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1188 J.-C. Joo et al.

1 Introduction

Among the theorems concerning the complex-analyticity of functions of several com-
plex variables, the most exploited should be the Hartogs analyticity theorem. The
second may be the following theorem of Forelli:

Theorem 1.1 (Forelli [3], Stoll [10]) Let F : Bn → C be a complex-valued function
defined on the unit ball Bn in C

n. If F satisfies the following two conditions:

(i) F ∈ C∞(0), i.e., for every positive integer k there exists an open neighborhood
Uk of the origin 0 such that F ∈ Ck(Uk);

(ii) For every v ∈ C
n with ‖v‖ = 1, the function ϕv(ζ ) := F(ζv) defined on the unit

disc B1 in C is holomorphic in the complex variable ζ ,

then F is holomorphic.

It was a surprise that the condition (i) turned out impossible to be relaxed to a finite
differentiability; consider, for instance, the function

F(z1, z2) =
⎧
⎨

⎩

z̄2

z̄1
· zk+2

1 if z1 �= 0

0 if z1 = 0.

This function is Ck everywhere, satisfies the condition (i) of the hypothesis, but is
nowhere holomorphic.

On the other hand, the generalizations have occurred recently in the following two
natural directions. The first direction concerns the case that the domain is the union
of holomorphic discs passing through a single point of the domain. In this direction,
E. M. Chirka presented the complex two dimensional case in [2] and asked whether
all dimensional generalization is possible. Responding to the question , the authors,
in the earlier paper [6], presented the following result:

Theorem 1.2 (Chirka [2], Joo-Kim-Schmalz [6]) If � is a domain in C
n with a C1

radial foliation by holomorphic discs (nonlinear, in general) at a point p ∈ �, then
any function F : � → C satisfying

(i) F ∈ C∞(p)
(ii) F is holomorphic along the leaves,

is holomorphic on �.

This seems to have settled the first direction. Therefore, it is natural to shift the focus
onto the other direction of generalization. It starts with the re-interpretation of the
condition (ii) of the original Forelli’s theorem that the analyticity of the given function
F along the radial complex lines is equivalent to the condition that F is holomorphic
along the complex integral curves of the complex Euler vector field E = ∑n

j=1 z j
∂

∂z j
.

As soon as this new viewpoint is taken, the following natural question arises:
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On the generalization of Forelli’s theorem 1189

Question Let X be a holomorphic vector field vanishing only at the origin. Replace
the condition (2) in the statement of Theorem 1.1 by the condition:

“ f is holomorphic along the complex integral curves of X.”
Then, for which X would the conclusion continue to hold?
The answer to this question, in the generic subcase where X is diagonalizable, was

given in [7].

Theorem 1.3 (Kim-Poletsky-Schmalz [7]) Let F : Bn → C be a function defined on
the unit open ball in C

n, and let X = ∑n
k=1 αk zk

∂
∂zk

, where α1, . . . , αn are complex
numbers satisfying α j/α� > 0 for any j, � ∈ {1, . . . , n}. If F satisfies the following
two conditions:

(1) F ∈ C∞(0)

(2) F is holomorphic along the complex integral curves of X,

then F is holomorphic on a neighborhood of the origin.

We remark that this is modified to fit to the context of this article; it was proved
originally in [7] under the condtion that F has a formal Taylor series at the origin,
weaker than Forelli’s original condition that F ∈ C∞(0).

It is well-known however that the diagonalizable holomorphic vector fields do not
always satisfy the additional condition on its coefficients specified in the above stated
theorem. But then, it is shown in [7] with explicit examples that the conclusion fails
if any of the ratios α j/αk should take complex non-real, or real-but-negative, values.
(See also the discussion following Definition 2.1 in Sect. 2.2.)

On the other hand, in the light of the original theorem of Forelli and subsequent
generalizations, the case of contracting holomorphic vector fields that are not diag-
onalizable should be investigated, since their complex integral curves also form a
singular foliation at the origin. In the case of complex dimension two, all such vector
fields, up to a change of local coordinates, take the form

X = α

(

z
∂

∂z
+ (mw + βzm)

∂

∂w

)

where m is a positive integer, α ∈ C\{0} and β ∈ C.
Indeed, the purpose of this paper is to give the answer to this seemingly final

remaining case. For the sake of clarity of the exposition, we present here the ver-
sion of the main theorem of this paper in complex dimension two; the most general
all-dimensional statement shall be presented in the next section as it needs further
terminology concerning vector fields.

