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Abstract We classify representations of compact connected Lie groups whose
induced action on the unit sphere has the orbit space isometric to a Riemannian orb-
ifold.
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1 Introduction

In this paper we classify all representations of compact connected Lie groups G on
Euclidean spaces whose induced action on the unit sphere Sn has the orbit space Sn/G
isometric to a Riemannian orbifold; recall that a Riemannian orbifold is a metric space
locally isometric to quotients of Riemannian manifolds by finite groups of isometries.
Representations whose induced action on the unit sphere has a Riemannian orbifold
as quotient will be called infinitesimally polar, since they can be equivalently defined
by the condition that the slice representations at all non-zero vectors are polar [25].
Our interest in such representations is two-fold.
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1042 C. Gorodski, A. Lytchak

On the one hand, we wanted to isolate an interesting class of representations in this
way. This class contains all polar representations, which can be defined by the property
that the corresponding quotient spaceSn/G is an orbifold of constant curvature 1. Polar
representations very often play an important and special role in geometric questions
concerning representations (cf. [4,29]), and the class investigated in this paper consists
of closest relatives of polar representations.

On the other hand, any Riemannian orbifold isometric to a quotient Sn/G has
positive curvature and all of its geodesics are closed. Any of these two properties is
extremely interesting and in both classes the number of known manifold examples
is very limited (cf. [5,46]). We have hoped to obtain new examples of positively
curved manifolds and of manifolds with closed geodesics as universal orbi-covering
of such spaces. Should the orbifolds be bad (cf. Sect. 2.3) we could still hope to obtain
new examples of interesting orbifolds. For instance, the two-dimensional weighted
complex projective spaces are very special examples of rotationally invariant singular
Zoll surfaces [5, chapter 4], [19]. And the four-dimensional weighted quaternionic
projective space S

7/SU(2), where SU(2) acts by the irreducible representation of
complex dimension 4, is the so called Hitchin orbifold O3 (cf. [45] and the references
therein). This orbifold with a different positively curved metric is the starting point
of the construction of the only new example of positively curved manifold discovered
in the last decades [9,18]. We have hoped that new interesting examples of orbifolds
might arise in this way.

Unfortunately, this hope was not fulfilled; cf. Corollary 1 to our main result, which
we now state:

Theorem 1 Let a compact Lie group G act effectively and isometrically on the unit
sphere S

n. Let ρ : G0 → SO(n + 1) be the corresponding representation of the
identity component. The quotient Sn/G is a Riemannian orbifold if and only if one of
the following cases occur for ρ:

– The representation ρ is polar.
– G0 acts almost freely on S

n; thus G0 = U(1) or G0 = SU(2), and ρ is a sum of
irreducible even-dimensional representations.

– ρ has cohomogeneity 3.
– ρ is one of the representations listed in Table 1.

Remark 1 Observe that the non-polar irreducible representations in Theorem 1 are
either representations of cohomogeneity 3 or representations of SU(2) of quaternionic
type.

In Table 1 and further in the text we use the following notation: by S
k(r), Sk+(r),

S
k++(r), Sk+++(r) we denote the round sphere of constant curvature 1

r2
quotiented by

the group�which is respectively generated by 0, 1, 2, 3 commuting reflections.We call
the corresponding spaces the sphere, hemisphere, quarter-sphere and eighth-sphere of
curvature 1

r2
, respectively.

Corollary 1 Let ρ be an orthogonal representation of a compact Lie group G on a
Euclidean spaceRn+1. Assume that the quotient X = S

n/G is a Riemannian orbifold.
Then the universal orbi-covering X̃ of X is either a weighted complex or quaternionic
projective space, or X̃ has constant curvature 1 or 4.
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Isometric actions on spheres with an orbifold quotient 1043

Table 1 Quotients of constant
curvature 4

G ρ Conditions Orbit space

Spin(9) R
16 ⊕ R

16 – S
3++( 12 )

SU(n) C
n ⊕ C

n n ≥ 3 S
3+( 12 )

U(n) C
n ⊕ C

n n ≥ 2 S
3+( 12 )

Sp(n) H
n ⊕ H

n n ≥ 2 S
5+( 12 )

Sp(n)U(1) C
2n ⊕ C

2n n ≥ 2 S
4++( 12 )

Sp(n)Sp(1) R
4n ⊕ R

4n n ≥ 2 S
3++( 12 )

T2 × Sp(n) C
2n ⊕ C

2n n ≥ 2 S
3+++( 12 )

Here and below a complex, resp. quaternionic, weighted projective space is a quo-
tient of the unit sphere by an almost free action of U(1), resp., SU(2). As mentioned
above, X̃ has constant curvature 1 if and only if the representation of G is polar, a very
well understood situation [7]. It turns out that X̃ is a weighted projective space if and
only if G has rank one and acts almost freely on Sn or if Sn/G has dimension 2, again
two very well known cases [16,35].

Almost free actions and polar representations provide orbifolds of arbitrary dimen-
sion. On the other hand, the case of quotients of constant curvature 4 in Theorem 1
can occur only in low cohomogeneity, maybe the most surprising consequence of our
classification:

Corollary 2 Let X = S
n/G be a Riemannian orbifold. If G has rank at least 2 and

the representation is not polar, then the dimension k of X satisfies 2 ≤ k ≤ 5.

This result becomes more surprising if one compares it with the world of
non-homogeneous singular Riemannian foliations on spheres. Recent examples of
Radeschi [33] show that there are singular Riemannian foliations on round spheres
S
n , for n large enough, such that the quotient space is isometric to a hemisphere of

curvature 4, which can be of arbitrary large dimension!
On the other hand, for the remaining classes of examples of infinitesimally polar

actions the differences with the non-homogeneous world are not that big. For polar
foliations, it is known that the only quotients that arise, arise as quotients of group
representations [39]. Moreover, in higher codimensions essentially all polar folia-
tions are homogeneous [38]. The case of G having rank one and acting almost freely
corresponds to the case of regular Riemannian foliations. All such foliations but the
7-dimensional Hopf fibration are homogeneous [26, and the literature therein]. We
refer also to [32] for a related result.

All good orbifolds (cf. Sect. 2.3) appearing as quotients in Theorem 1 have sectional
curvatures between 1 and 4, and all bad orbifolds appearing in Theorem 1 can be
shown to have curvature ≤ 4 at some points. However, we are not aware of an a priori
geometric reason, why the curvature cannot be larger than 4 at every tangent plane.
Due to [25], for any representation ρ : G → SO(n + 1) the quotient X = S

n/G
always has regular points with arbitrary large curvatures at some plane, unless X is
a Riemannian orbifold, hence described above. On the other hand, it seems to be
an interesting question, how large the infimum of the curvatures can be in a general
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quotient space X = S
n/G. We hope to discuss this question closely related to [15,27]

in a forthcoming paper.
Many parts of our proof apply to non-homogeneous singular Riemannian foliations.

Some observations may be of independent interest, for instance the following:

Theorem 2 Let X be a compact positively curved Riemannian orbifold of dimension
at least 3. If X has non-empty boundary as an Alexandrov space, then X is a good
orbifold. Moreover, the universal orbi-covering of X is diffeomorphic to a sphere.

In dimension 2 the above theorem is not true: a two-dimensional disc with a singu-
larity at the boundary (half of a tear-drop orbifold) is a bad orbifold and can be equipped
with a positively curvedmetric. Indeed, this orbifold arises as the orbit space of certain
isometric group actions on unit spheres (compare Example 1 in Sect. 5). In view of
this result, [12, Theorem 2.10] and [11], it seems reasonable to ask the following:

Question 1 Do all orbifolds from Theorem 2 carry a metric of constant curvature?

Another observation that may be of independent interest in other contexts is a
reduction procedure similar to the reduction of the principal isotropy group [14,17,23,
35]. Namely, we show in Sect. 5 that one can view any stratum S in a given quotient
space M/G as an open subset of a (usually non-injective) isometric immersion of
another quotient space F/N , where F is a closed and totally geodesic submanifold of
M and N a subquotient group ofG. In the particular case inwhich S is a closed stratum,
this amounts to the statement that the whole manifold S is isometric to some quotient
F/N as above. In our opinion, it is exactly this point, that does not have a similar
for general singular Riemannian foliations, which is responsible for the great variety
of examples in [33]. For instance (cf. [33, Subsection 6.2]), assume for the moment
that our quotient Sn/G is a hemi-sphere of constant curvature greater than 1. Then
the boundary sphere S is a closed stratum of our quotient and thus, by the observation
above, the manifold S is itself isometric to the quotient of another sphere, S = S

l/N .
But then N must have rank one and S must be CP1 or HP1 hence of dimension 2 or
4. If a similar reduction procedure existed for general singular Riemannian foliations,
we would get a fibration Sl → S, and the dimension of S would be 2, 4 or 8. However,
according to [33], the dimension of S can be an arbitrary number.

