σ) the generalized Weyl group associated to Σ . Define the pull-back (restriction)
map

ψ = i∗ : C∞(T k,l M)G → C∞(T k,lΣ)W (Σ)

by

[ψ(β)](x)(v1, . . . , vl) = P⊗k[β(i(x)((di)xv1, . . . , (di)xvl)]

where P : Ti(x)M → TxΣ is orthogonal projection. Then ψ is surjective.

In the case of functions, that is, (k, l) = (0, 0), the mapψ above is an isomorphism.
This is known as the Chevalley Restriction Theorem—see [25].

Note that Theorem 1 applies to (0, l)-tensors with symmetry properties, such as
symmetric l-tensors, exterior l-forms, etc. This can be phrased naturally in terms of
Weyl’s construction (see [11, Lecture 6]). Recall that Weyl’s construction associates
to each partition λ = (λ1, . . . , λk) of l ∈ N a functor Sλ of vector spaces called its
Schur functor. One recovers Λl and Syml as the Schur functors associated to λ = (l)
and λ = (1, 1, . . . , 1), respectively.

Corollary 1 Let M be a Riemannian manifold with an isometric polar action by G.
Let λ = (λ1, . . . , λk) be a partition of l ∈ N, and consider the associated Schur
functor Sλ. Then the (surjective) restriction mapψ : C∞(T 0,l M)G → C∞(T 0,lΣ)W

induces a surjective map

ψλ : C∞(Sλ(T
∗M))G → C∞(Sλ(T

∗Σ))W

For context, consider a special case of Corollary 1: exterior l-forms. Then the
conclusion of Corollary 1 is implied byMichor’s Basic Forms Theorem—see [23,24].
In fact, Michor’s Theorem gives more precise information: it states that for a polar
G-manifold M with section Σ , every smooth W (Σ)-invariant l-form on Σ can be
extended uniquely to a smoothG-invariant l-formonM which is basic, that is, vanishes
when contracted with vectors tangent to the G-orbits.

Now consider Riemannian metrics:

Theorem 2 Let G act polarly on the Riemannian manifold M with section Σ and
generalized Weyl group W. Assume this polar action is of classical type. Consider the
restriction map (which is surjective by Corollary 1):

ψ = |Σ : C∞(Sym2M)G → C∞(Sym2Σ)W

For any Riemannian metric σ ∈ C∞(Sym2Σ)W , there is a Riemannian metric σ̃ ∈
C∞(Sym2M)G such that ψ(σ̃ ) = σ, and with respect to which the G-action is polar
with the same section Σ .
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Extending tensors on polar manifolds 1411

See page 10 for the precise definition of classical type. This assumption can be
removed if one is willing to accept a proof relying on calculations performed by a
computer—see the Appendix. (We label statements with computer-assisted proofs
“Observations”.)

Observation 1 Theorem 2 is valid without the classical type assumption.

For Theorem 2, Observation 1, andMichor’s Basic Forms Theorem, the proof relies
on polarization results in the Invariant Theory of finite reflection groups—see Sect. 4.
On the other hand, the main ingredient in the proof of Theorem 1 is a multi-variable
version of the Chevalley Restriction Theorem due to Tevelev—see Sect. 2.

An application of Theorem 2 (for classical type, and Observation 1 in general) is
to give a partial answer to a natural question by K. Grove: given a proper isometric
action of G on a Riemannian manifold (M, g), describe the set of all metrics on M/G
which are induced by smooth G-invariant metrics g0 on M . Theorem 2 answers this
question under the additional hypothesis that M is a polar G-manifold. Namely, that
set of metrics on M/G = Σ/W coincides with the set of smooth orbifold metrics.

Another application is an important step in the main reconstruction result in [13].
This was in fact our main motivation for this work.

The present paper is organized as follows.
In Sect. 2 we state Tevelev’s multi-variable version of the Chevalley Restriction

Theorem for isotropy representations of symmetric spaces (Theorem3), and generalize
it to the class of polar representations (Corollary 2).

Section 3 is concerned with the proofs of Theorem 1 and Corollary 1.
In Sect. 4 we show how the algebraic results behindMichor’s Basic Forms Theorem

[23,24], Theorem 2, and Observation 1 (namely Solomon’s Theorem [29], Theorem 4,
and Observation 2) are in fact results about polarizations in the Invariant Theory of
finite reflection groups. We then show in detail how Theorem 2 (respectively Obser-
vation 1) follows from Theorem 4 (respectively Observation 2).

The Appendix provides proofs of Theorem 4 and Observation 2. The latter is
computer-assisted.