Theorem 1.4 Let X = αz ∂
∂z + α(mw + βzm) ∂

∂w
, where m is a positive integer,

α ∈ C\{0} and β ∈ C. If a complex-valued function F : B2 → C satisfies the
conditions:

(1) F ∈ C∞(0)

(2) F is holomorphic along every complex integral curve of X,

then F is holomorphic on a neighborhood of the origin.

123



1190 J.-C. Joo et al.

We remark in passing that the nonzero complex number α appearing in the statement
above does not play any significant role. Moreover, the domain of the function F may
be any open subset containing the origin in C

2 due to the local nature of the theorem.
For the global version, see the discussion in Sect. 5.1.

2 Contracting fields, aligned fields and main theorem

2.1 Contracting holomorphic vector fields

We start with a holomorphic vector field X defined in an open neighborhood of the
origin in C

n . X is said to be contracting at the origin if the flow-diffeomorphism, say
	t , of Re X , for some t < 0, is contracting at 0, i.e., the map satisfies: (1) 	t (0) = 0,
and (2) every eigenvalue of the matrix d	t |0 has absolute value less than 1.

The contracting vector fields have been extensively studied. So we shall only
describe small part of the theory which is directly related to the theme of this paper. In
particular, the Poincaré-Dulac theorem implies that, if X is a contracting holomorphic
vector field then, up to a change of holomorphic local coordinate system at the origin,
X can be written in the following form:

X =
n∑

j=1

(
λ j z j + g j (z)

) ∂

∂z j
, (2.1)

where:

(1) 0 < Re λ1 ≤ Re λ2 ≤ · · · ≤ Re λn .
(2) g1 ≡ 0.
(3) For every j ∈ {2, . . . , n}, g j (z) is a holomorphic polynomial in the variables

z1, . . . , z j−1 only, vanishing at the origin. If the identity λ j = ∑ j−1
k=1 mkλk holds

for some nonnegative integers mk with
∑ j−1

k=1 mk ≥ 1 (called the resonance
relation for λ j ), then the condition

g j (e
λ1ζ z1, . . . , e

λ j−1ζ z j−1) = eλ j ζ g j (z1, . . . , z j−1)

must also hold. If no resonance relation holds for λ j , then g j ≡ 0.

The natural question to ask at this stage is whether Forelli’s theorem can be gener-
alized to the case of all contracting holomorphic vector fields. The answer is negative;
this was already known to be impossible even for the diagonalizable case (cf. [7]). We
shall see this in further generality in the next section.

2.2 Aligned holomorphic vector fields

The following definition introduces the optimal condition for the generalization of
Forelli’s theorem.
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On the generalization of Forelli’s theorem 1191

Definition 2.1 (Aligned fields) Let X be a holomorphic vector field of C
n contracting

at the origin. Take its Poincaré-Dulac normal form (cf. [1,9,11])

X =
n∑

j=1

(
λ j z j + g j (z)

) ∂

∂z j

as in (2.1) above. The vector field X is called aligned, if λ j/λk > 0 for every j, k ∈
{1, . . . , n}.

Notice that, in the Poincaré-Dulac normal form of an aligned vector field, every
variable z j appears. Note also that every λ j can be taken to be positive.

If X is not aligned on the contrary, then there exists a C∞ function, say f , in
a neighborhood of the origin satisfying X f ≡ 0 (i.e., f is holomorphic along every
complex integral curve of X ) while f is nowhere holomorphic. Thus the generalization
of Forelli’s theorem fails with such an X . The two-dimensional examples given in [7]
verify this. For the sake of clarity of the exposition, we describe the examples briefly:

Let the holomorphic vector field X under consideration be not aligned. Then one can
always extract, from its Poincaré-Dulac normal form, two distinct complex variables
z and w (among the variables z1, . . . , zn) such that X contains a linear combination of
αz ∂

∂z +βw ∂
∂w

with the value of the ratio α/β not real-positive, and that the remaining

part of X includes neither ∂
∂z nor ∂

∂w
. (For instance, if X were given as

X = z1
∂

∂z1
+ (2z2 + i z2

1)
∂

∂z2

+ (1 + i)z3
∂

∂z3
+ (1 − i)z4

∂

∂z4
+ (2z5 − z3z4)

∂

∂z5
,

then z = z1 and w = z3 and the vector field we consider is therefore z ∂
∂z +(1+i)w ∂

∂w
.

