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Abstract We prove the following converse of Riemann’s Theorem: let (A,�) be
an indecomposable principally polarized abelian variety whose theta divisor can be
written as a sum of a curve and a codimension two subvariety � = C + Y . Then C is
smooth, A is the Jacobian of C , and Y is a translate of Wg−2(C). As applications, we
determine all theta divisors that are dominated by a product of curves and characterize
Jacobians by the existence of a d-dimensional subvariety with curve summand whose
twisted ideal sheaf is a generic vanishing sheaf.
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Secondary 14H40 · 14K25

1 Introduction

This paper provides new geometric characterizations of Jacobians inside the moduli
stack of all principally polarized abelian varieties over the complex numbers. For a
recent survey on existing solutions and open questions on the Schottky Problem, we
refer the reader to [9].

By slight abuse of notation, we denote a ppav (principally polarized abelian variety)
by (A,�), where � ⊆ A is a theta divisor that induces the principal polarization on
the abelian variety A; the principal polarization determines � ⊆ A uniquely up to
translation.
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1.1 A converse of Riemann’s theorem

Let (J (C),�C ) be the Jacobian of a smooth curve C of genus g ≥ 2. We fix a base
point on C and consider the corresponding Abel–Jacobi embedding C −→ J (C).
Addition of points induces morphisms

AJk : C (k) −→ J (C),

whose image is denoted by Wk(C). Riemann’s Theorem [1, p. 27] says �C =
Wg−1(C). That is, if we identify C with its Abel–Jacobi image W1(C), then �C

can be written as a (g − 1)-fold sum �C = C + · · · + C. We prove the following
converse.

Theorem 1 Let (A,�) be an indecomposable g-dimensional ppav. Suppose that there
is a curve C and a codimension two subvariety Y in A such that

� = C + Y.

Then C is smooth and there is an isomorphism (A,�) ∼= (J (C),�C ) which identifies
C and Y with translates of W1(C) and Wg−2(C), respectively.

The intermediate Jacobian of a smooth cubic threefold is an indecomposable ppav
which is not isomorphic to the Jacobian of a curve and whose theta divisor can be
written as a sum of two surfaces [3, Sect. 13]. The analogue of Theorem 1 is therefore
false if one replaces C and Y by subvarieties of arbitrary dimensions.

Recall that a d-dimensional subvariety Z ⊆ A is called geometrically non-
degenerate if there is no nonzero decomposable holomorphic d-form on A which
restricts to zero on Z , see [20, p. 466]. One of Pareschi–Popa’s conjectures (Conjec-
ture 19 below) predicts that apart from Jacobians of curves, intermediate Jacobians
of smooth cubic threefolds are the only ppavs whose theta divisors have a geometri-
cally non-degenerate summand of dimension 1 ≤ d ≤ g − 2. Theorem 1 proves (a
strengthening of) that conjecture if d = 1 or d = g − 2.

1.2 Detecting Jacobians via special subvarieties

Recall that a coherent sheaf F on an abelian variety A is a GV-sheaf if for all i its i th
cohomological support locus

Si (F) := {L ∈ Pic0(A) | Hi (A,F ⊗ L) 	= 0}

has codimension ≥ i in Pic0(A), see [17, p. 212].
Using this definition, we characterize Wd(C) ⊆ J (C) among all d-dimensional

subvarieties of arbitrary ppavs. Our proof combines Theorem 1 with the main results
in [4] and [17].

Theorem 2 Let (A,�) be an indecomposable ppav, and let Z � A be a geometrically
non-degenerate subvariety of dimension d. Suppose that the following holds:

123



Theta divisors with curve summands and the Schottky problem 1019

(1) Z = C + Y has a curve summand C ⊆ A,
(2) the twisted ideal sheaf IZ (�) = IZ ⊗ OA(�) is a GV-sheaf.

Then C is smooth and there is an isomorphism (A,�) ∼= (J (C),�C ) which identifies
C, Y and Z with translates of W1(C), Wd−1(C) and Wd(C), respectively.

The sum of geometrically non-degenerate subvarieties C,Y � A of dimension 1
and d −1 respectively yields a geometrically non-degenerate subvariety of dimension
d, see Lemma 5 below. Therefore, any abelian variety contains lots of geometrically
non-degenerate subvarieties Z satisfying (1) in Theorem 2.

The point is property (2) in Theorem 2. If d = g − 1, where g = dim(A), this is
known to be equivalent to Z being a translate of �, so we recover Theorem 1 from
Theorem 2. If 1 ≤ d ≤ g − 2, condition (2) is more mysterious. It is known to hold
for Wd(C) inside the Jacobian J (C), as well as for the Fano surface of lines inside
the intermediate Jacobian of a smooth cubic threefold. Pareschi–Popa conjectured
(Conjecture 14 below) that up to isomorphisms these are the only examples; they
proved it for subvarieties of dimension one or codimension two.

1.3 The DPC problem for theta divisors

A variety X is DPC (dominated by a product of curves), if there are curvesC1, . . . ,Cn

together with a dominant rational map1

C1 × · · · × Cn ��� X.

For instance, unirational varieties, abelian varieties as well as Fermat hypersurfaces
{xd0 +· · ·+ xdN = 0} ⊆ PN of degree d ≥ 1 are DPC, see [21]. Serre [22] constructed
the first example of a variety which is not DPC. Deligne [6, Sect. 7] and later Schoen
[21] used a Hodge theoretic obstruction to produce many more examples.

On the one hand, the theta divisor of the Jacobian of a smooth curve is DPC by
Riemann’s Theorem. On the other hand, Schoen found [21, p. 544] that his Hodge
theoretic obstruction does not even prevent smooth theta divisors from being DPC.
This led Schoen [21, Sect. 7.4] to pose the problem of finding theta divisors which are
not DPC, if such exist. The following solves that problem completely, which was our
initial motivation for this paper.

Corollary 3 Let (A,�) be an indecomposable ppav. The theta divisor � is DPC if
and only if (A,�) is isomorphic to the Jacobian of a smooth curve.

We prove in fact a strengthened version (Corollary 23) of Corollary 3, in which the
DPC condition is replaced by the existence of a dominant rational map Z1×Z2 ��� �,
where Z1 and Z2 are arbitrary varieties of dimension 1 and g − 2, respectively. The
latter is easily seen to be equivalent to � having a curve summand and so Theorem 1
applies.