2 Multi-variable Chevalley restriction theorem

Let (G, K ) be a symmetric pair, and consider the isotropy representation of K on
V = TKG/K , also called an s-representation. This is polar, and any maximal abelian
sub-algebraΣ ⊂ V is a section. Its generalizedWeyl groupW is also called the “baby
Weyl group”. The classic Chevalley Restriction Theorem says that

|Σ : R[V ]K → R[Σ]W

is an isomorphism (see [33, page 143]).
Now consider the diagonal action of K on Vm (respectively W on Σm), and the

corresponding algebras of invariant (m-variable) polynomials R[Vm]K (respectively
R[Σm]W ). In contrast with the single-variable case, the restriction map |Σ is not
injective. On the other hand, surjectivity is due to Tevelev:
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1412 R. A. E. Mendes

Theorem 3 [31] In the notation above, the restrictionmap |Σ : R[Vm]K → R[Σm]W
is surjective.

Remarks The proof of Theorem 3 relies on the Kumar–Mathieu Theorem, previously
known as the PRV conjecture, see [19,20]. Joseph [17] previously proved the theorem
above in the special case of the adjoint action, using similar techniques. In [31] the
Theorem above is stated only for m = 2 factors. But on page 324 it is remarked
that “Actually, this (and Josephs’s) Theorem also holds for any number of summands
[…] ”.

We observe that Theorem 3 generalizes to the class of polar representations (see
[5] for a treatment of polar representations).

Corollary 2 Let K ⊂ O(V ) be a polar representation, with section Σ and general-
ized Weyl group W ⊂ O(Σ). Then the m-variable restriction is surjective:

|Σ : R[Vm]K → R[Σm]W
Proof Let K0 be the connected component of K which contains the identity. It is polar
with the same section Σ . Let W0 be its generalized Weyl group, so that W0 ⊂ W .
From the classification of irreducible polar representations in [5], it follows that the
maximal subgroup K̃ ⊂ O(V ), containing K0, that is orbit-equivalent to K0, defines
an s-representation. (This fact has been given a classification-free proof in [7].) Note
that K0 and K̃ have the same sections and generalized Weyl groups.

Theorem 3 states that

|Σ : R[Vm]K̃ → R[Σm]W0

is surjective. But since K̃ ⊃ K0, we have R[Vm]K̃ ⊂ R[Vm]K0 , and so

|Σ : R[Vm]K0 → R[Σm]W0

is again surjective.
Finally, to show |Σ : R[Vm]K → R[Σm]W is surjective, let β ∈ R[Σm]W . Then

there is β̃0 ∈ R[Vm]K0 which restricts to β. Define

β̃ = 1

|K/K0|
∑

h∈K/K0

hβ̃0

Since β̃ equals the average of β̃0 over K , it is K -invariant. To show that β̃|Σ = β, we
note that each coset hKo ∈ K/K0 can be represented by some h ∈ N (Σ). Indeed, for
an arbitrary h ∈ K , hΣ is a section for K , hence also for K0. Since K0 acts transitively
on the sections, there is h0 ∈ K0 such that hh−1

0 ∈ N (Σ). Therefore

β̃|Σ = 1

|K/K0|
∑

h∈K/K0

(hβ̃0)|Σ = 1

|K/K0|
∑

β = β

because β is W -invariant.
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Extending tensors on polar manifolds 1413

Note that the algebra of multi-variable polynomials R[Vm] is graded by m-tuples
of natural numbers (d1, . . . , dm), and similarly for R[Σm]. Consider the subspace
generated by the polynomials of degree (∗, 1, . . . , 1). These can be identified with
those tensor fields of type (0,m − 1) which have polynomial coefficients, that is,
members of R[V, (V ∗)m−1], respectively R[Σ, (Σ∗)m−1].

Since this grading is preserved by the restriction map |Σ , Corollary 2 implies:

Corollary 3 Let K ⊂ O(V ) be a polar representation, with section Σ and gener-
alized Weyl group W ⊂ O(Σ). Then the restriction map for polynomial-coefficient
invariant (0, l − 1)-tensors

|Σ : R[V, (V ∗)l−1]K → R[Σ, (Σ∗)l−1]W

is surjective.

3 Extending tensors

The goal of this section is to provide proofs of Theorem 1 and Corollary 1. We start
with two Lemmas that will be used in proving Theorem 1.

Lemma 1 Let V be a polar K -representation with section Σ and generalized Weyl
group W. Then restriction to Σ is a surjective map

|Σ : C∞(T 0,l V )K → C∞(T 0,lΣ)W

Proof The space of polynomial-coefficient (0, l)-tensors R[V, (V ∗)l ]K ⊂
C∞(T 0,l V )K is generated, as an R[V ]K -module, by finitely many (homogeneous)
σ1, . . . , σr (see [30, Proposition 2.4.14]).

Since R[V ]K = R[Σ]W , Corollary 3 implies that the restrictions σ1|Σ, . . . , σr |Σ
generate R[Σ, (Σ∗)l ]W as an R[Σ]W -module.

