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Abstract We derive a Harnack inequality for positive solutions of the f -heat equa-
tion and Gaussian upper and lower bound estimates for the f -heat kernel on complete
smooth metric measure spaces with Bakry–Émery Ricci curvature bounded below.
Both upper and lower bound estimates are sharp when the Bakry–Émery Ricci cur-
vature is nonnegative. The main argument is the De Giorgi–Nash–Moser theory. As
applications, we prove an L1

f -Liouville theorem for f -subharmonic functions and an

L1
f -uniqueness theorem for f -heat equations when f has at most linear growth. We

also obtain eigenvalues estimates and f -Green’s function estimates for the f -Laplace
operator.

Mathematics Subject Classification Primary 35K08; Secondary 53C21 · 58J35

1 Introduction

This is a sequel to our earlier work [49], we investigate heat kernel estimates on
smooth metric measure spaces. For Riemannian manifolds, there are two classical
methods for heat kernel estimates. One is the gradient estimate technique developed
by Li and Yau [27], which they used to derive two-sided Gaussian bounds for the heat
kernel on Riemannian manifolds with Ricci curvature bounded below. The other is the
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Moser iteration technique invented by Moser [32]. Grigor’yan [18] and Saloff-Coste
[41–43] developed this technique and derived heat kernel estimates on Riemannian
manifolds satisfying the volume doubling property and the Poincaré inequality. There
has been lots of work on improving heat kernel estimates on Riemannian manifolds
and generalizing heat kernel estimates to general spaces’ see the excellent surveys
[19,20,43] and references therein.

In this paper we will investigate heat kernel estimates on smooth metric measure
spaces and various applications. Let (M, g) be an n-dimensional completeRiemannian
manifold, and let f be a smooth function on M . The triple (M, g, e− f dv) is called
a complete smooth metric measure space, where dv is the volume element of g, and
e− f dv (for short, dμ) is called the weighted volume element or the weightedmeasure.
On a smooth metric measure space, the m-Bakry–Émery Ricci curvature [2,29,40] is
defined by

Ricmf := Ric + ∇2 f − 1

m
d f ⊗ d f,

where Ric is the Ricci curvature of (M, g), ∇2 is the Hessian with respect to g, and
m ∈ R ∪ {±∞} (when m = 0 we require f to be a constant). m-Bakry–Émery Ricci
curvature is a natural generalization of Ricci curvature on Riemannian manifolds, see
[2,3,29,30,46] and references therein. In particular, a smooth metric measure space
satisfying

Ricmf = λg

for some λ ∈ R is called an m-quasi-Einstein manifold (see [8]), which can be con-
sidered as a natural generalization of an Einstein manifold. When 0 < m < ∞,

(Mn × Fm, gM + e−2 f
m gF ), with (Fm, gF ) an Einstein manifold, is a warped product

Einstein manifold. When m = 2 − n, (Mn, g) is a conformally Einstein manifold; in

fact ḡ = e
f

(n−2) g is the Einstein metric. When m = 1, (Mn, g) is the so-called static
manifold in general relativity. When m = ∞, we write

Ric f = Ric∞
f ,

and the quasi-Einstein equation reduces to a gradient Ricci soliton. The gradient Ricci
soliton is called shrinking, steady, or expanding, ifλ > 0,λ = 0, orλ < 0, respectively.
Ricci solitons play an important role in the Ricci flow and Perelman’s resolution of
the Poincaré conjecture and the geometrization conjecture; see [6,22] and references
therein for nice surveys.

On a smooth metric measure space (M, g, e− f dv), the f -Laplacian � f is defined
as

� f = � − ∇ f · ∇,

which is self-adjoint with respect to e− f dv. The f -heat equation is defined as

(∂t − � f )u = 0.
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Heat kernel on smooth metric measure spaces… 311

We denote the f -heat kernel by H(x, y, t), that is, for each y ∈ M , H(x, y, t) =
u(x, t) is the minimal positive solution of the f -heat equation satisfying the initial
condition limt→0 u(x, t) = δ f,y(x), where δ f,y(x) is the f -delta function defined by∫

M
φ(x)δ f,y(x)e

− f dv = φ(y)

for any φ ∈ C∞
0 (M). Similarly a function u is said to be f -harmonic if � f u = 0, and

f -subharmonic ( f -superharmonic) if � f u ≥ 0 (� f u ≤ 0). It is easy to see that the
absolute value of an f -harmonic function is a nonnegative f -subharmonic function.
The weighted L p-norm (or L p

f -norm) is defined as

‖u‖p =
(∫

M
|u|pe− f dv

)1/p

for any 0 < p < ∞. We say that u is L p
f -integrable, i.e. u ∈ L p

f , if ‖u‖p < ∞.
Recall that for Riemannian manifolds, using the classical Bochner formula, Li and

Yau [27] derived the gradient estimate and heat kernel estimate. For smooth metric
measure spaces with m < ∞, there is an analogue of the Bochner formula for Ricmf ,

1

2
� f |∇u|2 = |∇2u|2 + 〈∇� f u,∇u〉 + Ricmf (∇u,∇u) + 1

m
|〈∇ f,∇u〉|2

≥ (� f u)2

m + n
+ 〈∇� f u,∇u〉 + Ricmf (∇u,∇u). (1.1)

Therefore when m < ∞, the Bochner formula for Ricmf can be considered as the
Bochner formula for the Ricci tensor of an (n + m)-dimensional manifold, and for
smooth metric measure spaces with Ricmf bounded below, one has nice f -mean cur-
vature comparison and f -volume comparison theorems which are similar to classical
ones for Riemannian manifolds (see [3,45]); in particular the comparison theorems
do not depend on f . Li [27] derived an analogue of the Li–Yau estimate, which he
used to f -heat kernel estimates and several Liouville theorems. Charalambous and Lu
[9] obtained f -heat kernel estimates and essential spectrum by analyzing a family of
warped product manifolds.

Unfortunately when m = ∞, due to the lack of the extra term 1
m |〈∇ f,∇u〉|2 in the

Bochner formula (1.1), one can derive only local f -mean curvature comparison and
local f -volume comparison (see [46]), which highly rely on the potential function f ,
and this makes it much more difficult to investigate smooth metric measure spaces
with Ric f bounded below. According to [35,36], there seem to be essential obstacles
to deriving Li–Yau gradient estimate directly using the Bochner formua (1.1), even
with strong growth assumptions on f . It is interesting to point out that for f -harmonic
functions, Munteanu and Wang [35,36] obtained Yau’s gradient estimate using both
Yau’s idea and the De Giorgi–Nash–Moser theory, under appropriate assumptions on
f .
In this paper, without any assumption on f , we derive a Harnack inequality for

positive solutions of the f -heat equation, and local Gaussian bounds for the f -heat
kernel on smooth metric measure spaces using the De Giorgi–Nash–Moser theory.
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Moreover, similar to [35,36], in each step one needs to figure out the accurate coeffi-
cients, which play key roles in the applications. As applications, we prove a Liouville
theorem for f -subharmonic functions, eigenvalues estimates for the f -Laplacian, and
f -Green’s functions estimates.
Let us first state the local f -heat kernel estimates,

Theorem 1.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K ≥ 0. For any
point o ∈ M and R > 0, denote

A(R) = sup
x∈Bo(3R)

| f (x)|, A′(R) = sup
x∈Bo(3R)

|∇ f (x)|.

Then for any ε > 0, there exist constants c1(n, ε), ci (n), 2 ≤ i ≤ 6 such that

c1 ec2A+c3(1+A)
√
Kt

V f (Bx (
√
t)1/2V f (By(

√
t)1/2

exp

(
−d2(x, y)

(4 + ε)t

)

≥ H(x, y, t) ≥ c4e−c5(A′2+K )t

V f (Bx (
√
t))

exp

(
−d2(x, y)

c6t

)
(1.2)

for all x, y ∈ Bo(
1
2 R) and 0 < t < R2/4. limε→0 c1(n, ε) = ∞.

When f is bounded, the first named author [48] obtained f -heat kernel upper and
lower bounds estimates. When Ric f ≥ 0, the authors [49] obtained f -heat kernel
upper bound estimates without assumptions on f .

It is interesting to point out that when Ric f ≥ 0, both lower bound and upper bound
estimates are sharp. For the lower bound, let (R, g0, e− f dx) be a 1-dimensional steady
Gaussian soliton, where g0 is the Euclidean metric and f (x) = ±x . The f -heat kernel
is given by (see [49])

H(x, y, t) = e± x+y
2 · e−t/4

(4π t)1/2
× exp

(
−|x − y|2

4t

)
.

Obviously, the lower bound estimate is achieved by the above f -heat kernel for steady
Gaussian soliton as long as t is large enough. For the upper bound estimate, when
Ric f ≥ 0, the authors [49] proved a sharp L1

f -Liouville theorem for f -subharmonic
functions using the f -heat kernel upper bound. If one improved the upper bound, then
we would improve the (sharp) Liouville theorem.

Remark 1.2 The factor A′ in the lower bound estimate comes from the Harnack
inequality in Theorem 1.3. It will be more interesting to derive a sharp lower bound
in terms of A instead of A′, if possible.

The proof of upper bound on the f -heat kernel uses a weightedmean value inequal-
ity and Davies’s integral estimate [15]. The proof of lower bound follows from a
Harnack inequality and a chaining argument, while the proof of the Harnack inequal-
ity follows from the arguments in [42,43].
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To state the Harnack inequality, let us first introduce some notations. For any point
x ∈ M and r > 0, s ∈ R, and 0 < ε < η < δ < 1, we denote B = Bx (r),
δB = Bx (δr) and

Q = B × (s − r2, s), Q− = δB × (s − δr2, s − ηr2), Q+ = δB × (s − εr2, s).