1 A priori n ≥ dim(X), but by [21, Lem. 6.1], we may actually assume n = dim(X).
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1020 S. Schreieder

We discuss further applications of Theorem 1 in Sects. 6.1 and 6.2. Firstly, using
work of Clemens–Griffiths [3], we prove that the Fano surface of lines on a smooth
cubic threefold is not DPC (Corollary 25). Secondly, for a smooth genus g curve C ,
we determine in Corollary 26 all possible ways in which the symmetric product C (k)

with k ≤ g − 1 can be dominated by a product of curves. Our result can be seen as a
generalization of a theorem of Martens’ [16,19].

1.4 Method of proofs

Although Theorem 1 is a special case of Theorem 2, it appears to be more natural
to prove Theorem 1 first. Here we use techniques that originated in work of Ran
and Welters [18,20,24]; they are mostly of cohomological and geometric nature. One
essential ingredient is Ein–Lazarsfeld’s result [7] on the singularities of theta divisors,
which allows us to make Welters’ method [24] unconditional. Eventually, Theorem
1 will be reduced to Matsusaka–Hoyt’s criterion [10], asserting that Jacobians of
smooth curves are characterized among indecomposable g-dimensional ppavs (A,�)

by the property that the cohomology class 1
(g−1)! [�]g−1 can be represented by a

curve. Theorem 2 follows then quickly from Theorem 1 and work of Debarre [4] and
Pareschi–Popa [17].

1.5 Conventions

We work over the field of complex numbers. A variety is a separated integral scheme
of finite type over C; if not mentioned otherwise, varieties are assumed to be proper
over C. A curve is an algebraic variety of dimension one. In particular, varieties (and
hence curves) are reduced and irreducible.

If not mentioned otherwise, a point of a variety is always a closed point. A general
point of a variety or scheme is a closed point in some Zariski open and dense set.

For a codimension one subscheme Z of a variety X , we denote by divX (Z) the
corresponding effective Weil divisor on X ; if Z is not pure-dimensional, all compo-
nents of codimension ≥ 2 are ignored in this definition. Linear equivalence between
divisors is denoted by ∼.

For subschemes Z and Z ′ of an abelian variety A, we denote by Z+Z ′ (resp. Z−Z ′)
the image of the addition (resp. difference) morphism Z × Z ′ −→ A, equipped with
the natural image scheme structure. Note that for subvarieties Z and Z ′ of A, the image
Z ± Z ′ is reduced and irreducible, hence a subvariety of A. If Z ′ is a point a ∈ A,
Z ± Z ′ is also denoted by Z±a .

If Z ⊆ A is a subvariety of an abelian variety, the (Zariski) tangent space TZ ,z at a
point z ∈ Z is identified via translation with a subspace of TA,0.

2 Non-degenerate subvarieties

Following Ran [20, p. 464], a d-dimensional subvariety Z of a g-dimensional abelian
variety is called non-degenerate if the image of the Gauß map GZ : Z ��� Gr(d, g) is
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Theta divisors with curve summands and the Schottky problem 1021

via the Plücker embedding not contained in any hyperplane. This condition is stronger
than the previously mentioned notion of geometrically non-degenerate subvarieties.
We will need the following consequence of Lemma II.1 in [20].

Lemma 4 Let Z ⊆ A be a codimension k subvariety of an abelian variety whose
cohomology class is a multiple of 1

k! [�]k . Then Z is non-degenerate, hence geometri-
cally non-degenerate.

Ranproved that a d-dimensional subvariety Z ⊆ A is geometrically non-degenerate
if and only if for each abelian subvariety B ⊆ A, the composition Z −→ A/B has
either d-dimensional image or it is surjective [20, Lem. II.12]. In [5, p. 105], Debarre
used Ran’s characterization as definition and proved the following.

Lemma 5 Let Z1, Z2 ⊆ A be subvarieties of respective dimensions d1 and d2 with
d1 + d2 ≤ dim(A).

(1) If Z1 is geometrically non-degenerate, dim(Z1 + Z2) = d1 + d2.
(2) If Z1 and Z2 are geometrically non-degenerate, Z1 + Z2 ⊆ A is geometrically

non-degenerate.

3 A consequence of Ein–Lazarsfeld’s theorem

The purpose of this section is to prove Lemmas 7 and 8 below. Under the additional
assumption

dim(Sing(�)) ≤ dim(A) − 4, (1)

these were first proven by Ran [18, Cor. 3.3] and Welters [24, Prop. 2], respectively.
The general case is a consequence of the following result of Ein–Lazarsfeld [7].

Theorem 6 (Ein–Lazarsfeld) Let (A,�) be a ppav. If � is irreducible, it is normal
and has only rational singularities.

Let (A,�) be an indecomposable ppav of dimension ≥ 2. By the Decomposition
Theorem [2, p. 75], � is irreducible and we choose a desingularization f : X −→ �.
The composition of f with the inclusion � ⊆ A is denoted by j : X −→ A.

Lemma 7 Pullback of line bundles induces an isomorphism

j∗ : Pic0(A)
∼−→ Pic0(X).

Proof By Theorem 6, f∗OX = O� and Ri f∗OX = 0 for all i > 0. We therefore
obtain

H1(X,OX ) ∼= H1(�,O�) ∼= H1(A,OA),

where the first isomorphism follows from the Leray spectral sequence, and the second
one from Kodaira vanishing and the short exact sequence
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1022 S. Schreieder

0 −→ OA(−�) −→ OA −→ O� = j∗OX −→ 0. (2)

Hence, j∗ : Pic0(A) −→ Pic0(X) is an isogeny.
Tensoring (2) by a nontrivial P ∈ Pic0(A), we obtain

H0(X, j∗P) ∼= H0(A, P) = 0,

where we applied Kodaira vanishing to OA(−�) ⊗ P . It follows that j∗P is non-
trivial. That is, j∗ is an injective isogeny and thus an isomorphism. This proves
Lemma 7. �
Lemma 8 For any a 	= 0 in A, j : X −→ A induces an isomorphism

j∗ : H0(A,OA(�a))
∼−→ H0(X, j∗(OA(�a))).

Proof Following Welters [24, Prop. 2], the assertion follows from (2) by tensoring
with OA(�a), since OA(�a − �) has no nonzero cohomology for a 	= 0. �

4 Proof of Theorem 1

Let (A,�) be a g-dimensional indecomposable ppav, and suppose that there is a curve
C ⊆ A and a (g − 2)-dimensional subvariety Y ⊆ A such that

� = C + Y.