Then, by an argument involving the Malgrange Division Theorem and the fact
that R[Σ, (Σ∗)l ]W is dense in C∞(T 0,lΣ)W (see [8, Lemma 3.1]), we conclude that
σ1|Σ, . . . , σr |Σ generate C∞(Σ, (Σ∗)l)W = C∞(T 0,lΣ)W as a C∞(Σ)W -module.
This implies that |Σ : C∞(T 0,l V )K → C∞(T 0,lΣ)W is surjective.

The next lemma describes the smooth G-invariant tensors on a tube U = G ×K V
in terms of smooth K -invariant tensors on the slice V .

Lemma 2 Let K ⊂ G be Lie groups with K compact, and V be a K -representation.
Define U = G ×K V to be the quotient of G × V by the free action of K given by
k · (g, v) = (gk−1, kv), and identify V with the subset of U which is the image of
{1} × V ⊂ G × V under the natural quotient projection G × V → U .

Then there is a K -representation H and an isomorphism

C∞(T 0,l V )K × C∞(V, H)K → C∞(T 0,lU)G

123



1414 R. A. E. Mendes

Under this identification the restriction map

|V : C∞(T 0,lU)G → C∞(T 0,l V )K

corresponds to projection onto the first factor. In particular |V is onto.

Proof To describe H , let p ∈ U be the image of (1, 0) ∈ G×V inU . Then (V ∗)⊗l is a
K -invariant subspace of (T ∗

pU)⊗l , and we define H to be its K -invariant complement,
so that

(T ∗
pU)⊗l = (V ∗)⊗l ⊕ H

as K -representations.
We define Ψ : C∞(T 0,l V )K × C∞(V, H)K → C∞(T 0,lU)G in the following

way: Given (β1, β2) ∈ C∞(T 0,l V )K × C∞(V, H)K , let β̃ : G × V → T 0,lU be
given by

β̃(g, v) = g · (β1(v) + β2(v))

Since β̃ is K -invariant, it descends to β = Ψ (β1, β2) : U → T 0,lU .
The map β is smooth because β̃ is smooth and the action of K on G × V is free.

Moreover β is clearly a G-invariant cross-section of the bundle T 0,lU → U , and
β|V = β1.

Now the proof of Theorem 1 essentially follows from Lemmas 1 and 2, together
with the Slice Theorem (see [2]) and partitions of unity:

Proof of Theorem 1 First note that it is enough to consider (0, l) tensors. Indeed, ψ

for (k, l) tensors equals the composition of ψ for (0, k + l)-tensors with raising and
lowering indices (using the Riemannian metric on M) to transform between (k, l)-
tensors and (0, k + l)-tensors.

It is enough to prove surjectivity of ψ locally around each orbit in M , because of
the existence of G-invariant partitions of unity subject to any cover by G-invariant
open sets in M .

So let p ∈ M be an arbitrary point, with orbit Gp, isotropy K = Gp, and slice
V = (TpGp)⊥. The Slice Theorem (see [2]) then says that for an open G-invariant
tubular neighborhood U of the orbit Gp there is a G-equivariant diffeomorphism

E : G ×K V → U

From now on we will identify U with G ×K V through E .
The slice representation of K on V is polar (see [25]). If Σ ⊂ V is a section with

generalized Weyl group W (Σ), the quotients U/G, V/K and Σ/W are isometric.
Since the inclusion Σ → U factors as Σ → V → U , the restriction map ψ factors

as ψ = |VΣ ◦ |UV , where

|VΣ : C∞(T 0,l V )K → C∞(T 0,lΣ)W |UV : C∞(T 0,lU)G → C∞(T 0,l V )K
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Extending tensors on polar manifolds 1415

Both these maps are surjective, by Lemmas 1 and 2. Therefore ψ is surjective.

Now we turn to Corollary 1, about (0, l)-tensors with symmetry properties, such
as exterior forms and symmetric tensors.

Proof of Corollary 1 The Schur functor Sλ is defined in terms of a certain element
cλ ∈ ZSl in the group ring ZSl , called the Young symmetrizer associated to λ—see
[11, Lecture 6]. Indeed, given a vector space V , the group Sl acts on V⊗l , and so cλ

determines a linear map V⊗l → V⊗l . The image of this map is defined to be Sλ(V ).
Thus C∞(Sλ(T ∗M)) is simply the image of the natural map

cλ : C∞(T 0,l M) → C∞(T 0,l M)

and similarly for C∞(Sλ(T ∗M))G (because the actions of G and Sl commute), and
C∞(Sλ(T ∗Σ))W .

Since the restriction map ψ is Sl -equivariant and surjective, it takes the image of

cλ : C∞(T 0,l M)G → C∞(T 0,l M)G

onto the image of

cλ : C∞(T 0,lΣ)W → C∞(T 0,lΣ)W

completing the proof.

4 Polarizations and finite reflection groups

An alternative way of proving special cases of Theorem 3 is given by the polarization
technique. This has the advantage of providing explicit lifts, which we exploit to prove
Theorem 2 and Observation 1.

