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Abstract The well-known results of M. G. Kreı̆n concerning the description of self-
adjoint contractive extensions of a hermitian contraction T1 and the characterization of
all nonnegative selfadjoint extensions ˜A of a nonnegative operator A via the inequal-
ities AK ≤ ˜A ≤ AF , where AK and AF are the Kreı̆n–von Neumann extension and
the Friedrichs extension of A, are generalized to the situation, where ˜A is allowed to
have a fixed number of negative eigenvalues. These generalizations are shown to be
possible under a certain minimality condition on the negative index of the operators
I − T ∗

1 T1 and A, respectively; these conditions are automatically satisfied if T1 is
contractive or A is nonnegative, respectively. The approach developed in this paper
starts by establishing first a generalization of an old result due to Yu. L. Shmul’yan
on completions of nonnegative block operators. The extension of this fundamental
result allows us to prove analogs of the above mentioned results of M. G. Kreı̆n and, in
addition, to solve some related lifting problems for J -contractive operators in Hilbert,
Pontryagin and Kreı̆n spaces in a simple manner. Also some new factorization results
are derived, for instance, a generalization of the well-known Douglas factorization of
Hilbert space operators. In the final steps of the treatment some very recent results con-
cerning inequalities between semibounded selfadjoint relations and their inverses turn
out to be central in order to treat the ordering of non-contractive selfadjoint operators
under Cayley transforms properly.
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1 Introduction

Almost 70 years ago in his famous paper [47] M. G. Kreı̆n proved that for a densely
defined nonnegative operator A in a Hilbert space there are two extremal extensions
of A, the Friedrichs (hard) extension AF and the Kreı̆n–von Neumann (soft) extension
AK , such that every nonnegative selfadjoint extension ˜A of A can be characterized by
the following two inequalities:

(AF + a)−1 ≤ (˜A + a)−1 ≤ (AK + a)−1, a > 0.

To obtain such a description he used Cayley transforms of the form

T1 = (I − A)(I + A)−1T = (I − ˜A)(I + ˜A)−1,

to reduce the study of unbounded operators to the study of contractive selfadjoint
extensions T of a hermitian nondensely defined contraction T1. In the study of con-
tractive selfadjoint extensions of T1 he introduced a notion which is nowadays called
“the shortening of a bounded nonnegative operator H to a closed subspace N” of H
as the (unique) maximal element in the set

{ D ∈ [H] : 0 ≤ D ≤ H, ran D ⊂ N }, (1)

which is denoted by HN; cf. [3,4,57]. Here and in what follows the notation [H1,H2]
stands for the space of all bounded everywhere defined operators acting from H1 to
H2; if H = H1 = H2 then the shorter notation [H] = [H1,H2] is used. By means of
shortening of operators he proved the existence of a minimal and maximal contractive
extension Tm and TM of T1 and that T is a selfadjoint contractive extension of T1 if
and only if Tm ≤ T ≤ TM .

Later the study of nonnegative selfadjoint extensions of A ≥ 0 was generalized to
the case of nondensely defined operators A ≥ 0 by Ando and Nishio [5], as well as to
the case of linear relations (multivalued linear operators) A ≥ 0 by Coddington and
de Snoo [22]. Further studies followed this work ofM. G. Kreı̆n; the approach in terms
of “boundary conditions” to the extensions of a positive operator A was proposed by
Vishik [63] and Birman [16]; an exposition of this theory based on the investigation
of quadratic forms can be found from [2]. An approach to the extension theory of
symmetric operators based on abstract boundary conditions was initiated even earlier
by Calkin [21] under the name of reduction operators, and later, independently the
technique of boundary triplets was introduced to formalize the study of boundary value
problems in the framework of general operator theory; see [20,29,31,37,43,54]. Later
the extension theory of unbounded symmetric Hilbert space operators and related
resolvent formulas originating also from the work of Kreı̆n [45,46], see also e.g.
[52], was generalized to the spaces with indefinite inner products in the well-known
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series of papers by Langer and Kreı̆n, see e.g. [49,50], and all of this has been further
investigated, developed, and extensively applied in various other areas of mathematics
and physics by numerous other researchers.

In spite of the long time span, natural extensions of the original results of Kreı̆n
in [47] seem not to be available in the literature. Obviously the most closely related
result appears in Constantinescu and Gheondea [24], where for a given pair of a row
operator Tr = (T11, T12) ∈ [H1⊕H′

1,H2] and a columnoperator Tc = col (T11, T21) ∈
[H1,H2⊕H′

2] the problem for determining all possible operators ˜T ∈ [H1⊕H′
1,H2⊕

H′
2] acting from the Hilbert space H1 ⊕ H′

1 to the Hilbert space H2 ⊕ H′
2 such that

PH2
˜T = Tr , ˜T �H1 = Tc,

and such that the following negative index (number of negative eigenvalues) conditions
are satisfied

κ1 := ν−(I − ˜T ∗
˜T ) = ν−(I − T ∗

c Tc), κ2 := ν−(I − ˜T˜T ∗) = ν−(I − Tr T
∗
r ),

is considered. The problem was solved in [24, Theorem 5.1] under the condition
κ1, κ2 < ∞. In the literature cited therein appears also a reference to an unpub-
lished manuscript [53] by H. Langer and B. Textorius, where a similar problem for
a given bounded hermitian column operator T has been investigated; see [53, Theo-
rems 1.1, 2.8]1 and [24, Section 6]. However, in these papers the existence of possible
extremal extensions in the solution set in the spirit of [47], when it is nonempty, have
not been investigated. Also possible investigations of analogous results for unbounded
symmetric operatorswith a fixed negative index seem to be unavailable in the literature.