After translation, we may assume � = −�. We pick a point c0 ∈ C and replace C
and Y by C−c0 and Yc0 . Hence, 0 ∈ C and so Y = 0 + Y is contained in �.

Since (A,�) is indecomposable, � is irreducible, hence normal by Theorem 6.
The idea of the proof of Theorem 1 is to consider the intersection � ∩ �c for nonzero
c ∈ C . Since � induces a principal polarization, � ∩ �c is a proper subscheme of �

for all c 	= 0. For our purposes it is more convenient to consider the corresponding
Weil divisor on �, denoted by

div�(� ∩ �c).

Clearly, this divisor is just the pullback of the Cartier divisor �c from A to �.
Since � = −�, the map x �→ c − x defines an involution of � ∩ �c. Since

� = C + Y and 0 ∈ C , it follows that div�(� ∩ �c) contains the effective Weil
divisors Yc and −Y . For general c, these divisors are distinct and so we find

div�(� ∩ �c) = Yc + Z(c) (3)

for all c 	= 0, where Z(c) is an effective Weil divisor on � which contains −Y :

(−Y ) ≤ Z(c). (4)

123



Theta divisors with curve summands and the Schottky problem 1023

In the following proposition, we prove that actually Z(c) = −Y . As a byproduct of
the proof, we are able to compute the cohomology class of C in terms of the degree
of the addition morphism

F : C × Y −→ �.

Our proof uses Welters’ method [24].

Proposition 9 Let (A,�) be a g-dimensional indecomposable ppav with� = C+Y ,
� = −� and 0 ∈ C as above. For any nonzero c ∈ C,

div�(� ∩ �c) = Yc + (−Y ). (5)

Moreover, the cohomology class of C is given by

[C] = deg(F)

(g − 1)2 · (g − 2)! · [�]g−1. (6)

Proof We fix a resolution of singularities f : X −→ � and denote the composition
of f with the inclusion � ⊆ A by j : X −→ A. Moreover, for each a ∈ A, we fix
some divisor ˜�a on X which lies in the linear series | j∗(�a)|. For a 	= 0, | j∗(�a)| is
zero-dimensional by Lemma 8. It follows that ˜�a is unique if a 	= 0; it is explicitly
given by

˜�a = divX ( f −1(�a ∩ �)). (7)

Since � is normal, the general point of each component of �a ∩ � lies in the smooth
locus of �. The above description therefore proves

f∗˜�a = div�(�a ∩ �), (8)

for all a 	= 0 in A.
Next, we would like to find a divisor ˜Yc on X whose pushforward to � is Yc. Since

Yc is in general not Cartier on �, we cannot simply take the pullback. Instead, we
consider the Weil divisor which corresponds to the scheme theoretic preimage of Yc,

˜Yc := divX ( f −1(Yc)). (9)

Since � is normal, Yc is not contained in the singular locus of �. It follows that
f −1(Yc) has a unique component which maps birationally onto Yc and the remaining
components are in the kernel of f∗. Hence,

f∗˜Yc = Yc. (10)

For all c 	= 0 in C , we define

˜Z(c) := ˜�c − ˜Yc. (11)
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It follows from (3), (7) and (9) that ˜Z(c) is effective. Moreover, by (3), (8) and (10),

f∗˜Z(c) = div�(� ∩ �c) − Yc = Z(c). (12)

Consider the morphism ϕ : X × C −→ A with ϕ(x, c) := f (x) − c. The scheme
theoretic preimage Y := ϕ−1(Y ) has closed points {(x, c) ∈ X ×C | f (x) ∈ Yc} and
the fibers of the second projection pr2 : Y −→ C are given by pr−1

2 (c) ∼= f −1(Yc).
By generic flatness applied to pr2, there is a Zariski dense and open subset U ⊆ C
such that the fibers f −1(Yc) form a flat family for c ∈ U . By the definition of ˜Yc in
(9), ˜Yc − ˜Yc′ is numerically trivial on X for all c, c′ ∈ U . Lemma 7 yields therefore
for all c, c′ ∈ U a linear equivalence

˜Yc − ˜Yc′ ∼ j∗(�z(c,c′) − �) ∼ ˜�z(c,c′) − ˜�, (13)

where z : U ×U −→ A is the morphism induced by the universal property of

Pic0(X) ∼= Pic0(A).

The proof of Proposition 9 proceeds now in several steps. �
Step 1. Let c′ ∈ U and consider the function xc′(c) := z(c, c′) + c′. For all c ∈ U
with xc′(c) 	= 0, we have

div�(�xc′ (c) ∩ �) = Yc + Z(c′). (14)

Moreover, if c′ ∈ U is general, then xc′(c) is nonconstant in c ∈ U .

Proof Using the theorem of the square [2, p. 33] on A and pulling back this linear
equivalence to X shows ˜�xc′ (c) ∼ ˜�z(c,c′) − ˜� + ˜�c′ . By (13) and the definition of
˜Z(c′) in (11), we therefore obtain:

˜�xc′ (c) ∼ ˜�z(c,c′) − ˜� + ˜�c′

∼ ˜Yc − ˜Yc′ + ˜�c′

∼ ˜Yc + ˜Z(c′).

That is, ˜Yc + ˜Z(c′) is an effective divisor linearly equivalent to ˜�xc′ (c). By Lemma 8,
the linear series |˜�xc′ (c)| is zero-dimensional for all xc′(c) 	= 0, and so we actually
obtain an equality of Weil divisors:

˜�xc′ (c) = ˜Yc + ˜Z(c′).

Applying f∗ to this equality, (14) follows from (8), (10) and (12).
Using again the theorem of the square on A and pulling back the corresponding

linear equivalence to X , we obtain

˜�z(c,c′) − ˜� ∼ ˜� − ˜�−z(c,c′).
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It therefore follows from (13) that ˜�−z(c,c′) ∼ ˜�z(c′,c). By Lemma 7, −z(c, c′) =
z(c′, c).

For a contradiction, suppose that xc′(c) = z(c, c′) + c′ is constant in c for general
(hence for all) c′ ∈ U . It follows that z(c, c′) is constant in the first variable. Since
z(c, c′) = −z(c′, c), it is also constant in the second variable. Therefore, for general
c′, xc′(c) = z(c, c′)+ c′ is nonzero (and constant in c). This contradicts (14), because
its right hand side is nonconstant in c as C + Y = �. This concludes step 1. �

Let us now fix a general point c′ ∈ U . By step 1, the closure of c �→ xc′(c) is a
proper irreducible curve D ⊆ A.