The proof of Theorem 1 is interspersed among the different sections, whose struc-
ture we now briefly explain. In Sect. 2 we collect basic results about general quotient
spaces and Riemannian orbifolds and prove Proposition 1, which shows that either G
has rank one and acts almost freely on Sn , or the quotient X = S

n/G has a non-empty
boundary. Therefore the proof of Theorem 1 is reduced to the case k = dim(X) ≥ 3
and ∂X �= ∅. In Sect. 3 we discuss the geometry of all the quotient spaces appear-
ing in Theorem 1. In Sect. 4 we discuss Coxeter and positively curved orbifolds and
prove Theorem 2, which implies that X is a good Riemannian orbifold orbi-covered
by a sphere. In Sect. 5, we use the above described reduction procedure to show that
any boundary stratum of X gives rise to another infinitesimally polar representation
whose cohomogeneity is one less than the original one. After discussing a special case
(Proposition 2) in Sect. 6, that result is then applied in the inductive proof of Proposi-
tion 3 in Sect. 7, a technical result which essentially finishes the proof of Theorem 1.
In the last section we explain how the corollaries follow from Theorem 1.
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Isometric actions on spheres with an orbifold quotient 1045

For the sake of convenience, we generally assume that our representations are
almost effective.

2 Preliminaries

2.1 Strata of isometric group actions

Let G be a closed group of isometries of a connected complete Riemannian manifold
M . Let X denote the quotient metric space M/G. The manifold M is stratified by
G-invariant submanifolds consisting of points whose isotropy groups are conjugate
to each other. The projection of any such stratum to X is called an isotropy stratum
of X . Any isotropy stratum is an (often non-complete and disconnected) Riemannian
manifold, which is a locally convex subset of the Alexandrov space X . Any closure of
any isotropy stratum is an extremal subset of the Alexandrov space X (cf. [31, Section
4.1]). From the geometric point of view, the more natural stratification of X consists
of the connected components of isotropy strata defined above. These components
(which also coincidewith the components of normal isotropy strata [34, Introduction])
can also be defined as the connected components of the sets of points in X with
isometric tangent cones. Hence, they are determined uniquely by the metric space X .
In particular, they do not depend on the presentation of themetric space X as a quotient
X = M/G. We will call them the metric strata or, simply, the strata of X . Referring
to the general structure of Alexandrov spaces, these closures are exactly the primitive
extremal subsets of X , and thus correspond to the canonical metric stratification of
the Alexandrov space X [31, Section 4.1(8)].

There is a unique full-dimensional isotropy stratum of X , corresponding to the
minimal isotropy group, called the principal isotropy group. This stratum is always
connected, convex, open and dense in X . It is called the principal stratum and consists
of all principal orbits of the G-action.

We would like to mention, that the structure described above answers Ques-
tion 4.6(2) in [1].

2.2 Polar representations

We refer to [29,39] for accounts on polar representations. Recall that a representation
ρ : G → O(n + 1) is polar if and only the restriction of the representation to the
identity component is orbit-equivalent to the isotropy representation of a symmetric
space. This happens if and only if the quotient space R

n+1/G is a flat Riemannian
orbifold. An equivalent property is that the quotient Sn/G is a Riemannian orbifold
of constant curvature 1.

2.3 Riemannian orbifolds

We assume some experience with orbifolds. We refer the reader to [8] and [21] for the
basic background. Some information can also be found in [14, Section 3] and much
more information in [6, pp. 584–618].
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1046 C. Gorodski, A. Lytchak

Recall that a Riemannian orbifold is a metric space locally isometric to quotients of
(smooth) Riemannianmanifolds by finite groups of isometries. ARiemannian orbifold
is called good if it is globally isometric to the quotient space of a Riemannianmanifold
by a discrete group of isometries, and bad otherwise.

A Riemannian orbifold comes along with a canonical stratification. Each stratum is
a connected Riemannianmanifold, which is locally convex with respect to the ambient
metric. The closure of any stratum is a union of strata. Any Riemannian orbifold X
can be written as a quotient of a Riemannian manifold (the orthonormal frame bundle
of X ) by an almost free isometric action of a compact Lie group. The canonical strat-
ification of X is then exactly the stratification described in Sect. 2.1. The boundary of
the orbifold (in the sense of Alexandrov geometry) is the closure of the union of strata
of codimension 1.

Any Riemannian orbifold X has a unique universal orbi-covering X̃ with a discrete
isometric action of � = πorb

1 (X) on X̃ . The orbifold X has a non-empty boundary if
and only if � contains a reflection, i.e., an involution with the set of fixed points of
codimension 1 in X̃ .

2.4 Orbifolds as quotients

We recall from [25] that for an isometric action of a compact Lie group G on a
Riemannian manifold M , the quotient X = M/G is a Riemannian orbifold if and
only if all slice representations of the action are polar. In [25] an isometric action of
G on M with this property has been called infinitesimally polar. Thus an orthogonal
representation is infinitesimally polar in the sense of this paper if and only if the
corresponding action on the unit sphere is infinitesimally polar in the sense of [25].

An isometric action of a compact Lie group G on a Riemannian manifold M is
infinitesimally polar if and only it is the case for the restriction of the action to the
identity component G0 of G. In such a case the canonical projection M/G0 → M/G
is an orbi-covering.

Assuming again that the quotient X = M/G is a Riemannian orbifold, all singular
orbits of the action are contained in the boundary of X . Moreover, if π1(M) = 1 and
G is connected then the boundary of X is exactly the set of singular G-orbits, while
its complement is the union of principal and exceptional orbits [24]. In particular, X
has no boundary if and only the action of G has no singular orbits.

Assume now that M has positive curvature. If the principal isotropy group of the
action of G on M is non-trivial then the quotient X = M/G has non-empty boundary
[43, Lemma 5 and subsequent lines]. Hence, if X is a Riemannian orbifold and has
empty boundary, the action of G on M must be almost free.

Recall now that any action of a k-dimensional torus on a compact positively curved
manifold always has at least one orbit of dimension at most 1, thus with an isotropy
group of rank at least (k − 1) [42, Lemma 6.1]. Hence:

Proposition 1 Let a compact Lie group G act by isometries on a compact positively
curved Riemannian manifold M. If the quotient space M/G has empty boundary and
it is isometric to a Riemannian orbifold of positive dimension then G has rank 1 and
the action is almost free.
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Isometric actions on spheres with an orbifold quotient 1047

2.5 Quotient-geodesics

LetM be a connected completeRiemannianmanifold onwhich a compact Lie groupG
acts by isometries with quotient space X = M/G. A geodesic in M is called G-
horizontal, if it is orthogonal to the G-orbits it meets. A geodesic is horizontal if and
only if it starts in a horizontal direction. The projection to X of a horizontal geodesic
is a concatenation of metric geodesics (i.e. locally distance minimizing curves) in X .
We call such a projection a quotient-geodesic. We refer to [25, Section 4] for more on
this subject and for proofs of further statements below.

The projections of two G-horizontal geodesics coincide if they coincide initially.
Hence, we can uniquely extend an initial piece of a quotient-geodesic to a quotient-
geodesic defined on R. Since any metric geodesic in X is a quotient-geodesic in the
above sense,we thus can uniquely extend any geodesic to an infinite quotient-geodesic.
The set of quotient-geodesics is closed under point-wise convergence.

Remark 2 In fact, any quotient-geodesic is a so-called quasi-geodesic of the Alexan-
drov space X [31, Section 5], a notion which will not play a role below. Unlike general
quasi-geodesics, the quotient geodesics are uniquely defined by their initial segments.
We have a well defined continuous quotient-geodesic flow on X .

There is a dense subset in the space of quotient-geodesics that run only through
the principal stratum and strata of codimension 1. This union X1 of all strata of
codimension at most 1 is a Riemannian orbifold. Moreover, the quotient-geodesics
contained in X1 coincide with the orbifold-geodesics in the Riemannian orbifold X1.
By the abovedensity claim, the quotient-geodesics in X are limits of orbifold-geodesics
in X1, hence they are defined only in metric terms, independently of the presentation
of the metric space X as a quotient X = M/G. In particular, if X is a Riemannian
orbifold then the quotient-geodesics are exactly the orbifold-geodesics of X .

On any G-horizontal geodesic γ , all but discretely many points have the same
isotropy group H = Gγ . Hence the projection of γ to X is completely contained in
the closure of the H -isotropy stratum of X . Therefore, the closure of any isotropy
stratum is totally quotient-geodesic in X , in the sense that any quotient geodesic
contained in the closure of the stratum initially, is contained in it for the whole time.

We would like to mention that the above observation about the dependence of the
quotient-geodesics only on themetric structure of the quotient answersQuestion 4.6(1)
in [1].

2.6 Luna–Richardson–Straume and minimal reductions

If H is the principal isotropy group of the action of G on M , then we have a canonical
isometry F/N → M/G, where F is the closure of the set of all points of M whose
isotropy group is exactly H , and N is the normalizer of H in G [14,17,23,35]. The
action of N on F has H in its kernel; the induced action of N/H on F is called the
principal isotropy reduction of the action of G on M . It has trivial principal isotropy
groups and the same quotient space as the original action.

In case of a linear representation of a compact Lie group G on a vector space V ,
the subset F of V is a subspace which we denote by W . Some properties of such and
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more general reductions (see below) have been investigated in [14] to which we refer
the reader for details. We will use the following special case of the results therein.