Theorem 1.3 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K ≥ 0. Let u be a
positive solution to the f -heat equation in Q, there exist constants c1 and c2 depending
on n, ε, η and δ, such that

sup
Q−

u ≤ c1e
c2(A′2+K )r2 inf

Q+
u,

where A′(r) = supy∈Bx (3r) |∇ f (y)|.
By a different volume comparison, we get another form of the Harnack inequality

and lower bound on the f -heat kernel.

Theorem 1.4 Under the assumptions of Theorems 1.1 and 1.3, respectively, we have

sup
Q−

{u} ≤ exp{c1ec2A[(1 + A2)Kr2 + 1]} · inf
Q+

{u},

where A = A(r) = supy∈Bx (3r) | f (y)|, and

H(x, y, t) ≥ c4
V f (Bx (

√
t))

× exp

[
−c5e

c6A
(

(1 + A2)Kt + 1 + d2(x, y)

t

)]
,

(1.3)
for all x, y ∈ Bo(

1
2 R) and 0 < t < R2/4, where A = A(R) = supx∈Bo(3R) | f (x)|. In

particular, when f is bounded, we get

H(x, y, t) ≥ c1e−c2Kt

V f (Bx (
√
t))

× exp

(
−d2(x, y)

c3t

)
. (1.4)

Next we derive several applications of the f -heat kernel estimates. First we
prove a Liouville theorem for f -subharmonic functions. Recall that Pigola et
al. [39] proved that any nonnegative L1

f -integrable f -superharmonic function
must be constant if Ric f is bounded below, without any assumption on f .
However, as the authors proved in [49], for f -subharmonic functions, the con-
dition on f is necessary. In fact we provided [49] explicit counterexamples
illustrating that f cannot grow faster than quadratically when Ric f ≥ 0 (see
also [10]). Now we show that the L1

f -Liouville theorem also holds for f -
subharmonic functions when Ric f ≥ −(n − 1)K and f has at most linear
growth.
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Theorem 1.5 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K > 0. Assume
there exist nonnegative constants a and b such that

| f |(x) ≤ ar(x) + b,

where r(x) is the distance function to a fixed point o ∈ M. Then any nonnegative
L1

f -integrable f -subharmonic function must be identically constant. In particular,

any L1
f -integrable f -harmonic function must be identically constant.

There have been various Liouville type theorems for f -subharmonic and f -
harmonic functions on smooth metric measure spaces and gradient Ricci solitons
under different conditions; see Brighton [4], Cao and Zhou [7], Munteanu and Sesum
[34], Munteanu and Wang [35,36], Petersen and Wylie [38], and Wei and Wylie [46]
for details.

By a similar argument to [24] (see also [49]), we also prove an L1
f -uniqueness

theorem for solutions of the f -heat equation, see Theorem 5.3 in Sect. 5.
Second we derive lower bounds for eigenvalues of the f -Laplace operator on com-

pact smooth metric measure spaces, by adapting the classical argument of Li and Yau
[27],

Theorem 1.6 Let (M, g, e− f dv) be an n-dimensional compact smooth metric mea-
sure space with Ric f ≥ −(n − 1)K for some constant K ≥ 0. Let 0 = λ0 < λ1 ≤
λ2 ≤ . . . be eigenvalues of the f -Laplacian � f . Then there exists a constant C
depending only on n and A = maxx∈M f (x), such that

λk ≥ C(k + 1)2/n

d2
, K = 0,

λk ≥ C

d2

(
k + 1

exp(C
√
Kd)

) 2
n+4A

, K > 0,

for all k ≥ 1, where d is the diameter of M.

Upper bounds were proved by Hassannezhad [23], and Colbois et al. [13], they
depend on norms of the potential function and the conformal class of the metric. For
the first eigenvalue, there have been more interesting results. When M is compact and
Ric f ≥ a

2 > 0, Andrews and Ni [1], and Futaki et al. [17] derived lower bounds
on the first eigenvalue, which depend on the diameter of the manifold. When M
is complete noncompact, Munteanu and Wang [35–37], and Wu [47] obtained first
eigenvalue estimates under appropriate assumptions on f . Cheng andZhou [12] proved
an interesting Obata type theorem.

Finally we discuss f -Green’s functions estimates. We first get upper and lower
estimates for f -Green’s functionswhen f is bounded, similar to the classical estimates
of Li and Yau [27] for Riemannian manifolds.Recall that the f -Green’s function on
(M, g, e− f dv) is defined as
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G(x, y) =
∫ ∞

0
H(x, y, t)dt

if the integral on the right hand side converges. It is easy to check that G is positive
and satisfies

� f G = −δ f,y(x).

Theorem 1.7 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0 and f bounded. If G(x, y) exists, then there
exist constants c1 and c2 depending only on n and sup f , such that

c1

∫ ∞

r2
V−1
f (Bx (

√
t))dt ≤ G(x, y) ≤ c2

∫ ∞

r2
V−1
f (Bx (

√
t))dt, (1.5)

where r = r(x, y).

Recently Dai et al. [14] observed that every gradient steady Ricci soliton admits
a positive f -Green’s function, hence it is f -nonparabolic. We provide an alternative
proof using a criterion of Li andTam [25,26], and the f -heat kernel for steadyGaussian
Ricci solitons,

Theorem 1.8 Let (Mn, g, f ) be a complete gradient steady soliton. Then there exists
a positive smooth f -Green function, and therefore the gradient steady soliton is f -
nonparabolic.

In [44], Song et al. investigated several properties of f -Green’s functions on smooth
metric measure spaces. Pigola et al. [39] proved that gradient shrinking Ricci solitons
are f -parabolic.

The paper is organized as follows. In Sect. 2, we recall comparison theorems for
the Bakry–Émery Ricci curvature bounded below, which we use to derive a local f -
volume doubling property, a local f -Neumann Poincaré inequality, a local Sobolev
inequality and mean value inequalities for the f -heat equation. In Sect. 3, we prove
a Moser’s Harnack inequality of f -heat equation following the arguments of Saloff-
Coste [42,43]. In Sect. 4, we prove local Gaussian upper and lower bounds on the
f -heat kernel. In Sect. 5, following the arguments of [49], we establish a new L1

f -

Liouville theorem for an f -harmonic function and a new L1
f -uniqueness property for

nonnegative solutions of the f -heat equation. In Sect. 6, we apply upper bounds of the
f -heat kernel to get the eigenvalue estimates of the f -Laplacian on compact smooth
metric measure spaces. In Sect. 7, we derive Green function estimates for smooth
metric measure spaces with Ric f ≥ 0 and f bounded, and for gradient steady Ricci
solitons.

2 Poincaré, Sobolev and mean value inequalities

Recall that for any point p ∈ M and R > 0, we denote

A(R) = A(p, R) = sup
x∈Bp(3R)

| f (x)|, A′(R) = A′(p, R) = sup
x∈Bp(3R)

|∇ f (x)|.
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When there is no confusion wewrite A, A′ for short.We start from a relative f -volume
comparison theorem of Wei and Wylie [46].

Lemma 2.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space. If Ric f ≥ −(n − 1)K for some constant K ≥ 0, then

V f (Bx (R1, R2))

V f (Bx (r1, r2))
≤ V n+4A

K (Bx (R1, R2))

V n+4A
K (Bx (r1, r2))

(2.1)

for any 0 < r1 < r2, 0 < R1 < R2, r1 ≤ R1, r2 ≤ R2, where Bx (R1, R2) =
Bx (R2)\Bx (R1), and A = A(x, 1

3 R2). Here V
n+4A
K (Bx (r)) denotes the volume of the

ball in the model space Mn+4A
K , i.e., the simply connected space form with constant

sectional curvature −K and dimension n + 4A. Similarly we have

V f (Bx (R1, R2))

V f (Bx (r1, r2))
≤ V n+4A′R2

K (Bx (R1, R2))

V n+4A′R2
K (Bx (r1, r2))

, (2.2)

where A′ = A′(x, 1
3 R2).

Remark 2.2 Following the proofs, A(R) in all following lemmas, propositions, the-
orems and corollaries can be replaced by RA′(R). We will apply the first volume
comparison (2.1) to derive heat kernel upper bound, and the second volume compari-
son (2.2) to derive Harnack inequality and heat kernel lower bound.

Proof of Lemma 2.1 Applying the weighted Bochner formula (1.1) and an ODE argu-
ment, Wei and Wylie (see (3.19) in [46]) proved the following f -mean curvature
comparison theorem. Recall that the weighted mean curvature m f (r) is defined as

m f (r) = m(r) − ∇ f · ∇r = � f r.

If Ric f ≥ −(n − 1)K , then

m f (r) ≤ (n − 1)
√
K coth(

√
K r) + 2K

sinh2(
√
K r)

∫ r

0
( f (t) − f (r)) cosh(2

√
K t)dt

≤ (n − 1 + 4A)
√
K · coth(√K r) (2.3)

along anyminimal geodesic segment from x . In geodesic polar coordinates, the volume
element is written as

dv = A(r, θ)dr ∧ dθn−1,

where dθn−1 is the standard volume element of the unit sphere Sn−1. Let

A f (r, θ) = e− fA(r, θ).
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By the first variation of the area,

A′

A (r, θ) = (ln(A(r, θ)))′ = m(r, θ).

Therefore
A′

f

A f
(r, θ) = (ln(A f (r, θ)))′ = m f (r, θ).

So for r < R,

A f (R, θ)

A f (r, θ)
≤ An+4A

K (R)

An+4A
K (r)

.

That is
A f (r,θ)

An+4A
K (r)

is nonincreasing in r , where An+4A
K (r) is the volume element in the

simply connected hyperbolic space of constant sectional curvature−K and dimension
n + 4A. Applying Lemma 3.2 in [51], we get∫ R2

R1
A f (R, θ)dt∫ r2

r1
A f (r, θ)dt

≤
∫ R2
R1

An+4A
K (R, θ)dt∫ r2

r1
An+4A

K (r, θ)dt

for 0 < r1 < r2, 0 < R1 < R2, r1 ≤ R1 and r2 ≤ R2. Integrating along the sphere
direction proves (2.1).