We say that a subvariety Z of A is translation invariant under D if

Zx = Zx ′

for all x, x ′ ∈ D. Equivalently, Z is translation invariant under D if and only if the
corresponding cohomology classes on A satisfy [Z ] ∗ [D] = 0, where ∗ denotes the
Pontryagin product. That description shows that the notion of translation invariance
depends only on the cohomology classes of Z and D. In particular, Z is translation
invariant under D if and only if the same holds for −Z or −D. If Z is not translation
invariant under D, we also say that it moves when translated by D.

For each c 	= 0, we decompose the Weil divisor Z(c) on � into a sum of effective
divisors

Z(c) = Zmov(c) + Z inv(c), (15)

where Z inv(c) contains all the components of Z(c) that are translation invariant under
D and the components of Zmov(c) move when translated by D.

We claim that the effective divisor −Y is contained in Zmov(c):

(−Y ) ≤ Zmov(c). (16)

Indeed, by (4), it suffices to prove that −Y moves when translated by D. This follows
as for any x1, x2 ∈ A with Yx1 = Yx2 ,

�x1 = C + Yx1 = C + Yx2 = �x2 ,

and so x1 = x2.
Step 2. We have xc′(c) = c and hence D = C . Moreover, for each c 	= 0 in U ,

div�(� ∩ �c) = Yc + (−Y ) + Z inv(c
′). (17)

Proof Let Z ′ be a prime divisor in Zmov(c′). It follows from step 1 that Z ′−x ⊆ � for
general x ∈ D, hence for all x ∈ D.Multiplicationwith−1 shows (−Z ′)x ⊆ −� = �

for all x ∈ D. Since −Z ′ ⊆ −� = �, this equality implies

(−Z ′)x ⊆ �x ∩ �
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1026 S. Schreieder

for all x ∈ D. Therefore, for each c ∈ U with xc′(c) 	= 0, the prime divisor (−Z ′)xc′ (c)
is contained in div�(�xc′ (c) ∩ �). Hence, by (14) from step 1,

(−Z ′)xc′ (c) ≤ Yc + Z(c′), (18)

for all c ∈ U with xc′(c) 	= 0.
Let us consider (18), where we move the point c inC and keep c′ fixed and general.

By step 1, the point xc′(c) moves. Since Z ′ is a component of Zmov(c′), the translate
(−Z ′)xc′ (c) must also move. The translate Yc moves because Y + C = �. Clearly,
Z(c′) does not move as we keep c′ fixed. By (18),

(−Z ′)xc′ (c) = Yc. (19)

By (16), equality (19) holds for Z ′ = −Y , which proves Yxc′ (c) = Yc. This implies

�xc′ (c) = Yxc′ (c) + C = Yc + C = �c.

Hence,

xc′(c) = c,

which proves D = C .
It remains to prove (17). Since xc′(c) = c, (16) and (19) show that −Y is actually

the only prime divisor in Zmov(c′). Hence,

Zmov(c
′) = λ · (−Y )

for some positive integer λ. Using xc′(c) = c and (15) in the conclusion (14) from
step 1, we therefore obtain

div�(� ∩ �c) = Yc + λ · (−Y ) + Z inv(c
′).

For (17), it now remains to prove λ = 1. That is, it suffices to prove that for general
points y ∈ Y and c ∈ C , the intersection � ∩ �c is transverse at the point −y. Recall
that � is normal and so it is smooth at −y for y ∈ Y general. It thus suffices to see
that the tangent space T�,−y meets T�c,−y = T�,−y−c properly. Since T�,−y and
T�,−y−c have codimension one in TA,0, it actually suffices to prove

T�,−y 	= T�,−y−c

for general c ∈ C and y ∈ Y . In order to see this, it suffices to note that� is irreducible
and so the Gauß map

G� : � ��� Pg−1
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is generically finite [2, Prop. 4.4.2]. Indeed, T�,−y = T�,−y−c for general c and y
implies that through a general point of � (which is of the form −y − c) there is a
curve which is contracted by G�. This concludes step 2. �
Step 3. We have the following identity in H2g−2(A, Z):

[�]2 ∗ [C] = 2 · deg(F) · [�], (20)

where we recall that F : C × Y −→ � denotes the addition morphism.

Proof It follows from the conclusion (17) in step 2 that Z inv(c′) is actually independent
of the general point c′ ∈ U . We therefore write Z inv = Z inv(c′).

Suppose that there is a prime divisor Z ′ ≤ Z inv on �. Let us think of Z ′ as a
codimension two cycle on A. By definition, Z ′ is translation invariant under D, hence
under C by step 2. Therefore, [Z ′] ∗ [C] = 0 in H2g−2(A, Z). This holds for each
prime divisor Z ′ in Z inv, hence

[Z inv] ∗ [C] = 0.

For c 	= 0, we may consider � ∩ �c as a pure-dimensional codimension two
subscheme of A. As such it gives rise to an effective codimension two cycle on A,
which is nothing but the pushforward of the cycle div�(�∩�c) from� to A. Mapping
this cycle further to cohomology, we obtain [�]2 in H2g−4(A, Z). Conclusion (17) in
step 2 therefore implies

[�]2 ∗ [C] = 2 · [Y ] ∗ [C] + [Z inv] ∗ [C]
= 2 · [Y ] ∗ [C]
= 2 · deg(F) · [�],

where we used [Y ] = [Yc] = [−Y ] and [Z inv] ∗ [C] = 0. �
Step 4. Assertion (6) of Proposition 9 holds.

Proof We apply the cohomological Fourier–Mukai functor to the conclusion (20) of
step 3. Using Lemmas 9.23 and 9.27 in [11], this yields:

2

(g − 2)! · [�]g−2 ∪ PD[C] = 2 · deg(F)

(g − 1)! · [�]g−1, (21)

where PD denotes the Poincaré duality operator. Here we used

PD

(

1

k! · [�]k
)

= 1

(g − k)! · [�]g−k

for all 0 ≤ k ≤ g.
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1028 S. Schreieder

By the Hard Lefschetz Theorem, (21) implies

[C] = deg(F)

(g − 1)2 · (g − 2)! · [�]g−1,

which is precisely assertion (6) of Proposition 9. �
By Lemma 4, assertion (6) of Proposition 9 implies that C is geometrically non-

degenerate. It follows from Lemma 5 that no proper subvariety of A is translation
invariant under C , hence under D by the second conclusion of step 2. This implies
Z inv(c′) = 0 by its definition in (15). Assertion (5) of Proposition 9 follows therefore
from assertion (17) in step 2. This finishes the proof of Proposition 9. �

The next step in the proof of Theorem 1 is the following

Proposition 10 In the same notation as above, C is smooth, deg(F) = g − 1 and
[C] = 1

(g−1)! · [�]g−1.