Lemma 1 Let ρ : G → O(V ) be a representation of a compact Lie group G. Assume
G is connected and its action on V is irreducible, non-polar, infinitesimally polar and
has cohomogeneity c at least 4. Let H, N, W be as above. Then the action of the
identity component (N/H)0 on W is irreducible.

Proof Suppose, to the contrary, that the action of (N/H)0 onW is reducible. Since G
is connected and V/G = W/N , Theorem 1.7 in [14] implies that (N/H)0 is a torus
T c−2 and its action onW is equivalent to the action of the maximal torus of SU(c − 1)
on Cc−1. However, this action is not infinitesimally polar for c ≥ 4 (by Proposition 1
and [14, Lemma 7.1]), and this is a contradiction. �	

In a very last step of the proof of main theorems we will need to go through some
lists of representations. To simplify the arguments excluding those candidates one can
make use of the following slightly more general minimal reductions studied in [14].
For a representation ρ : G → O(V ), a minimal reduction of ρ is a representation
τ : K → O(U ) with the same orbit space, V/G = U/K , and lowest possible
dimension of K . It often happens that the principal isotropy reduction is already a
minimal reduction, but there are easy examples in which it is not the case [14].

Note that the representation ρ is infinitesimally polar if and only if so is its minimal
reduction τ . Moreover, Lemma 1 applies to this situation as well, showing in particular
that if G is connected and its action on V is irreducible and infinitesimally polar then
its minimal reduction group K cannot have a non-trivial toric connected component,
unless the cohomogeneity of ρ is at most 3.

2.7 Infinitesimally polar representations with trivial principal isotropy groups

The principal isotropy/minimal reduction allows us to reduce some questions to the
case of actions with trivial principal isotropy groups. In such a case, all slice represen-
tations must have trivial principal isotropy groups as well. On the other hand, if the
quotient space is Riemannian orbifold then all isotropy representations are polar. But
polar representations with trivial principal isotropy groups are exceedingly rare:

Lemma 2 Letρ be an effective polar representation of a compact connected Lie group
G on V . Assume that the principal isotropy group of the representation is trivial. Then
G is finitely coveredbyU(1)l1×Sp(1)l2 andρ is orbit equivalent to (l1·C⊕l2·H⊕l3·R),
where R denotes the trivial representation. Moreover there exists a connected normal
subgroup H of G of rank 1which is the isotropy group corresponding to a codimension
1-stratum of the quotient space V/G = (R+)l1+l2 × R

l3 . Finally, either G is a torus,
or H can be chosen to be isomorphic to Sp(1).

Proof We prove the first assertion by induction on the number of irreducible compo-
nents ofV .Without loss of generality,wemayassume thatV has no trivial components.
Consider first the case in which V is irreducible. A quick enumeration of polar irre-
ducible representations of connected groups yields that (G, V ) is equal to (U(1),C)
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Isometric actions on spheres with an orbifold quotient 1049

or (Sp(1),H). In fact, we have only to examine the list of isotropy representations of
compact irreducible symmetric spaces of maximal rank, which is a short list, and the
list of additional polar irreducible representations in [10], which is even shorter.

Assume next V = V1 ⊕ V2 is a decomposition into G-invariant subspaces. Choose
a regular point vi ∈ Vi for the restriction (G, Vi ) for i = 1, 2. Owing to [7, Theo-
rem 4], (G0

v2
, V1) (resp. (G0

v1
, V2)) is orbit equivalent to (G, V1) (resp. (G, V2)). The

assumption of triviality of principal isotropy groups for (G, V ) implies that (G0
v2

, V1)
(resp. (G0

v1
, V2)) has the same property and it is effective; of course, it is also polar. It

follows from the inductive hypothesis that G0
v2

× G0
v1

is covered by U(1)l1 × Sp(1)l2

and its action on V is orbit equivalent to l1 · C ⊕ l2 · H. Again by [7, Theorem 4],
G = G0

v2
· G0

v1
= G0

v1
· G0

v2
and (G, V ) is orbit equivalent to (G0

v2
, V1) × (G0

v1
, V2).

Since (G, V ) has trivial principal isotropy groups, G0
v1

∩ G0
v2

= {1}, showing that G
is (finitely) covered by G0

v1
× G0

v2
.

Note that the action of G̃ := U(1)l1 × Sp(1)l2 on V = l1 · C ⊕ l2 · H needs not be
a direct product of representations. However, G acts on each C-summand as U(1); in
particular Sp(1)l2 acts trivially on l1 ·C. On the other hand,G acts on eachH-summand
of V as one of Sp(1), U(2), SO(4).

We next prove the second assertion in the statement. The claim is that we can find
a U(1)- or Sp(1)-normal subgroup H of G which fixes all summands but one in the
decomposition V = l1 ·C⊕ l2 ·H⊕ l3 ·R. Again wemay assume l3 = 0. If l2 = 0 then
ρ(G) is the maximal torus of U(l1), the representation can be written as the l1-fold
direct product of the representation of U(1) on C and we can take H to be any of
these U(1)-factors. Consider now l2 > 0, let G1, . . . ,Gl2 denote the Sp(1)-factors
of G and let V1, . . . , Vl2 denote the H-summands of V . Each Gi can act non-trivially
only on the H-summands. Thus assuming, contrarily to the claim, that no such factor
corresponds to a codimension one stratum, we see that each Gi acts on at least two
Vj ’s. However, on each Vj at most two of the Gi ’s can act non-trivially. Thus each
Gi acts non-trivially exactly on two Vj ’s. By relabeling, we may assume that there
exists an integer m such that 2 ≤ m ≤ l2 and Gi acts non-trivially on Vi , Vi+1 for
i = 1, . . . ,m − 1 and Gm acts on Vm , V1. Now the action of G ′ = G1 × · · · ×Gm on
V ′ = V1 ⊕ · · · ⊕ Vm is a direct factor of the action of G on V . However, (G ′, V ′) has
principal isotropy subgroup SO(2), given by a maximal torus in the diagonal Sp(1)-
subgroup of G ′, and this contradicts the fact that the original representation has trivial
principal isotropy groups. �	

The next lemma will allow us to apply Lemma 2 to certain slice representations.

Lemma 3 Let a connected Lie group G act by isometries on a simply connected
Riemannian manifold M. Assume that the principal isotropy groups of (G, M) are
trivial. If the quotient M/G is a good Riemannian orbifold then all isotropy groups
of (G, M) are connected.

Proof From [24, Theorem 1.8] we know that all slice representations have connected
orbits. Since the slice representations have trivial principal isotropy groups, all isotropy
groups must be connected. �	
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1050 C. Gorodski, A. Lytchak

3 Discussion of the examples

In this section we discuss the representations of compact connected Lie groups G
appearing in Theorem 1.

3.1 Polar representations

They are listed in [44, tables 8.11.2 and 8.11.5] and [3,10,12], and their properties are
well known by now. These are exactly the representations whose spherical quotient
has constant curvature 1.

3.2 Almost free actions

We call an orthogonal representation ρ of the group G almost free, if G acts almost
freely on the corresponding unit sphere. In this case G has rank one (Proposition 1),
hence it is either U(1), or it is covered by SU(2).

IfG = U(1) then any almost free representation is the sumof non-trivial irreducible
ones which are all complex one-dimensional. Such irreducible representations are
naturally parametrized by positive integers r , the order of the kernel. The quotient
space X2l = S

2l+1/ρ(U(1)) is called a weighted complex projective space, with
weights r1, . . . , rl+1, where r1, . . . , rl+1 are the integers associated to each one of the
summands of ρ.

If G is covered by SU(2) then all almost free representations are described sim-
ilarly (cf. [16]). It turns out that any almost free representation ρ of G is a sum of
irreducible representations of quaternionic type and G = SU(2). For any natural
number r ≥ 0 there exists exactly one such irreducible representation of complex
dimension 2r ; the almost free representations of SU(2) are arbitrary sums of such
representations. It seems natural to call the quotient space X4l = S

4l+3/ρ(SU(2)) a
weighted quaternionic projective space, also in view of the following remark.

Remark 3 The topology of theweighted projective spaces is very close to the topology
of the usual projective spaces. In both cases the orbifold cohomology of the quotient X
can be computed using the fibrationG → S

n → X̂ , where X̂ is Haefliger’s classifying
space of the orbifold X . The cohomology of X̂ , which by definition coincides with the
orbifold cohomology of X , is generated by one element e in degree 2 or 4, respectively.
The only relation is p·ek = 0 for somenatural number p. This number p is 1 if and only
if the representation acts freely on the sphere, i.e., if and only if the representation is a
Hopf action. In any case X has the same rational homotopy type as the corresponding
projective space.

All weighted projective spaces have trivial orbifold fundamental group. Thus they
are good orbifolds if and only if they are Riemannian manifolds. This happens if and
only if the action of G on S

n is free, i.e., if and only if the quotient X is a classical
projective space. Thus X̃ = X is diffeomorphic to a sphere if and only if l = 1, in
which case it has constant curvature 4.
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3.3 Non-polar representations of cohomogeneity 3

Every representation of cohomogeneity 3 is infinitesimally polar, since the corre-
sponding action on the unit sphere has cohomogeneity 2 and every representation of
cohomogeneity at most 2 is polar (cf. [25]).