The second volume comparison (2.2) follows from an observation for the weighted
mean curvature,

m f (r) ≤ (n − 1)
√
K coth(

√
K r) + 2K

sinh2(
√
K r)

∫ r

0
( f (t) − f (r)) cosh(2

√
K t)dt

≤ (n − 1 + 4A′r)
√
K · coth(√K r). (2.4)

��
Let V n+4A

K (Bx (r)) be the volume of the ball of radius r in the simply connected
hyperbolic space of constant sectional curvature−K and dimension n+4A. If K > 0,
the model space is the hyperbolic space. If K = 0, the model space is the Euclidean
space. In any case, we have the estimate

ωn+4A · rn+4A ≤ VK (Bx (r)) ≤ ωn+4A · rn+4Ae(n−1+4A)
√
K r (2.5)

where ωn+4A is the volume of the unit ball in (n + 4A)-dimensional Euclidean space.
Similar to [49], Lemma 2.1 implies a local f -volume doubling property. Indeed,

in (2.1), letting r1 = R1 = 0, r2 = r and R2 = 2r , from (2.5) we get

V f (Bx (2r)) ≤ 2n+4Ae2(n−1+4A)
√
K r · V f (Bx (r)). (2.6)

This local f -volume doubling property is crucial in our proof of Poincaré inequality,
Sobolev inequality, mean-value inequality, and Harnack inequality.
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From Lemma 2.1, we also have the following,

Lemma 2.3 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space. If Ric f ≥ −(n − 1)K for some constant K > 0, then

V f (Bx (r)) ≤ e(n−1+4A)
√
K (d(x,y)+r)

rn+4A V f (By(r)),

where A = A(y, d(x, y) + r).

Proof We let r1 = 0, r2 = r , R1 = d(x, y) − r and R2 = d(x, y) + r in Lemma 2.1.
Then using (2.5) we have

V f (By(d(x, y) + r)) − V f (By(d(x, y) − r))

V f (By(r))
≤ e(n−1+4A)

√
K (d(x,y)+r)

rn+4A .

Therefore we get

V f (Bx (r)) ≤ V f (By(d(x, y) + r)) − V f (By(d(x, y) − r))

≤ e(n−1+4A)
√
K (d(x,y)+r)

rn+4A V f (By(r)).

��
Following the argument of [5] (see also [43] or [35]), applying Lemma 2.1 we get

a local Neumann Poincaré inequality on complete smooth metric measure spaces.

Lemma 2.4 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K ≥ 0. Then,

∫
Bx (r)

|ϕ − ϕBx (r)|2dμ ≤ c1e
c2A+c3(1+A)

√
Kr · r2

∫
Bx (r)

|∇ϕ|2dμ (2.7)

for any ϕ ∈ C∞(Bx (r)), where ϕBx (r) = ∫
Bx (r)

ϕdμ/
∫
Bx (r)

dμ.

Remark 2.5 By Remark 2.2, the coefficient c2A + c3(1 + A)
√
Kr in Lemma 2.4

and all following lemmas, propositions, theorems, and corollaries, can be replaced by
c2(A′ + √

K )r + c3A′√Kr2.

Combining Lemmas 2.1 and 2.4 and the argument of [21] (see also [49]), we obtain
a local Sobolev inequality on smooth metric measure spaces.

Lemma 2.6 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K ≥ 0. Then there
exists ν > 2, such that

(∫
Bx (r)

|ϕ| 2ν
ν−2 dμ

) ν−2
ν ≤ c1ec2A+c3(1+A)

√
Kr · r2

V f (Bx (r))
2
ν

∫
Bx (r)

(|∇ϕ|2 + r−2|ϕ|2)dμ

(2.8)
for any ϕ ∈ C∞(Bx (r)).
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Applying Lemma 2.6 we obtain a mean value inequality for solutions to the f -heat
equation, which is similar to Theorem 5.2.9 in [43] (see also [49]).

Proposition 2.7 Let (M, g, e− f dv) be an n-dimensional complete noncompact
smooth metric measure space. Assume (2.8) holds. Fix 0 < p < ∞. There exist
constants c1(n, p, ν), c2(n, p, ν) and c3(n, p, ν) such that for any s ∈ R and
0 < δ < 1, any smooth positive subsolution u of the f -heat equation in the cylinder
Q = Bx (r) × (s − r2, s) satisfies

sup
Qδ

{u p} ≤ c1ec2A+c3(1+A)
√
Kr

(1 − δ)2+ν r2 V f (Bx (r))
·
∫
Q
u p dμ dt,

where Qδ = Bx (δr) × (s − δr2, s).

Similar to Proposition 2.7, we have

Proposition 2.8 Let (M, g, e− f dv) be an n-dimensional complete noncompact
smooth metric measure space. Assume (2.8) holds. Fix 0 < p0 < 1 + ν/2. There
exist constants c1(n, p0, ν), c2(n, p0, ν) and c3(n, p0, ν) such that for any s ∈ R,
0 < δ < 1, and 0 < p ≤ p0, any smooth positive supersolution u of the f -heat
equation in the cylinder Q = Bx (r) × (s − r2, s) satisfies

‖u‖p
p0,Q

′
δ
≤

{
c1ec2A+c3(1+A)

√
Kr

(1 − δ)2+ν r2 V f (Bx (r))

}1−p/p0

· ‖u‖p
p,Q,

where Q′
δ := Bx (δr) × (s − r2, s − (1− δ)r2). On the other hand, for any 0 < p <

p̄ < ∞, there exist constants c4(n, p̄, ν), c5(n, p̄, ν) and c6(n, p̄, ν) such that

sup
Qδ

{u−p} ≤ c4ec5A+c6(1+A)
√
Kr

(1 − δ)2+ν r2 V f (Bx (r))
· ‖u−1‖p

p,Q,

where ||u||p,Q =
(∫

Q |u(x, t)|pdμdt
)1/p

.

Proof of Proposition 2.8 For any nonnegative test function φ ∈ C∞
0 (B) and any

supersolution of the heat equation, we have

∫
B
(φ∂t u + ∇φ∇u)dμ ≥ 0.

Let φ = εquq−1ψ2, w = uq/2 for −∞ < q ≤ p(1 + ν/2)−1 < 1 and q �= 0, where
ε = 1 if q > 0 and ε = −1 if q < 0. We get

ε

∫
B
(ψ2∂tw

2 + 4(1 − 1/q)ψ2|∇w|2 + 4wψ〈∇w,∇ψ〉)dμ ≥ 0.
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When q > 0. Since

2wψ〈∇w,∇ψ〉 ≥ −a−2ψ2|∇w|2 − a2w2|∇ψ |2

for any a > 0, we get

−
∫
B

ψ2∂t (w
2)dμ + c1

∫
B

|∇(ψw)|2dμ ≤ c2‖∇ψ‖2∞
∫
supp(ψ)

w2dμ,

where c1 and c2 depend only on q. Multiplying a nonnegative smooth function λ(t),
we have

−∂t

∫
B

λ2ψ2w2dμ + c1λ
2
∫
B

|∇(ψw)|2dμ ≤ c3λ(λ‖∇ψ‖2∞ + ‖ψλ′‖∞)

∫
B

w2dμ.

Choose ψ and λ such that

0 ≤ ψ ≤ 1, suppψ ⊂ σ B, ψ = 1 in σ ′B, |∇ψ | ≤ (κr)−1,

0 ≤ λ ≤ 1, λ = 1 in (−∞, s − σr2], λ = 0 in [s − σ ′r2,∞), |λ′| ≤ (κr2)−1,

where 0 < σ ′ < σ < 1, κ = σ − σ ′. Let Iσ = [s − σr2, s], and integrate the above
inequality on [s − r2, t] for t ∈ Iσ ′ . We get

sup
Iσ ′

∫
σ ′B

w2dμ + c1

∫
Qσ ′

|∇w|2dμdt ≤ c4(κr)
−2

∫
Qσ

w2dμdt.

By Hölder inequality and Proposition 2.6, for any φ ∈ C∞
0 (B), we get

∫
B

φ2(1+2/ν)dμ ≤
(∫

B
φ2ν/(ν−2)dμ

)(ν−2)/ν (∫
B

φ2dμ

)2/ν

≤ C(B)

(∫
B
(|∇φ|2 + r−2φ2)dμ

) (∫
B

φ2dμ

)2/ν

,

where C(B) := c1ec2A+c3(1+A)
√
Kr r2V−2/ν

f . Therefore

∫
Qσ ′

uqθdμdt ≤ c3C(B)

(
(rκ)−2

∫
Qσ

uqdμdt

)θ

, (2.9)

where θ = 1 + 2/ν. Let pi = p0θ−i , notice that by Hölder inequality, for any
pi < p = ηpi + (1 − η)pi−1 ≤ pi−1 with 0 ≤ η < 1,

‖u‖p
p ≤ ‖u‖ηpi

pi ‖u‖(1−η)pi−1
pi−1 ,

so it suffices to prove the estimate for all pi .
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Fix i , and let q j = piθ j , 1 ≤ j ≤ i − 1, so 0 < q j < p0(1 + ν/2)−1. Let σ0 = 1,
σi = σi−1 − κi , where κi = (1 − δ)2−i , so σi = 1 − (1 − δ)

∑i
1 2

− j > δ. Plugging
into inequality (2.9), we get

∫
Q′

σ j

uq0θ
j
dμdt ≤ c j4C(B)

(
(1 − δ)−2r−2

∫
Q′

σ j−1

uq0θ
j−1

dμdt

)θ

,

for 1 ≤ j ≤ i . Therefore

∫
Q′

σi

u p0dμdt ≤ c
∑

(i− j)θ j+1

4 C(B)
∑

θ j [(1 − δ)r ]−2
∑

θ j+1
(∫

Q
u pi dμdt

)θ i

,

where the summation is taken from 0 to i − 1. Therefore we obtain

(∫
Q′

σi

u p0dμdt

)pi /p0

≤ [c5(1 − δ)−2−νE(B)]1−pi /p0

(∫
Q
u pi dμdt

)
,

where E(B) = C(B)ν/2r−2−ν .
When q < 0. We get

∫
B
(ψ2∂tw

2 + 4(1 − 1/q)ψ2|∇w|2 + 4wψ〈∇w,∇ψ〉)dμ ≤ 0.

