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Abstract In this paper, we study the boundary behavior of the negatively curved
Kähler–Einstein metric attached to a log canonical pair (X, D) such that K X + D is
ample. In the case where X is smooth and D has simple normal crossings support (but
possibly negative coefficients), we provide a very precise estimate on the potential
of the KE metric near the boundary D. In the more general singular case (D being
assumed effective though), we show that the KE metric has mixed cone and cusp
singularities near D on the snc locus of the pair. As a corollary, we derive the behavior
in codimension one of the KE metric of a stable variety.

1 Introduction

This paper studies negatively curvedKähler–Einsteinmetrics on quasi-projectiveman-
ifolds. This is of course a very broad topic which has witnessed a lot of developments
since the foundational works of Aubin, Yau [1,34] in the compact case. Quickly after
the resolution of Calabi’s conjecture by Yau, many works have revolved around the
(non-compact) complete case; let us mention Yau [33], Cheng–Yau [8], Mok–Yau
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102 H. Guenancia, D. Wu

[24], Kobayashi [20] and Tian–Yau [26] in the negative scalar curvature case, and [27]
in the Ricci-flat case to cite only a few of them.

More recently, a lot of attention has been drawn to conical Kähler–Einstein metrics,
which are non-complete metrics living on the complement of a (smooth) divisor in a
compact manifold, having a very precise behavior near the divisor, cf. [4,5,9,10,12,
18,19,23,30].

These classes of examples (in the negatively curved case) can be recast in a unified
framework. Namely, when we are seeking negatively curved Kähler–Einstein metrics
on the complement X\D of a smooth divisor D (or merely with simple normal cross-
ings) in a compact Kähler manifold X , then one has at some point to do an assumption
on the positivity of the adjoint canonical bundle K X + D. More precisely, the exis-
tence of a negatively curved KE metric with cuspidal singularities along D such as in
[20,26] is equivalent to the ampleness of K X + D. In the same vein, the existence of
a negatively curved conical KE metric with cone angle 2πβ along D is equivalent to
the ampleness of K X + (1 − β)D.

So what if now, we look at the problem from another angle? That is, what if instead
of looking for Kähler–Einstein metrics on X\D having a prescribed behavior along D,
we just start by assuming that the line bundle K X +aD is ample for some real number
a, and see what kind of Kähler–Einstein metrics one can construct?Well, if a ∈ (0, 1],
we end up with conical/cuspidal metrics because of what we explained above. In this
paper, we will leave aside that case where a > 1, and only study the situation where
a ∈ (−∞, 1]. More generally, take D = ∑

Di be a simple normal crossings (snc)
divisor, choose real numbers ai ∈ (−∞, 1], and assume that K X + ∑

ai Di is ample.
Is it possible to construct “reasonable” Kähler–Einstein metrics with negative scalar
curvature on X\D that are naturally related to the data of the ai ’s?

This question has been studied from various points of view [3,13,28,29] and it
seems that the framework of pluripotential theory could be the best fit as it yields a
unified approach and treatment of the problems at stake. Indeed, it has been proved
in [3] that given a pair (X, D) where D = ∑

ai Di is a divisor with simple normal
crossings support and coefficients ai ∈ (−∞, 1] such that K X + D is ample, there
exists a unique “weak” Kähler–Einstein metric ωKE, smooth on X\D and satisfying
RicωKE = −ωKE + ∑

ai [Di ] in the sense of currents. Moreover, the singularities of
ωKE near D are relatively mild as this current has finite energy, cf. [16]. What more
do we know about ωKE?

Well, first, if the pair is klt, i.e. ai < 1 for all i (as the ai ’s may be negative,
this condition is sometimes called “sub-klt” in the literature), then if follows from
Kołodziej’s estimate [21] that the metric has bounded potentials. But as soon as some
coefficient ai equals 1, the potentials have to be unbounded. This can be seen using the
Monge–Ampère formulation of the Kähler–Einstein problem which takes the form

(ω + ddcϕ)n = eϕωn
∏

i |si |2ai

where ω ∈ c1(K X + D) is a Kähler form, and si is a defining section for Di , whose
associated line bundle we endow with a suitable hermitian metric (to get the condition
on the Ricci curvature). Then, as |s|−2 is not integrable, ϕ has to go to −∞ near
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On the boundary behavior of Kähler–Einstein metrics on lc pairs 103

Dlc := ∑
ai =1 Di to guarantee the integrability of the rhs. So one cannot expect

bounded potentials. If now the divisors has only coefficients equal to 1, then we
know from [20,26] that ϕ = −∑

i log(log |si |2)2 + O(1), and that ωKE has Poincaré
singularities along D.Wehave an analogous expansion (i.e., loglog near Dlc +bounded
term) if the coefficients are orbifold [26], or more generally of ai ∈ [0, 1] [12,13].
More generally, if the irreducible components of D associated to coefficients ai < 1
do not meet any irreducible components of D associated to coefficients ai = 1, the
same result holds [29]. The first Theorem of this note aims to prove that the above
expansion for the potential always holds regardless of the combinatoric of D:

Theorem A Let X be a compact Kähler manifold, D = ∑
ai Di be a divisor with

simple normal crossings support having coefficients ai ∈ (−∞, 1] and such that
K X + D is ample. Let ω ∈ c1(K X + D) a Kähler form, and let ωKE = ω + ddcϕKE
be the Kähler–Einstein metric of (X, D), i.e., RicωKE = −ωKE + [D]. Then

ϕKE = −
∑

ai =1

log log2
1

|si |2 + O(1)

We will give two proofs of this result, both based on a approach involving Green’s
functions but in different contexts. The two proofs share a common core: we start
by partially regularizing the Monge–Ampère equation so as to make it of Poincaré-
type as in [20,26], and then one will seek for uniform estimates on the potential,
independent of the regularizing parameter. The lower bound is obtained using ideas
involving approximate cone metrics, and already appearing in [5,13]. Then, using
Yau’s maximum principle for complete manifolds, we derive an upper bound of the
potential involving

∑
ai <0 ai log |si |2. Of course, the right hand side goes to +∞ near

the boundary divisor, so this estimate is not sufficient to prove Theorem A. This is
where our two proofs take different paths.