This case is studied in detail in [35]. There it is shown that any such representation
has a reduction to a representation of a one-dimensional group on R

4. In fact, if
G �= U(1) then the reduction is either a finite extension of the Hopf action or a two-
fold extension of the action of U(1) on C ⊕ C = R

4 with parameters (1, 2). In the
second case, the quotient space X is a disc with one singularity with angle π/2. In any
case, if X is a good orbifold, then it has constant curvature 4.

3.4 Complex case

Wediscuss here the second and the third examples fromTable 1 (see also [33, Prop. 5.2]
where the same result is proven from a very different point of view). First we consider
the double of the vector representation of U(2). We view S

7 ⊂ H
2 and U(2) as left

multiplication by a unit quaternion and right multiplication by a unit complex number.
To obtain S

7/U(2) we first divide out SU(2) to obtain HP1, the round sphere of
curvature 4 and then we have to divide out the remaining isometric action of U(1) =
U(2)/SU(2) on HP1.

In homogeneous coordinates (q0 : q1)eiθ = (q0eiθ : q1eiθ ) ∈ HP1 corresponds
to e−iθq−1

0 q1eiθ ∈ H ∪ {∞} = S
4( 12 ) and so eiθ ∈ U(1) fixes the plane spanned by

1, i and rotates the plane spanned by j , k by 2θ . Hence the action of U(1) on HP1 is
polar and the quotient is a 3-dimensional hemisphere S3+( 12 ) of constant curvature 4.

The groupSU(n) acting onCn⊕C
n is orbit-equivalent toU(n) for n ≥ 3.Moreover,

we can apply the reduction procedure toU(n) and obtain (U(2),C2⊕C
2) as aminimal

reduction. Hence the second and third representations in Table 1 yield a quotient
isometric to S

3+( 12 ).

3.5 Quaternionic case

Herein we deal with the four last representations in Table 1; again a different approach
can be found in [33, Prop. 5.2].

Consider first Sp(2) acting on V = H
2 ⊕H

2. It is a reduction of (Sp(n),Hn ⊕H
n)

for n ≥ 3, so the quotient X = S
8n−1/Sp(n) = S

15/Sp(2) has a non-empty boundary.
The representation has trivial principal isotropy group, hence X has dimension 5. The
normalizer of Sp(2) inO(V ) equals Sp(2)·Sp(2). Thus we have a non-trivial action of
Sp(2) on X which leaves the boundary invariant, fixes the unique point x of maximal
distance to ∂X , and acts as Sp(2)/Z2 = SO(5) on the tangent space at x . The quotient
of the Sp(2)-action on X is given by S15/Sp(2) · Sp(2). This space is known to be an
interval of length [0, π

4 ], which says that SO(5) acts on X with cohomogeneity one.
Now we see that X must be a hemi-sphere with a rotationally invariant metric; we are
going to show that it has constant curvature 4.
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Let γ : [0, π
4 ] → V be the horizontal geodesic

γ (r) =
(
cos r 0
0 sin r

)

Its projection under π : S
15 → X starts at a boundary point of X and ends

at x . Note that π−1(∂X) consists of pairs of linearly dependent vectors over H,

π

({(∗ ∗
0 0

)})
= ∂X , and

∂X =
{(∗ ∗

0 0

)} / (
Sp(1) 0
0 1

)
= S

7/Sp(1) = HP1 = S
4(1/2).

TheSO(5)-orbit throughπ(γ (r)) for 0 < r < π
4 is a 4-sphere of constant curvature.

In fact, due to the presence of SO(5)-symmetry the metric on X has the form dr2 +
f 2(r) ω, where ω is the metric of constant curvature 4 on S

4 and f is a non-negative
function. Moreover, f (r) is equal to the quotient ||π∗ξ ||π(γ (r))/||π∗ξ ||π(γ (0)), for an
arbitrary Killing field ξ on S

15 induced by the Lie algebra sp(2) acting on the right
whose π -horizontal component does not vanish at γ (0). Now we consider the unit
Killing field ξ induced by

(
0 1
−1 0

)

(quaternionic matrix) multiplying γ (r) on the right. This Killing field is not π -
horizontal with respect to π . Its π -vertical component is parallel to the unit Killing
field η on S15 induced by the same matrix multiplying γ (r) on the left. Taking scalar
products, the π -vertical component of ξ has length sin(2r) and the π -horizontal one,
cos(2r). It follows that f (r) = cos(2r). Hencewe see that X is a hemi-sphereS5+(1/2)
of constant curvature 4.

Similarly, the last three representations in Table 1 have reductions to the respective
representationswith n = 2, sowemay assume n = 2 in the discussion of the remaining
orbit spaces. In turn, these orbit spaces are obtained by dividing X by a subgroup of
Sp(2) acting on X whose action is induced by right multiplication on V . Namely, we
consider Sp(1) × Sp(1), �Sp(1) (diagonal), T2, and �T1 = U(1); here the first group
is included only for the sake of completeness, whereas the remaining three yield the
representations of interest to us. These groups fix x , so it is enough to understand the
action on Tx X : this is given by conjugation. Note that Tx X ∼= Hx = 〈e0, e1, e2, e3, e4〉
where

e0 =
(
1 0
0 −1

)
, e1 =

(
0 1
1 0

)
, e2 =

(
0 −i
i 0

)
, e3 =

(
0 − j
j 0

)
, e4 =

(
0 −k
k 0

)
.

Let a, b ∈ H. Then:

U(1) :
(
e−iθ 0
0 e−iθ

) (
0 a
b 0

) (
eiθ 0
0 eiθ

)
=

(
0 e−iθaeiθ

e−iθbeiθ 0

)
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fixes 〈e0, e1, e2〉 and acts as SO(2) on 〈e3, e4〉;

T2 :
(
e−iθ 0
0 e−iϕ

)(
0 a
b 0

) (
eiθ 0
0 eiϕ

)
=

(
0 e−iθaeiϕ

e−iϕbeiθ 0

)

fixes 〈e0〉 and acts as SO(2) × SO(2) on 〈e1, e2〉 ⊕ 〈e3, e4〉;

Sp(1) :
(
q−1 0
0 q−1

)(
0 a
b 0

)(
q 0
0 q

)
=

(
0 q−1aq

q−1bq 0

)

fixes 〈e0, e1〉 and acts as SO(3) on 〈e2, e3, e4〉;

Sp(1) × Sp(1) :
(
q−1
1 0
0 q−1

2

)(
0 a
b 0

)(
q1 0
0 q2

)
=

(
0 q−1

1 aq2
q−1
2 bq1 0

)

fixes 〈e0〉 and acts as SO(4) on 〈e1, e2, e3, e4〉.
It follows that the quotient of X by those groups is respectively

S
4++(1/2), S

3+++(1/2), S
3++(1/2), S

2++(1/2)

(cf. [35, Table II, type II] in the last case).

3.6 Exceptional case

Finally, we deal with the action of G = Spin(9) on V = R
16 ⊕ R

16.
Let H be the principal isotropy group, W = V H its fixed point set. The isotropy

subgroup at a point in R
16 ⊕ {0} is Spin(7). The action of Spin(7) on {0} ⊕ R

16

decomposes asR⊕R
7⊕R

8, the sumof the vector and spin representations plus a trivial
component. This is a slice representation which is polar, and corresponds to a unique
non-principal minimal orbit type. It follows that our representation is infinitesimally
polar. It also follows that H ∼= SU(3) and thus the dimension of X = S

31/G is 3.
The identity component of the normalizer NG(H)0 = H · ZG(H)0, where ZG(H)

denotes the centralizer of H in G. One computes that ZG(H)0 ∼= U(2) (for instance,
by using root systems; alternatively compare [13, p. 137]). Let C := (NG(H)/H)0.
Then C ∼= U(2) and dimW = 8. Since (G, V ) is a doubling representation, so is
(C,W ); hence W = C

2 ⊕ C
2 (one can also refer to Proposition 2 below or [13]).

Now X ′ = W/C = S
3+( 12 ) due to Sect. 3.4, and X = S

31/G is a finite quotient
of X ′ = W/C by a group � generated by reflections [14, Prop. 1.2]. Note that � is
non-trivial as (G, V ) has more than two orbit types.

There is an isometric SO(2) action on X with quotient X/SO(2) = S
2( 12 )+++.

Indeed there is a circle in the centralizer of Spin(9) inO(V ), and S31/Spin(9)×SO(2)
is a spherical triangle with three right angles [35, Table II, type III4].

The isometry group of S3( 12 )+ is O(3) acting through the canonical action on the
two-dimensional boundary sphere. The reflections of X are exactly the reflections in
O(3). If � has more than two elements, it contains two different reflections, and the
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quotient of the boundary sphere by � does not admit a circle action, hence this case
cannot occur. Hence � has two elements, the identity and a reflection. All reflections
in the isometry group of S3( 12 )+ are conjugate and the quotient of X ′ under the action
of any such reflection is thus X = S

3( 12 )++.