Proof Let us first show that C is smooth. Indeed, (5) implies by Lemma 4 that Y is
non-degenerate. Via the Plücker embedding, its Gauß image is therefore not contained
in any hyperplane. If c0 ∈ C is a singular point, the sum of Zariski tangent spaces
TC,c0 +TY,y has thus for general y ∈ Y dimension g. It follows that c0+Y is contained
in the singular locus of �, which contradicts its normality (Theorem 6). Therefore C
is smooth.

In order to prove Proposition 10, it suffices by (6) to show deg(F) = g − 1. This
will be achieved by computing the degree of i∗�, where i : C −→ A denotes the
inclusion, in two ways. On the one hand, (6) implies

deg(i∗�) = [C] ∪ [�] = deg(F)

(g − 1)2 · (g − 2)! [�]g = g · deg(F)

g − 1
. (22)

On the other hand, we may consider the addition morphismm : C ×C ×Y −→ A.
For y ∈ Y , the restriction of m to C × C × y will be denoted by

my : C × C −→ A.

Since the degree is constant in flat families, we obtain

deg(i∗�) = deg(i∗(�−c−y)) = deg((m∗
y�)|C×c) (23)

for all c ∈ C and y ∈ Y .
Let us now fix a general point y ∈ Y . Then the image of my is not contained in �

because C + C + Y = A. Therefore, we can pull back the Weil divisor � as

m∗
y(�) = divC×C (m−1

y (�)),

wherem−1
y (�) denotes the scheme-theoretic preimage, whose closed points are given

by

{(c1, c2) ∈ C × C | c1 + c2 + y ∈ �}.
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Hence, m∗
y(�) contains the prime divisors C × 0 and 0×C . At this point we proceed

again in several steps.

Step 1. The multiplicity of C × 0 and 0 × C in m∗
y(�) is one.

Proof Let λ be the multiplicity of C ×0 inm∗
y(�). For c ∈ C general, the point (c, 0)

has then multiplicity λ in the 0-dimensional scheme

m−1
y (�) ∩ (c × C).

Since my maps c × C isomorphically to Cc+y , the above scheme is isomorphic to

� ∩ (Cc+y),

and c + y ∈ Cc+y has multiplicity λ in that intersection. If λ ≥ 2, then

TC,0 = TCc+y ,c+y ⊆ T�,c+y .

Since c+ y is a general point of�, this inclusion contradicts the previously mentioned
fact that the Gauß map G� is generically finite and so the tangent space of � at a
general point does not contain a fixed line. This proves that C ×0 has multiplicity one
in m∗

y(�). A similar argument shows that the same holds for 0×C , which concludes
step 1. �

By step 1,

m∗
y(�) = divC×C (m−1

y (�)) = (C × 0) + (0 × C) + � (24)

for some effective 1-cycle � on C × C which contains neither C × 0 nor 0 × C .
Step 2. Let �′ be a prime divisor in �. Then for each (c1, c2) ∈ �′,

−c1 − c2 − y ∈ Y. (25)

Proof Condition (25) is Zariski closed and so it suffices to prove it for a general point
(c1, c2) ∈ �′. Such a point satisfies c1 	= 0 	= c2 and c1 + c2 + y ∈ � ∩ �ci for
i = 1, 2. We can therefore apply (5) in Proposition 9 and obtain

c1 + c2 + y ∈ supp(Yci + (−Y )),

for i = 1, 2, where supp(−) denotes the support of the corresponding effective Weil
divisor. It follows that c1 + c2 + y lies in Yc1 ∩ Yc2 or in (−Y ).

We need to rule out c1 + c2 + y ∈ Yc1 ∩ Yc2 . But if this is the case, then c1 + y and
c2 + y are both contained in Y . Since y ∈ Y is general, the intersection (C + y) ∩ Y
is proper and so (c1, c2) is contained in a finite set of points, which contradicts the
assumption that it is a general point of �′. This concludes step 2. �
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Step 3. The 1-cycle � is reduced.

Proof In order to see that � is reduced, it suffices to prove that the intersections of
m−1

y (�) with c × C and C × c are both reduced, where c ∈ C is general. The other
assertion being similar, we will only prove that m−1

y (�) ∩ (C × c2) is reduced, where
c2 ∈ C is general. Sincemy maps C × c2 isomorphically to Cc2+y , it suffices to prove
that the intersection

Cc2+y ∩ � (26)

is transverse, where c2 ∈ C and y ∈ Y are both general.
Let us consider a point c1 ∈ C with c1+c2+y ∈ �. For c1 = 0, transversality of (26)

in c1+c2+ y was proven in step 1. For c1 	= 0, step 2 implies that y1 := −(c1+c2+ y)
is contained in Y . In order to prove that the intersection (26) is transverse at −y1, we
need to see that

TC,c1 = TCc2+y ,−y1 � T�,−y1 . (27)

This follows from the fact that c2 and y are general as follows.
Recall the addition map m : C × C × Y −→ A and consider the scheme theoretic

preimage m−1(−Y ) together with the projections

pr23 : m−1(−Y ) −→ C × Y and pr3 : m−1(−Y ) −→ Y.

Let �′ be a prime divisor in � with (c1, c2) ∈ �′. It follows from step 2 that �′ × y is
contained in some component Z ofm−1(−Y ). The restriction of pr23 to Z is surjective
because c2 and y are general. Hence, dim(Z) > dim(Y ) and so there is a curve in
Z passing through (c1, c2, y) which is contracted via m to y1. That is, there is some
quasi-projective curve T together with a nonconstant morphism (c̃1, c̃2, ỹ) : T −→
C × C × Y , with c̃1(t0) = c1, c̃2(t0) = c2 and ỹ(t0) = y for some t0 ∈ T such that

c̃1(t) + c̃2(t) + ỹ(t) = −y1,

for all t ∈ T . Since c2 ∈ C and y ∈ Y are general, it follows that the additionmorphism
F : C × Y −→ � is generically finite in a neighbourhood of (c2, y). Hence,

c̃1(t) = −y1 − c̃2(t) − ỹ(t)

is nonconstant in t .
For a contradiction, suppose TC,c1 ⊂ T�,−y1 , where we recall −y1 = c1 + c2 + y.