In this paper we study classes of “quasi-contractive” symmetric operators T1 with
ν−(I − T ∗

1 T1) < ∞ as well as “quasi-nonnegative” operators A with ν−(A) < ∞
and the existence and description of all possible selfadjoint extensions T and ˜A of
them which preserve the given negative indices ν−(I − T 2) = ν−(I − T ∗

1 T1) and
ν−(˜A) = ν−(A), and prove precise analogs of the above mentioned results of M.
G. Kreı̆n under a minimality condition on the negative indices ν−(I − T ∗

1 T1) and
ν−(A), respectively. It is an unexpected fact that when there is a solution then the
solution set still contains a minimal solution and a maximal solution which then
describe the whole solution set via two operator inequalities, just as in the original
paper of M. G. Kreı̆n. The approach developed in this paper differs from the approach
in [47]. In fact, technique based on nonnegative completions of operators appearing in
papers by Kolmanovich and Malamud [44] and Hassi et al. [39] will be successfully
generalized. In particular, we introduce a new class of completion problems for Hilbert
space operators, whose solutions evidently admit a wider scope of applications than
what is appearing in the present paper.

The starting point in our approach is to establish a generalization of an old result
due to Shmul’yan [59] on completions of nonnegative block operators where the result

1 After the Math ArXiv version of the present paper we inquired contents of that work from H. Langer who
then kindly provided us their initial work in [53].
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was applied for introducing so-called Hellinger operator integrals. Our extension of
this fundamental result is given in Sect. 2; see Theorem 1 (for the case κ < ∞) and
Theorem 2 (for the case κ = ∞). Obviously these two results, already in view of the
various consequences appearing in later sections, may be considered as being most
useful inventions in the present paper with further possible applications in problems
appearing also elsewhere (see e.g. [4,6,27,28,58]).

In this paperwewill extensively applyTheorem1. In Sect. 3 this result is specialized
to a class of block operators to characterize occurrence of a minimal negative index
for the so-called Schur complement, see Theorem 3. This result can be also viewed
as a factorization result and, in fact, it yields a generalization of the well-known
Douglas factorization of Hilbert space operators in [32], see Proposition 1, which is
completed by a generalization of Sylvester’s criterion on additivity of inertia on Schur
complements in Proposition 2. In Sect. 4, Theorem 1, or its special case Theorem 3,
is applied to solve lifting problems for J -contractive operators in Hilbert, Pontryagin
and Kreı̆n spaces in a new simple way, the most general version of which is formulated
in Theorem 4: this result was originally proved in Constantinescu and Gheondea [23,
Theorem2.3]with the aid of [13, Theorem5.3]; for special cases, see alsoDritschel and
Rovnyak [33,34]. In the Hilbert space case the problem has been solved in [12,25,62],
further proofs and facts can be found e.g. from [8,10,19,44,55].

Section5 contains the extension of the fundamental result of Kreı̆n in [47], see
Theorem 5, which characterizes the existence and gives a description of all selfadjoint
extensions T of a bounded symmetric operator T1 satisfying the following minimal
index condition ν−(I − T 2) = ν−(I − T 2

11) by means of two extreme extensions via
Tm ≤ T ≤ TM . In Sect. 6 selfadjoint extensions of unbounded symmetric operators,
and symmetric relations, are studied under a similar minimality condition on the
negative index ν−(A); the main result there is Theorem 8. It is a natural extension
of the corresponding result of Kreı̆n in [47]. The treatment here uses Cayley type
transforms and hence is analogous to that in [47]. However, the existence of two
extremal extensions in this setting and the validity of all the operator inequalities
appearing therein depend essentially on so-called “antitonicity results” proved only
very recently for semibounded selfadjoint relations in [15] concerning correctness of
the implication H1 ≤ H2 ⇒ H−1

1 ≥ H−1
2 in the case that H1 and H2 have some finite

negative spectra. In this section analogs of the so-called Kreı̆n’s uniqueness criterion
for the equality Tm = TM are also established.