Remark 4 A conceptual proof that the above orbit spaces have constant curvature
(specially in the case of simple groups, see [13]) is to check that the representations
are taut and infinitesimally polar, and use [40, Theorem3.20] and [37, Corollary 6.12].

4 Positively curved orbifolds

4.1 Coxeter orbifolds

All orbifolds below are considered with some complete Riemannian metric. Recall
that an orbifold is called a Coxeter orbifold if all of its local groups are finite Coxeter
groups acting as reflection groups on the corresponding tangent spaces. In [8] such
orbifolds are called reflectofolds. We denote by Xreg the set of manifold points of an
orbifold.

We start with some preliminaries:

Lemma 4 An orbifold X is a Coxeter orbifold if and only if X \ Xreg = ∂X.

Proof The claim and conditions are local. Thus we may assume that X has the form
X = R

n/� for a finite group � of linear isometries.
The only if direction is clear, due to the structure of Coxeter chambers. Assume now

that any non-regular point of X is contained in ∂X . Let �re f l be the normal subgroup
of � generated by reflections. Thus �re f l is a finite reflection group and we need to
prove � = �re f l .

Consider the Coxeter chamber X ′ = R
n/�re f l and the induced effective, isometric

action of �′ = �/�re f l on the orbifold X ′. The set of regular points X ′
reg is homeo-

morphic toRn , and it is preserved under the action of�′. Hence, if�′ is non-trivial, the
action of the finite group �′ on the contractible manifold X ′

reg cannot be free. On the
other hand, �′ has no reflections, thus the set of fixed points in X ′

reg of any non-trivial
element in �′ has codimension at least two. Therefore, the image of this set of fixed
points in X consists of non-regular points outside of ∂X .

We deduce that this set of fixed points is empty, hence the action of �′ on X ′
reg is

free, hence �′ is the trivial group and � = �re f l . �	
The above lemma is closely related to the following result which we quote from

[24, Theorem 1.8]:

Lemma 5 Let the connected group G act by isometries on a simply connected Rie-
mannian manifold M. Assume that the quotient X = M/G is a Riemannian orbifold.
The orbifold X is a Coxeter orbifold if and only if X\∂X is a good orbifold. In par-
ticular, if X is a good orbifold, it is automatically a Coxeter orbifold.

For an orbifold X consider the universal covering X̂ of the underlying topological
space with the induced orbifold structure. Since being a Coxeter orbifold is a local
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condition, X is a Coxeter orbifold if and only if X̂ is a Coxeter orbifold. The universal
orbi-covering X̃ is also the universal orbi-covering of X̂ . Hence in investigating the
question, whether a given Coxeter orbifold X is a good orbifold we may restrict to the
case, when the underlying topological space X is simply connected.

For a Coxeter orbifold X , the faces are by definition the strata of codimension 1.
The closure of a face is called a mirror. Then each singular point of X is contained
in some mirror. Given any point x ∈ X , consider a small open convex ball U around
x . Since U is diffeomorphic as an orbifold to a Coxeter chamber, we see that x is
contained in exactly k mirrors of the orbifold U if and only if x lies on a stratum of
codimension k. Note that a face of U is part of a face of X , but that different faces of
U could be part of the same face of X .

It is easy to characterize which Coxeter orbifolds with simply connected under-
lying space are good, expressed in terms of the intersections of mirrors. One part of
the following result is straightforward [8, Section 5.1]; the other one is contained in
[2, Corollary 6.5]. (In [2], the result is unfortunately incorrectly stated without the
assumptions (C1), (C2) below. However, the assumptions are implicitly made in Sec-
tion 4 of [2], where they are wrongly assumed to hold always.) For convenience of the
reader, we recall the proof of this result:

Lemma 6 Let X be a Coxeter orbifold with π1(X) = 1. The orbifold X is good if
and only if it satisfies the following conditions:

(C1) Any codimension two stratum is contained in two different mirrors.
(C2) If the intersection W̄ ∩ W̄ ′ of two different mirrors contains two different strata

B± of codimension 2, then the orders of the isotropy groups at B+ and at B−
coincide.

Proof The orbifold fundamental group� of X is generated by involutions sW , indexed
by the faces W of X (cf. [8]). The relations are generated by words of the form rS ,
indexed by strata S of codimension 2. For any such stratum S, consider a point x ∈ S
and a small neighborhood U of x . Then the word rS has the form rS = (sW · sW ′)n ,
where n is the dihedral angle at x (half of the order of the local isotropy group �x )
and where W and W ′ are the faces that extend the local faces in U adjacent to x .

For any x ∈ X the local group �x is the finite Coxeter group generated by the
involutions indexed by the local faces at x . And the canonical map �x → � sends the
generator of �x corresponding to a local face to the generator of � corresponding to
the global face which extends the local one.

The orbifold X is good if and only if all maps �x → � are injective. If one of
conditions (C1) or (C2) does not hold, then the map from �x to � is not injective,
where x is any point in a codimension 2 stratum appearing in (C1), respectively, in
the stratum among B+, B− at which the local isotropy group is larger in case (C2).

On the other hand, if (C1) and (C2) hold true then � is the Coxeter group with
the Coxeter generating system 〈sW |rS〉, and any local group �x is given by a Coxeter
subsystem. The statement that �x → � is injective is a standard statement about
Coxeter groups. �	

Let again X be a Coxeter orbifold with π1(X) = 1. Let W be a face. Consider W
with its intrinsic metric and let N be the completion. Looking at the situation locally,
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we see that N is an Alexandrov space, which is in addition a Riemannian manifold
with corners (cf. [2]). We have a canonical map iW : N → X , which is an isometric
embedding in a neighborhood of any point of N . The image of iW is the mirror W̄ .
The map iW is injective on W , but, a priori, it could happen, that the map iW is not
injective on N .

The space N considered as a manifold with corners has a canonical stratification,
and any stratum of codimension k is mapped by iW to a stratum of codimension k + 1
in X . The closure of any stratum of N is an extremal subset of N in the sense of
Alexandrov geometry. We consider the following condition on the orbifold X :

(C3) For any face W , any pair of closures of codimension 1 strata in the completion
N of W have a non-empty intersection in N .

Lemma 7 Let X be a Coxeter orbifold. The condition (C3) implies (C1) and (C2).

Proof Assume that (C1) does not hold. Consider a bad stratum A of codimension 2,
an adjacent face W and the completion N . Then we have two different strata A± of
codimension 1 in N that are mapped by iW to the same stratum A. By assumption
Ā+ ∩ Ā− is non-empty. At any point z in this intersection, the restriction of iW to any
neighborhood of z is non-injective, which is impossible.

Assume that (C2) does not hold and consider W , W ′, B± as in the definition. We
claim that B̄+ ∩ B̄− is empty. Otherwise, in the neighborhood of any point x in the
intersection, we would see two local mirrors which intersect in different local strata
of codimension 2. But this does not happen in a Coxeter chamber.

On the other hand, consider the completion N ofW and the two strata A± in N that
are mapped by iW to B± respectively. Choose a point z in the non-empty intersection
Ā+∩ Ā−, whichmust exist by assumption (C3). Then the point x = iW (z) is contained
in B̄+ ∩ B̄−, in contradiction to the previous argument. �	

4.2 Positively curved Coxeter orbifolds

Assume now that a compact Coxeter orbifold X is positively curved. The completion
N of any face W is positively curved as well. From the theorem of Petrunin–Frankel
[30, Corollary 3.3] we deduce that any pair of strata of codimension 1 in N has a
non-empty intersection, if the dimension of N is at least 2 and the curvature greater
than some positive constant. Thus X satisfies the condition (C3), if dim(X) ≥ 3. We
can also apply this reasoning to the universal covering X̂ of X (since it has curvature
bounded below by some positive constant, so it is a compact Coxeter orbifold as well).
We arrive at:

Lemma 8 Let X be a compact positively curved Coxeter orbifold of dimension at
least 3. Then X is a good orbifold.

In the course of the proof of Theorem 2, we will be needing the following result
whose proof is contained in the first few lines of the proof of Proposition 2.3 in [12]:

Lemma 9 Let M be a simply connected compact positively curved manifold. Let
g : M → M be a reflection at a totally geodesic hypersurface N. Then M and N are
diffeomorphic to spheres.
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Now we can prove Theorem 2:

Proof of Theorem 2 Let X̃ denote the universal orbi-covering of X . By assumption, X̃
has uniformly positive curvature, in particular it is compact. There is at least one reflec-
tion g on X̃ . We may assume that g is the reflection at a totally geodesic hypersurface
Z , dividing X̃ in two isometric connected components. Without loss of generality, we
may assume X = X̃/{1, g}. Then X has boundary ∂X = Z (as an Alexandrov space)
and the orbifold X0 := X\∂X has trivial orbifold fundamental group (for instance,
cf. [14, Prop. 3.4]).