The image of (c̃2, ỹ) : T −→ C × Y is a curve through the general point (c2, y). It
follows that (c̃2(t), ỹ(t)) is a general point of C × Y for general t ∈ T . Replacing
(c2, y) by (c̃2(t), ỹ(t)) in the above argument therefore shows

TC,c̃1(t) ⊂ T�,−y1
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for general (hence all) t ∈ T , since−y1 = c̃1(t)+ c̃2(t)+ ỹ(t). As c̃1(t) is nonconstant
in t , TC,c is contained in the plane T�,−y1 for general c ∈ C . Hence,C is geometrically
degenerate, which by Lemma 4 contradicts (6) in Proposition 9. This contradiction
establishes (27), which finishes the proof of step 3. �
Step 4. For c2 ∈ C general, deg(�|C×c2) = deg(F).

Proof Let c2 ∈ C be general. By step 3,� is reduced and so its restriction toC×c2 is a
reduced 0-cycle. Since c2 and y are general,−c2− y is a general point of�. Therefore,
F−1(−c2−y) is also reduced. It thus suffices to construct a bijectionbetween the closed
points of the zero-dimensional reduced schemes supp(�)∩ (C × c2) and F−1(−c2 −
y). This bijection is given by

φ : supp(�) ∩ (C × c2) −→ F−1(−c2 − y),

where φ((c1, c2)) = (c1,−c1 − c2 − y). The point is here that φ is well-defined by
step 2; its inverse is given by

φ−1((c1, y1)) = (c1,−c1 − y1 − y).

This establishes the assertion in step 4. �
By step 4, deg(�|C×c2) = deg(F) for a general point c2 ∈ C . Using (23) and (24),

we obtain therefore

deg(i∗�) = 1 + deg(�|C×c2) = 1 + deg(F).

Comparing this with (22) yields

g · deg(F)

g − 1
= 1 + deg(F),

hence deg(F) = g − 1, as we want. This finishes the proof of Proposition 10. �
Proof of Theorem 1 Let (A,�) be an indecomposable ppav with � = C + Y . As
explained in the beginning of Sect. 4, we may assume � = −� and 0 ∈ C . By
Proposition 10 and Matsusaka–Hoyt’s criterion [10, p. 416], C is smooth and there is

an isomorphism ψ : (A,�)
∼ �� (J (C),�C ) which maps C to a translate of W1(C).

Since 0 ∈ C , it follows that ψ(C) = W1(C) − x2 for some x2 ∈ W1(C).
For x1 ∈ W1(C) with x1 	= x2, Weil [23] proved

divWg−1(C)(Wg−1(C) ∩ Wg−1(C)x1−x2) = Wg−2(C)x1 + (−Wg−2(C))−κ−x2 , (28)

where κ ∈ J (C) is such that −Wg−1(C) = Wg−1(C)κ . We move x1 in W1(C) and
compare (5) with (28) to conclude that ψ(Y ) is a translate of Wg−2(C). This finishes
the proof of Theorem 1. �
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Remark 11 Welters [24, p. 440] showed that the conclusion of Proposition 9 implies
the existence of a positive-dimensional family of trisecants of the Kummer variety of
(A,�). The latter characterizes Jacobians by results of Gunning’s [8] andMatsusaka–
Hoyt’s [10] and could hence be used to circumvent Proposition 10 in the proof of
Theorem 1. We presented Proposition 10 here because its proof is elementary and
purely algebraic, whereas the use of trisecants involves analytic methods, see [8,12].
It is hoped that this might be useful in other situations (e.g. in positive characteristics)
as well. We also remark that Proposition 10 can be used to avoid the use of Gunning’s
results in Welters’ work [24].

Remark 12 In [14, p. 254], Little conjectured Theorem 1 for g = 4; a proof is claimed
if � = C + S is a sum of a curve C and a surface S, where no translate of C or
S is symmetric (hence C is non-hyperelliptic) and some additional non-degeneracy
assumptions hold. However, some parts of the proof seem to be flawed and so further
assumptions on C and S are necessary in [14], see [13].

5 GV-sheaves, theta duals and Pareschi–Popa’s conjectures

The purpose of this section is to prove Theorem 2 stated in the introduction and to
explain two related conjectures of Pareschi and Popa. We need to recall some results
of Pareschi–Popa’s work [17] first.

Let (A,�) be a ppav of dimension g. By [17, Thm. 2.1], a coherent sheaf F on A
is a GV-sheaf if and only if the complex

RŜ(RHom(F ,OA)) (29)

in the derived category of the dual abelian variety Â has zero cohomology in all
degrees i 	= g. Here, RŜ : Db(A) −→ Db( Â) denotes the Fourier–Mukai transform
with respect to the Poincaré line bundle [11, p. 201].

For a geometrically non-degenerate subvariety Z ⊆ A, Pareschi and Popa consider
the twisted ideal sheaf IZ (�) = IZ ⊗OA(�).2 It follows from their own andHöring’s
work respectively that this is a GV-sheaf if Z is a translate of Wd(C) in the Jacobian
of a smooth curve or of the Fano surface of lines in the intermediate Jacobian of a
smooth cubic threefold, see [17, p. 210]. Both examples are known to have minimal
cohomology class 1

(g−d)! [�]g−d . Pareschi–Popa’s Theorem [17, Thm. B] says that
this holds in general:

Theorem 13 (Pareschi–Popa)Let Z bead-dimensional geometrically non-degenerate
subvariety of a g-dimensional ppav (A,�). If IZ (�) is a GV-sheaf,

[Z ] = 1

(g − d)! [�]g−d .

2 In fact, Pareschi and Popa treat the more general case of an equidimensional closed reduced subscheme
Z ⊆ A, but for our purposes the case of subvarieties will be sufficient.
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Combining Theorem 13 with Debarre’s “minimal class conjecture” in [4], Pareschi
and Popa arrive at the following, see [17, p. 210].

Conjecture 14 Let (A,�) be an indecomposable ppav of dimension g and let Z be
a geometrically non-degenerate d-dimensional subvariety with 1 ≤ d ≤ g − 2. If

IZ (�) is a GV-sheaf, (30)

then either (A,�) is isomorphic to the Jacobian of a smooth curve C and Z is a
translate of Wd(C), or it is isomorphic to the intermediate Jacobian of a smooth cubic
threefold and Z is a translate of the Fano surface of lines.