We start by recalling the definition of polarizations (see [27] for a reference). Let
U be an Euclidean vector space, and H → O(U ) be a representation of the group H .
Consider the diagonal action of H on m copies of U , and the corresponding algebra
of invariant (m-variable) polynomials R[Um]H . Identify R[U ]H with the elements of
R[Um]H which depend only on the first variable.

The method of polarizations consists of generating multi-variable invariants from
single-variable invariants. Indeed, assuming f ∈ R[U ]H is homogeneous of degree
d, let t1, . . . , tm be formal variables, and formally expand

f (t1v1 + · · · + tmvm) =
∑

r1+···+rm=d

tr11 · · · trmm fr1,...,rm (v1, . . . , vm)

Then each fr1,...,rm belongs to R[Um]H , and is called a polarization of f .
An alternative but equivalent definition of polarizations is given in terms of polar-

ization operators—see [32]. These are differential operators Di j (for 1 ≤ i, j ≤ m)
on R[Um]H defined by
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1416 R. A. E. Mendes

(Di j f )(u1, . . . , um) = d

dt

∣∣∣∣
t=0

f (u1, . . . , u j + tui , . . . , um)

Then one defines the subalgebra Pm ⊂ R[Um]H of polarizations to be the smallest
subalgebra of R[Um]H containing R[U ]H and stable under the operators Di j .

For example, if f ∈ R[U ]H , then the tensors d f = D2,1 f ∈ R[U 2]H andHess f =
D2,1(D3,1 f ) ∈ R[U 3]H are polarizations. Similarly, if f1, . . . , f p ∈ R[U ]H , then
d f1 ⊗ d f2 ⊗ · · · ⊗ d f p = (D2,1 f1) · · · (Dp+1,1 f p) is a polarization, and so is d f1 ∧
· · · ∧ d f p. (Here we are identifying tensor fields with multi-variable functions as in
Sect. 2.)

Now consider the special case where H = W is a finite group generated by reflec-
tions onU = Σ . Recall thatW is the product of a finite number of irreducible reflection
groups, and that irreducible finite reflection groups are classified into types: Dihedral,
An , Bn , Dn (called “classical”), and six exceptional groups H3, H4, F4, E6, E7, and
E8. We say a reducible W is of classical type if each of its factors is of classical type.

If W is irreducible of type A, B, or dihedral, then Pm = R[Σm]W by [15,34].
It was noted by Wallach [32] that R[Σm]W is not generated by polarizations for

W of type Dn for n > 3 and m > 1. He proposed a definition of generalized polar-
izations, and showed that these do generate all multi-variable invariants for type D.
Unfortunately Wallach’s generalized polarizations fail to generate all multi-variable
invariants for W of type F4 (see [15]).

ForW of general type, even though Pm �= R[Σm]W , one can still identify geomet-
rically interesting subspaces of R[Σm]W which are contained in Pm . For example,
Solomon’s Theorem [29] states that the subspace R[Σ,Λm−1Σ∗]W ⊂ R[Σm]W of
exterior (m−1)-forms is contained inPm . Another example is the space of symmetric
2-tensors:

Theorem 4 Let W ⊂ O(Σ) be a finite group generated by reflections. Assume W is
of classical type. Then every W-invariant symmetric 2-tensor field on Σ is a sum of
terms of the form aHess(b), for a, b ∈ R[Σ]W .

Observation 2 Theorem 4 is valid without the classical type assumption.

We provide proofs of Theorem 4 and Observation 2 above in the Appendix. The
latter is computer-assisted.

Now assume K ⊂ O(V ) is a polar representation of the compact group K with
section Σ , and generalized Weyl group W . Recall that the connected component of
the identity K0 is polar with the same section Σ , and denote by W0 its generalized
Weyl group. By [5], W0 is a finite group generated by reflections. Since the operators
Di j commute with the restriction map |Σm : R[Vm]K0 → R[Σm]W0 , and the single-
variable invariants coincide by the Chevalley Restriction Theorem, the image of |Σm

must contain Pm . In particular, this gives an alternative proof of Theorem 3 in the
special case that W0 is of classical type—see [15].

Similarly, Theorem 4 implies surjectivity of the restriction map for symmetric 2-
tensors when W0 is of classical type. In fact, we have the sharper statement:

Lemma 3 Let K ⊂ O(V ) be a polar representation of the compact group K , with
section Σ ⊂ V and generalized Weyl group W. Let K0 be the connected component
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Extending tensors on polar manifolds 1417

of K containing the identity. Assume the generalized Weyl group W0 associated to
K0 is of classical type. Consider the restriction map for symmetric 2-tensor fields
|Σ : C∞(Sym2V )K → C∞(Sym2Σ)W .