Applying the mean value inequality to the last term, we get similarly

∫
B

ψ2∂t (w
2)dμ + c6

∫
B

|∇(ψw)|2e− f dv ≤ c7‖∇ψ‖2∞
∫
supp(ψ)

w2dμ.

By the above argument, we can obtain

∫
Qσ ′

w2θdμdt ≤ c8C(B)

(
(rκ)−2

∫
Qσ

w2dμdt

)θ

,

where θ = 1 + 2/ν. For any α > 1, v = uα satisfies

∂tv − � f v ≥ −α − 1

α
v−1|∇v|2,

applying the above argument again, we also have

∫
Qσ ′

w2αθdμdt ≤ c9C(B)

(
(rκ)−2

∫
Qσ

w2αdμdt

)θ

.
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Let κi = (1 − δ)2−i−1, and σ0 = 1, σi = σi−1 − κi = 1 − ∑i
1 κ j , and αi = θ i . We

get

(∫
Qσi+1

w2θ i+1
dμdt

)θ−i−1

≤ C(B)

(
ci+1
10 [(1 − δ)r ]−2

∫
Qσi

w2θ i dμdt

)θ

≤ C(B)
∑

θ− j−1
c
∑

( j+1)θ− j−1

10 [(1 − δ)r ]−2
∑

θ− j
∫
Q

w2dμdt,

where the summation is from 1 to i + 1. Therefore when i → ∞, we get

sup
Qδ

w2 ≤ c5C(B)ν/2[(1 − δ)r ]−2−ν‖w‖22,Q

and the conclusion follows. ��

3 Moser’s Harnack inequality for f -heat equation

In this section we prove Moser’s Harnack inequalities for the f -heat equation using
Moser iteration, which will lead to the sharp lower bound estimate for the f -heat
kernel in the next section. The arguments mainly follow those in [32,33,42,43], while
more delicate analysis is required to get the accurate estimates, which depend on
the potential function. Throughout this section, we will use the second f -volume
comparison, i.e., (2.2) in Sect. 2.

Recall the notations defined in Introduction. for any point x ∈ M and r > 0, s ∈ R,
and 0 < ε < η < δ < 1, we denote B = Bx (r), δB = Bx (δr) and

Q = B × (s − r2, s), Qδ = δB × (s − δr2, s), Q′
δ = δB × (s − r2, s − (1 − δ)r2),

Q− = δB × (s − δr2, s − ηr2), Q+ = δB × (s − εr2, s).

With the above notations, we have the main result in this section.

Theorem 3.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space withRic f ≥ −(n−1)K for some constant K ≥ 0. For any point
x ∈ M, r > 0, and any parameters 0 < ε < η < δ < 1, let u be a smooth solution of
the f -heat equation in Q, then there exist constants c1 and c2 both depending on n,
ε, η and δ, such that

sup
Q−

u ≤ c1e
c2(A′2+K )r2 inf

Q+
u,

where A′ = A′(x, r + 1).

Remark 3.2 The coefficient in Theorem 3.1 comes from the second volume compar-
ison Lemma 2.1. On the other hand, the first volume comparison in Lemma 2.1 leads
to another Harnack inequality,
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sup
Q−

{u} ≤ exp{c1ec2A[(1 + A2)Kr2 + 1]} · inf
Q+

{u}.

Since its proof is very similar to that of Theorem 3.1, we omit the proof here.

We first modify the f -Poincaré inequality (2.7) in Sect. 2 to a weighted version,
which can be derived by adapting a Whitney-type covering argument, see Sections
5.3.3–5.3.5 in [43],

Let ξ : [0,∞) → [0, 1] be a non-increasing function such that ξ(t) = 0 for t > 1,
and for some positive constant β

ξ

(
t + 1 − t

2

)
≥ βξ(t), 1/2 ≤ t ≤ 1.

Let �B(z) := ξ(ρ(x, z)/r) for z ∈ B = B(x, r) and �B(z) = 0 for z ∈ M\B, we
write �(z) for short. Then

Lemma 3.3 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K ≥ 0. There exist
constants c1(n, ξ), c2(n) and c3(n) such that, for any Bx (r) ⊂ M, we have

∫
Bx (r)

|ϕ − ϕ� |2�dμ ≤ c1e
c2(A′+√

K )r+c3A′√Kr2 · r2
∫
Bx (r)

|∇ϕ|2�dμ (3.1)

for all ϕ ∈ C∞(Bx (r)), where ϕ� = ∫
B ϕ�dμ/

∫
B �dμ.

Secondly, for a positive solution u to the f -heat equation, we derive an estimate
for the level set of log u, the proof of which depends on Lemma 3.3. This inequality
is important for the iteration arguments in Lemma 3.5. In the following, we denote
dμ̄ = dμ × dt by the natural product measure on M × R.

Lemma 3.4 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space. Assume that (2.6) and (2.7) hold in Bx (r). Fix s ∈ R, δ, τ ∈
(0, 1). For any smooth positive solution u of the f -heat equation in Q = Bx (r)× (s−
r2, s), there exists a constant c = c(u) depending on u such that for all λ > 0,

μ̄({(z, t) ∈ R+| log u < −λ − c}) ≤ C0λ
−1,

μ̄({(z, t) ∈ R−| log u > λ − c}) ≤ C0λ
−1,

where C0 = c1(n, δ, τ )ec2(A
′+√

K )r+c3A′√Kr2V f (B)r2. Here R+ = δB× (s−τr2, s)
and R− = δB × (s − r2, s − τr2).

Proof By shrinking the ball B a little, we can assume that u is a positive solution in
Bx (r ′) × (s − r2, s) for some r ′ > r . Let ω = − log u. Then for any nonnegative
function ψ ∈ C0(Bx (r ′)), we have

∂t

∫
ψ2ωdμ = −

∫
ψ2u−1� f udμ =

∫
[−ψ2|∇ω|2 − 2ψ∇ω · ∇ψ]dμ.
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By Cauchy–Schwarz inequality 2|ab| ≤ 1/2a2 + 2b2, we obtain

∂t

∫
ψ2ωdμ + 1/2

∫ 2

|∇ω|2dμ ≤ 2||∇ψ ||2∞V f (supp(ψ)).

Fix 0 < δ < 1 and define function ξ such that ξ = 1 on [0, δ], ξ(t) = 1−t
1−δ

on [δ, 1]
and ξ = 0 on [1,∞). We set � = ξ(ρ(x, ·)/r). Clearly, we can apply the above to
ψ = �. Then Lemma 3.3 can be applied with�2 as a weight function. Thus, we have

∫
|∇ω|2�2dμ ≥ (cδr

2ec2(A
′+√

K )r+c3A′√Kr2)−1
∫

|ω − W |2�2dμ,

where W := ∫
�2ωdμ/

∫
�2dμ. Noticing that

∫
�2 is comparable to V f , so

∂tW + C−1
1

∫
δB

|ω − W |2 ≤ C2,

where C1 = C(δ, τ )ec2(A
′+√

K )r+c3A′√Kr2r2V f and C2 = C(δ, τ )r−2. Letting s′ =
s − τr2, the above inequality can be written as

∂tW + C−1
1

∫
δB

|ω − W |2 ≤ 0,

where ω(z, t) = ω(z, t) − C2(t − s′) and W (z, t) = W (z, t) − C2(t − s′).
Now we set

c = W (s′) = W (s′),

and for λ > 0, s − r2 < t < s, we define two sets

�+
t (λ) = {z ∈ δB, ω̄(z, t) > c + λ} and �−

t (λ) = {z ∈ δB, ω̄(z, t) < c − λ}.

Then if t > s′, we have

ω(z, t) − W (t) ≥ λ + c − W (t) > λ

in �+
t (λ), since c = W (s′) and ∂tW ≤ 0. Similarly, if t < s′, then we have

ω(z, t) − W (t) ≤ −λ + c − W (s′) < −λ

in �−
t (λ). Hence, if t > s′, we obtain

∂tW (t) + C−1
1 |λ + c − W (t)|2μ(�+

t (λ)) ≤ 0
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and namely,

−C1∂t (|λ + c − W (t)|−1) ≥ μ(�+
t (λ)).

Integrating from s′ to s,

μ̄({(z, t) ∈ R+, ω > c + λ}) ≤ C1λ
−1.

Recalling that − log u = ω = ω + C2(t − s′), hence

μ̄({(z, t) ∈ R+, log u < −λ − c}) ≤ (max{C1,C2r
4V f })λ−1.

This gives the first estimate of the lemma. The second estimate follows from a similar
argument by working with �−

t and t < s′. ��
Thirdly, in order to finish the proof of Theorem 3.1, we need the following elemen-

tary lemma. This is in fact an iterated procedure. We let Rσ , 0 < σ ≤ 1 be a collection
of subset for some space-time endowed with the measure dμ̄ such that Rσ ′ ⊂ Rσ if
σ ′ ≤ σ . Indeed, Rσ will be one of the collections Qδ or Q′

δ .