Of course then α = 1, β = 1 + i in this case.)
We are to show, either in the case of α/β < 0 or in the case of α/β ∈ C\R, that a

non-holomorphic but C∞ smooth function f depending only on two complex variables
z, w (and thus holomorphic in any other variables) can exist satisfying X f = 0,
identically. If −t = α/β < 0, then the function

f (z1, . . . , zn) =
{

exp
(

− 1
|w|t |z|

)
if zw �= 0

0 if zw = 0
(2.2)

is such an example.
If α/β is non-real then, changing the complex parameter ζ for the flow curve of

X by τζ for an appropriate τ ∈ C and changing also the role of z and w, we may
assume without loss of generality that α = α1 + iα2 with α1 > 0, α2 > 0 and β = t ᾱ
with t > 0. If we let γ = 1

2α1
− i

2α2
, then there exists a constant b > 1 such that the

function

f (z1, . . . , zn) :=
⎧
⎨

⎩

exp

[(
γ log |z| + γ̄

t log |w|
)b

]

if zw �= 0

0 if zw = 0
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1192 J.-C. Joo et al.

becomes such an example. For further detailed exposition, the reader is invited to read
Sect. 7 of [7] (pp. 664–665).

2.3 Statement of main theorem

We now present our main theorem in all dimensions.

Theorem 2.2 If F : Bn → C is a function satisfying the conditions:

(i) F ∈ C∞(0), and
(ii) F is holomorphic along every complex integral curve of an aligned holomorphic

vector field,

then F is holomorphic on a neighborhood of the origin.

Notice that this theorem includes Theorem 1.3 (the main theorem of [7]).
We are now to present the proof; indeed the rest of the paper is devoted to the proof

of this theorem.

3 A formal power series analysis

We investigate, at this beginning stage, the proof of Theorem 2.2 on the level of formal
power series which establishes the first step toward the complete proof (to be presented
in Section 5).

Recall the usual multi-index notation and the ordering as follows:α = (α1, . . . , αn),
β = (β1, . . . , βn) and zα = z1

α1 · · · znαn . We also use the length |β| := β1 + . . .+βn

and the lexicographic ordering ≺ defined by:

α ≺ β ⇔ ∃k : αs = βs ∀s < k and αk < βk .

Denote by N the set of nonnegative integers. For any (λ1, . . . , λn) ∈ C
n , define the

set

A(λ1, . . . , λn) :=
⎧
⎨

⎩
(m1, . . . ,mn) ∈ N

n :
n∑

j=1

m j ≥ 1,

n∑

j=1

m jλ j = 0

⎫
⎬

⎭
.

Then we present:

Proposition 3.1 Let X = ∑n
j=1(λ j z j +g j (z1, . . . , z j−1))

∂
∂z j

be a holomorphic vec-

tor field, where each g j is a holomorphic polynomial with no constant term. If X
satisfies the condition

A(λ1, . . . , λn) = ∅ (the empty set), (3.1)

then any formal power series S = ∑
α,β Cβ

α zαzβ (in the multi-index notation) satis-

fying XS = 0 has to be a holomorphic formal power series in the sense that Cβ
α = 0

for every β with |β| > 0.
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On the generalization of Forelli’s theorem 1193

Proof Consider the term in XS of multi-degree (i1, . . . , in, j1, . . . , jn) where j1 =
· · · = jn−1 = 0 and jn �= 0.

Let ϕν = λνzν + gν(z) in (2.1), and consider the components of X which can now
be written as ϕ̄ν

∂
∂ z̄ν

with ν < n. It can only produce terms that contain z̄ν with ν < n.
So does the ḡn term in ϕ̄n . Therefore the coefficient of the considered term is equal to

λn jnC
j1,..., jn
i1,...,in

.

Since A = ∅, this coefficient vanishes if and only if C j1,..., jn
i1,...,in

= 0 whenever j1 =
· · · = jn−1 = 0 and jn �= 0.