This map is surjective. Moreover, given β ∈ C∞(Sym2Σ)W there is β̃ ∈
C∞(Sym2V )K such the β̃|Σ = β and satisfying the following property:

For all q ∈ V, and X,Y ∈ TqV such that X is vertical (that is, tangent to the
K -orbit through q) and Y is horizontal (that is, normal to the K -orbit through q), we
have β̃(X,Y ) = 0.

Proof Let β ∈ C∞(Sym2Σ)W . By Theorem 4 together with [8, Lemma 3.1], β is of
the form β = ∑

i aiHess(bi ), where ai , bi ∈ C∞(Σ)W0 . By the Chevalley Restriction
Theorem, ai , bi extend uniquely to ãi , b̃i ∈ C∞(V )K0 .

Define β̃0 = ∑
i ãiHess(b̃i ) and

β̃ = 1

|K/K0|
∑

h∈K/K0

hβ̃0

Then β̃|Σ = β by the same argument as in Corollary 2.
To show that β̃ satisfies the additional property in the statement of the Lemma, it

is enough to do so for each Hess(β̃i ). Changing the section Σ if necessary, we may
assume that q,Y ∈ Σ . Extend the given X,Y ∈ TqV to parallel vector fields (in the
Euclidean metric), also denoted by X,Y . Let f = dβ̃i (X).

We claim that f |Σ is identically zero. Indeed, since X (q) is vertical, it is orthogonal
to Σ , and so X (p) is orthogonal to Σ for every p ∈ Σ . Thus, for regular p ∈ Σ ,
X (p) is vertical. Since β̃i is constant on orbits, f (p) = 0 for every regular p ∈ Σ ,
and hence on all of Σ by continuity.

Therefore Hess(β̃i )(X,Y ) = d f (Y ) = 0, because Y ∈ Σ .

Replacing in the proof above “Theorem 4” with “Observation 2” yields:

Observation 3 Lemma 3 is valid without the classical type assumption.

The following lemma is needed in the proofs of Theorem 2 and Observation 1.

Lemma 4 Let V be a polar K -representation with section Σ ⊂ V and generalized
Weyl group W. Let σ̃ ∈ C∞(Sym2V )K , and σ = σ̃ |Σ . Then σ(0) is positive definite
if and only if σ̃ (0) is positive definite.

Proof Denote by K0 the connected subgroup of K containing the identity. Recall that
the action of K0 is polar with the same section Σ . Denote by W0 its generalized Weyl
group. Consider a decomposition of V into K0-invariant subspaces

V = R
m ⊕ V1 ⊕ · · · ⊕ Vk

where K0 acts trivially on R
m , and each Vi is irreducible and non-trivial.
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1418 R. A. E. Mendes

ByTheorem4 in [5], eachVi is a polar K0-representation,with sectionΣi = Σ∩Vi ,
and we have the decomposition into W0-invariant subspaces

Σ = R
m ⊕ Σ1 ⊕ · · · ⊕ Σk

Moreover W0 splits as a product W1 × · · · × Wk (see [14, section 2.2]), where Wi is
the generalized Weyl group associated to the section Σi ⊂ Vi , so that Σi are pairwise
inequivalent as W0-representations. This implies that Vi are pairwise inequivalent as
K0-representations.

Since the quotients Vi/K0 and Σi/W0 are isometric, irreducibility of Vi as a K0-
representation implies irreducibility of Σi as a W0-representation. (Indeed, a general
representation of a compact group H on Euclidean space Rn is irreducible if and only
if the quotient Sn−1/H has diameter less than π/2.)

By Schur’s Lemma together with the assumption σ̃ |Σ = σ ,

σ(0) = A ⊕ λ1IdΣ1 ⊕ · · · ⊕ λkIdΣk

σ̃ (0) = A ⊕ λ1IdV1 ⊕ · · · ⊕ λkIdVk

where A is a symmetric m × m matrix, and λi ∈ R.
Therefore σ(0) > 0 if and only if σ̃ (0) > 0.

Let M be a polar G-manifold. We say M is of classical type if, for every p ∈ M ,
the slice representation of (Gp)0 has generalized Weyl group of classical type. Now
we are ready to prove Theorem 2:

Proof of Theorem 2 As in the proof of Theorem 1, we use partitions of unity and the
Slice Theorem to reduce to the case where M is a tube U = G ×K V , and V is a
polar representation. LetΣ ⊂ V be a section, with generalizedWeyl groupW , so that
M/G = V/K = Σ/W .

Note that it suffices to extend the given Riemannian metric σ ∈ C∞(Sym2Σ)W

to a G-invariant Riemannian metric on a possibly smaller tube G ×K V ε around the
orbit G/K , for some ε > 0.

By Lemma 3, σ extends to β1 ∈ C∞(Sym2V )K . By Lemma 4, β1(0) is positive-
definite, and so by continuity, β1 > 0 on V ε for some small ε > 0.