The common idea is to estimate the supremum of the potential by its L1 norm
(which is controlled by the previous estimate) using Green’s function. The difficulty
here is that there is no global positive Green’s function for the Laplacian � on X\Dlc

as follows from [7] since a Poincaré-type metric has finite volume. On the other hand,
one cannot use the local Green’s function of � as in [29], since the injectivity radius
of the Poincaré metric shrinks to zero as the point tends to Dlc. In the first approach,
we pull-back the equation to some kind of universal cover to make the Poincaré metric
into an euclidian one, so that one can use a standard local Green’s function upstairs,
derive an upper bound upstairs, and then push it back down to M .

In the second approach, we first construct a global Green’s function associated with
�g − 1 on any complete Riemannian manifold (M, g). For M = X\Dlc endowed
with a Poincaré-type metric, we can control the asymptotic behavior of this function
with sufficient precision so as to get an upper bound for our potential.

To go beyond Theorem A, it would be natural to expect higher order estimates on
the potential of the Kähler–Einstein metric. As for Laplacian type estimates, this has
already been done in [12,13] whenever the coefficients of D are non-negative. It would
be challenging to extend these results to our more general setting, but if D = −aH
for some positive number a, H being a smooth hypersurface, then one of the main
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new issues is that we do not really have a global reference metric on X\H that would
behave like |z1|2adz1 ∧ dz̄1 + ∑

j>1 dz j ∧ dz̄ j near H , whenever it is locally given
by (z1 = 0).

In the second part, we investigate the case of singular pairs (X, D), i.e., X is now
a normal projective variety and D an effective Weil divisor on X such that the pair
(X, D) has log canonical singularities. If one assumes that K X + D is ample, then we
know from [3] that (X, D) admits a unique Kähler–Einstein metric ωKE (see Sect. 4
for the related definitions), which is smooth on Xreg\Supp(D). We will study the
behavior of ωKE near D, and more precisely at the points where X is smooth and D
has simple normal crossings support:

Theorem B Let (X, D) be a projective log canonical pair such that K X + D is ample.
Then its Kähler–Einstein metric ωKE has mixed cone and cusp singularities along D
on the snc locus (X, D)reg of the pair.

As a corollary of this theorem, we show that the Kähler–Einstein metric of a stable
variety (in the sense of Kollár–Sherpherd–Barron and Alexeev) is cuspidal near the
double crossing points, cf. Corollary 4.4.

Let us conclude this introduction by saying that both Theorem A and Theorem
B are the crucial analytic inputs in the proof of the polystability of the logarithmic
tangent sheaf of a log canonical pair (X, D) such that K X + D is ample, cf. [15].

2 The smooth case

2.1 The set-up

The setting in this paper is the following one: X is a smooth complex projective variety
of dimension n, D = ∑

ai Di is a R-divisor with simple normal crossing support with
coefficients ai ∈ (−∞, 1] such that the adjoint bundle K X + D is ample (i.e., its
Chern class contains a Kähler metric, or equivalently K X + D is Q-linearly equivalent
to a positive R-linear combination of ample Q-line bundles. We stress here that the
coefficients of D may be chosen to be negative.

We set Dlc := ∑
ai =1 Di , and Dklt := D − Dlc, and M := X\Supp(Dlc). This

notations are borrowed from birational geometry, in the sense that (X, Dklt ) (resp.
(X, D) or (X, Dlc)) is a –log smooth– Kawamata log terminal (klt) pair (resp. log
canonical (lc) pair).

As for endowing X\Supp(Dlc) with a natural Kähler–Einstein metric, the view-
points and definitions vary according to the authors, and we will choose here the
following definition which has the advantage to be globally formulated on X , and
guarantees the uniqueness of the metric thanks to the formalism developed in [16] and
its companion papers:

Definition 2.1 With the previous notations, we say that a closed positive current ω ∈
c1(K X + D) on X is a Kähler–Einstein metric for (X, D) if it satisfies:

1. The non-pluripolar product ωn defines an absolutely continuous measure with
respect to some smooth volume form dV on X and log(ωn/dV ) ∈ L1

loc(X),
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2. Ricω = −ω + [D],
3.

∫
X ωn = c1(K X + D)n .

This seemingly complicated definition comes from the fact that we know that ω

cannot have bounded potentials, hence we have to use the non-pluripolar Monge–
Ampère operator [2,16] in order to define ωn (and thus Ricω which is defined as
−ddc log〈ωn〉 as soon as 1. is satisfied) and have a suitable formulation of the problem
in terms of Monge–Ampère equations.

Recall that Bedford–Taylor theory enables to define theMonge–Ampère operator of
a closed positive current with bounded potentials and that the non-pluripolar Monge–
Ampère operator is defined for any closed positive current T (say in a Kähler class
on a compact Kähler manifold) and produces a positive measure denoted by 〈T n〉 (or
abusively T n) which does not charge pluripolar sets and whose total mass is less than
or equal to the top auto-intersection {T }n of its de Rham cohomology class. If T has
bounded potentials, 〈T n〉 coincides with the Bedford–Taylor Monge–Ampère T n and
the total mass of T n is indeed {T }n . More generally the equality of those two quantities
is an information on the regularity of the current, cf. [2,16] for the definitions andmain
properties of this construction.

We know from [3] that there exists a unique such current ω; moreover, ω defines
a smooth Kähler–Einstein metric on M , and if θε ∈ c1(Dklt ) is any smooth approxi-
mation of [Dklt ], then ω is the (weak) limit of the twisted Kähler–Einstein metrics ωε

satisfying Ricωε = −ωε + θε + [Dlc].
In this part, we assume that the pair (X, D) is log smooth, and we prove Theorem

A.