2 A completion problem for block operators

By definition the modulus |C | of a closed operator C is the nonnegative selfadjoint
operator |C | = (C∗C)1/2. Every closed operator admits a polar decomposition C =
U |C |, where U is a (unique) partial isometry with the initial space ran |C | and the
final space ranC , cf. [42]. For a selfadjoint operator H = ∫

R
t dEt in a Hilbert space

H the partial isometry U can be identified with the signature operator, which can be
taken to be unitary: J = sign (H) = ∫

R
sign (t) dEt , in which case one should define

sign (t) = 1 if t ≥ 0 and otherwise sign (t) = −1.
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2.1 Completion to operator blocks with finite negative index

The following theorem solves a completion problem for a bounded incomplete block
operator A0 of the form

A0 =
(

A11 A12
A21 ∗

) (

H1
H2

)

→
(

H1
H2

)

(2)

in the Hilbert space H = H1 ⊕ H2.

Theorem 1 LetH = H1⊕H2 be an orthogonal decomposition of the Hilbert spaceH
and let A0 be an incomplete block operator of the form (2). Assume that A11 = A∗

11 and
A21 = A∗

12 are bounded, ν−(A11) = κ < ∞, where κ ∈ Z+, and let J = sign (A11)

be the (unitary) signature operator of A11. Then:

(1) There exists a completion A ∈ [H] of A0 with some operator A22 = A∗
22 ∈ [H2]

such that ν−(A) = ν−(A11) = κ if and only if

ran A12 ⊂ ran |A11|1/2. (3)

(2) If (3) is satisfied, then the operator S = |A11|[−1/2]A12, where |A11|[−1/2] denotes
the (generalized) Moore–Penrose inverse of |A11|1/2, is well defined and S ∈
[H2,H1]. Moreover, S∗ J S is the smallest operator in the solution set

A := {A22 = A∗
22 ∈ [H2] : A = (Ai j )

2
i, j=1 : ν−(A) = κ} (4)

and this solution set admits a description as the (semibounded) operator interval
given by

A = {A22 ∈ [H2] : A22 = S∗ J S + Y, Y = Y ∗ ≥ 0}.

Proof (i) Assume that there exists a completion A22 ∈ A. Let λκ ≤ λκ−1 ≤ · · · ≤
λ1 < 0 be all the negative eigenvalues of A11 and let ε be such that |λ1| > ε > 0.
Then 0 ∈ ρ(A11 + ε) and hence one can write

(

I 0
−A21(A11 + ε)−1 I

) (

A11 + ε A12
A21 A22 + ε

)(

I −(A11 + ε)−1A12
0 I

)

=
(

A11 + ε 0
0 A22 + ε − A21(A11 + ε)−1A12

)

(5)

The operator in the righthand side of (5) has κ negative eigenvalues if and only if

A21(A11 + ε)−1A12 ≤ A22 + ε (6)
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or equivalently

‖A11‖
∫

−‖A11‖
(t + ε)−1d‖Et A12 f ‖2 ≤ ε‖ f ‖2 + (A22 f, f ), (7)

where Et is the spectral family of A11 and f ∈ H2. We rewrite (7) in the form

∫

[−‖A11‖,0)(t + ε)−1d‖Et A12 f ‖2 + ∫

[0,‖A11‖](t + ε)−1d‖Et A12 f ‖2
≤ ε‖ f ‖2 + (A22 f, f ),

This yields the estimate

∫

[0,‖A11‖]
(t + ε)−1d‖Et A12 f ‖2 ≤ ε‖ f ‖2 + (A22 f, f ) − 1

λ1 + ε
‖A12 f ‖2. (8)

By letting ε ↘ 0 in (8) the monotone convergence theorem implies that

P+A12 f ∈ ran A1/2
11+ ⊂ ran |A11|1/2

for all f ∈ H2; here A11+ = ∫

[0,‖A11‖] t dEt stands for the nonnegative part of
A11 and P+ is the orthogonal projection onto the corresponding closed subspace
ran A11+ = ∫

[0,‖A11‖] dEt . Since ran (I − P+) is the κ-dimensional spectral subspace
of A11 corresponding to its negative spectrum, one concludes that

(I − P+)A12 f ∈ ran A11 ⊂ ran |A11|1/2

for all f ∈ H2. Therefore, ran A12 ⊂ ran |A11|1/2.
Conversely, if ran A12 ⊂ ran |A11|1/2, then the operator S := |A11|[−1/2]A12 is well

defined, closed and bounded, i.e., S ∈ [H2,H1]. Since A12 = |A11|1/2S, it follows
from A21 = S∗|A11|1/2 and

(|A11|1/2
S∗ J

)

J
(|A11|1/2 J S

) : ν−(A) = κ, (9)

that the operator A22 = S∗ J S gives a completion for A0.
(ii) The proof of (i) shows that A21 = S∗|A11|1/2 is well defined and that S∗ J S ∈

[H2] gives a solution to the completion problem (2). Now

s − lim
ε↘0

A21(A11 + ε)−1A12 = s − lim
ε↘0

S∗|A11|1/2(A11 + ε)−1|A11|1/2S = S∗ J S

and if A22 is an arbitrary operator in the set (4), then by letting ε ↘ 0 one concludes
that S∗ J S ≤ A22. Therefore, S∗ J S satisfies the desired minimality property.