Choose any smooth, K -invariant and positive-definite β2 : V → Sym2(TKG/K ).
Then, by Lemma 2, the pair (β1, β2) defines σ̃ ∈ C∞(Sym2M)G , which is positive-
definite on G ×K V ε and extends the given σ . By construction, Σ is σ̃ -orthogonal to
G-orbits.

Finally, using Observation 3 instead of Lemma 3 gives a proof of Observation 1.

Acknowledgments Part of this work was completed during my Ph.D., and I would like to thank my
advisor W. Ziller for the long-term support. I would also like to thank A. Lytchak and J. Tevelev for useful
communication.
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Extending tensors on polar manifolds 1419

Appendix: Hessian Theorem for finite reflection groups

In this section we provide proofs of Theorem 4 and Observation 2. The latter relies on
Calculation 1, which can be checked with a computer. See [22] for the source code for
a script written in GAP [26] using the package CHEVIE [12], which performs these
calculations.

Note that as far as the proofs of Theorem 2 and Observation 1 are concerned, one
only needs to consider crystallographic reflection groups (see [14] for a definition).
Our proofs include the non-crystallographic cases for the sake of completeness.

Recall some facts about finite reflection groups: First, the algebra of invariants,
A = R[Σ]W , is a free polynomial algebra with n generators, where n = dimΣ . This
is known asChevalley’s Theorem—see [1, ChapterV]. Such a set {ρi } of homogeneous
generators is called a set of basic invariants, and di = deg ρi are called the degrees of
W .

Second, R[Σ] is a free A = R[Σ]W -module, more precisely R[Σ] = A ⊗ H ,
where H is isomorphic to the regular representation of W (see Theorem B in [3]). In
particular, M = R[Σ,Sym2(Σ∗)]W is a free A-module of rank (n2 + n)/2.

Third, Σ is reducible as a W -representation if and only if Σ = Σ1 × Σ2 and
W = W1 ×W2 for two reflection groupsWk ⊂ O(Σk)—see section 2.2 in [14]. Thus
the following proposition reduces the proofs of Theorem 4 and Observation 2 to the
irreducible case.

Lemma 5 Let Wk ⊆ O(Σk), k = 1, 2 be finite reflection groups in the Euclidean
vector spaces Σk, and let W = W1 × W2 ⊂ O(Σ) = O(Σ1 × Σ2). Then there are
W-invariant polynomials on Σ whose Hessians generate R[Σ,Sym2(Σ∗)]W if and
only if the same holds for Wk ⊆ O(Σk), k = 1, 2.

Proof Assume there are Q j ∈ R[Σ]W whose Hessians generateR[Σ,Sym2(Σ∗)]W .
Then the restrictions Q j |Σ1 generate R[Σ1,Sym2(Σ∗

1 )]W1 as an R[Σ1]W1 -module.
Indeed, every σ ∈ R[Σ1,Sym2(Σ∗

1 )]W1 can be naturally extended to σ̃ ∈
R[Σ,Sym2(Σ∗)]W that is constant on each copy of Σ2. Then there are a j ∈ R[Σ]W
such that σ̃ = ∑

j a jHess(Q j ). Therefore

σ =
∑

j

(a j |Σ1)Hess(Q j |Σ1)

and similarly for R[Σ2,Sym2(Σ∗
2 )]W2 .

For the converse, let ρ j ∈ R[Σ1]W1 , j = 1, . . . , n1 and ψ j ∈ R[Σ2]W2 ,
j = 1, . . . , n2 be basic invariants on Σ1 and Σ2 respectively; and Q j ∈ R[Σ1]W1 ,
j = 1, . . . , (n21 + n1)/2, R j ∈ R[Σ2]W2 , j = 1, . . . , (n22 + n2)/2 be homogeneous
invariants whose Hessians form a basis for the corresponding spaces of equivariant
symmetric 2-tensors.

We claim that the Hessians of the following set ofW = W1×W2-invariant polyno-
mials on Σ = Σ1 × Σ2 form a basis for the space of equivariant symmetric 2-tensors
on Σ :

{Q j } ∪ {R j } ∪ {ρiψ j }
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Table 1 Monomials with generating Hessians

Group Set T of monomials in y1, . . . , yn

H3 {y j }3j=1 ∪ {y1y j }3j=1

H4 {y j }4j=1 ∪ {y1y j }4j=1 ∪ {y22 , y23 }
F4 {y j }4j=1 ∪ {y1y j }4j=1 ∪ {y22 , y23 }
E6 {y j }6j=1 ∪ {y1y j }6j=1 ∪ {y2y j }6j=2 ∪ {y23 , y3y5, y3y6, y

2
4 }

E7 {y j }7j=1 ∪ {y1y j }7j=1 ∪ {y2y j }7j=2 ∪ {y3y j }7j=3 ∪ {y4y5, y4y6, y4y7}
E8 {y j }8j=1 ∪ {y1y j }8j=1 ∪ {y2y j }8j=2 ∪ {y3y j }8j=3 ∪