2.2 The lower bound

Aswe explained in the previous part, it follows from the results of [3] that it is sufficient
to obtain uniform estimates for the potential ϕε solution of

(ω + ddcϕε)
n =

∏

ai <1

(|si |2 + ε2)−ai
eϕεωn

∏
ak=1 |sk |2

At that point, it is convenient to work with the complete Poincaré metric ωP :=
ω − ∑

ak=1 ddc log log2 |sk |2 on M (up to scaling the hermitian metrics on O(Dk), it
defines indeed a smooth complete Kähler metric with bounded geometry on M); so
we set uε := ϕε + ∑

ak=1 log log
2 |sk |2, so that the equation becomes (on M)

(ωP + ddcuε)
n =

∏

ai <1

(|si |2 + ε2)−ai euε+Fωn
P (2.1)

where F is known to be a bounded smooth function on M (which is even smooth in
the quasi-coordinates, cf. [20,26]).

The first step is to introduce the regularized cone metric [5,6,13]. To sum up the
construction therein, there exists a smooth ω-psh (and ωP-psh) potential ψε which is
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106 H. Guenancia, D. Wu

uniformly bounded, and such that the metric ωP,ε := ωP + ddcψε on M is complete,
with bounded bisectional curvature and satisfies

∏

0<ai <1

(|si |2 + ε2)−ai ωn
P = eGεωn

P,ε

for some smooth function Gε which is uniformly bounded in ε. Therefore, setting
vε := uε − ψε, Eq. (2.1) becomes

(ωP,ε + ddcvε)
n =

∏

ai <0

(|si |2 + ε2)−ai evε+Fεωn
P,ε (2.2)

where Fε = F + Gε + ψε, and by the remarks above, |Fε| � C for some uniform
C > 0.

If we apply Yau’s minimum principle [32] on the manifold (M, ωP,ε), we get that
inf vε � − sup Fε + inf

∑
ai <0 ai log(|si |2 + ε2) and therefore

inf
M

uε � −C (2.3)

for some uniform C > 0.

2.3 The upper bound I

Let us get now to the upper bound. We cannot apply the same method here as
one sees immediately, so we perform a change of function by setting wε :=
vε − ∑

ai <0 ai log(|si |2 + ε2). As log(|si |2 + ε2) is Cω-psh for some uniform C ,
it is also CωP,ε-psh (up to changing C eventually), and therefore

ewε+Fεωn
P,ε =

∏

ai <0

(|si |2 + ε2)−ai evε+Fεωn
P,ε

=
⎛

⎝ωP,ε +
∑

ai <0

ddcai log(|si |2 + ε2) + ddcwε

⎞

⎠

n

� (CωP,ε + ddcwε)
n

hence the maximum principle yields supwε � − inf Fε + n logC , hence

uε � C +
∑

ai <0

ai log(|si |2 + ε2) (2.4)

for some uniform C > 0.
Moreover, we know from [3] that ϕε converges to ϕKE, the potential of the Kähler–

Einstein metric of the pair (X, D), which is a quasi-psh function. Hence, by Hartog’s
Theorem (cf. [17, Theorem3.2.12]),weknow that there existsC > 0 such thatϕε � C .
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On the boundary behavior of Kähler–Einstein metrics on lc pairs 107

As a consequence, uε = ϕε +∑
ak=1 log log

2 1
|sk |2 is locally uniformly bounded above

on X\Dlc. Therefore, if we want to bound uε from above, we just need to do it locally
around points at the intersection of Dlc and

∑
ai >0 Di .

2.4 The upper bound II

Now that we have a partial upper bound (2.4) on uε, one can derive a true upper bound
using Green’s functions based on ideas appearing in [29, p. 141]. From now on, one
can forget about the cone approximation and just remember the two bounds (2.3)–(2.4)
satisfied by our potential uε solution of (2.1).

We fix a point p ∈ Dlc, and one may assume that p admits a neighborhood
 � D
n

where Dlc is given by (z1 · · · zr = 0) and
∑

ai <0 Di by (zr+1 . . . zs = 0) in the
holomorphic coordinates z1, . . . , zn induced on 
 under the identification 
 � D

n .
Equation (2.4) can be reformulated as follows

uε(z) � C

⎛

⎝1 −
s∑

j=r+1

log |z j |
⎞

⎠ (2.5)

If we knew that uε were quasi-psh, then we could derive a uniform upper bound from
the inequality above and the arguments of [29]. But our function uε is only ωP-psh, so
that one cannot apply these arguments unless we have a good knowledge of (local or
global) Green’s functions for the Poincaré metric. In the next section, we will build a
global Green’s function on X\Dlc for �ωP − 1, study its properties, and use it to get
the desired upper bound.

But before that, we will give an alternative solution consisting in using the very
particular geometry of the Poincaré metric. Indeed, the Poincaré metric behaves in
some way like an euclidian one when we pull it back to some appropriate “cover”.
The right way to formalize this is to use the quasi-coordinates for the Poincaré metric
(cf. [20,26]): they are maps from an open subset V ⊂ C

n to Dr := (D∗)r × D
n−r

having maximal rank everywhere. So they are just locally invertible, but these maps
are not injective in general.

To construct such quasi-coordinates on Dr , we start from the universal covering

map π : D → D
∗, given by π(w) = e

w+1
w−1 . Formally, it sends 1 to 0. The idea

is to restrict π to some fixed ball B(0, R) with 1/2 < R < 1, and compose it
(at the source) with a biholomorphism �η of D sending 0 to η, where η is a real
parameter which we will take close to 1. If one wants to write an explicit formula,
we set �η(w) = w+η

1+ηw
, so that the quasi-coordinate maps are given by 
η = (π ◦

�η)
r × IdDn−r : V = B(0, R)r × D

n−r → Dr , i.e. 
η(v1, . . . , vr , vr+1, . . . , vn) =
(e

1+η
1−η

v1+1
v1−1 , . . . , e

1+η
1−η

vr +1
vr −1 , vr+1, . . . , vn).