123



Completion, extension, factorization, and lifting . . . 1421

To prove the last statement assume that Y ∈ [H2] and that Y ≥ 0. Then A22 =
S∗ J S+Y inserted in A0 defines a block operator AY ≥ Amin. In particular, ν−(AY ) ≤
ν−(Amin) = κ < ∞. On the other hand, it is clear from the formula

AY =
(|A11|1/2

S∗ J

)

J
(|A11|1/2 J S

) +
(

0 0
0 Y

)

(10)

that the κ-dimensional eigenspace corresponding to the negative eigenvalues of A11
is AY -negative and, hence, ν−(AY ) ≥ κ . Therefore, ν−(AY ) = κ and Y ∈ A.

Notice that in the factorization A12 = |A11|1/2S, S is uniquely determined under
the condition ran S ⊂ ran A11 (which implies that ker A12 = ker S); cf. [32].

In the case that κ = 0, the result in Theorem 1 reduces to the well-known criterion
concerning completion of an incomplete block operator to a nonnegative operator; cf.
[59]. In the case of matrices acting on a finite dimensional Hilbert space, the result
with κ > 0 has been proved very recently in the appendix of [28], where it was applied
in solving indefinite truncated moment problems. In the present paper Theorem 1 will
be one of the main tools for further investigations.

2.2 Completion to operator blocks with an infinite negative index.

The completion result in Theorem 1 is of some general interest already by the sub-
stantial number of its applications known in the case of nonnegative operators. In this
section the completion problem is treated in the case that κ = ∞. For this purpose
some further notions will be introduced.

Recall that a subspace M ⊂ H is said to be uniformly A-negative, if there exists
a positive constant ν > 0 such that (A f, f ) ≤ −ν‖ f ‖2 for all f ∈ M. It is maxi-
mal uniformly A-negative, if M has no proper uniformly A-negative extension. The
completion problem is now extended by claiming from the completions the following
maximality property:

There exists a subspace M ⊂ H1which ismaximal uniformlyA-negative. (11)

Theorem 2 Let A0 be an incomplete block operator of the form (2) in the Hilbert
space H = H1 ⊕ H2. Let A11 = A∗

11 and A21 = A∗
12 be bounded, let J = sign (A11)

be the (unitary) signature operator of A11, and, in addition, assume that there is a
spectral gap (−δ, 0) ⊂ ρ(A11), δ > 0. Then:

(i) There exists a completion A ∈ [H] of A0 with some operator A22 = A∗
22 satisfying

the condition (11) if and only if

ran A12 ⊂ ran |A11|1/2.

(ii) If the condition in (i) is satisfied, then S = |A11|[−1/2]A12, where |A11|[−1/2]
denotes the (generalized) Moore–Penrose inverse of |A11|1/2, is well defined and
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S ∈ [H2,H1]. Moreover, S∗ J S is the smallest operator in the solution set

A := {A22 = A∗
22 ∈ [H2] : A = (Ai j )

2
i, j=1 satisfies (11)}

and this solution set admits a description as the (semibounded) operator interval
given by

A = {A22 ∈ [H2] : A22 = S∗ J S + Y, Y = Y ∗ ≥ 0}.

Proof To prove this result suitablemodifications in the proof of Theorem 1 are needed.
(i) First assume that A22 ∈ A gives a desired completion for A0. If ε ∈ (0, δ) then
0 ∈ ρ(A11 + ε) and therefore the block operator (Ai j ) satisfies the formula (5). We
claim that the condition (11) implies the inequality (6) for all sufficiently small values
ε > 0. To see this letM ⊂ H1 be a subspace for which the condition (11) is satisfied.
Then (A11 f, f ) ≤ −ν‖ f ‖2 for some fixed ν > 0 and for all f ∈ M. Assume that
for some 0 < ε0 < min{ν, δ} (6) is not satisfied. Then ((A22 + ε0 − A21(A11 +
ε0)

−1A12)v0, v0) < 0 holds for some vector v0 ∈ H2. Define L = W−1
ε0

(M +
span {v0}), where

Wε0 =
(

I −(A11 + ε0)
−1A12

0 I

)

.

Clearly, Wε0 is bounded with bounded inverse and it maps M bijectively onto M, so
that L is a 1-dimensional extension of M. It follows from (5) that for all f ∈ L,

(A f, f ) + ε0‖ f ‖2 =
((

A11 + ε0 0
0 A22 + ε0 − A21(A11 + ε0)

−1A12

)

u, u

)

< 0,

where u = Wε0 f ∈ M + span {v0}. Therefore, L is a proper uniformly A-negative
extension ofM; a contradiction, which shows that (6) holds for all 0 < ε < min{ν, δ}.
Then, as in the proof of Theorem 1 it is seen that ran A12 ⊂ ran |A11|1/2; note that in
the estimate (8) λ1 is to be replaced by −δ.

Conversely, if ran A12 ⊂ ran |A11|1/2, then S = |A11|[−1/2]A12 ∈ [H2,H1] and the
block operator A in (9) gives a completion. To prove that A satisfies (11) observe that
ifM is a uniformly A-negative subspace in H, then

(|A11|1/2 J S
)

maps it bijectively
onto a uniformly J -negative subspace in H1. The spectral subspace corresponding
to the negative spectrum of A11 is maximal uniformly J -negative in H1 and also
uniformly A-negative in H. By the above mapping property this subspace must be
maximal uniformly A-negative in H.