We prove the rest by an induction with respect to the lexicographical ordering ≺
on multi-indices ( j1, . . . , jn):

Initial (0, . . . , 0, jn)th step: already established above.
Assuming the steps prior to (J1, . . . , Jn), i.e., that C j1,..., jn

i1,...,in
= 0 for all

( j1, . . . , jn) ≺ (J1, . . . , Jn), we prove the (J1, . . . , Jn)th step: Suppose that Jk �= 0
but Jν = 0 for ν < k. Consider the terms in XS of multi-degree (i1, . . . , in, J1 . . . , Jn).
We show here that such terms cannot be generated by ϕ̄ν

∂
∂ z̄ν

with ν < k nor by ḡk in

ϕ̄k
∂

∂ z̄k
.

Similar to the initial step, we see that the ḡν terms in ϕ̄ν
∂

∂ z̄ν
with ν ≥ k, if dif-

ferent from zero, either produce terms that contain z̄ν with ν < k or increase the
lexicographical multi-degree in z̄k, . . . , z̄n . In either case they cannot produce terms
of multi-degree (i1, . . . , in, J1 . . . , Jn).

Hence the coefficient of the term in XS of multi-degree (i1, . . . , in, J1, . . . , Jn)
has to be equal to

n∑

ν=k

λν JνC
J1,...,Jn
i1,...,in

.

Since A = ∅, this coefficient vanishes if and only if C J1,...,Jn
i1,...,in

= 0. This completes
the induction and thus the proof of the proposition. ��

Remark 3.2 The condition (3.1) is essential for the proof. If X = z1
∂

∂z1
− t z2

∂
∂z2

for

some positive rational number t = q/p, then X understood as a vector field on C
2,

it is obvious that (q, p) ∈ A(1, t) and hence A(1, t) �= ∅; this violates Condition
(3.1). Also the smooth function F := |z1|2q |z2|2p is not holomorphic but satisfies the
equation XF ≡ 0.

All holomorphic vector fields contracting at the origin, and hence in particular
any aligned holomorphic vector fields (cf. Definition 2.1), satisfy Condition (3.1).
Therefore, Proposition 3.1 implies, in particular, the following real-analytic version
of generalized Forelli theorem:

Theorem 3.3 If f : Bn → C is a real-analytic function satisfying X f = 0 at every
point for a holomorphic vector field X contracting at the origin, then f is holomorphic.
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1194 J.-C. Joo et al.

4 A uniqueness theorem

Since it is not known a priori whether the function F in the statement of Theorem 2.2
should be real-analytic, showing only the “complex-analyticity” of F on the formal
power series level as in Sect. 3 is definitely not sufficient for a proof. In order to show
that the function ∂F/∂ z̄ j itself vanishes for all j = 1, . . . , n, one needs a new identity
theorem for the appropriate class of functions. The goal of this section is indeed to
establish such a principle, whose role will become clear in Sect. 5 where we complete
the proof of Theorem 2.2.

We begin with introducing the appropriate regions in C. Let P1, . . . , Pn be poly-
nomials, that are not identically zero, in the single complex variable ζ . Let λ1, . . . , λn
positive real numbers. Consider the open plane-region

D(P, λ) := {ζ ∈ C : |Pj (ζ )|e−λ j Re ζ < 1, j = 1, ..., n}.

We call a sequence {ζk} in D(P, λ) admissible, if

lim
k→∞ |Pj (ζk)|e−λ j Re ζk = 0

for every j = 1, . . . , n. It is obvious that the admissible sequences consist of two
types of points:

(1) ζk tending to the zeros of Pj , and
(2) ζk with Re ζk → +∞.

Let Lr := {ζ ∈ C : Im ζ = 0, Re ζ > r}. For any D(P, λ), there exists a positive
number r such that Lr ⊂ D(P, λ). Denote by D�(P, λ) the connected component of
D(P, λ) containing this ray Lr . Needless to say, D�(P, λ) is an unbounded component
of D(P, λ).

The unique continuation principle we establish is as follows:

Proposition 4.1 Let f be a bounded holomorphic function on D(P, λ). If

lim
k→∞ | f (ζk)| e

λ j � Re ζk

|Pj (ζk)|� = 0, (4.1)

for every j = 1, . . . , n, for any nonnegative integer �, and for any admissible sequence
{ζk}whose members are different from any zeros of any Pj ’s, then f ≡ 0 on D�(P, λ).