Pareschi and Popa [17, Thm. C] proved Conjecture 14 for d = 1 and d = g − 2.
Theorem 2 stated in the introduction proves it for subvarieties with curve summands
and arbitrary dimension. Before we can explain the proof of Theorem 2, we need to
recall Pareschi–Popa’s notion of theta duals [17, p. 216].

Definition 15 Let Z ⊆ A be a subvariety. Its theta dual V(Z) ⊆ Â is the scheme-
theoretic support of the gth cohomology sheaf of the complex

(−1 Â)∗RŜ(RHom(IZ (�),OA))

in the derived category Db( Â).

From now on, we use � to identify Â with A. The theta dual of Z ⊆ A is then a
subscheme V(Z) ⊆ A. For Wd(C) inside a Jacobian of dimension g ≥ 2, Pareschi
and Popa proved [17, Sect. 8.1]

V(Wd(C)) = −Wg−d−1(C), (31)

for 1 ≤ d ≤ g−2. Apart from this example, it is in general difficult to compute V(Z).
However, the reduced scheme V(Z)red can be easily described as follows.

Lemma 16 Let Z ⊆ A be a subvariety. The components of the reduced scheme
V(Z)red are given by the maximal (with respect to inclusion) subvarieties W ⊆ A
such that Z − W ⊆ �.

Proof By [17, p. 216], the set of closed points of V(Z) is {a ∈ A | Z ⊆ �a}. This
proves the lemma. �

We will use the following consequence of (31) and Lemma 16.

Lemma 17 Let C be a smooth curve of genus g ≥ 2 and let Z be a (g − d − 1)-
dimensional subvariety of J (C) such that Wd(C)+ Z is a translate of the theta divisor
�C . Then, Z is a translate of Wg−d−1(C).
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Proof By assumption, there is a point a ∈ J (C) with Wd(C) + Za = �C . Hence,

(−Z)−a ⊆ V(Wd(C))

by Lemma 16. By (31), (−Z)−a ⊆ −Wg−d−1(C) and equality follows because of
dimension reasons. �

For a geometrically non-degenerate subvariety Z ⊆ A of dimension d,

dim(V(Z)) ≤ g − d − 1 (32)

follows from Lemmas 5 and 16. Moreover, if equality is attained in (32), then � =
Z − W for some component W of V(Z)red, and so � has Z as a d-dimensional
summand.

Pareschi and Popa proved the following [17, Thm. 5.2(a)].

Proposition 18 Let Z ⊆ A be a geometrically non-degenerate subvariety. If IZ (�)

is a GV-sheaf, equality holds in (32).

Motivated by Proposition 18, Pareschi and Popa conjectured [17, p. 222] that Con-
jecture 14 holds if one replaces (30) by the weaker assumption

dim(V(Z)) = g − d − 1. (33)

By the above discussion, their conjecture is equivalent to

Conjecture 19 Let (A,�) be an indecomposable ppav of dimension g and let Z be
a geometrically non-degenerate subvariety of dimension 1 ≤ d ≤ g − 2. Suppose
that

� = Z + W (34)

for some subvariety W ⊆ A. Then, either (A,�) is isomorphic to the Jacobian of a
smooth curve C and Z is a translate of Wd(C), or it is isomorphic to the intermediate
Jacobian of a smooth cubic threefold and Z is a translate of the Fano surface of
lines.

Theorem 1 proves (a strengthening of) Conjecture 19 for d = 1 and d = g − 2.
This provides the first known evidence for that conjecture.

Remark 20 Conjecture 14 is implied by Conjecture 19, as well as by Debarre’s “min-
imal class conjecture” in [4]. Similar implications among the latter two conjectures
are not known.

We end this section with the proof of Theorem 2.

Proof of Theorem 2 Let Z � A be as in Theorem 2. Since IZ (�) is a GV-sheaf,
equality holds in (32) by Proposition 18. The reduced theta dual V(Z)red contains thus
by Lemmas 5 and 16 a (g − d − 1)-dimensional component W with Z −W = �. By
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assumption (1) in Theorem 2, we obtain

� = C + Y − W.

By Theorem 1, C is smooth and there is an isomorphism ψ : (A,�)
∼ �� (J (C),�C )

which identifies C and Y − W with translates of W1(C) and Wg−2(C), respectively.
Hence,

ψ(Z) − ψ(W ) = ψ(C) + ψ(Y ) − ψ(W ) = Wg−1(C)a, (35)

for some a ∈ J (C) and it remains to prove that ψ(Y ) is a translate of Wd−1(C).
If d = g − 1, then ψ(W ) is a point and ψ(Y ) is a translate of Wg−2(C), as we

want. We may therefore assume d ≤ g − 2 in the following. By Theorem 13, the
GV-condition on IZ (�) implies

[Z ] = 1

(g − d)! · [�]g−d .

By Debarre’s Theorem [4], ψ(Z) is thus a translate of Wd(C) or −Wd(C).
Case 1: ψ(Z) is a translate of Wd(C).

By (35),Wd(C)−ψ(W ) is here a translate ofWg−1(C) and so−ψ(W ) is a translate
of Wg−d−1(C) by Lemma 17. Hence, Wg−d(C) + ψ(Y ) is a translate of Wg−1(C).
Applying Lemma 17 again shows then that ψ(Y ) is a translate of Wd−1(C), as we
want.
Case 2: ψ(Z) is a translate of −Wd(C).

By (35), Wd(C) + ψ(W ) is in this case a translate of −Wg−1(C) and thus of
Wg−1(C). By Lemma 17, ψ(W ) is therefore a translate of Wg−d−1(C). Since 1 ≤
d ≤ g − 2, it follows from (35) that

Wg−1(C) = W1(C) − W1(C) + W ′, (36)

where W ′ is a translate of ψ(Y ) − Wg−d−2(C). By Lemma 17,

−W1(C) + W ′ = Wg−2(C). (37)

Let c0 ∈ C be the preimage of 0 ∈ J (C) under the Abel–Jacobi embedding. Any
point on W ′ is then represented by a divisor D − g · c0 on C , where D is effective of
degree g. It follows from (37) that D − c0 − c is effective for all c ∈ C . Thus,

D − c0 ∈ W 1
g−1(C) ⊆ Picg−1(C)

is a divisor whose linear series is positive-dimensional. By (37), we have dim(W ′) ≥
g−3 (in fact equality holds by Lemma 5) and so dim(W 1

g−1(C)) ≥ g−3. A theorem of
Martens [1, p. 191] implies thatC is hyperelliptic and so case 1 applies. This concludes
the proof. �
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6 Dominations by products

6.1 The DPC problem for theta divisors

We have the following well-known

Lemma 21 Let A be an abelian variety and let F : Z1 × Z2 ��� A be a rational map
fromaproduct of smooth varieties Z1 and Z2. Then there aremorphisms fi : Zi −→ A
for i = 1, 2 such that F = f1 + f2.