We claim first that X0 is a manifold. We refer to [21, pp. 5–23] for details of
the following argument. By positivity of curvature, the distance function f = dZ is
strictly concave on X0. It has a unique critical point p (in the sense of Alexandrov
geometry,which is equivalent to being critical in the orbifold sense).Moreover, X0\{p}
is diffeomorphic (as an orbifold) to the product (0, t)× T , where T is a level set of f .
This implies thatπorb

1 (X0) = πorb
1 (X0\{p}) = πorb

1 (Up), for any small neighborhood
Up of p. Since πorb

1 (X0) = 1, this shows that p is a regular point of the orbifold X0.
Since the whole orbifold X0 is diffeomorphic to an open suborbifold ofUp, we deduce
that X0 is a manifold.

Due to Lemma 4, X a Coxeter orbifold. Due to Lemma 8 the orbifold X is a good
orbifold. Hence, X̃ is a manifold.

Now, X̃ is a positively curved manifold with an isometric reflection at a hypersur-
face. By Lemma 9 we deduce that X̃ must be diffeomorphic to a sphere. �	

5 Orbifolds isometric to quotients of spheres

5.1 Reductions and immersions of strata

We consider a more general construction than that in Sect. 2.6. Let a compact Lie
group G act by isometries on a complete connected Riemannian manifold M . Denote
the quotient space M/G by X . Let H ⊂ G be the isotropy group of an arbitrary point
in M . Denote the normalizer of H in G by N . Consider the set F ′ of fixed points of
H , and let F0 ⊂ F ′ be the set of all points whose isotropy group is exactly H . Then
F ′ is totally geodesic in M , F0 is open in F ′ and the closure F of F0 is a union of
some components of F ′. The sets F and F0 are N -invariant. The embedding F → M
defines a canonical map IH : F/N → M/G. For a general, non-principal isotropy
group H , the map I needs not be injective, as the following typical example shows (the
version of this map in the category of algebraic actions of complex reductive groups
on affine varieties is a normalization map, cf. [22, §2]).

Example 1 Consider the representation ofG = U(2) onC2⊕R
3, whereG acts onR3

as SO(3) (Case 12 in Table 3; see also [35, Table II, type I]). Let M be the unit sphere
with the induced action of G. The quotient space X = M/G is half of a tear-drop. It is
topologically a disc, which has three isotropy strata, all of them connected: the open
disc, the complement of one point on the boundary circle and this one point. The 1-
dimensional stratum corresponds to the isotropy group H = U(1). The corresponding
normalizer N is the maximal torus U(1) × U(1). The set F of fixed points is the unit
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sphere S2 in C × R and the quotient space F/N is the interval of length π . The map
I sends this interval length-preserving onto the boundary of the disc and folds both
end-points to the most singular point of X .

In general we have:

Lemma 10 Under the assumptions above, themap IH : F/N → M/G is 1-Lipschitz,
finite-to-one and preserves the lengths of curves. The restriction of IH to F0/N is an
injective local isometry onto the H-isotropy stratum of M/G. Moreover, IH preserves
the quotient-geodesic flow, i.e., it sends a projection of a horizontal geodesic to the
projection of a horizontal geodesic.

Proof The image IH (F0/N ) is the set of allG-orbits that contain a point with isotropy
group H , hence exactly the H -isotropy stratum of M/G. If two points p1, p2 ∈ F0

are in the same G-orbit then any element g ∈ G sending p1 to p2 must normalize H .
Hence, p1 and p2 are in the same N -orbit. Thus the map IH is injective on F0/N .

The remaining claims follow directly, once we know that IH preserves the quotient-
geodesic flow. Since F0/N is dense in F/N it suffices to see that an N -horizontal
geodesic in F0 is a G-horizontal geodesic in M . But this becomes clear by looking at
the slice representation (of H ) at any point of F0. �	

5.2 The orbifold case

In case that the quotient space is an orbifold we deduce:

Lemma 11 Let a compact Lie group G act by isometries on a complete Riemannian
manifold M. Assume that X = M/G is a Riemannian orbifold. Let H be any isotropy
group of the action, with normalizer N and F defined as above. Then F/N is a
Riemannian orbifold. The map IH : F/N → M/G is a totally geodesic isometric
immersion of orbifolds.

Proof The subset F0/N is open and dense in F/N . On the other hand, IH is a Rie-
mannian isometry from F0/N onto its image. This image is a stratum in a Riemannian
orbifold. We deduce that the sectional curvatures in the principal part of F0/N are
uniformly bounded from both sides. Hence F/N is a Riemannian orbifold by [25].

The second claim follows from the first claim, Lemma 10 and the fact that the
quotient-geodesic flows in X and in F/N coincide with the respective orbifold-
geodesic flows (Sect. 2.5). �	

5.3 Spherical case

Now we state the application of the strata immersion map IH which will be used in
the inductive proof of our main step:

Lemma 12 Let the compact Lie group G act isometrically on the round sphere Sn.
Assume that the action is non-polar and that the quotient X = S

n/G is a Riemannian
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orbifold of dimension k ≥ 3 with a non-empty boundary. Then there exists a non-
polar isometric action of a compact Lie group N on some unit sphere Sm, such that
the quotient Y = S

m/N is a good Riemannian orbifold of dimension k−1. Moreover,
there is a isometric reflection r on the universal orbi-covering X̃ of X, whose set Z
of fixed points is the universal orbi-covering of Y . In particular, the universal orbi-
covering of Y is diffeomorphic to a sphere.

Proof Recall that X is a good Riemannian orbifold and X̃ is diffeomorphic to a sphere
by Theorem 2.

Choose a point p ∈ S
n which is projected to a codimension one stratum St in X . Let

H be the isotropy group of p. Then the set of fixed points F of H is a great subsphere
of Sn of some dimension m. The results above show that Y = S

m/N is Riemannian
orbifold and that IH : Y → X is an isometric (totally geodesic) immersion whose
image contains St . In particular, Y has dimension k − 1.

Themap IH lifts to an isometric, totally geodesic immersion ĨH : Z → X̃ , between
the universal orbi-coverings of Y and X , respectively [6, p. 611]. Since X̃ is amanifold,
we deduce that Z is a manifold. In particular, Y is a good Riemannian orbifold.

Let x ∈ X̃ be any point projected to St in X . Then there is a isometric reflection r :
X̃ → X̃ (belonging to πorb

1 (X)), whose set Z ′ of fixed points is a (k−1)-dimensional
totally geodesic submanifold containing x , whose projection to X contains St . We see
by dimensional reasons and the fact that ĨH is totally geodesic, that the image ĨH (Z)

coincides with Z ′. The map ĨH : Z → Z ′ is a local isometry, hence a covering map.
By Lemma 9, Z ′ is diffeomorphic to a sphere. Since k ≥ 3, the sphere Z ′ is simply
connected and ĨH is an isometry.

It only remains to prove that the action of N on Sm is non-polar. Otherwise, Y and
hence Z ′ would have constant curvature 1. The submanifold Z ′ divides the manifold
X̃ into two submanifolds with totally geodesic boundary Z ′. Since the curvature of
X̃ is at least 1, we can apply a special case of a theorem by Hang and Wang [20,
Theorem 2] to see that X̃ would have constant curvature 1 (cf. also [31, (3.3.5)] for a
closely related result). But then the action of G on Sn would be polar. This contradicts
our assumptions. �	

6 Special reducible case

In this section we are going to analyze sums of representations of cohomogeneity one.
Herein it is convenient to adopt a different notation for representations (compare [35]).
We are going to prove:

Proposition 2 Let ρ : G → O(V ) be a representation of a compact connected
Lie group G. Assume V = V1 ⊕ V2 is a G-irreducible decomposition such that the
restrictions ρi to Vi have cohomogeneity 1. If ρ is infinitesimally polar but not polar
then ρ is listed in Tables 2 and 3 (orbit-equivalent representations are designated by
the same number and different letters). In particular, the cohomogeneity of ρ in V is
at most 6.

Proof The representation ρ = ρ1 ⊕ ρ2, with ρi being of cohomogeneity 1, is polar if
and only if it has cohomogeneity 2. This happens if and only if ρ is orbit equivalent
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to the outer direct sum of the representations ρ1 and ρ2. In particular, it is the case
if G splits as G = G1 · G2, such that the restriction of ρi to Gi acts on Vi with
cohomogeneity 1, for i = 1, 2.

The list of representations of cohomogeneity one is well known (see e.g. [14,
§12.7]). Cases 1–4, 6, 7 and 10 correspond to a doubling representation. The circle
group yields case 11 (and 1a).

Assumenow thatG is not a circle andρ not a doubling representation. IfG is simple,
then ρ1 and ρ2 must be two inequivalent representations of cohomogeneity one. We
get cases 13c and 14; the remaining cases are representations of SU(4), Spin(7)
and Spin(8) of cohomogeneity 2 (cf. [36, p. 84]) and one additional representation
(SU(2), μ2 ⊕ ρ3). The latter representation has a non-polar slice at p ∈ R

3 given by
(U(1), μ1 ⊕ μ1 ⊕ θ), where θ denotes a trivial summand.