Lemma 3.5 Let γ , C, 1/2 ≤ δ < 1, p1 < p0 ≤ ∞ be positive constants, and let ϕ

be a positive smooth function on R1 such that

||ϕ||p0,Rσ ′ ≤ {C(σ − σ ′)−γ V−1
f (R1)}1/p−1/p0 ||ϕ||p,Rσ

for all σ , σ ′, p satisfying 1/2 ≤ δ ≤ σ ′ < σ ≤ 1 and 0 < p ≤ p1 < p0. Besides, if
ϕ also satisfies

Vol f ({z ∈ R1, ln ϕ > λ}) ≤ CV f (R1)λ
−1

for all λ > 0, then we have

||ϕ||p0,Rδ ≤ (V f (R1))
1/p0eC1(1+C3),

where C1 depends only on γ , δ and a positive lower bound on 1/p1 − 1/p0.

Proof Without loss of generality we may assume that Vol f (R1) = 1. Let

ζ = ζ(σ ) := ln(||ϕ||p0,Rσ ), δ ≤ σ < 1.

We divide Rσ into two sets: {ln ϕ > ζ/2} and {ln ϕ ≤ ζ/2}. Then

||ϕ||p,Rσ ≤ ||ϕ||p0,Rσ · V f ({z ∈ Rσ , ln ϕ > ζ/2})1/p−1/p0 + eζ/2

≤ eζ

(
2C

ζ

)1/p−1/p0
+ eζ/2,
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where p < p0. Here in the first inequality we used the Hölder inequality, and in the
second inequality we used the second assumption of lemma. In the following we want
to choose p such that the last two terms in above are equal, and 0 < p ≤ p1. This is
possible if

(1/p − 1/p0)
−1 = (2/ζ ) ln

(
ζ

2C

)
≤ (1/p1 − 1/p0)

−1

and the last inequality is satisfied as long as

ζ ≥ C2C,

where C2 depends only on a positive lower bound on 1/p1 − 1/p0. Now we assume
p and ζ have been chosen as above. Then we obtain

||ϕ||p,Rσ ≤ 2eζ/2.

Using the first assumption of the lemma and the definition of κ , we have

κ(σ ′) ≤ ln{2(C(σ − σ ′)−γ )1/p−1/p0eζ/2}
= (1/p − 1/p0) ln[C(σ − σ ′)−γ ] + ln 2 + ζ/2

for any δ ≤ σ ′ < σ ≤ 1. According to our choice of p above, we get

κ(σ ′) ≤ ζ

2

{
ln[C(σ − σ ′)−γ ]

ln(ζ/C)
+ 2 ln 2

ζ
+ 1

}
.

Here, on one hand, if we choose

ζ ≥ 16C3(σ − σ ′)−2γ + 8 ln 2,

then the above inequality becomes

ζ(σ ′) ≤ 3

4
ζ.

On the other hand, if the assumption of κ above in not satisfied, we can have

ζ(σ ′) ≤ ζ(σ ) ≤ C2C + 16C3(σ − σ ′)−2γ + 8 ln 2.

Therefore, in any case

ζ(σ ′) ≤ 3

4
ζ(σ ) + C3(1 + C3)(σ − σ ′)−2γ .
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for any δ ≤ σ ′ < σ ≤ 1, where C3 = C2 + 16+ 8 ln 2. From this, an routine iteration
(see [33], p. 733) yields

ζ(δ) ≤ C4(1 − δ)−2γ (1 + C3),

where C4 depends on C3 and γ . This completes the proof of the lemma. ��
Now, applying Lemmas 3.4, 3.5 and Proposition 2.8, we get the following Harnack

inequality.

Theorem 3.6 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space. Assume that (2.6) and (2.7) hold in Bx (r). Fix τ ∈ (0, 1) and
0 < p0 < 1 + ν/2. For any s ∈ R and 0 < ε < η < δ < 1, any smooth positive
solution u of the f -heat equation in the cylinder Q = Bx (r) × (s − r2, s) satisfies

‖ u ‖p0,Q−≤ (r2V f )
1
p0 ec1F(r) inf

Q+
u,

where c1 = c1(n, ε, η, δ, p0) and F(r) = ec2(A
′+√

K )r+c3A′√Kr2 , A′ = A′(x, r).
Hence we have

sup
Q−

u ≤ ec4F(r) inf
Q+

u,

where c4 = c4(n, ε, η, δ).

Proof of Theorem 3.6 We let u be a positive solution to the f -heat equation in Q. Let
also δ, τ ∈ (0, 1) be fixed. Using Proposition 2.8 and Lemma 3.4, we see that Lemma
3.5 can be applied to ecu (resp. e−cu−1), where c = c(u) is defined as in Lemma 3.4,
with

Rσ = σδB × (s − r2, s − τr2 − στr2) (resp. Rσ = σδB × (s − στr2, s))

and 0 < p1 = p0/2 < p0 < 1 + ν/2 (resp. 0 < p1 = 1 < p0 = ∞). Hence for any
0 < ε < η < δ < 1 and Q−, Q+ as defined as above, we have

ec ‖ u ‖p0,Q−≤ (r2V f )
1/p0ec1F(r)

and

e−c sup
Q+

{u−1} ≤ ec4F(r),

where c1 = c1(n, ε, η, δ, p0), c4 = c4(n, ε, η, δ) and F(r) = ec2(A
′+√

K )r+c3A′√Kr2 .
The theorem follows from this and Proposition 2.7. ��

Finally, we finish the proof of Theorem 3.1 by applying the standard chain argument
to Theorem 3.6.
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Proof of Theorem 3.1 Let (t−, x−) ∈ Q−, (t+, x+) ∈ Q+, and let τ = t+−t−. Notice
that τ ∼ r2 and d = d(x−, x+) < r . Let ti = t− + iτ

N and xi ∈ 1+δ
2 B for 0 ≤ i ≤ N ,

such that x0 = x−, xN = x+, and d(xi , xi+1) ≤ Cδ
d
N . Choose N to be the smallest

number such that

N ≥ Cε,η,δ(A
′ + √

K )2r2,

where A′ = A′(x, r + 1), applying Theorem 3.6 with r ′ = ( τ
N )

1
2 , then we have

u(t−, x−) ≤ ec4F(r ′)(N+1)u(t+, x+)

≤ e
c4F

(
1

C(A′+√
K )

)
(N+1)

u(t+, x+)

≤ exp[c(A′ + √
K )2r2 + c]u(t+, x+),

where c depends on n, ε, η and δ. This finishes the proof of Theorem 3.1. ��

4 Gaussian upper and lower bounds of the f -heat kernel

In this section, following the arguments in [43], we derive Gaussian upper and lower
bounds for the f -heat kernel on smooth metric measure spaces. The upper bound
estimate follows from the f -mean value inequality in Proposition 2.7 and a weighted
version of Davies integral estimate (see [49]). The lower bound estimate follows from
the local Harnack inequality in Sect. 3.

Let us first state the weighted Davies integral estimate, see [49] for the proof,

Lemma 4.1 Let (M, g, e− f dv)be ann-dimensional complete smoothmetricmeasure
space. Let λ1(M) ≥ 0 be the bottom of the L2

f -spectrum of the f -Laplacian on M.
Assume that B1 and B2 are bounded subsets of M. Then

∫
B1

∫
B2

H(x, y, t)dμ(x)dμ(y) ≤ V 1/2
f (B1)V

1/2
f (B2) exp

(
−λ1(M)t − d2(B1, B2)

4t

)
,

(4.1)
where d(B1, B2) denotes the distance between the sets B1 and B2.

Proof of upper bound estimate in Theorem 1.1 For x ∈ Bo(R/2), denote u(y, s) =
H(x, y, s). Assume t ≥ r22 , applying Proposition 2.7 to u, we have

sup
(y,s)∈Qδ

H(x, y, s) ≤ c1ec2A+c3(1+A)
√
Kr2

r22V f (B2)
·
∫ t

t−1/4r22

∫
B2

H(x, ζ, s)dμ(ζ )ds

= c1ec2A+c3(1+A)
√
Kr2

4V f (B2)
·
∫
B2

H(x, ζ, s′)dμ(ζ ) (4.2)

for some s′ ∈ (t − 1/4r22 , t), where Qδ = By(δr2) × (t − δr22 , t) with 0 < δ < 1/4,
and B2 = By(r2) ⊂ Bo(R) for y ∈ Bo(R/2), A = A(x, R) ≤ A(o, 2R). Applying
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Proposition 2.7 and the same argument to the positive solution

v(x, s) =
∫
B2

H(x, ζ, s)dμ(ζ )

of the f -heat equation, for the variable x with t ≥ r21 , we also get

sup
(x,s)∈Q̄δ

∫
B2

H(x, ζ, s)dμ(ζ ) ≤ c1ec2A+c3(1+A)
√
Kr1

r21V f (B1)

·
∫ t

t−1/4r21

∫
B1

∫
B2

H(ξ, ζ, s)dμ(ζ )dμ(ξ)ds

= c1ec2A+c3(1+A)
√
Kr1

4V f (B1)
·
∫
B1

∫
B2

H(ξ, ζ, s′′)dμ(ζ )dμ(ξ)

(4.3)

for some s′′ ∈ (t−1/4r21 , t), where Q̄δ = Bx (δr1)×(t−δr21 , t)with 0 < δ < 1/4, and
B1 = Bx (r1) ⊂ Bo(R) for x ∈ Bo(R/2). Now letting r1 = r2 = √

t and combining
(4.2) with (4.3), the smooth f -heat kernel satisfies

H(x, y, t) ≤ c1ec2A+c3(1+A)
√
Kt

V f (B1)V f (B2)
·
∫
B1

∫
B2

H(ξ, ζ, s′′)dμ(ζ )dμ(ξ) (4.4)

for all x, y ∈ Bo(R/2) and 0 < t < R2/4. Using Lemma 4.1 and noticing that
s′′ ∈ ( 34 t, t), then (4.4) becomes

H(x, y, t) ≤ c1ec2A+c3(1+A)
√
Kt

V f (Bx (
√
t))1/2V f (By(

√
t))1/2

×exp

(
−3

4
λ1t − d2(B1, B2)

4t

)
(4.5)

for all x, y ∈ Bo(R/2) and 0 < t < R2/4. Notice that if d(x, y) ≤ 2
√
t , then

d(Bx (
√
t), By(

√
t)) = 0 and hence

−d2(Bx (
√
t), By(

√
t))

4t
= 0 ≤ 1 − d2(x, y)

4t
,

and if d(x, y) > 2
√
t , then d(Bx (

√
t), By(

√
t)) = d(x, y) − 2

√
t , and hence

−d2(Bx (
√
t), By(

√
t))

4t
= − (d(x, y) − 2

√
t)2

4t
≤ − d2(x, y)

4(1 + ε)t
+ C(ε)

for some constant C(ε), where ε > 0. Here if ε → 0, then the constant C(ε) → ∞.
Therefore in any case, Eq. (4.5) becomes

H(x, y, t) ≤ C(ε)ec2A+c3(1+A)
√
Kt

V f (Bx (
√
t))1/2V f (By(

√
t))1/2

× exp

(
−3

4
λ1t − d2(x, y)

4(1 + ε)t

)

for all x, y ∈ Bo
( 1
2 R

)
and 0 < t < R2/4. ��
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Moreover, in Theorem 1.1, if K > 0. According to Lemma 2.3, we know that

V f (Bx (
√
t)) ≤ e(n−1+4A)

√
K (d(x,y)+√

t)

tn/2+2A V f (By(
√
t))

for all x, y ∈ Bo(
1
4 R) and 0 < t < R2/4. Substituting this into Theorem 1.1 yields

the following result.