Once we have said this, it is easy to see that Dr is covered by the images 
η(V )

when η goes to 1. Now, an easy computation shows that 
∗
η ωP is a Kähler metric

on V ⊂ C
n which is uniformly (in η) quasi-isometric to the euclidian flat metric;

moreover all the covariants derivatives of this metric are uniformly bounded with
respect to η, but we will not need this property.
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108 H. Guenancia, D. Wu

Let us go back to our situation. We started from an ωP -psh function uε satisfying
(2.5). Pulling it back by 
η, we get a smooth function uε,η := uε ◦ 
η on V which
is 
∗

η ωP -psh hence (uniformly) quasi-psh by the observation above. Furthermore, as

η acts trivially on the component D

n−r , we have

uε,η(v) � C

⎛

⎝1 −
s∑

j=r+1

log |v j |
⎞

⎠ (2.6)

for all v ∈ V thanks to (2.5).
We are now in position to apply the arguments of [29], so let us set up a precise

framework. For ρ > 0 large enough (ρ > 2n would be sufficient), we have V �
B(0, ρ); let us also pick 1/2 < R′ < R and set V ′ = B(0, R′)r × D(0, 1/2)n−r .
As above, the images of V ′ by 
η when η goes to 1 cover (D∗)r × D(0, 1/2)n−r .
We choose a cut-off function χ such that Supp(χ) � V , and χ = 1 on V ′ so that
d(Supp(∇χ), V ′) > 0. Finally, we denote by G : B̄(0, ρ) × B̄(0, ρ) → [−∞, 0] the
Green’s function of B(0, ρ). If x ∈ V ′, we denote by Gx the function G(x, ·). Then
for any x ∈ V ′, the function χGx satisfies �(χGx ) = δx + Gx�χ + ∇Gx · ∇χ (this
can be verified locally, first near x , and then away from x). Therefore, if dV is the
Lebesgue measure of C

n , we have:

∫

B(0,ρ)

χGx�uε,η dV = uε,η(x) +
∫

Supp(∇χ)

uε,η (Gx�χ + ∇Gx · ∇χ) dV

Remember that uε,η is quasi-psh, so that �uε,η � −C . As a consequence,

uε,η(x) � C

(

||Gx ||L1 +
∫

Supp(∇χ)

uε,η

[
|Gx�χ | + |∇Gx · ∇χ |

]
dV

)

Of course, ∇χ and �χ are bounded by some constants depending only on R′, R and
n. As for Gx and ∇Gx , these functions are bounded in terms of (negative powers
of) d(x, ·), therefore they are uniformly (in x) bounded on Supp(∇χ) by the above
observation that d(Supp(∇χ), V ′) > 0. Therefore, we have:

uε,η(x) � C
(||Gx ||L1 + ||uε,η||L1

)
(2.7)

Applying the Green–Riesz representation formula to the function y �→ |y|2, we easily
get that ||Gx ||L1 = (ρ2 − |x |2)/2n � ρ2. Moreover, thanks to Eq. (2.6), we have a
uniform control ||uε,η||L1 � C (remember that uε hence uε,η are uniformly bounded
from below already). Putting these two estimates together, we infer from (2.7):

uε,η(x) � C

for some constant C independent of x ∈ V ′, η and ε. Pushing this inequality down-
wards to (D∗)r × D(0, 1/2)n−r , we obtain
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On the boundary behavior of Kähler–Einstein metrics on lc pairs 109

uε � C

on this latter open set, which ends the proof.

3 A new global Green’s function

In this section, we investigate the question of the existence of appropriate global
Green’s functions on the complete Kähler manifold (X\Dlc, ωP). Adapting the argu-
ments of [22,25], we will construct on this Riemannian manifold a positive Green’s
function for the operator � − 1 whose behavior is well understood at infinity. This
will enable us to give an alternative proof of Theorem A, cf. Sect. 3.3.

3.1 Existence of the Green’s function

Let (Mm, g) be a complete Riemannian manifold of real dimension m, and �g be the
Laplacian of g. Similar to [25, p. 81], a function G defined on M × M\diag(M × M) is
called a global positive Green’s function for �g − 1 on M if G satisfies the following
properties:

(i) For any fixed x ∈ M , (�g(y) − 1)G(x, y) = 0 and G(x, y) > 0, for all y ∈ M ,
y �= x ;

(ii) G(x, y) = G(y, x);
(iii) As y → x for fixed x , G(x, y) = [(m − 2)σm−1]−1dist(x, y)2−m

(
1 + o(1)

)
.

Here dist(x, y) denotes the geodesic distance between x and y in M and σm−1 is
the volume of the unit (m − 1)-sphere in R

m .
The following lemma constructs on any complete Riemannian manifold a global

positive Green’s function for �g − 1. This is in sharp contrast to the global positive
Green’s function for �g (cf. [22]).

Lemma 3.1 Let (M, g) a complete Riemannian manifold. Then (M, g) admits a
global positive Green’s function G for �g −1 on M. Furthermore, for any x ∈ M and
any compact set B containing x, G(x, y) � CB for all y ∈ M\B, where the constant
CB > 0 depending only on B.

Proof The existence of G follows from almost the same argument for Theorem A.1
in Schoen–Yau [25, p. 82] (see also Li–Tam [22]), using the monotone increasing
sequence of positive Dirichlet Green’s functions {Gi } on the exhaustion {
i }. The
only difference is that here the operator �g − 1 allows us to compare Gi with the
constant function.