Otherwise two factors of G act effectively on one summand, which we assume to
be V1. The first case is (G/ ker ρ1, V1) = (U(n), μn), n ≥ 2. Since SU(n) acts with
cohomogeneity 1 on V1, the product of the complementary factors of SU(n) in G does
not act with cohomogeneity 1 on V2 (due to the observation in the beginning of the
proof). We get cases 5a and 12, the representation (U(4), μ4 ⊕ ρ6), which is polar,
and the following candidates:

G ρ Cohom Conditions

U(1) × SU(n) (μ1)
r ⊗ μn ⊕ (μ1)

s ⊗ μn 4 n = 2 or r = s
U(1) × SU(n) (μ1)

r ⊗ μn ⊕ (μ1)
s ⊗ μn 3 n ≥ 3 and r �= s

Since r = s is a doubling representation, for the first representation wemay assume
n = 2; taking a slice representation at a point p ∈ V1 shows thatρ canbe infinitesimally
polar if and only if r = ±s; as real representations, the two cases are equivalent one to
the other and, after dividing by a finite ineffective group, we may assume r = s = 1.
The second representation yields case 5b.

The second case is (G/ ker ρ1, V1) = (Sp(n) ×U(1), νn ⊗ μ1), n ≥ 2. Again, the
product of the complementary factors of Sp(n) in G does not act with cohomogeneity
1 on V2. We get cases 8, 9b and 13b plus (U(1) × Sp(n), (μ1)

r ⊗ νn ⊕ (μ1)
s ⊗ νn),

where n ≥ 2. This representation has cohomogeneity 5. Taking a slice representation
shows that it can be infinitesimally polar if and only if r = ±s; as real representations,
the two cases are equivalent one to the other.

The last case is (G/ ker ρ1, V1) = (Sp(n) × Sp(1), νn ⊗ ν1), n ≥ 1. Again, the
product of the complementary factors of Sp(n) in G does not act with cohomogeneity
1 on V2. We get (Sp(1) × Sp(1), ν1 ⊗ ν1 ⊕ ρ3), which is polar, plus cases 9a, 9b, 9c
and 13a. �	

7 Main step

We are going to prove by induction on k the following statement.

Proposition 3 Let ρ : G → SO(n + 1) be a non-polar representation of a compact
Lie group G. Assume that Xk = S

n/G is a good Riemannian orbifold whose uni-
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versal orbi-covering is diffeomorphic to a sphere. Then Xk has constant curvature 4.
Moreover, if k ≥ 3, then the restriction of ρ to the identity component of G is the sum
of two representations of cohomogeneity 1. Finally, k ≤ 5.

Proof We proceed by induction on k. The case k = 1 cannot occur, since such an
action would be polar. The case k = 2 is well known (Sect. 3.3). Assume now that
k ≥ 3, and that the result is true for all k′ < k. By considering the restriction of the
action to the identity component of G, it suffices to prove the result for connected
groups.

Either we have the Hopf action of Sp(1) on S7, for which case all claims are true, or
the quotient has boundary (Proposition 1 and Sect. 3.2). Thuswemay assume ∂X �= ∅.
Due to Lemma 12, we find an isometric non-polar action of some compact Lie group
N on some unit sphere Sm , such that the quotient Y = S

m/N is a good Riemannian
orbifold of dimension k − 1, whose universal orbi-covering is diffeomorphic to a
sphere. By our inductive assumption, we deduce k − 1 ≤ 5. Hence k ≤ 6. By the
inductive assumption, Y has constant curvature 4, hence its universal orbi-covering Z
is a sphere of constant curvature 4.

We first assume that ρ is reducible. Due to Proposition 2 and Sect. 3 we only
need to prove that Rn+1 is the sum of two summands on each of which G acts with
cohomogeneity one, since this would imply that the quotient has curvature 4 and
dimension ≤ 5. Thus it suffices to prove that G acts transitively on any non-trivial
invariant great subsphere of Sn .

Let X̃ denote the universal orbi-covering of X . Then X̃ is a sphere with curvature
≥ 1. By Lemma 12, it admits a reflection r : X̃ → X̃ , whose set of fixed points Z is
a (k − 1)-dimensional sphere of constant curvature 4.

We claim that all geodesics in X̃ are closed of period π (cf. [41, Section 2.1]).
Indeed, the element −I d ∈ O(n+1) commutes with G and induces an isometry I on
X = S

n/G, which sends a point p to the point exp(πh), where exp is the exponential
map of the orbifold X and h is any unit vector at p. Hence, the map Ĩ : X̃ → X̃ which
sends a point p to the endpoint of any geodesic of lengthπ starting at p is well-defined,
and it is an isometry of X̃ . Note that Ĩ 2 is the identity, and that Ĩ sends any geodesic to
itself without changing the orientation of the geodesic. All geodesics in Z are closed
of period π , thus themap Ĩ fixes all points in Z . Hence Ĩ is the identity or the reflection
r . But r changes the orientation on any geodesic intersecting Z orthogonally. Hence
Ĩ is the identity. Thus all geodesics in X̃ are closed of period π .

In particular, the diameter of X̃ is at most π
2 . For any point p ∈ X̃ , we denote by

Ant (p) the set of all points q ∈ X̃ with d(p, q) ≥ π
2 . We claim that for any point

p ∈ X̃ , the set Ant (p) has at most one point.
To prove the claim, note first that the set Ant (p) contains with any pair of points

q1, q2 any (non necessarily minimizing) geodesic of length < π between these points
by Toponogov’s theorem. Since geodesics in X̃ are closed of period π , we see that
Ant (p) contains any closed geodesic going through any pair of its different points,
hence Ant (p) is a totally geodesic submanifold of X̃ . Therefore, if Ant (p) intersects
Z in at least 2 points for some p ∈ X̃ , then Ant (p) must contain Z . Hence p /∈ Z and
the distance of p to r(p) is larger than π

2 , since Z separates X̃ . This contradicts the
diameter bound.
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Thus Z intersects Ant (p) in at most one point. Assume that Ant (p) contains at
least two points, hence at least one closed geodesic γ . Now, the distance function to
the subset Z restricted to any of the two open subspaces X̃± in which Z divides X̃
is strictly concave. Hence the closed geodesic γ cannot be contained in any of this
half-spaces of X̃ . Thus, γ intersects Z in some point q. But by topological reasons, γ
cannot intersect Z only at one point q. This contradiction proves the claim that Ant (p)
consists of at most one point.

Let now S = S
l , 0 ≤ l < n be a G-invariant great sphere in S

n and let S⊥ be the
orthogonal complement of S. Let S̄ and S̄⊥ be the projections of these great spheres to
X . Then for any point p ∈ S̄ and any point q ∈ S̄⊥, we have d(p, q) = π

2 . Since the

orbi-covering X̃ → X is 1-Lipschitz, we deduce that the sets S̄ and S̄⊥ have only one
element each (otherwise we would get in X̃ a subset of the form Ant (p) or Ant (q)

with more than one point). But this is exactly the statement that G acts transitively on
S and on S⊥.

It remains only to prove that ρ cannot be irreducible. Suppose, to the contrary,
ρ is an irreducible non-polar representation of cohomogeneity 4 ≤ k + 1 ≤ 7 on
V = R

n+1. In view of Lemma 1 and the subsequent lines, we may replace this action
by the identity component of its minimal reduction and assume that it has trivial
principal isotropy groups. Due to Lemmas 2 and 3, all isotropy groups are connected
and products of groups of rank one. In the cases k = 3, 4, we refer to Tables 1 and 2
in [14], inwhich all irreducible representations of cohomogeneity 4 and5 are classified,
and check that each representation in the tables is not infinitesimally polar. Indeed,
we need only check representations with trivial copolarity (i.e., those equal to their

Table 2 Good orbifold quotients

Case G ρ Cohom Conditions

1a SO(n) ρn ⊕ ρn 3 n ≥ 2

1b G2 R
7 ⊕ R

7 3 –

1c Spin(7) �7 ⊕ �7 3 –

2 Spin(9) �9 ⊕ �9 4 –

3 SU(2) μ2 ⊕ μ2 5 –

4a SU(n) μn ⊕ μn 4 n ≥ 3

4b U(n) μ1 ⊗ μn ⊕ μ1 ⊗ μn 4 n ≥ 2

5a U(1) × SU(n) × U(1) μ1 ⊗ μn ⊕ μn ⊗ μ1 3 n ≥ 2

5b U(1) × SU(n) (μ1)
r ⊗ μn ⊕ (μ1)

s ⊗ μn 3 n ≥ 3, r �= s

6 Sp(n) νn ⊕ νn 6 n ≥ 2

7 Sp(n) × U(1) νn ⊗ μ1 ⊕ νn ⊗ μ1 5 n ≥ 2

8 U(1) × Sp(n) × U(1) μ1 ⊗ νn ⊕ νn ⊗ μ1 4 n ≥ 2

9a Sp(1) × Sp(n) × Sp(1) ν1 ⊗ νn ⊕ νn ⊗ ν1 3 n ≥ 2

9b U(1) × Sp(n) × Sp(1) μ1 ⊗ νn ⊕ νn ⊗ ν1 3 n ≥ 2

9c Sp(n) × Sp(1) νn ⊗ ν1 ⊕ νn 3 n ≥ 2

10 Sp(n) × Sp(1) νn ⊗ ν1 ⊕ νn ⊗ ν1 4 n ≥ 2
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Table 3 Bad orbifold quotients

Case G ρ Cohom Conditions

11 U(1) (μ1)
r ⊕ (μ1)

s 3 r �= s, rs �= 0

12 SU(2) × U(1) μ2 ⊗ μ1 ⊕ ρ3 3 –

13a Sp(2) × Sp(1) ν2 ⊗ ν1 ⊕ ρ5 3 –

13b Sp(2) × U(1) ν2 ⊗ μ1 ⊕ ρ5 3 –

13c Sp(2) ν2 ⊕ ρ5 3 –

14 Spin(9) �9 ⊕ ρ9 3 –

minimal reductions) and non-empty boundary which leaves us with the representation
of SO(3) × U(2) only, which is not infinitesimally polar by [14, §8].