Corollary 4.2 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K > 0. For any
point o ∈ M, R > 0, ε > 0, there exist constants c1(n, ε), c2(n) and c3(n), such that

H(x, y, t) ≤ c1 ec2A+c3(1+A)
√
K (d(x,y)+√

t)

V f (Bx (
√
t) tn/4+A

× exp

(
−d2(x, y)

(4 + ε)t

)
(4.6)

for all x, y ∈ Bo(
1
4 R) and 0 < t < R2/4. Here limε→0 c1(n, ε) = ∞.

When K = 0, see the estimate in [49].
Next we derive the lower bound estimate. First, from the Harnack inequality in

Theorem 3.1 we get the following estimate,

Proposition 4.3 Under the same assumptions of Theorem 3.1, there exists a constant
c(n) such that, for any two positive solutions u(x, s) and u(y, t) of the f -heat equation
in Bo(R/2) × (0, T ), 0 < s < t < T ,

ln

(
u(x, s)

u(y, t)

)
≤ c(n)

[(
A′2 + K + 1

R2 + 1

s

)
(t − s) + d2(x, y)

t − s

]
.

Proof Let u(x, s) and u(y, t) be two positive solutions to the f -heat equation in
Bo(δR) × (0, T ), where x, y ∈ Bo(δR) and 0 < s < t < T . Let N be an integer,
which will be chosen later. We set ti = s + i(t − s)/N . We remark that it is possible
to find a sequence of points xi ∈ 1+δ

2 B such that x0 = x , xN = y and Nd(xi , xi+1) ≥
Cδd(x, y). Now we choose N to be the smallest integer such that

τ/N ≤ s/2, τ/N ≤ C−1
δ R2, τ = t − s

and if d(x, y)2 ≥ τ ,

τ/N ≥ d(x, y)2/N 2.

Under the above conditions, we choose

N = cδ

(
τ

R2 + τ

s
+ d(x, y)2

τ

)
.
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Now we apply Theorem 3.1 to compare u(xi , ti ) with u(xi+1, ti+1) with r ′ =
(τ/N )1/2. Therefore

ln

(
u(x, s)

u(y, t)

)
≤ c1

[
(A′2 + K )

τ

N
+ 1

]
· N

≤ c′
1

[
(A′2 + K )τ + τ

R2 + τ

s
+ d(x, y)2

τ

]
,

where c′
1 depends on n and δ, and τ = t − s. Then the conclusion follows by letting

δ = 1/2. ��
From Corollary 4.3, we get the following lower bound for f -heat kernel,

Theorem 4.4 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K > 0. For any
point o ∈ M and R > 0, there exist constants c1(n), c2(n) and c3(n) such that

H(x, y, t) ≥ c1e−c2(A′2+K )t

V f (Bx (
√
t))

× exp

(
−d2(x, y)

c3t

)
, (4.7)

for all x, y ∈ Bo(
1
2 R) and 0 < t < R2/4.

Proof of Theorem 4.4 and the second part of Theorem 1.1 Let u(y, t) = H(x, y, t)
with x fixed and s = t/2 in Proposition 4.3 and then we get

H(x, y, t) ≥ H(x, x, t/2) × exp

[
−c1

(
(A′2 + K )t + 1 + t

R2 + d2(x, y)

t

)]

(4.8)
for all x, y ∈ Bo(

1
2 R) and 0 < t < ∞.

In the following we will show that Moser’s Harnack inequality leads to a lower
bound of the on-diagonal f -heat kernel H(x, x, t). Indeed we define

u(y, t) =
{
Ptφ(y) if t > 0
φ(y) if t ≤ 0,

where Pt = et� f is the heat semigroup of � f , and φ is a smooth function such that
0 ≤ φ ≤ 1, φ = 1 on B = Bx (

√
t) and φ = 0 on M\2B.

u(y, t) satisfies (∂t − � f )u = 0 on B × (−∞,∞). Applying the local Harnack
inequality, first to u, and then to the f -heat kernel (y, s) → H(x, y, s), we have

1 = u(x, 0) ≤ exp{c1[(A′2 + K )t + 1]} u(x, t/2)

= exp{c1[(A′2 + K )t + 1]}
∫
B(x,

√
t)
H(x, y, t/2)φ(y)dμ(y)

≤ exp{c1[(A′2 + K )t + 1]}
∫
B(x,2

√
t)
H(x, y, t/2)dμ(y)

≤ exp{2c1[(A′2 + K )t + 1]}V f (Bx (2
√
t))H(x, x, t).
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From this, we have

H(x, x, t/2) ≥ V−1
f (Bx (

√
2t)) exp[−c1((A

′2 + K )t + 2)]

for 0 <
√
t < R/2. Since (2.6) implies

V f (Bx (
√
2t)) ≤ V f (Bx (2

√
t)) ≤ c1e

c2(A′+√
K )

√
t+c3A′√Kt V f (Bx (

√
t)),

we then obtain

H(x, x, t/2) ≥ V−1
f (Bx (

√
t))c4 exp[−c5((A

′2 + K )t + 1)]

for 0 <
√
t < R/2. Plugging this into (4.8) yields (4.7). ��

5 L1
f -Liouville theorem

In this section, inspired by the work of Li [24], we prove a Liouville theorem for
f -subharmonic functions, and a uniqueness result for solutions of f -heat equation,
by applying the f -heat kernel upper bound estimates. Our results not only extend the
classical L1-Liouville theorems proved by Li [24], but also generalize the weighted
versions in [28,48,49].

Firstly we prove an L1
f -Liouville theorem for f -harmonic functions when the

Bakry-Émery Ricci curvature is bounded below and f is of linear growth.

Theorem 5.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ −(n − 1)K for some constant K > 0. Assume
there exist nonnegative constants a and b such that

| f |(x) ≤ ar(x) + b f or all x ∈ M,

where r(x) is the geodesic distance function to a fixed point o ∈ M. Then any nonnega-
tive L1

f -integrable f -subharmonic functionmust be identically constant. In particular,

any L1
f -integrable f -harmonic function must be identically constant.

Sketch proof of Theorem 5.1 Wefirst show that the assumptions of Theorem5.1 imply
the integration by parts formula

∫
M

� f y H(x, y, t)h(y)dμ(y) =
∫
M
H(x, y, t)� f h(y)dμ(y)

for any nonnegative L1
f -integrable f -subharmonic function h. This can be proved

by our upper bound of f -heat kernel in Theorem 1.1. Then following the arguments
of [49], applying the regularity theory of f -harmonic functions, we obtain the L1

f -
Liouville result. See the proof of Theorem 1.5 in [49] for the details. ��

Now we are ready to check the integration by parts formula, similar to the proof of
Theorem 4.3 in [49],
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Proposition 5.2 Under the same assumptions of Theorem 5.1, for any nonnegative
L1

f -integrable f -subharmonic function h, we have

∫
M

� f y H(x, y, t)h(y)dμ(y) =
∫
M
H(x, y, t)� f h(y)dμ(y).

Proof of Proposition 5.2 By the Green formula on Bo(R), we have

∣∣∣∣
∫
Bo(R)

� f y H(x, y, t)h(y)dμ(y) −
∫
Bo(R)

H(x, y, t)� f h(y)dμ(y)

∣∣∣∣
≤

∫
∂Bo(R)

H(x, y, t)|∇h|(y)dμσ,R(y) +
∫

∂Bo(R)

|∇H |(x, y, t)h(y)dμσ,R(y),

where dμσ,R denotes the weighted area measure induced by dμ on ∂Bo(R). In the
following we will show that the above two boundary integrals vanish as R → ∞.

Consider a large R and assume x ∈ Bo(R/8). By Proposition 2.7, we have the
f -mean value inequality

sup
Bo(R)

h(x) ≤ c1e
c2(aR+b)+c3(1+aR+b)

√
K RV−1

f (2R)

∫
Bo(2R)

h(y)dμ(y)

≤ Ceα(1+K )R2
V−1
f (2R)

∫
Bo(2R)

h(y)dμ(y),
(5.1)

where constants C and α depend on n, a and b. Let φ(y) = φ(r(y)) be a nonnegative
cut-off function satisfying 0 ≤ φ ≤ 1, |∇φ| ≤ √

3 and φ(r(y)) = 1 on Bo(R +
1)\Bo(R), φ(r(y)) = 1 on Bo(R − 1) ∪ (M\Bo(R + 2)). Since h is f -subharmonic,
by the integration by parts formula and Cauchy–Schwarz inequality, we have

0 ≤
∫
M

φ2h� f hdμ = −2
∫
M

φh〈∇φ∇h〉dμ −
∫
M

φ2|∇h|2dμ

≤ 2
∫
M

|∇φ|2h2dμ − 1

2

∫
M

φ2|∇h|2dμ.