Proof First we notice that we may assume f is continuous up to the boundary of
D(P, λ) by replacing Pj by r Pj for a constant r > 1, j = 1, . . . , n.

Since Pj ’s are nontrivial (i.e., not identically zero) polynomials, there exists ε > 0
and A > 0 such that

inf
Reζ>A
1≤ j≤n

|Pj (ζ )| > ε. (4.2)
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On the generalization of Forelli’s theorem 1195

Set D(P, λ; A) := D(P, λ) ∩ {ζ ∈ C : Re ζ > A}. Re-ordering the coordinate
functions (z1, . . . , zn), we may assume without loss of generality that

deg(P1)

λ1
≥ deg(Pj )

λ j
, ∀ j = 1, . . . , n, (4.3)

where deg(Pj ) represents the degree of the polynomial Pj . Then a sequence {ζk} in
D(P, λ; A) is admissible if and only if

lim
k→∞ |P1(ζk)|e−λ1 Re ζk = 0. (4.4)

In fact, since

C j |ζ |d j ≤ |Pj (ζ )| ≤ C̃ j |ζ |d j

for some positive constantsC j and C̃ j as ζ → ∞, where d j = deg(Pj ), the inequality
(4.3) implies that

(
|P1(ζ )|e−λ1 Re ζ

)λ j /λ1 ≥ C
λ j /λ1
1 |ζ |d1λ j /λ1e−λ j Re ζ

≥ C
λ j /λ1
1 |ζ |d j e−λ j Re ζ

≥ C
λ j /λ1
1 C̃−1

j |Pj (ζ )|e−λ j Re ζ

for every ζ with sufficiently large modulus. Therefore, if a sequence {ζk} ⊂
D(P, λ; A) satisfies (4.4), then Re ζk → ∞, since |Pj | > ε on D(P, λ; A) and
hence limk→∞ |Pj (ζk)|e−λ j Re ζk = 0 for every j , which means {ζk} is admissible.

Consider, for every integer � > 0, the function

g�(ζ ) = f (ζ )
eλ1�ζ

P1(ζ )�
.

Then the function g� is holomorphic on D(P, λ; A). Now we pose and prove:

Claim 1. g� is bounded on D(P, λ; A) for every �.
Suppose the claim is false for some �. Then there exists a sequence {ζk} in

D(P, λ; A) such that
|g�(ζk)| → ∞ (4.5)

as k → ∞. Since f is bounded, it follows that

lim
k→∞

eλ1 Re ζk

|P1(ζk)| = ∞,

which obviously implies that

lim
k→∞ |P1(ζk)|e−λ1 Re ζk = 0.
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1196 J.-C. Joo et al.

Hence {ζk} is an admissible sequence. Then by (4.1), we must have |g�(ζk)| → 0
as k → ∞, a contradiction to (4.5). Therefore Claim 1 is justified.

Next we pose

Claim 2. There exists a constant δ0 > 0 such that |P1(ζ )|e−λ1 Re ζ > δ0 for every
ζ ∈ ∂D(P, λ) ∩ {ζ ∈ C : Re ζ ≥ A}.

Assume the contrary that there exists a sequence {ζk} ∈ ∂D(P, λ) ∩ {ζ ∈ C :
Re ζ ≥ A} such that |P1(ζk)|e−λ1 Re ζk → 0 as k → ∞. Since Pj has no zeros on
{ζ ∈ C : Re ζ ≥ A}, we see that Re ζk → ∞ as k → ∞. Therefore, by (4.3), we
have

|Pj (ζk)|e−λ j Re ζk → 0

as k → ∞, for every j = 1, . . . , n. On the other hand, whenever ζk ∈ ∂D(P, λ), the
definition of the region D(P, λ) implies that

|Pj (ζk)|e−λ j Re ζk = 1

for some j . This contradiction proves Claim 2.
We now finish the proof of Proposition 4.1. It follows by (4.2) that

|P1(ζ )|e−λ1 Re ζ ≥ εe−λ1A

for every ζ ∈ D(P, λ) ∩ {ζ ∈ C : Re ζ = A}. Now, let

M := sup
ζ∈D(P,λ)

| f (ζ )|, and C := max{δ−1
0 , ε−1eλ1A}.