{y24 , y4y6, y4y7, y4y8, y
2
5 , y5y8, y

2
6 }

Indeed, R[Σ,Sym2(Σ∗)]W decomposes as

R[Σ,Sym2(Σ∗
1 )]W ⊕ R[Σ,Sym2(Σ∗

2 )]W ⊕ R[Σ,Σ∗
1 ⊗ Σ∗

2 ]W

The first two pieces are freely generated over R[Σ]W by HessQ j and HessR j . The
third piece can be rewritten as R[Σ,Σ∗

1 ⊗ Σ∗
2 ]W = R[Σ1,Σ

∗
1 ]W1 ⊗ R[Σ2,Σ

∗
2 ]W2 .

By Solomon’s Theorem [29],R[Σk,Σ
∗
k ]Wk , k = 1, 2, are freely generated by dρ j and

dψ j , so that R[Σ,Σ∗
1 ⊗ Σ∗

2 ]W is freely generated by (dρ j ⊗ dψ j + dψ j ⊗ dρ j ). To
finish the proof of the claim one uses the product rule

Hess(ρiψ j ) = dρi ⊗ dψ j + dψ j ⊗ dρ j + ρiHess(ψ j ) + ψ jHess(ρi )

Proof of Theorem 4 By Lemma 5, we may assume W is irreducible of classical type.
IfW is of typeA, type B, or dihedral, then all multi-variable invariants are generated

by polarizations, by [15,34]. Hence it is enough to show that P3 ∩ M is generated,
as an A-module, by Hessians of invariants. This follows from the product rule

Hess(ρiψ j ) = dρi ⊗ dψ j + dψ j ⊗ dρ j + ρiHess(ψ j ) + ψ jHess(ρi )

If, on the other hand,W is of type D, then themulti-variable invariants are generated
by generalized polarizations—see Theorems 3.1 and 3.4 in [15], or Proposition 2 in
Appendix 2 of [32]. But degree considerations imply that M is in fact generated by
(classical) polarizations, hence also by Hessians by the product rule.

Calculation 1 LetW of type H3, H4, F4, E6, E7 or E8. Then there is a choice of basic
invariants ρ1, . . . ρn with deg(ρ1) < · · · < deg(ρn), and of a regular vector v ∈ Σ ,
such that {Hess(ρ∗Q)(v) | Q ∈ T } is linearly independent, where ρ = (ρ1, . . . , ρn) :
Σ → R

n , and T is the set of polynomials on Rn given in Table 1.

We remark that the computation above is independent of the choice of basic invari-
ants and regular vector—see Lemmas 6 and 7. Moreover, one may construct a set
of basic invariants consisting of “orbit Chern classes” from some linear functional
λ0 : Σ → R and the degrees di . Namely, ρi = ∑

λ∈Wλ0
λdi—see [9,10,22,28]. See
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Table 2 Degrees of exceptional
finite reflection groups

Group Degrees d1, . . . , dn

H3 2, 6, 10

H4 2, 12, 20, 30

F4 2, 6, 8, 12

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

also [16,21] for (other) explicit sets of basic invariants of exceptional groups. The
degrees d1, . . . , dn of the exceptional groups are listed in Table 2 for the convenience
of the reader (see [4]).

The following Lemma is analogous to Proposition 3.13 in [14]. We will use the
special case U = Sym2Σ∗ in proving both Observation 2 from Calculation 1, and
independence of the choice of regular vector v in Calculation 1.

Lemma 6 Let W ⊂ O(Σ) be an irreducible finite reflection group, and η : W →
O(U ) an orthogonal representation,with character χ . Choose a basis {e1, . . . , el} for
U, and let f1, . . . , fl ∈ R[Σ,U ]W be homogeneous elements given by fi = ∑

j ai j e j .
Let D = det(ai j ) ∈ R[Σ]. Then:
(a) D is divisible by the following product over all reflections r ∈ W :

Jη =
∏

r

(λr )
l−χ(r)

2

with λr a linear functional whose kernel equals the hyperplane fixed by r.
(b) If { fi } is a basis of R[Σ,U ]W over R[Σ]W , then D and Jη have the same degree.
(c) { fi } forms a basis if and only if D = cJη for some c ∈ R − {0}.
Proof (a) Let r ∈ W be a reflection. The transformation η(r) : U → U is diag-

onalizable with eigenvalues 1,−1. In particular the multiplicity of −1 equals
k = (l − χ(r))/2.
Assume, without loss of generality, that e1, . . . , ek is a basis for the eigenspace
of η(r) associated to the eigenvalue −1. Then the first k columns of (ai j ) are odd
with respect to r . By multi-linearity, D vanishes to order k on the hyperplane fixed
by r . In other words, D is divisible by (λr )

k .
Since this is true for every reflection r , D is divisible by Jη.