(ii) If A22 = A∗
22 defines a completion A ∈ [H] of A0 such that (11) is satisfied then

by the proof of (i) the inequality (6) holds for all sufficiently small values ε > 0. Now
the minimality property of S∗ J S can be obtained in the same manner as in Theorem 1.

As to the last statement again for every Y ∈ [H2], Y ≥ 0, the block operator AY

defined in the proof of Theorem 1 satisfies AY ≥ Amin. Hence, every uniformly AY -
negative subspace is also uniformly Amin-negative. Now it follows from the formula
(10) that the spectral subspace corresponding to the negative spectrum of A11, which
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is maximal uniformly Amin-negative, is also maximal uniformly AY -negative. Hence,
AY satisfies (11) and Y ∈ A.

3 Some factorizations of operators with finite negative index

Theorems 1 and 2 contain a valuable tool in solving a couple of other problems, which
initially do not occur as a completion problem of some symmetric incomplete block
operator. In this section it is shown that Theorem 1 (a) can be used to characterize
the existence of certain J -contractive factorizations of operators via a minimal index
condition; (b) implies an extension of thewell-knownDouglas factorization result with
a certain specification to the Bognár–Krámli factorization; (c) yields an extension of
a factorization result of Shmul’yan for J -bicontractions; (d) allows an extension of
a classical Sylvester’s law of inertia of a block operator, which is originally used in
characterizing nonnegativity of a bounded block operator via Schur complement.

Some simple inertia formulas are now recalled. The factorization H = B∗EB
clearly implies that ν±(H) ≤ ν±(E). If H1 and H2 are selfadjoint operators, then

H1 + H2 =
(

I
I

)∗ (

H1 0
0 H2

) (

I
I

)

shows that ν±(H1+H2) ≤ ν±(H1)+ν±(H2). Consider the selfadjoint block operator
H ∈ [H1 ⊕ H2] of the form

H =
(

A B∗
B J2

)

, (12)

where J2 = J ∗
2 = J−1

2 . By applying the above mentioned inequalities shows that

ν±(A) ≤ ν±(A − B∗ J2B) + ν±(J2). (13)

Assuming that ν−(A−B∗ J2B) and ν−(J2) are finite, the question when ν−(A) attains
its maximum in (13), or equivalently, ν−(A − B∗ J2B) ≥ ν−(A) − ν−(J2) attains its
minimum, turns out to be of particular interest. The next result characterizes this
situation as an application of Theorem 1. Recall that if A = JA|A| is the polar decom-
position of A, then one can interpret HA = (ran A, JA) as a Kreı̆n space generated on
ran A by the fundamental symmetry JA = sgn (A).

Theorem 3 Let A ∈ [H1] be selfadjoint, B ∈ [H1,H2], J2 = J ∗
2 = J−1

2 ∈ [H2], and
assume that ν−(A), ν−(J2) < ∞. If the equality

ν−(A) = ν−(A − B∗ J2B) + ν−(J2) (14)

holds, then ran B∗ ⊂ ran |A|1/2 and B∗ = |A|1/2K for a unique operator K ∈
[H2,HA] which is J -contractive: J2 − K ∗ JAK ≥ 0.

Conversely, if the equality B∗ = |A|1/2K holds for some J-contractive operator
K ∈ [H2, ran A], then the equality (14) is satisfied.
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1424 D. Baidiuk, S. Hassi

Proof Assume that (14) is satisfied. The factorization

H =
(

A B∗
B J2

)

=
(

I B∗ J2
0 I

) (

A − B∗ J2B 0
0 J2

)(

I 0
J2B I

)

shows that ν−(H) = ν−(A − B∗ J2B) + ν−(J2), which combined with the equality
(14) gives ν−(H) = ν−(A). Therefore, by Theorem 1 one has ran B∗ ⊂ ran |A|1/2
and this is equivalent to the existence of a unique operator K ∈ [H2, dom A] such that
B∗ = |A|1/2K ; i.e. K = |A|[−1/2]B∗. Furthermore, K ∗ JAK ≤ J2 by the minimality
property of K ∗ JAK in Theorem 1, in other words K is a J -contraction.

Converse, if B∗ = |A|1/2K for some J -contraction K ∈ [H2, dom A], then clearly
ran B∗ ⊂ ran |A|1/2. By Theorem 1 the completion problem for H0 has solutions with
the minimal solution S∗ JAS, where

S = |A|[−1/2]B∗ = |A|[−1/2]|A|1/2K = K .

Furthermore, by J -contractivity of K one has K ∗ JAK ≤ J2, i.e. J2 is also a solution
and thus ν−(H) = ν−(A) or, equivalently, the equality (14) is satisfied.

While Theorem 3 is obtained as a direct consequence of Theorem 1 it will be
shown in the next section that this result yields simple solutions to a wide class of
lifting problems for contractions in Hilbert, Pontryagin and Kreı̆n space settings.