Proof Since A does not contain rational curves, F is in fact a morphism, which by the
universal property of Albanese varieties factors through Alb(Z1)×Alb(Z2). We con-
clude as morphisms between abelian varieties are translates of
homomorphisms. �

The following result shows that property (1) in Theorem 2 is in fact a condition on
the birational geometry of Z .

Corollary 22 An n-dimensional subvariety Z of an abelian variety A has a d-
dimensional summand if and only if there is a dominant rational map F : Z1× Z2 ���
Z, where Z1 and Z2 are varieties of dimension d and n − d respectively.

Proof If Z has a d-dimensional summand Z1, the decomposition Z = Z1 + Z2 for
a suitable Z2 gives rise to a dominant rational map F : Z1 × Z2 ��� Z as we want.
Conversely, if F : Z1 × Z2 ��� Z is given, after resolving the singularities of Z1 and
Z2, the assertion follows from Lemma 21. This proves Corollary 22. �

Corollary 3 stated in the introduction is an immediate consequence of Riemann’s
Theorem and

Corollary 23 Let (A,�) be an indecomposable g-dimensional ppav. Suppose there
is a dominant rational map

F : Z1 × Z2 ��� �,

where Z1 and Z2 are varieties of dimension 1 and g − 2 respectively. Then (A,�)

is isomorphic to the Jacobian of a smooth curve C. Moreover, if we identify � with
Wg−1(C), there are rational maps f1 : Z1 ��� W1(C) and f2 : Z2 ��� Wg−2(C)

with F = f1 + f2.

Proof After resolving the singularities of Z1 and Z2,wemay assume that both varieties
are smooth. By Lemma 21, F : Z1 × Z2 ��� � ⊆ A is then a sum of morphisms
f1 : Z1 −→ A and f2 : Z2 −→ A. Hence,

f1(Z1) + f2(Z2) = �,

and so Corollary 23 follows from Theorem 1. �
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Remark 24 For an arbitrary ppav (A,�), Corollary 3 implies that each component of
� is DPC if and only if (A,�) is a product of Jacobians of smooth curves. Indeed,
if (A,�) = (A1,�1) × · · · × (Ar ,�r ) with indecomposable factors (Ai ,�i ), then
� has r components which are isomorphic to �i × ∏

j 	=i A j where i = 1, . . . , r . A
product of varieties is DPC if and only if each factor is DPC. Since abelian varieties
are DPC, it follows that the components of � are DPC if and only if each �i is DPC,
hence the result by Corollary 3.

Corollary 25 The Fano surface of lines on a smooth cubic threefold X ⊆ P4 is not
dominated by a product of curves.

Proof By [3, Thm. 13.4.], the theta divisor of the intermediate Jacobian (J 3(X),�)

is dominated by the product S × S, where S is the Fano surface of lines on X . Since
(J 3(X),�) is indecomposable and not isomorphic to the Jacobian of a smooth curve
[3, p. 350], Corollary 25 follows from Corollary 23. �

6.2 Dominations of symmetric products of curves

Theorem 1 is nontrivial even in the case where (A,�) is known to be a Jacobian.
This allows us to classify all possible ways in which the symmetric product C (k) of a
smooth curve C of genus g ≥ k + 1 can be dominated by a product of curves. Before
we explain the result, we should note that AJk : C (k) −→ Wk(C) is a birational
morphism for g ≥ k, and that −Wg−1(C) is a translate of Wg−1(C). In particular,
multiplication by −1 on J (C) induces a nontrivial birational automorphism

ι : C (g−1) ∼��� C (g−1).

Corollary 26 Let C be a smooth curve of genus g. Suppose that for some k ≤ g − 1,
there are smooth curves C1, . . . ,Ck together with a dominant rational map

F : C1 × · · · × Ck ��� C (k).

Then there are dominant morphisms fi : Ci −→ C with the following property:

• If k < g − 1, then F = f1 + · · · + fk .
• If k = g − 1, then F = f1 + · · · + fg−1 or F = ι ◦ ( f1 + · · · + fg−1).

Proof We use the birational morphism AJk : C (k) −→ Wk(C) to identify C (k) bira-
tionally with its image Wk(C) in J (C). By Lemma 21, the rational map

AJk ◦ F : C1 × · · · × Ck ��� Wk(C)

is a sum of morphisms Ci −→ Wk(C). If C ′
i denotes the image of Ci in J (C), then

�C = C ′
1 + · · · + C ′

k + Wg−k−1(C) (38)
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by Riemann’s Theorem. Proposition 10 yields therefore [C ′
i ] = 1

(g−1)! [�C ]g−1 for
all i . It follows for instance from Debarre’s Theorem [4] that each C ′

i is a translate
of C or of −C , where C ⊆ J (C) is identified with its Abel–Jacobi image. If C is
hyperelliptic, Corollary 26 follows.

Assume now that C is non-hyperelliptic. Then there is some 0 ≤ r ≤ k, such
that Ci is a translate of −C for precisely r many indices i ∈ {1, . . . , k}. By (38),
Wg−r−1(C) − Wr (C) is then a translate of �C . However, Lemma 5.5 in [4] yields

[Wg−r−1(C) − Wr (C)] =
(

g − 1

r

)

· [�C ],

which coincides with [�C ] if and only if r = 0 or r = g − 1. This proves Corollary
26. �

Corollary 26 implies a theorem of Martens [16,19] asserting that any birational
map

C (k)
1

∼��� C (k)
2

between the kth symmetric products of smooth curves C1 and C2 of genus g ≥ k + 2
is induced by an isomorphism C1

∼−→ C2.
For k ≥ g, the symmetric product C (k) is birational to J (C) × Pk−g . This shows

that Corollary 26 is sharp as for k ≥ g, the product J (C) × Pk−g admits a lot of
nontrivial dominations. For instance, it is dominated by k − g arbitrary curves (whose
product dominates Pk−g) together with any choice of g curves in J (C) whose sum is
J (C).
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