Then using the definition of φ and (5.1), we have that

∫
Bo(R+1)\Bo(R)

|∇h|2dμ ≤4
∫
M

|∇φ|2h2dμ

≤12
∫
Bo(R+2)

h2dμ

≤12 sup
Bo(R+2)

h · ‖h‖L1(μ)

≤Ceα(1+K )(R+2)2

V f (2R + 4)
· ‖h‖2L1(μ)

.
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On the other hand, the Cauchy–Schwarz inequality also implies

∫
Bo(R+1)\Bo(R)

|∇h|dμ ≤
(∫

Bo(R+1)\Bo(R)

|∇h|2dμ

)1/2

· [V f (R + 1)\V f (R)]1/2.

Combining the above two inequalities we get

∫
Bo(R+1)\Bo(R)

|∇h|dμ ≤ C1e
α(1+K )R2 · ‖h‖L1(μ), (5.2)

where C1 = C1(n, a, b, K ).
We now estimate the f -heat kernel H(x, y, t). Recall that, by letting ε = 1 in

Corollary 4.2, the f -heat kernel H(x, y, t) satisfies

H(x, y, t) ≤ c1 ec2A+c3(1+A)
√
K (d(x,y)+√

t)

V f (Bx (
√
t) tn/4+A

× exp

(
−d2(x, y)

5t

)

(5.3)

≤ c4 ec5R

V f (Bx (
√
t))tc7(R+1)

exp

[
c6

√
K (1 + R)(d(x, y) + √

t) − d2(x, y)

5t

]

for any x, y ∈ Bo(R/2) and 0 < t < R2/4, where c4, c5, c6 and c7 are all constants
depending only on n, a and b. Together with (5.2) we get

J1 :=
∫
Bo(R+1)\Bo(R)

H(x, y, t)|∇g|(y)dμ(y)

≤ sup
y∈Bo(R+1)\Bo(R)

H(x, y, t) ·
∫
Bo(R+1)\Bo(R)

|∇g|dμ

≤ C2‖g‖L1(μ)

V f (Bx (
√
t))tc7(R+2)

× exp

[
c5R − (R − d(o, x))2

5t
+ c9

√
K (R + 2)(R + 1 + d(o, x) + √

t)

]
,

where C2 = C2(n, a, b, K ). Notice that

t−c7(R+2) = e−c7(R+2) ln t ≤ ec7(R+2) 1t when t → 0.

Thus, for T sufficiently small and for all t ∈ (0, T ) there exists a constant β > 0 such
that

J1 ≤ C3‖g‖L1(μ)

V f (Bx (
√
t))

× exp

(
−βR2 + c

d2(o, x)

t

)
,

where C3 = C3(n, a, b, K ). Therefore for all t ∈ (0, T ) and all x ∈ M , J1 → 0 as
R → ∞.
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By a similar argument, we can show that

∫
Bo(R+1)\Bo(R)

|∇H |(x, y, t)h(y)dμ → 0

as R → ∞. We first estimate
∫
Bo(R+1)\Bo(R)

|∇H |(x, y, t)dμ.

∫
M

φ2(y)|∇H |2(x, y, t)dμ = −2
∫
M

〈
H(x, y, t)∇φ(y), φ(y)∇H(x, y, t)

〉
dμ

−
∫
M

φ2(y)H(x, y, t)� f H(x, y, t)dμ

≤ 2
∫
M

|∇φ|2(y)H2(x, y, t)dμ

+ 1

2

∫
M

φ2(y)|∇H |2(x, y, t)dμ

−
∫
M

φ2(y)H(x, y, t)� f H(x, y, t)dμ,

which implies

∫
Bo(R+1)\Bo(R)

|∇H |2

≤
∫
M

φ2(y)|∇H |2(x, y, t)

≤ 4
∫
M

|∇φ|2H2 − 2
∫
M

φ2H� f H

≤ 12
∫
Bo(R+2)\Bo(R−1)

H2 + 2
∫
Bo(R+2)\Bo(R−1)

H |� f H |

≤ 12
∫
Bo(R+2)\Bo(R−1)

H2 + 2

(∫
Bo(R+2)\Bo(R−1)

H2
) 1

2
(∫

M
(� f H)2

) 1
2

.

(5.4)
Notice that by Theorem 4.1 in [46], if Ric f ≥ −(n − 1)K , then

V f (Bo(R)) ≤ A + B exp

[
(n − 1)K

2
R2

]

for all R > 1, so we have

∫ ∞

1

R

log V f (Bo(R))
dR = ∞. (5.5)
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By Theorem 3.13 in [20], (M, g, e− f dv) is stochastically complete, i.e.,

∫
M
H(x, y, t)e− f dv(y) = 1. (5.6)

Using (5.3) and (5.6), we get

∫
Bo(R+2)\Bo(R−1)

H2(x, y, t)dμ

≤ sup
y∈Bo(R+2)\Bo(R−1)

H(x, y, t)

≤ c4
V f (Bx (

√
t))tc7(R+3)

× exp

[
− (R − 1 − d(o, x))2

5t

]

× exp[c5(R + 2) + c6
√
K (3 + R)(R + 2 − d(o, x) + √

t)]

= c4
V f (Bx (

√
t))

× exp

[
− (R − 1 − d(o, x))2

5t
+ c7(R + 3) ln

1

t

]

× exp[c5(R + 2) + c6
√
K (3 + R)(R + 2 − d(o, x) + √

t)].
(5.7)

From (4.7) in [49], there exists a constant C > 0 such that

∫
M

(� f H)2(x, y, t)dμ ≤ C

t2
H(x, x, t). (5.8)

Combining (5.4), (5.7) and (5.8), we obtain

∫
Bo(R+1)\Bo(R)

|∇H |2dμ ≤ C4[V−1
f + t−1V

− 1
2

f H
1
2 (x, x, t)]

× exp

[
− (R − 1 − d(o, x))2

10t
+ c7(R + 3) ln

1

t

]

× exp[c5R + c6
√
K (3 + R)(R + 2 − d(o, x) + √

t)]

where V f = V f (Bx (
√
t)) and C4 = C4(n, a, b). Hence we get

∫
Bo(R+1)\Bo(R)

|∇H |dμ ≤ [
V f (Bo(R + 1))\V f (Bo(R))

]1/2 ×
[∫

Bo(R+1)\Bo(R)

|∇H |2dμ

]1/2

≤ C4V
1/2
f (Bo(R + 1))[V−1

f + t−1V
− 1

2
f H

1
2 (x, x, t)]1/2

× exp

[
− (R − 1 − d(o, x))2

20t
+ c7

2
(R + 3) ln

1

t

]

× exp[c5R + c6
√
K (3 + R)(R + 2 − d(o, x) + √

t)].
(5.9)
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Therefore, by (5.1) and (5.9), we obtain

J2 =
∫
Bo(R+1)\Bo(R)

|∇H(x, y, t)|h(y)dμ(y)

≤ sup
y∈Bo(R+1)\Bo(R)

h(y) ·
∫
Bo(R+1)\Bo(R)

|∇H(x, y, t)|dμ(y)

≤ C5‖g‖L1(μ)

V 1/2
f (Bo(2R + 2))

· [V−1
f + t−1V

− 1
2

f H
1
2 (x, x, t)]1/2

× exp

[
α(1 + K )(R + 1)2 − (R − 1 − d(o, x))2

20t
+ c7

2
(R + 3) ln

1

t

]

× exp[c5R + c6
√
K (3 + R)(R + 2 − d(o, x) + √

t)],
where C5 = C5(n, a, b). Similar to the case of J1, we choose T sufficiently small,
then for all t ∈ (0, T ) and all x ∈ M , J2 → 0 when R → ∞.

Now by the mean value theorem, for any R > 0 there exists R̄ ∈ (R, R + 1) such
that

J =
∫

∂Bo(R̄)

[H(x, y, t)|∇h|(y) + |∇H |(x, y, t)h(y)] dμσ,R̄(y)

=
∫
Bo(R+1)\Bp(R)

[H(x, y, t)|∇h|(y) + |∇H |(x, y, t)h(y)] dμ(y)

= J1 + J2.

By the above argument, we choose T sufficiently small, then for all t ∈ (0, T ) and all
x ∈ M , J → 0 as R̄ → ∞. Therefore Proposition 5.2 holds for T sufficiently small.
Then the semigroup property of the f -heat equation implies Proposition 5.2 holds for
all time t > 0. ��

Theorem 5.1 leads to a uniqueness property for L1-solutions of the f -heat equation,
which generalizes the classical result of Li [24]. The proof is very similar to the one
in [49], so we omit it.

Theorem 5.3 Under the same assumptions of Theorem 5.1, if u(x, t) is a nonnegative
function defined on M × [0,+∞) satisfying

(∂t − � f )u(x, t) ≤ 0,
∫
M
u(x, t)e− f dv < +∞

for all t > 0, and

lim
t→0

∫
M
u(x, t)e− f dv = 0,

then u(x, t) ≡ 0 for all x ∈ M and t ∈ (0,+∞). In particular, any L1
f -solution of

the f -heat equation is uniquely determined by its initial data in L1
f .
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6 Eigenvalue estimate

In this section we derive eigenvalue estimates of the f -Laplace operator compact
smooth metric measure spaces, using the upper bound estimate of the f -heat kernel
and an argument of Li and Yau [27].

When the Bakry–Émery Ricci curvature is nonnegative, we have

Theorem 6.1 Let (M, g, e− f dv) be an n-dimensional closed smooth metric measure
space withRic f ≥ 0. Let 0 = λ0 < λ1 ≤ λ2 ≤ . . . be eigenvalues of the f -Laplacian.
Then there exists a constant C depending only on n and maxx∈M f (x), such that

λk ≥ C(k + 1)2/n

d2

for all k ≥ 1, where d is the diameter of M.