Before deriving the next result some inertia formulas for a class of selfadjoint block
operators are recalled. Consider the following two representations

(

J1 T ∗
T J2

)

=
(

I 0
T J1 I

) (

J1 0
0 J2 − T J1T ∗

) (

I J1T ∗
0 I

)

=
(

I T ∗ J2
0 I

)(

J1 − T ∗ J2T 0
0 J2

) (

I 0
J2T I

)

,

where Ji = J ∗
i = J−1

i , i = 1, 2. Since here the triangular operators are bounded
with bounded inverse, one concludes that ran (J2 − T J1T ∗) is closed if and only if
ran (J1 − T ∗ J2T ) is closed. Furthermore, one gets the following inertia formulas; cf.
e.g. [13, Proposition 3.1].

Lemma 1 With the above notations one has

ν±(J1 − T ∗ J2T ) + ν±(J2) = ν±(J2 − T J1T
∗) + ν±(J1),

ν0(J1 − T ∗ J2T ) = ν0(J2 − T J1T
∗).

The next result contains two general factorization results: assertion (i) contains an
extension of the well-known Douglas factorization, see [32,35], and assertion (ii) is
a specification of the so-called Bognár–Krámli factorization, see [18]: A = B∗ J2B
holds for some bounded operator B if and only if ν±(J2) ≥ ν±(A).
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Proposition 1 Let A, B, and J2 be as in Theorem 3, and let ν−(A) = ν−(J2) < ∞.
Then:

(i) The inequality
A ≥ B∗ J2B (15)

holds if and only if B = C |A|1/2 for some J-contractive operator C ∈ [HA,H2];
in this case C is unique and, in addition, J -bicontractive, i.e., JA − C∗ J2C ≥ 0
and J2 − C JAC∗ ≥ 0.

(ii) The equality
A = B∗ J2B (16)

holds if and only if B = C |A|1/2 for some J-isometric operator C ∈ [HA,H2];
again C is unique. In addition, C is unitary if and only if ran B is dense in H2.

Proof (i) The inequality (15) means that ν−(A− B∗ J2B) = 0. Hence the assumption
ν−(A) = ν−(J2) < ∞ implies the equality (14). Therefore, the desired factorization
for B is obtained from Theorem 3. Conversely, if B = C |A|1/2 for some J -contractive
operator C then (14) holds by Theorem 3 and the assumption ν−(A) = ν−(J2) < ∞
implies that ν−(A − B∗ J2B) = 0.

The fact that C is actually J -bicontractive follows directly from Lemma 1.
(ii) Assume that (16) holds. Then by part (i) it remains to prove that in the factor-

ization B = C |A|1/2 the operator C is isometric. Substituting B = C |A|1/2 into (16)
gives

A = |A|1/2C∗ J2C |A|1/2.

Since domC, ranC∗ ⊂ ran A and A = |A|1/2 JA|A|1/2, the previous identity implies
the equality JA = C∗ J2C , i.e., C is J -isometric. Conversely, if C is J -isometric then
clearly (16) holds.

Since B = C |A|1/2 and C ∈ [HA,H2], it is clear that B has dense range in
H2 precisely when the range of C is dense in H2. The (Kreı̆n space) adjoint is a
bounded operator with domC [∗] = H2. By isometry one has C−1 ⊂ C [∗], and thus
C−1 is also bounded, densely defined and closed. Thus, the equality C−1 = C [∗]
prevails, i.e., C is J -unitary. Conversely, if C is unitary then C−1 = C [∗] holds and
ranC = domC [∗] = H2. Consequently, ran B = ranC |A|1/2 is dense in H2.

If, in particular, ν−(A) = ν−(J2) = 0 then 0 ≤ A ≤ B∗B and Proposition 1
combined with Theorem 1 yields the factorization and range inclusion results proved
in [32, Theorem 1] with A replaced by A∗A. In particular, notice that if ran B∗ ⊂
ran |A|1/2, then already Theorem 1 alone implies that S = |A|[−1/2]B∗ is bounded
and hence B∗B = |A|1/2SS∗|A|1/2 ≤ ‖S‖2A.

Assertions in part (ii) of Corollary 1 can be found in the literature with a different
proof. In fact, the first statement in (ii) appears in [13, Proposition 2.1,Corollary 2.6]
while the second statement in (ii) is proved in [23, Corollary 1.3]. Another extension
for Douglas’ factorization result can be found from [58].

For a general treatment of isometric (not necessarily densely defined) operators
and isometric relations appearing in the proof of Proposition 1 the reader is referred
to [14], [26, Section 2], and [27].
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A slightly different viewpoint to Proposition 1 gives the following statement, which
can be viewed as an extension of a theorem by Shmul’yan, see [60, Theorem 3], on the
factorization of bicontractions on Kreı̆n spaces; for a related abstract Leech theorem,
see [34, Section 3.4].