(b) For any graded vector space E = ⊕i Ei , denote its Poincaré series by Pt (E) =∑
i dim(Ei )t i . Let

P(t) = Pt (R[Σ,Sym2(Σ∗)]W )

Pt (R[Σ]W )

Since P(t) = ∑l
i=1 t

deg( fi ), we have deg(D) = P ′(1).
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On the other hand, Pt (R[Σ]W ) = Πn
i=1(1 − tdi )−1, while the numerator can be

computed using Molien’s formula [18, page 249]:

Pt (R[Σ,Sym2(Σ∗)]W ) = 1

|W |
∑

g∈W

χ(g)

det(1 − tg)

Note that for g = 1, det(1− tg) = (1− t)n ; for g = r a reflection, det(1− tg) =
(1 − t)n−1(1 + t); and for all other g, (1 − t)n−1 does not divide det(1 − tg).
Therefore, when computing P ′(1), terms of the latter type vanish:

|W |P ′(1) = χ(1)
d

dt

∣∣∣∣
t=1

Πn
i=1(1 − tdi )

(1 − t)n
+

∑

r refl.

χ(r)
d

dt

∣∣∣∣
t=1

Πn
i=1(1 − tdi )

(1 − t)n−1(1 + t)

P ′(1) = 1

|W |

(
lN |W |

2
−

∑

r refl.

χ(r)
|W |
2

)
=

∑

r reflection

l − χ(r)

2

where N is the number of reflections and we have used the identities d1 · · · dn =
|W | and (d1 − 1) + · · · + (dn − 1) = N . Thus P ′(1) equals the degree of Jη.

(c) Assume { fi } is a basis. By parts 1 and 2, D = cJη for some c ∈ R. Assume for a
contradiction that c = 0. This means that { fi (v)} is linearly dependent for every
v ∈ Σ . Take a regular v, and let B be a small open W -invariant neighborhood of
the orbit Wv. Since W acts freely on B, on can construct σ ∈ C∞(Σ,U )W with
supp(σ ) ⊂ B, and σ(v) /∈ span{ fi (v)}. This contradicts the fact that R[Σ,U ]W
is dense in C∞(Σ,U )W .
Now assume D = cJη for some c ∈ R − {0}. Choose any homogeneous basis
{ f ′

i } of M, and define D′ analogously to D. Writing fi = ∑
j bi j f

′
j , we see that

det(bi j ) ∈ R − {0}, because D = D′ det(bi j ). This implies that (bi j ) is invertible
in the algebra of matrices with coefficients in A, so that { fi } is a basis ofM over
A, too.

Proof of Observation 2 Assume Calculation 1. We claim that

{ fi } = {HessQ , Q ∈ T }

forms a basis forM over A. Indeed, by inspection, the sum of the degrees of fi equals
deg(Jη), which in this case is N (n − 1). Using Lemma 6, we see that D = cJη for
some c �= 0, so that { fi } forms a basis.

Note that independence of the choice of regular vector follows from Lemma 6,
because the zero set of Jη is contained in the singular set.

Lemma 7 Calculation 1 is independent of the choice of basic invariants ρi .

Proof Assume {ρi } and {ψi } are two sets of basic invariants, and that

s{Hess(ρ∗Q)(v) | Q ∈ T }
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is linearly independent at some (hence all) regular vector v ∈ Σ . By Lemma 6,
{Hess(ρ∗Q) | Q ∈ T } forms a basis of M as a free A-module. We claim that
{Hess(ψ∗Q) | Q ∈ T } is also a basis, so that in particular {Hess(ψ∗Q)(v) | Q ∈ T }
is linearly independent for every regular vector v.

Recall the graded version of Nakayama’s Lemma (see Exercise 4.6a in [6]): a set
of homogeneous elements fi ∈ M generates M as an A-module if and only if their
images inM/IM span it as real vector space, where I is the ideal of A generated by
the elements of positive degree.

Since the degrees di are all distinct, we may assume without loss of generality that
ψi = ρi + Ri (ρ1, . . . , ρi−1). Note that the Hessian of a product of three or more (not
necessarily distinct) basic invariants belongs to IM, so that modulo IM we have
Hess(ψiψ j ) ≡ Hess(ρiρ j ), and

Hess(ψi ) ≡ Hess(ρi ) +
∑

j,k

c j,kHess(ρ jρk)

where c j,k ∈ R vanishes unless d j + dk = di .
By inspection, y j yk ∈ T whenever d j +dk = di for some i (see Table 2). Therefore

{Hess(ψ∗Q) , Q ∈ T } is written in terms of {Hess(ρ∗Q) , Q ∈ T } (modulo IM)
using a triangular matrix with 1’s in the diagonal, showing that {Hess(ψ∗Q) | Q ∈ T }
is a basis of M.
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