More precisely, let {
i } be an exhaustion of M and Gi be the positive Dirichlet
Green’s function on 
i (cf. [11, p. 157] or Remark 3.2). Fix an arbitrary x ∈ M . We
need to show that the monotonic sequence

mi = sup
y∈∂ Br (x)

Gi (x, y)

123



110 H. Guenancia, D. Wu

is bounded from above for all r > 0 (to see the monotonicity, apply the maximum
principle to Gi − (1+ δ)Gi+1 on 
i � {x} for any fixed δ > 0). Suppose the contrary,
i.e., there exists an r > 0 such that mi → +∞. Let

vi (y) = 1

mi
Gi (x, y) for all i � 1.

By the maximum principle

vi � 1 on 
i\Br (x).

On the other hand, for any ε > 0, by property (iii) of G we have

vi (y) � εG1(x, y) + 1 on Br (x)\{x}

for all sufficiently large i such that 1/mi < ε. Applying the diagonal process we
obtain that a subsequence of vi converges uniformly on compact subsets of M\{x} to
a function v in M\{x} satisfying

(�g − 1)v = 0 in M\{x}

and 0 � v � 1 on M\Br (x) and v(y) � εG1(x, y) + 1 on Br (x)\{x}. Letting ε → 0
yields

0 � v � 1 in M\{x}.

Since max∂ Br (x) vi = 1 for all i , the function v attains its maximum value 1 at an
interior point of M\{x}. Applying the maximum principle to (�g − 1)v = 0 at the
interior point yields v � 0 on M\{x}, which contradicts max v = 1. Hence, the
sequence {mi } is bounded from above for all r > 0. Then as in Schoen–Yau [25,
p. 83] we apply the diagonal process to obtain a global positive Green’s function G
on M .

For the second statement, for a given x ∈ M , assume that x ∈ B ⊂⊂ 
i0 for some
i0 � 1. By the previous step

sup
i�i0

sup
y∈∂ B

Gi (x, y) � C

where C > 0 depends only on B. Applying the maximum principle yields

Gi (x, y) � C on M\B.

By the proof of the first statement [25, p. 83], a subsequence of Gi converges uniformly
on compact subsets to G; hence,

G(x, y) � C on M\B.
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Remark 3.2 The proof of Lemma 3.1 makes use of a classical fact that for a bounded
domain 
 with smooth boundary in a Riemannian manifold, there exists a positive
Dirichlet Green’s function G satisfies the properties (i)–(iii). This fact can be proved
as follows: By Duff [11, p. 104, 5.3] one obtains a local fundamental solution γ (P, Q)

for operator � − 1 on a sufficiently small neighborhood U of diag(
 × 
). That is,
given Q ∈ 
, γ (P, Q) is smooth and satisfies

(� − 1)γ (P, Q) = 0

for any P near Q and P �= Q. Furthermore,

γ (P, Q) ∼ 1

(m − 2)σm−1
dist(P, Q)2−m, as dist(P, Q) → 0.

Let

�(P, Q) = η(dist(P, Q)/ε)γ (P, Q),

where η = η(t) satisfies that η ∈ C∞(R), 0 � η � 1, η ≡ 1 for 0 � t � 1/2 and
η ≡ 0 for t � 1, and ε > 0 is a small constant such that the compact support of η is
contained in the neighborhood U of the diagonal. Fix an arbitrary Q ∈ 
. It follows
that

(� − 1)�(·, Q) = −δQ + F,

where F ≡ 2∇η · ∇γ (·, Q) + γ (·, Q)�η ∈ C∞
c (
). We can solve

(� − 1)w = −F in 
, w = 0 on ∂


for a smooth function w(·, Q) on 
. Then

G(P, Q) = �(P, Q) + w(P, Q)

is the desired Green’s function. That G(P, Q) = G(Q, P) is proven in Duff [11,
p. 158].

From now on we let M = X\Dlc. Then (M, ω) is a complete Kähler manifold of
finite volume, where we have a notion of Hölder spaces relatively to quasi-coordinates
as introduced by Cheng–Yau [8, p. 515], see also [20,26] for the definitions that we
don’t recall here as we won’t use them in the following.

Corollary 3.3 Let us endow M := X\Dlc with the metric ω. Then M admits a global
positive Green’s function G which in particular belongs to L1(M). Furthermore, for
any x ∈ M and any r > 0, G(x, y) as a function of y ∈ M satisfies

‖G(x, y)‖Ck,α(M\Br (x)) � C(k, α) sup
y∈∂ Br

G(x, y)
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where Ck,α , k � 0, 0 < α < 1, is the Hölder space in the sense of Cheng–Yau,
C(k, α) > 0 is a constant depending only on k and α.

Proof That G is in L1(M) follows immediately from Lemma 3.1 and the finiteness
of volume. To see the estimate, note that (M, ω) has bounded geometry in terms of
the quasi-coordinates. In constructing G we apply the Schauder interior estimates to
the Cheng–Yau’s Hölder spaces, and then, using a diagonal process we can pass from
Gi to G. ��

3.2 Properties of the Green’s function

The following result is a slight variant of [29, Lemma 2 p. 138].

Lemma 3.4 Let M = X\Dlc with metric ω. Given x ∈ M and a small ball B ≡
Br (x) ⊂ M. For any f, h ∈ Ck,α(M\B), k � 2, 0 < α < 1,

∫

M\B
div( f ∇h) = −

∫

∂ B
f
∂h

∂ν

where the divergence div and gradient ∇ are both with respect to ω, and ∂ B is oriented
according to the outer unit normal ν.

Proof As in [29, p. 138] we use the cutoff function χm(ρ) on M such that χm ≡ 0 for
ρ � m, 0 � χm � 1 for m � ρ � m + 1, and χm ≡ 1 for ρ � m + 1. Here

ρ =
k∑

i=1

log(− log |si |2) → +∞ as x → Dlc,

and m � 1 such that B = Br (x) ⊂⊂ {ρ < m}. Write

∫

M\B
div( f ∇h) =

∫

M\B
div(χm f ∇h) +

∫

M\B
div[(1 − χm) f ∇h].