Corollary 1 Let A ∈ [H1] be selfadjoint, let B ∈ [H1,H2], and let J2 = J ∗
2 = J−1

2 ∈
[H2] with ν−(J2) < ∞. Then:

(i)

A ≥ B∗ J2B and ν−(A) = ν−(J2)

if and only if B = C |A|1/2 for some J-bicontractive operator C ∈ [HA,H2]; in
this case C is unique.

(ii)

A = B∗ J2B and ν−(A) = ν−(J2)

if and only if B = C |A|1/2 for some J-bicontractive operator C which is also
J -isometric, i.e., JA − C∗ J2C = 0 and J2 − C JAC∗ ≥ 0; again C is unique.

Proof Observe that if C is J -bicontractive, then an application of Lemma 1 shows
that ν−(J2) = ν−(JA) = ν−(A). Now the stated equivalences can be obtained from
Proposition 1.

This section is finished with an extension of Sylvester’s law of inertia, which is
actually obtained as a consequence of Theorem 1.

Proposition 2 Let A = (Ai j )
2
i, j=1 be an arbitrary selfadjoint block operator in H =

H1 ⊕ H2, which satisfies the range inclusion (3), and let S = |A11|[−1/2]A12. Then
ν−(A) < ∞ if and only if ν−(A11) < ∞ and ν−(A22 − S∗ J S) < ∞; in this case

ν−(A) = ν−(A11) + ν−(A22 − S∗ J S).

In particular, A ≥ 0 if and only if ran A12 ⊂ ran |A11|1/2, A11 ≥ 0, and A22−S∗ J S ≥
0.

Proof By the assumption (3) S = |A11|[−1/2]A12 is an everywhere defined bounded
operator and, since A11 = |A11|1/2 J |A11|1/2 (cf. Theorem 1), the following equality
holds:

A =
(|A11|1/2 0

S∗ J I

)(

J 0
0 A22 − S∗ J S

)(|A11|1/2 J S
0 I

)

,

i.e. A = B∗EB where E stands for the diagonal operator with ν−(E) = ν−(A11) +
ν−(A22 − S∗ J S) and the triangular operator B on the right side is bounded and has
dense range in ran A11 ⊕ H2. Clearly, ν−(A) ≤ ν−(E) and it remains to prove that if
ν−(A) < ∞ then ν−(A) = ν−(E).
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To see this assume that ν−(A) < ν−(E). We claim that ran B contains an E-
negative subspace L with dimension dimL > ν−(A). Assume the converse and let
L ⊂ ran B be a maximal E-negative subspace with dimL ≤ ν−(A). Then (EL)⊥
must be E-nonnegative, since if v ⊥ EL and (Ev, v) < 0, then span {v+L}would be
a proper E-negative extension of L. Since EL is finite dimensional and ran B is dense
in ran A11 ⊕ H2, ran B has dense intersection with (ran A11 ⊕ H2) � EL, and hence
the closure of this subspace is also E-nonnegative. Consequently, ν−(E) = ν−(L), a
contradiction with the assumption ν−(E) > ν−(A). This proves the claim that ran B
contains an E-negative subspace Lwith dimL > ν−(A). However, then the subspace
L′ = {u ∈ ran A11 ⊕ H2 : Bu ∈ L} satisfies dimL′ ≥ dimL and, moreover, L′ is
A-negative: (Au, u) = (EBu, Bu) < 0, u ∈ L′, u �= 0. Thus, ν−(A) ≥ dimL, a
contradiction with dimL > ν−(A). This completes the proof.

Proposition 2 completes Theorem 1: if ran A12 ⊂ ran |A11|1/2 then A11 = J |A11|
and A12 = |A11|1/2S imply that A21|A11|[−1/2] J |A11|[−1/2]A12 = S∗ J S. Hence the
negative index of A can be calculated by using the following version of a generalized
Schur complement or a shorted operator (defined initially for a nonnegative operator
H in (1))

AH2 :=
(

0 0
0 A22 − S∗ J S

)

(17)

via the explicit formula

ν−(A) = ν−(A11) + ν−(A22 − A21|A11|[−1/2] J |A11|[−1/2]A12). (18)

The addition made in Proposition 2 concerns selfadjoint operators A22 that are not
solutions to the original completion problem for A0.

The notion of a shorted operator in infinite dimensional Hilbert spaces has been
extended to the case of not necessarily selfadjoint block operators in a paper by
Antezana et al. [6]. These so-called bilateral shorted operators introduced and studied
therein use two range inclusions, see [6, Definitions 3.5, 4.1], which in the selfadjoint
case reduce to the single condition (3) appearing in Theorems 1 and 2.

4 Lifting of operators with finite negative index

As a first application of the completion problem solved in Sect. 2 it is shown how
nicely some lifting results established in a series of papers by Arsene, Constantinescu,
and Gheondea, see [12,13,23,24], as well as in Dritschel and Rovnyak [33,34] (see
also further references appearing in these papers) on contractive operators with finite
number of negative squares can be derived from Theorem 1.