Proof Since Ric f ≥ 0, from Theorem 1.1, we have

H(x, x, t) ≤ C

V f (Bx (
√
t))

, (6.1)

where C is a constant depending only on n and B = maxx∈M f (x). Notice that the
f -heat kernel can be written as

H(x, y, t) =
∞∑
i=0

e−λi tϕi (x)ϕi (y),

where ϕi is the eigenfunction of � f corresponding to λi , ‖φi‖L2
f

= 1. By the f -

volume comparison theorem (see Lemma 2.1 in [49]), we get, for any t ≤ d2,

V f (Bx (d))

V f (Bx (
√
t))

≤ e4B
(

d√
t

)n

.

Taking the weighted integral on both sides of (6.1), we conclude that

∞∑
i=0

e−λi t ≤ C
∫
M
V−1
f (Bx (

√
t))dμ ≤ C

∫
M

p(t)dμ,

where

p(t) =
{
e4B

(
d√
t

)n
V−1
f (Bx (d)), if

√
t ≤ d

e4BV−1
f (M), if

√
t > d.

which implies that (k + 1)e−λk t ≤ Cq(t) for any t > 0, that is

Ceλk t q(t) ≥ (k + 1), for any t > 0, (6.2)
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where

q(t) =
{
e4B

(
d√
t

)n
, if

√
t ≤ d

e4B, if
√
t > d.

It is easy to see that eλk t q(t) takes its minimum at t0 = n
2λk

. Plugging to (6.2) we
get the lower bound for λk .

Similarly, when the Bakry–Émery Ricci curvature is bounded below, we have a
similar estimate. We omit the proof since it is the same as Ric f ≥ 0 case.

Theorem 6.2 Let (M, g, e− f dv) be an n-dimensional closed smooth metric measure
space withRic f ≥ −(n−1)K for some constant K > 0. Let 0 = λ0 < λ1 ≤ λ2 ≤ . . .

be eigenvalues of the f -Laplacian. Then there exists a constant C depending only on
n and B = maxx∈M f (x), such that

λk ≥ C

d2

(
k + 1

exp(C
√
Kd)

) 2
n+4B

for all k ≥ 1, where d is the diameter of M.

7 f -Green’s function estimate

In this section, we will discuss the Green’s function of the f -Laplacian and f -
parabolicity of smooth metric measure spaces. It was proved by Malgrange [31] that
every Riemannian manifold admits a Green’s function of Laplacian. Varopoulos [45]
proved that a complete manifold (M, g) has a positive Green’s function only if

∫ ∞

1

t

Vp(t)
dt < ∞, (7.1)

where Vp(t) is the volume of the geodesic ball of radius t with center at p. For
Riemannian manifolds with nonnegative Ricci curvature, Varopoulos [45] and Li and
Yau [27] proved (7.1) is the sufficient and necessary condition for the existence of
positive Green’s function.

On an n-dimensional complete smooth metric measure space (M, g, e− f dv), let
H(x, y, t) be a f -heat kernel, recall the f -Green’s function

G(x, y) =
∫ ∞

0
H(x, y, t)dt

if the integral on the right hand side converges. From the f -heat kernel estimates,
it is easy to get the following two-sided estimates for f -Green’s function, which is
similar to Li–Yau estimate [27] of Green’s function for Riemannian manifolds with
nonnegative Ricci curvauture,

Theorem 7.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0 and | f | ≤ C for some nonnegative constant C.
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If G(x, y) exists, then there exist constants c1 and c2 depending only on n and C, such
that

c1

∫ ∞

r2
V−1
f (Bx (

√
t))dt ≤ G(x, y) ≤ c2

∫ ∞

r2
V−1
f (Bx (

√
t))dt, (7.2)

where r = r(x, y).

Asa corollary,weget a necessary and sufficient condition of the existence of positive
f -Green’s function on smooth metric measure spaces with nonnegative Bakry–Émery
Ricci curvature and bounded potential function,

Corollary 7.2 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0 and | f | ≤ C for some nonnegative constant C.
There exists a positive f -Green’s function G(x, y) if and only if

∫ ∞

1
V−1
f (Bx (

√
t))dt < ∞.

Proof of Theorem 7.1 Since Ric f ≥ 0 and | f | ≤ C , Theorem 1.1 holds for any
0 < t < ∞ by letting R → ∞. For the lower bound estimate, we have

G(x, y) ≥
∫ ∞

r2
H(x, y, t)dt ≥ c3(n,C)

∫ ∞

r2
V−1
f (Bx (

√
t)) exp

(−r2

c4t

)
dt

≥ c5(n,C)

∫ ∞

r2
V−1
f (Bx (

√
t))dt.

Hence the left hand side of (7.2) follows.
For the upper bound estimate, it suffices to show that

∫ r2

0
H(x, y, t)dt ≤ c6(n,C)

∫ ∞

r2
V−1
f (Bx (

√
t))dt. (7.3)

By the definition of G and Theorem 1.1,

G(x, y) =
∫ ∞

0
H(x, y, t)dt =

∫ r2

0
H(x, y, t)dt +

∫ ∞

r2
H(x, y, t)dt

≤
∫ r2

0
H(x, y, t)dt + c7(n,C)

∫ ∞

r2
V−1
f (Bx (

√
t))dt

≤ c8

∫ r2

0
V−1
f (Bx (

√
t)) exp

(−r2

5t

)
dt

+ c7

∫ ∞

r2
V−1
f (Bx (

√
t))dt,

where c7 and c8 depend on n and C . Letting s = r4/t , where r2 < s < ∞, we get

∫ r2

0
V−1
f (Bx (

√
t)) exp

(−r2

5t

)
dt =

∫ ∞

r2
V−1
f

(
Bx

(
r2√
s

))
exp

( −s

5r2

)
r4

s2
ds.
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On the other hand, the f -volume comparison theorem (see Lemma 2.1 in [49]) gives

V−1
f

(
Bx

(
r2√
s

))
≤ V−1

f (Bx (
√
s))e4C

( s

r2

)n
.

Therefore we get

∫ r2

0
H(x, y, t)dt ≤ c9(n,C)

∫ ∞

r2
V−1
f (Bx (

√
s))

( s

r2

)n−2
exp

( −s

5r2

)
ds.

Since the function xn−2e−x/5 is bound from above, Eq. (7.3) follows. ��
Next we discuss f -nonparabolicity of steady Ricci solitons using a criterion of Li

and Tam [25,26], and the f -heat kernel for steady Gaussian Ricci soliton. A smooth
metric measure space (Mn, g, e− f dv) is called f -nonparabolic if it admits a positive
f -Green’s function. An end, E , with respect to a compact subset � ⊂ M is an
unbounded connected component of M . When we say that E is an end, it is implicitly
assumed that E is an end with respect to some compact subset � ⊂ M . Munteanu
and Wang [35] proved that if Ric f ≥ 0, there exists at most one f -nonparabolic end
on (Mn, g, e− f dv).

First we observe that the criterion of Li and Tam [25,26] can be generalized to
smooth metric measure spaces,

Lemma 7.3 Let (Mn, g, e− f dv) be an n-dimensional complete smooth metric mea-
sure space. There exists an f -Green’s function G(x, y)which is smooth on M×M\D,
where D = {(x, x)|x ∈ M}. Moreover, G(x, y) can be taken to be positive if and only
if there exists a positive nonconstant f -superharmonic function u on M\Bo(r) with
the property that

lim inf
x→∞ u(x) < inf

x∈∂Bo(r)
u(x).

Proof of Theorem 1.8 Let (M, g, f ) be a nontrivial gradient steady soliton, we have

� f + R = 0 and R + |∇ f |2 = a.

Chen [11] proved that R ≥ 0, so a > 0. It was proved in [16,38] (see also [50]) that
lim inf R = 0, and either R > 0 or R ≡ 0.

By the Bochner formula, we get

� f R = −2|Ric|2 ≤ 0.

If R > 0 on M , then it is a nonconstant positive f -superharmonic function, and
lim infx→∞ R(x) = 0. Therefore, by Lemma 7.3, we conclude G(x, y) is positive.

If R ≡ 0, then by Proposition 4.3 in [38], (Mn, g) splits isometrically as (Nn−k ×
R
k, gN + g0), where (Nn−k, gN ) is a Ricci-flat manifold, and (Rk, g0, f ) is a steady
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Gausian Ricci soliton with f = 〈u, x〉+v for some u, v ∈ R
n . Therefore a f -Green’s

function on (Rk, g0, f ) is a f -Green’s function on (M, g, f ).
By [49], for one-dimensional steady Gaussian Ricci soliton, the f -heat kernel is

given by

HR(x, y, t) = e± x+y
2 · e−t/4

(4π t)1/2
× exp

(
−|x − y|2

4t

)
.

for any x, y ∈ R and t > 0. Therefore for any x, y ∈ R,

G(x, y) =
∫ ∞

0
HR(x, y, t)dt < ∞,

hence there exists a positive f -Green function.
For higher dimensional steady Gaussian Ricci soliton (Rk, g0, f ), define

HRk (x, y, t) = HR(x1, y1, t) × HR(x2, y2, t) × · · · × HR(xk, yk, t),

where x = (x1, x2, . . . , xk) ∈ R
k , y = (y1, y2, . . . , yk) ∈ R

k , and HR(xi , yi , t) is the
f -heat kernel for (R, g0, ui xi + vi ). It is easy to check that HRk (x, y, t) is an f -heat
kernel on (Rk, g0, f ).

Then for any x, y ∈ R
k ,

G(x, y) =
∫ ∞

0
HRk (x, y, t)dt < ∞.

Therefore there exists a positive f -Green function on an k-dimensional steady
Gaussian soliton. ��
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