Now we may assume k = 5 or 6. In the case G is simple, we refer to the table
of non-polar representations of cohomogeneity 6 or 7 in [14, §12.8]. We exclude the
representations of complex type by noting that they have toric reductions and thus are
not infinitesimally polar (cf. proof of Lemma 1). We exclude (SU(2),C4) by noting
that its orbit space has empty boundary (it produces the smallest weighted quaternionic
projective space, namely, the Hitchin orbifold O3), and the remaining representations
of quaternionic type by noting that they have an isotropy group (corresponding to a
highest weight vector) containing a simple factor of rank bigger than one. Finally, the
remaining representation of SO(3) is also excluded because the slice representation at
a 0-weight vector is non-polar. Thus we may assume in addition that G is non-simple.

To finish the proof, let p ∈ S
n be such that rank(Gp) ≥ rank(G) − 1 (cf. [42,

Lemma 6.1]). The triviality of principal isotropy groups implies that slice representa-
tions are effective. Due to Lemmas 2 and 3, Gp is a product of groups of rank one and
there exists a normal simple factor H of Gp, H ∼= U(1) or H ∼= Sp(1), corresponding
to a boundary stratum St of X . Moreover, we can choose H ∼= Sp(1), unless Gp

is a torus. According to Lemma 12 and its proof, there exists a non-polar isometric
action of a compact connected Lie group (N/H)0 on some unit sphere Sm such that
the quotient Y is a good Riemannian orbifold of dimension k − 1 and its universal
orbi-covering is diffeomorphic to a sphere, where N is the normalizer of H in G. By
induction, we know that the action of (N/H)0 on W = R

m+1 is reducible and thus
listed in Table 2 or 3 in Sect. 6. Using the fact that k = 5 or 6 we deduce that (N/H)0

is SU(2) (k = 5) or Sp(q) (k = 6) or Sp(q) × U(1) (k = 5) with their respective
doubling representations. Since the isotropy groups of the action of (N/H)0 on S

m

are still products of groups of rank 1, in the latter two cases we get q = 2.
By the choice of H , the group Gp is contained in N . Then Gp/H is the isotropy

group of (N/H,W ) at p ∈ W . By the explicit form of this representation, we have
rank(Gp/H) < rank(N/H) so rank(Gp) ≤ rank(N ) − 1. Therefore rank(G) =
rank(N ). Note also that N �= G. Next we examine each case separately.

If (N/H)0 = SU(2) then rank(G) = 2. The representation (SU(2),C2 ⊕ C
2) has

all isotropy groups trivial, so Gp = H . Since G is not simple and not equal to N ,
we deduce H = U(1) and G is locally isomorphic to SU(2) × SU(2). Since the
cohomogeneity of ρ is 6, we have dim V = 12. We are lead to a contradiction by [14,
§10.5] which says that this representation has empty boundary.
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In both the remaining cases, we see that the action (N/H)0 onW has a non-Abelian
isotropy group. More precisely, there is a point q ∈ W , such that the isotropy group
K = ((N/H)0)q has a non-Abelian connected component K 0 with rank(K 0) =
rank(N/H)0 − 1. Thus the isotropy group Gq is non-Abelian as well and satisfies
rank(Gq) ≥ rank(Nq) ≥ rank(N ) − 1 = rank(G) − 1. Thus we may replace p by q
and, applying Lemma 2, assume that H is isomorphic to Sp(1).

If (N/H)0 = Sp(2) then rank(G) = 3. The group G is non-simple, and contains
a subgroup locally isomorphic to H × Sp(2) ∼= Sp(1) × Sp(2). We deduce that G is
finitely covered by G̃ = Sp(1) × Sp(2) and H ∼= Sp(1) is a normal subgroup of G,
which contradicts the fact that N �= G.

If (N/H)0 = Sp(2) ×U(1) then rank(G) = 4. We see that G contains a subgroup
locally isomorphic to H × Sp(2) × U(1), with H ∼= Sp(1). Moreover, H is not a
normal subgroup of G, since G �= N .

IfG has no simple factor of rank 3, then it is locally isomorphic toSp(2)×G ′, where
G and N have a commonSp(2)-factor; sinceW = H

2⊕H
2 is a subspace of V invariant

under this factor, we deduce that V = H
2 ⊗F V ′ where V ′ is a representation of G ′

and F = R, C or H according to whether V ′ is of real, complex or quaternionic type.
In any case, dimR V is divisible by 8. It follows that dimG ′ = dim V −dim Sp(2)−6
is also divisible by 8. Since G ′ has rank 2, we deduce that G ′ = SU(3). Now dim V =
dim Sp(2) × SU(3) + 6 = 24, so (G, V ) = (Sp(2) × SU(3),C4 ⊗C C

3) and H must
be an SU(2)-subgroup of SU(3). The fixed point set Z of any such subgroup on C

3

has complex dimension 1, and the set of fixed points of H in C
4 ⊗C C

3 is C4 ⊗C Z .
Hence its complex dimension is not 8, a contradiction.

Suppose next G has a simple factor G ′ of rank 3. Then G ′ contains Sp(2) and an
Sp(1)-subgroup normalizing it. It follows that G ′ = Sp(3).

Now G = Sp(3) × Sp(1) and dim V = dimG + 6 = 30 or G = Sp(3) × U(1)
and dim V = dimG + 6 = 28. Since 30 is not divisible by 4, in the first case V is a
real tensor product of irreducible representations of real type of Sp(3) and Sp(1). The
irreducible representations of Sp(3) of lowest degree (i.e. complex dimension) are the
fundamental representations (cf. [28, Lemma 3.1]) with degrees 6, 14 and 14, and are
respectively of quaternionic, real, quaternionic type. Since 30 is not divisible by 14,
G = Sp(3) × Sp(1) is ruled out. On the other hand, in the second case we get two
candidates (Sp(3) ×U(1),�2

C
6 �C) and (Sp(3) ×U(1),�3

C
6 �C

6). The former
representation is excluded because the isotropy group at a point corresponding to (the
projection along the trivial summand C of) a skew-symmetric bilinear form of rank 2
contains a rank 2 subgroup isomorphic to Sp(2), and the latter one is excluded because
the isotropy group at a highest weight vector contains a rank 2 subgroup isomorphic
to SU(3); both situations contradict Lemma 2. �	

8 Conclusion

Now it is easy to deduce Theorem 1 and its corollaries stated in the introduction. Note
that Theorem 2 has already been proved in Sect. 4.

Under the assumptions of Theorem 1, we may assume that G = G0. In all cases
listed in the theorem, the quotient X = S

n/G is aRiemannianorbifoldwhosegeometry
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is discussed in Sect. 3. On the other hand, assume that X is a Riemannian orbifold of
dimension at least 3 (so that ρ has cohomogeneity at least 4) and that ρ is not polar. If
the quotient X has empty boundary then ρ is almost free due to Proposition 1, hence
as stated in view of the discussion in Sect. 3.2. If X has non-empty boundary then
it is a good orbifold, whose universal orbi-covering is diffeomorphic to the sphere,
due to Theorem 2. Therefore ρ satisfies the assumptions of Proposition 3 so that it
is the sum of two representations of cohomogeneity one. It follows that ρ is one of
the representations appearing in Proposition 2; in the only case of rank one in Table 2
(case 3), the quotient has no boundary, so this case cannot occur. Hence G has rank at
least 2 and ρ is as described in Table 1. This proves Theorem 1.

To deduce Corollary 1 we may again assume that G is connected, since S
n/G

and S
n/G0 have the same universal orbi-covering. Going through the possibilities

given by Theorem 1, if ρ is polar then X has constant curvature 1 and the universal
orbi-covering X̃ of X is the sphere of constant curvature 1. If G has rank one and X
has empty boundary then X is a weighted projective space as discussed in Sect. 3.2;
moreover, X is simply connected as an orbifold and thus X̃ = X . If X has dimension 2
and curvature �= 1 then, as proved by Straume [35], the quotient X can be represented
as the quotient X = S

3/H , for some group H of dimension 1; thus X has as an
orbi-covering X ′ = S

3/U(1), whereU(1) acts without fixed points; in such a case, X ′
is a weighted complex projective space, which is then the universal orbi-covering of
X . Finally, if X has constant curvature 4 as in one of the cases in Table 1, then X̃ is a
sphere of constant curvature 4.

Finally, Corollary 2 is an immediate consequence of Theorem 1.
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