Note that 1 − χm(ρ) has compact support {ρ � m + 1} in M and 1 − χm ≡ 1 on B.
Applying the usual Stokes’ theorem yields

∫

M\B
div[(1 − χm) f ∇h] = −

∫

∂ B
(1 − χm) f ∇h = −

∫

∂ B
(1 − χm) f ∇h.

Then following [29, p. 138] we obtain

lim
m→+∞

∫

M\B
div(χm f ∇h) = 0

by using Lebesgue’s dominated convergence theorem. ��
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Corollary 3.5 Let us endow M = X\Dlc with the metric ω, and let G be the global
positive Green’s function obtained in Corollary 3.3. For any x ∈ M and any f ∈
Ck,α(M) with k � 2,

f (x) = −
∫

M
G(x, y)(�ω(y) − 1) f (y)ωn .

Proof Fix an arbitrary ε > 0. By Lemma 3.4,

∫

M\Bε(x)

G(x, ·)(� − 1) f

=
∫

M\Bε(x)

f (� − 1)G −
∫

∂ Bε(x)

G
∂ f

∂ν
+

∫

∂ Bε(x)

f
∂G

∂ν
= − f (x),

in view of properties (i) and (iii) of G. Since G(x, ·) ∈ L1(M), by Lebesgue’s domi-
nated convergence theorem

∫

M
G(x, ·)(� − 1) f = lim

ε→0+

∫

M\Bε(x)

G(x, ·)(� − 1) f = − f (x).

��

3.3 An alternative proof of Theorem A

We borrow the notations of Sect. 2.2: let X be a compact Kähler manifold X endowed
with a snc divisor Dlc, let us set M := X\Dlc, and let us consider the Monge–Ampère
equation on M :

(ω + ddcu)n = eu+Fωn
∏

i |si |2ai

where Dklt = ∑
ai (si = 0) is a divisor with snc support whose coefficients ai belong

to (−∞, 1), and ω is a metric with Poincaré-type singularities along Dlc, the latter
divisor being also assumed to have normal crossings with Supp(Dklt ). Finally, F is a
smooth function when read on the quasi-coordinate, i.e. F ∈ Ck,α(M) for all k � 2
and 0 < α < 1.

We will assume part of the results of Sect. 2.2, namely that u is bounded below. We
claim that by Corollary 3.3 and Corollary 3.5, we can derive a true upper bound for u.

Indeed, let us perturb (as in Sect. 2.2) the above Monge–Ampère equation by the
following one, for ε > 0,

(ω + ddcuε)
n = euε+F+ fεωn

where fε = −∑
i ai log(|si |2 + ε2). We know that the latter equation has a unique

solution uε ∈ Ck,α(M) for all k � 2 and 0 < α < 1, and that uε converges to u
weakly on X , and smoothly on the compact sets of M\Dklt .

123



114 H. Guenancia, D. Wu

Combining the arithmetic mean–geometric mean inequality

(
(ω + ddcuε)

n

ωn

) 1
n

� n + �ωuε

n

with the basic inequality et � 1 + t yields

(�ω − 1)uε � F + fε

Multiplying this inequality by G(x, y) gives

uε(x) = −
∫

M
G(x, y)(�ω − 1)uε(y)ωn(y)

� −
∫

M
G(x, y)(F + fε)(y)ωn(y) � C

in view of the fact that
∫

M\B
G(x, y)(− log |si |2)(y)ω(y)n � CB

∫

M\B
(− log |si |2)(y)ω(y)n � C

for each i . Here B is a compact set in M containing x , and C > 0 is a constant
depending only on n, ai and CB .

4 The case of singular pairs

The goal of this section is to explain and prove Theorem B about the behavior near the
boundary divisor of the Kähler–Einstein metric associated with a log canonical pair
(X, D) such that K X + D is ample.

4.1 Mixed cone and cusp singularities

Let (X, D) be a pair consisting in a complex manifold X and a R-divisor D having
simple normal crossing support and coefficients in [0, 1]. A Kähler metric ω on X0 :=
X\Supp(D) is said to have mixed cone and cusp (also called Poincaré) singularities
along D if ω is locally quasi-isometric to the model

ωmod :=
r∑

j=1

idz j ∧ dz̄ j

|z j |2(1−β j )
+

s∑

k=r+1

idzk ∧ dz̄k

|zk |2 log2 |zk |2
+

n∑

l=r+s+1

idzl ∧ dz̄l

whenever (X, D) is locally isomorphic to (Xmod, Dmod), where Xmod = (D∗)r ×
(D∗)s × D

n−(s+r), Dmod = (1 − β1)[z1 = 0] + · · · + (1 − βr )[zr = 0] + [zr+1 =
0] + · · · + [zr+s = 0]; where β j ∈ (0, 1) and D (resp. D∗) is the disc (resp. punctured
disc) of radius 1/2 in C.

123



On the boundary behavior of Kähler–Einstein metrics on lc pairs 115

In [13] (and later in full generality in [12]), itwas proved that given a compactKähler
manifold X and a divisor D with simple normal crossing support and coefficients in
[0, 1] such that K X + D is ample, there exists a unique Kähler metric ω on X0 with
mixed cone and cusp singularities along D such that Ricω = −ω.

Of course this metric coincides with the Kähler–Einstein metric constructed in [3]
in themore general case of singular log canonical pairs. Our goal in this second section
is to generalize the result of [12,13] to this singular setting, as we will explain in the
next paragraph after recalling the necessary definitions.