Then |g�(ζ )| = | f (ζ )| e
λ1� Re ζ

|P1(ζ )|� ≤ MC� for every ζ ∈ ∂D(P, λ; A). Since each g�

is a bounded holomorphic function on D(P, λ; A), the maximum modulus principle
implies that

|g�(ζ )| = | f (ζ )| e
λ1� Re ζ

|P1(ζ )|� ≤ MC�

for every ζ ∈ D(P, λ; A). Here we make use of a version of the maximum modulus
principle for unbounded domains which is called the Phragmén-Lindelöf principle.
(cf., e.g., Corollary 2 in [8], p. 220.) Now let � be a connected open set satisfying:

(a) � ⊂ {ζ ∈ D(P, λ; A) : |P1(ζ )|e−λ1 Re ζ < 1
2C }, and

(b) � ⊃ LB := {ζ ∈ C : Im ζ = 0, Re ζ > B}, for some B > A.

Then, for every ζ ∈ �, we obtain that

| f (ζ )| ≤ M

2�
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On the generalization of Forelli’s theorem 1197

for every positive integer �. This implies that f (ζ ) = 0 for every ζ ∈ �. Thus
the unique continuation principle for holomorphic functions in one complex variable
implies that f vanishes identically on the unbounded component D�(P, lambda) as
desired. ��

5 Proof of Theorem 2.2

We now complete the proof of Theorem 2.2, the main result of this paper. The notation
in this section are the same as those used in its statement presented in Sect. 2.

5.1 Holomorphic continuation

In the next subsection we shall prove that F is holomorphic on an open neighborhood,
say V , of the origin. Then, as shown in [7], that property will imply the holomorphicity
of F in a larger set called the saturation set Sat(V, X) for the vector field X , which is
defined to be the union of the connected integral curves L of X satisfying L ∩V �= ∅.
For a presentation that does not depend on the (a priori unknown) neighborhood V
one usually considers a neighborhood basis V of the origin 0 and the set Sat(0, X) :=⋂

U∈V Sat(U, X), called the saturation set of the origin for the vector field X . When
X is a contracting vector field with the isolated singularity at 0, as here, there exists an
open neighborhoodU0 such that Sat(0, X) = Sat(U0, X), and hence, in particular, the
set Sat(0, X) is open. And, the conclusion can be strengthened to: F is holomorphic
on Sat(0, X).

5.2 Complex-analyticity of F in an open neighborhood of the origin

Take sufficiently small a neighborhood Ṽ of the origin on which the function F is C2

smooth. Resizing Ṽ , we may assume without loss of generality that Ṽ is the polydisc
{z = (z1, . . . , zn) ∈ C

n : |z j | < 1, j = 1, . . . , n}. Our present goal is to establish
the complex analyticity of F on an open neighborhood of the origin in Ṽ .

We shall now use the normalization of X , for instance following [1], p. 187. If X
is the aligned vector field given in the hypothesis of Theorem 2.2 then, without loss
of generality, we may assume that the vector field X now takes the form

X =
n∑

j=1

(
λ j z j + h j (z1, . . . , z j−1)

) ∂

∂z j
,

with all coefficients λ j of the linear terms in the expression of X positive. Furthermore
we have, in addition, the following:

(1) 0 < λ1 ≤ · · · ≤ λn and
(2) h j is a holomorphic polynomial that satisfies

h j (e
−λ1ζ z1, . . . , e

−λ j−1ζ z j−1) = e−λ j ζ h j (z1, . . . , z j−1)

for every j = 1, . . . , n, any ζ ∈ C.
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Thus, the complex flow-curve of X passing through η := (η1, . . . , ηn) can be
represented by

ζ → z(η; ζ ) = (z1(η; ζ ), . . . , zn(η; ζ ))

where

z j (η; ζ ) = e−λ j ζ
(
η j + g j (η; ζ )

)

with g j a holomorphic polynomial in η and ζ satisfying

• g1 ≡ 0,
• g j (η; 0) ≡ 0, and
• g j (·; ζ ) depends only upon η1, . . . , η j−1 (but not upon η j , . . . , ηn),

for every j = 1, . . . , n.
Note that η = z(η; 0) for every η ∈ Ṽ . Since X is a contracting vector field, there

exists a neighborhood V , with V ⊂ Ṽ , of the origin such that, for every η ∈ V , the
real integral curve z(η; t) is defined for every real t ≥ 0 in such a way that its image
is contained in Ṽ .