4.2 Log canonical pairs

Definition 4.1 A log canonical pair (X, D) consists of a complex normal variety X
and an effective Weil divisor D such that K X + D is Q-Cartier, and such that for any
log resolution π : X ′ → X of (X, D), the coefficients ai defined by the formula
K X ′ = π∗(K X + D) + ∑

ai Ei satisfy ai � −1 (here Ei is either exceptional or the
strict transform of a component of D).

Definition 4.2 Let (X, D) be a log pair. The simple normal crossing (snc) locus of
the pair, denoted by (X, D)reg, is the locus of points x ∈ X such that the pair (X, D)

is log smooth at x , i.e., such that there exists a Zariski open set U � x satisfying that
U ⊂ Xreg and that the divisor D|U has simple normal crossing support.

The snc locus is a Zariski open set whose complement has codimension at least 2
by normality of X . If now X is projective, (X, D) is log canonical and K X + D is
ample, then the main result of [3] provides a unique Kähler–Einstein metric ωKE with
negative curvature, which is smooth on Xreg\Supp(D). What about further regularity?
So far, it is really hard to tell anything about the local behavior of this metric near the
singular points of X ; but if we look at what happens at points of the boundary divisor
D where it is smooth (or merely snc), then we have a better understanding of how ω

looks like. Indeed, if (X, D) is klt (i.e., the coefficients ai above satisfy ai > −1), it
was proved first partially in [14] and then in full generality in [12] that ωKE has cone
singularities along D on the snc locus (X, D)reg. We now aim to generalize this result
to the log canonical case:

Theorem 4.3 Let (X, D) be a projective log canonical pair such that K X + D is
ample. Then its Kähler–Einstein metric ωKE has mixed cone and cusp singularities
along D on the snc locus (X, D)reg of the pair.

We can deduce from this statement how the Kähler–Einstein metric of a stable
variety (i.e., a projective variety X with semi-log canonical singularities such that
K X is ample, cf. [3]) behaves near the double crossing points. Recall that a double
crossing point is a point near which the variety is locally analytically isomorphic to
0 ∈ {xy = 0} ⊂ C

n+1.

Corollary 4.4 Let X be a stable variety. Then its Kähler–Einstein metric is locally
quasi-isometric to a cusp near the double crossing points.
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Let us explain what it means. If p is such a point and ν : Xν → X is the nor-
malization morphism, then ν−1(p) consists of two distinct points q ′, q ′′ sitting on the
conductor divisor Dν , and the pair (Xν, Dν) is log smooth at q ′, q ′′ (actually Dν is
even smooth near those points). The corollary expresses that the pull-back ν∗ωKE of
the Kähler–Einstein metric has cusp singularities along Dν near q ′ and q ′′.

This generalizes the picture existing for stable curves. Indeed, if C is a stable curve,
let C ′ be its normalization and D′ be the reduced divisor on C ′ whose support consists
of the preimage of the nodes. Then KC ′ + D′ is ample, and each connected component
of C ′\D′ (= Creg) has a unique hyperbolic metric which has a cusp near each point
in the support of D′.

Proof There is not much more left to say. Indeed, with the above notations, the con-
ductor Dν is a reduced divisor; moreover, (Xν, Dν) is log canonical, K Xν + Dν is
ample, and the pair is log smooth at each point above a double crossing point. So if
we apply Theorem 4.3 at those points, we get exactly the statement claimed in the
corollary. ��

4.3 Proof of Theorem B

4.3.1 The set-up

In order to keep more usual notations, we assume that the initial log pair is (Y,�), and
we consider a log resolution π : (X, D) → (Y,�) of the pair. Here, D = ∑

ai Di is
a divisor on X with snc support, consisting of π -exceptional divisors (with arbitrary
coefficients in (−∞, 1]) and of the strict transforms of the components of � (with
coefficients in [0, 1]). The Kähler–Einstein ωKE for (X, D), or equivalently the pull-
back of the KE metric for (Y,�) by π can be written as ωKE = θ + ddcϕ where
θ ∈ c1(π∗(KY +�)) is a smooth semipositive and big form and ϕ is a θ -psh function
solving the Monge–Ampère equation

MA(ϕ) = eϕdV
∏

i |si |2ai

where si are non-zero sections of OX (Di ), | · |i are smooth hermitian metrics on
OX (Di ), and dV is a smooth volume form on X . Let us also introduce as before the
convenient notation Dlc := ∑

ak=1 Dk .
By [3, Theorem 3.5] we know that the solution ϕ is the limit (as both ε and t tend

to 0) of the quasi-psh functions ϕt,ε solving

(θ + tω0 + ddcϕt,ε)
n = eϕt,ε dV

∏
a j <1(|si |2 + ε2)ai

∏
ak=1 |sk |2 (4.1)

where ω0 is some fixed Kähler form.
We will divide the proof of Theorem B in three steps. In the first two, we will be

dealing with the L∞ estimate on the potential (upper bound then lower bound), and
in the last one, we will focus on the Laplacian estimate.
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4.3.2 The upper bound

To find the upper bound, we mimic what we did in the case of log smooth pair,
as the loss of positivity will not hinder the previous method. We set ϕP :=
−∑

ak=1 log log
2 |sk |2, uε := ϕt,ε − ϕP , and wε := uε − ∑

ai <0 ai log(|si |2 + ε2).
Actually, uε andwε depend on t , but we choose not to underline this dependence so as
to keep the notations lighter. If ωP denotes a metric with Poincaré singularities along∑

ak=1 Dk , e.g. ωP = ω0 + ddcϕP , then we have

(θ + tω0 + ddcϕP + ddcuε)
n = ewε+ fεωn

P∏
0<ai <1(|si |2 + ε2)ai

(4.2)

for some uniformly bounded function fε on X\Dlc (this function does not depend on
t).

The functionwε is bounded on the completemanifold (X\Dlc, ωP) so one can apply
Yau’s maximum principle [31] to this function. So let (xm) be a sequence such that
wε(xm) → supwε, and ddcwε(xm) � 1

m ωP . As vε satisfies ddcwε � ddcuε−Cω0 �
ddcuε − C ′ωP , we have

θ + tω0 + ddcϕP + ddcuε � CωP + ddcwε

and therefore

ewε(xm )+ fε(xm )ωn
P(xm)

∏
0<ai <1(|si (xm)|2 + ε2)ai

= (θ + tω0 + ddcϕP + ddcuε)
n(xm)

� (CωP + ddcwε)
n(xm)

� (C + 1/m)ωn
P(xm)

so that

wε(xm) � − fε(xm) +
∑

0<ai <1

ai log(|si (xm)|2 + ε2) + log(C + 1/m)

hence supwε � C , or equivalently

uε � C +
∑

ai <0

ai log(|si |2 + ε)2

But uε is (θ + tω0 + ddcϕ)-psh, hence also CωP-psh, so the arguments of the first
part of this article can be applied the same way in this situation, and they yield:

uε � C (4.3)

4.3.3 The lower bound

This is where we have to pay for the loss of positivity of K X + D. We know that there
exists an effective R-divisor E = ∑

cα Eα , π -exceptional, such that K X + D − E =
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π∗(KY +�)− E is ample. Therefore, one can find a Kähler metric ω0 on X , non-zero
sections sα of OX (Eα), and hermitian metrics | · |α on these bundles such that the
function χ = ∑

cα log |sα|2 satisfies:

θ + ddcχ = ω0 + [E]

Recall that in Sect. 2.2, we introduced the potential ψε of the regularized cone
metric; it is a uniformly bounded ω0-psh function on X , such that the metric ωP,ε :=
(1+t)ω0+ddcϕP +ddcψε on X\Dlc is complete, with bounded bisectional curvature
and satisfies

∏

0<ai <1

(|si |2 + ε2)−ai ωn
P = eGεωn

P,ε

for some smooth function Gε which is uniformly bounded in ε (and t , which is why
we choose not to emphasize the dependence of Gε on t). One should emphasize that
this metric ωP,ε has approximate cone singularities not only along the strict transform
of � − ��� but also along some exceptional divisors. Setting vε := uε − ψε − χ ,
Eq. (4.1) becomes, on X\E :

(ωP,ε + ddcvε)
n = evε+Fεωn

P,ε (4.4)

where Fε = Gε + ψε + χ − ∑
ai <0 ai log(|si |2 + ε2), and from the remarks above,

sup Fε � C for some C independent of ε and t . The job would be done if one could
apply Yau’s maximum principle to vε on the complete manifold (X\Dlc, ωP,ε). But vε

is not smooth along E , so we should be careful. Fortunately, vε = −χ + O(1) tends to
+∞ near E , so one can run the proof of Yau’smaximum principle without any change:
let us first introduce, for every positive integer m, the function hm := vε − 1

m ϕP . This
function is smooth on X\(Dlc ∪ E) and tends to +∞ near the boundary. Therefore,
it attains its minimum at some point xm in X\(Dlc ∪ E). Then, 0 � ddchm(xm) =
ddcvε(xm) − 1

m ddcϕP (xm) so that ddcvε(xm) � −C
m ω0(xm) � −C ′

m ωP,ε(xm) as ϕP

and ψε are uniformly quasi-psh. Plugging this inequality into (4.4), we find inf vε �
− sup Fε � −C , hence

uε � C + χ (4.5)

4.3.4 The Laplacian estimate

The metric ωP,ε on X\Dlc is complete and has bounded curvature, but when ε goes to
zero, its curvature may blow up (in both directions) due to the conic part. In [12], a new
Laplacian estimate has been introduced to deal specificallywith that kind of geometries
(cf. Section 6.3). More precisely, if we write ω := ωP,ε and ω′ = ωP,ε + ddcvε, then
we get from (4.4) that ω′n = evε+Fεωn , and it is shown in [12] that there exists a
smooth and uniformly bounded function 
ε on X satisfying on X\(Dlc ∪ E):

�ω′(log trωω′ + 
ε) � −C trω′ω
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for some constant C independent of ε. This constant takes into account a lower bound
for the ω-Laplacian of vε + Fε (the existence of this bound is also proved in [12]). As
ω′ = ω + ddcvε, we infer:

�ω′(log trωω′ + 
ε − (C + 1)vε) � trω′ω − n(C + 1)

The function inside the Laplacian is smooth on X\(Dlc ∪ E) and tends to −∞ near
E . Therefore, one can apply the same maximum principle as in the last subsection:
introduce H := log trωω′ + 
ε − (C + 1)vε and Hm := H + 1

m ϕP . By construction
Hm tends to−∞ near Dlc and E , so we can choose a point xm outside of these divisors
where Hm attains its maximum. At this point, we have 0 � ddc Hm = ddc H + 1

m ddcϕ

so that at this point again, we find ddc H � C
m ω0 � Cε

m ω′. Using a basic inequality,
we find

log trωω′(xm) � (vε + Fε)(xm) + (n − 1) log [n(C + 1) + nCε/m] (4.6)

Therefore, as 
ε is uniformly bounded and vε is uniformly bounded below, we have:

log trωω′ = H + (C + 1)vε − 
ε

� sup
m

H(xm) + (C + 1)vε + C

�
(4.6)

sup
m

[
(vε + Fε)(xm) + (n − 1) log [n(C + 1) + nCε/m]

−(C + 1)vε)(xm)
] + (C + 1)vε + C

� −C inf vε + sup Fε + (C + 1)vε + C

�
(4.3)−(4.5)

C − Cχ

So in the end, we have proved that the approximate KE metric ωP,ε + ddcvε satisfies
on X\E :

C−1eCχωP,ε � ωP,ε + ddcvε � Ce−CχωP,ε

for some constant C > 0 independent of ε and t . As χ is locally bounded on X\E =
π−1((Y,�)reg), this ends the proof of Theorem B.
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