Let G(η, ζ ) := F(z(η; ζ )). Then the hypothesis on F yields that G(η, ζ ) is a
holomorphic function in the variable ζ on the region Dη := D(Pη, λ), for any η ∈ V .
Here, of course,

Pη(·) = (Pη,1(·), . . . , Pη,n(·)) = (η1 + g1(η; ·), . . . , ηn + gn(η; ·)),

and λ = (λ1, . . . , λn).
Fix an arbitrary ηo ∈ V \{0}. Since we are assuming that F is C2 smooth on Ṽ , we

have

∂

∂ζ̄

(
∂G

∂η̄ j

)

= ∂

∂η̄ j

(
∂G

∂ζ̄

)

= 0

for every j = 1, . . . , n. This implies that ∂G∂η̄ j is also a bounded holomorphic
function in ζ defined on Dηo .

The chain rule yields that

∂G

∂η̄n
= ∂F

∂ z̄n
e−λn ζ̄ .

Since the formal power series of F contains no z̄ terms, the function ∂F/∂ z̄n is a
C∞(0)-function with the trivial formal power series representation. In particular,

∣
∣
∣
∣
∂F

∂ z̄n
(z)

∣
∣
∣
∣ |z j |−� → 0
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as z → 0, for every j = 1, . . . , n and � ≥ 0. Since e−λn Re ζ ≤ C on Dηo for some
constant C > 0, this implies that for each j = 1, . . . , n and � ≥ 0,

∣
∣
∣
∣
∂G

∂η̄n
(ζk)

∣
∣
∣
∣ |z j (ηo, ζk)|−� ≤ C

∣
∣
∣
∣
∂F

∂ z̄n
(z(ηo, ζk))

∣
∣
∣
∣ |z j (ηo, ζk)|−� → 0

as k → ∞, where {ζk} is an arbitrary admissible sequence in Dηo . This yields that
the function ∂G/∂η̄n satisfies (4.1) on the region Dηo . Consequently, Proposition
4.1 in Sect. 4 applies here; it follows therefore that ∂G/∂η̄n , as well as ∂F/∂ z̄n ,
vanishes identically along the flow {z(ηo, ζ ) : ζ ∈ D�

ηo}, where D�
ηo is the unbounded

component of Dηo containing R
+ := {t ∈ R : t ≥ 0}.

Moreover for zn−1, the chain rule implies that

∂G

∂η̄n−1
= ∂F

∂ z̄n−1
e−λn−1 ζ̄ + ∂F

∂ z̄n
·
(

∂gn
∂ηn−1

)

· e−λn ζ̄

= ∂F

∂ z̄n−1
e−λn−1 ζ̄

at every point of the flow curve {z(ηo, ζ ) : ζ ∈ D�
ηo}. Proposition 4.1 applies here

again to yield that ∂F/∂ z̄n−1 = 0 on the same flow curve. Repeating this process, we
arrive at that ∂F ≡ 0 on the flow curve {z(ηo, ζ ) : ζ ∈ D�

ηo}. Let ζ = 0, in particular,

to obtain that ∂F(ηo) = 0.
Since ηo is an arbitrarily chosen point of V \{0}, it follows that ∂F = 0 at every

point of V \{0}. Hence F is holomorphic on V also, as F ∈ C2(V ).
Altogether, the proof of Theorem 2.2 is now complete. �

Remark 5.1 The proof-arguments just given may appear as if they never used the
assumption that the holomorphic vector field X must be aligned. On the contrary, the
assumption was used throughout. Notice that Proposition 4.1 in Sect. 4, which has
played a crucial role, is valid only for the aligned fields. Furthermore, Theorem 2.2
would not hold if the vector field X were not assumed to be aligned; see the discussion
with counterexamples in Sect. 2.2 presented immediately after Definition 2.1.

Remark 5.2 The arguments presented just now also prove the main theorem of Kim-
Poletsky-Schmalz [7], i.e., Theorem 1.3 in Sect. 1 of this paper, but with our condition
F ∈ C∞(0). (N.B. Their original theorem uses only the existence of formal Taylor
series at 0. But the method we present in this article needs F to be C2 in an open
neighborhood of the origin 0.) On the other hand the regions D(P, λ) for the case of
[7] are simpler; they are just half-planes, as their Pj ’s are constants.
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