For this purpose some standard notations are introduced. Let (H1, (·, ·)1) and
(H2, (·, ·)2) be Hilbert spaces and let J1 and J2 be symmetries in H1 and H2, i.e.
Ji = J ∗

i = J−1
i , so that (Hi , (Ji ·, ·)i ), i = 1, 2, becomes a Kreı̆n space. Then asso-

ciate with T ∈ [H1,H2] the corresponding defect and signature operators
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1428 D. Baidiuk, S. Hassi

DT = |J1 − T ∗ J2T |1/2, JT = sign (J1 − T ∗ J2T ), DT = ran DT ,

where the so-called defect subspace DT can be considered as a Kreı̆n space with the
fundamental symmetry JT . Similar notations are used with T ∗:

DT ∗ = |J2 − T J1T
∗|1/2, JT ∗ = sign (J2 − T J1T

∗), DT ∗ = ran DT ∗ .

By definition JT D2
T = J1 − T ∗ J2T and JT DT = DT JT with analogous identities

for DT ∗ and JT ∗ . In addition,

(J1 − T ∗ J2T )J1T ∗ = T ∗ J2(J2 − T J1T ∗),
(J2 − T J1T ∗)J2T = T J1(J1 − T ∗ J2T ).

(19)

Recall that T ∈ [H1,H2] is said to be a J -contraction if J1 − T ∗ J2T ≥ 0, i.e.
ν−(J1 − T ∗ J2T ) = 0. If, in addition, T ∗ is a J -contraction, T is termed as a J -
bicontraction, in which case ν−(J1) = ν−(J2) by Lemma 1. In what follows it is
assumed that

κ1 := ν−(J1 − T ∗ J2T ) < ∞, κ2 := ν−(J2 − T J1T
∗) < ∞.

In this case Lemma 1 shows that

ν−(J2) = ν−(J1) + κ2 − κ1. (20)

The aim in this section is to show applicability of Theorem 1 in establishing for-
mulas for so-called liftings ˜T of T with prescribed negative indices κ̃1 and κ̃2 for the
defect subspaces, equivalently, for the associated signature operators. Given a bounded
operator T ∈ [H1,H2] the problem is to describe all operators ˜T from the extended
Kreı̆n space (H1 ⊕H′

1, J1 ⊕ J ′
1) to the extended Kreı̆n space (H2 ⊕H′

2, J2 ⊕ J ′
2) such

that

(*) P2˜T �H1 = T and ν−(˜J1 − ˜T ∗
˜J2˜T ) = κ̃1, ν−(˜J2 − ˜T ˜J1˜T

∗) = κ̃2,

with some fixed values of κ̃1, κ̃2 < ∞. Here Pi stands for the orthogonal projection
from ˜Hi = Hi ⊕H′

i onto Hi and ˜Ji = Ji ⊕ J ′
i , i = 1, 2. In addition, it is assumed that

the exit spaces are Pontryagin spaces, i.e., that

ν−(J ′
1), ν−(J ′

2) < ∞.

Following [13,23] consider first the following column extension problem:
(∗)c Give a description of all operators Tc = col

(

T C
) ∈ [H1,H2 ⊕H′

2], such that
ν−(J1 − T ∗

c
˜J2Tc) = κ̃1 (< ∞).

Since J1 − T ∗
c

˜J2Tc = J1 − T ∗ J2T − C∗ J ′
2C , then necessarily (see Sect. 3)

κ̃1 ≥ κ1 − ν−(C∗ J ′
2C) ≥ κ1 − ν−(J ′

2).
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Moreover, it is clear that κ̃2 ≥ κ2, since J2 − T J1T ∗ appears as the first diagonal
entry of the 2×2 block operator ˜J2 −Tc J1T ∗

c when decomposed w.r.t.˜Hi = Hi ⊕H′
i ,

i = 1, 2.
With the minimal value of κ̃1 all solutions to this problem will now be described by

applying Theorem 1 to an associated 2 × 2 block operator TC appearing in the proof
below; in fact the result is just a special case of Theorem 3.

Lemma 2 Let κ̃1 = ν−(J1 −T ∗
c

˜J2Tc) and assume that κ̃1 = κ1 −ν−(J ′
2)(≥ 0). Then

ranC∗ ⊂ ran DT and the formula

Tc =
(

T
K ∗DT

)

establishes a one-to-one correspondence between the set of all solutions to Problem
(∗)c and the set of all J -contractions K ∈ [H′

2,DT ].
Proof To make the argument more explicit consider the following block operator

TC :=
(

J1 − T ∗ J2T C∗
C J ′

2

)

=
(

I C∗ J ′
2

0 I

)(

J1 − T ∗
c

˜J2Tc 0
0 J ′

2

)(

I 0
J ′
2C I

)

.

Clearly ν−(TC ) = ν−(J1 − T ∗
c

˜J2Tc) + ν−(J ′
2) < ∞, which combined with κ̃1 =

κ1 − ν−(J ′
2) shows that ν−(TC ) = κ1 = ν−(J1 − T ∗ J2T ). Now, the statement is

obtained from Theorem 1 or, more directly, just by applying Theorem 3.

Remark 1 (i) The above proof,which essentiallymakes use of an associated 2×2 block
operator TC (being a special case of the block operator H in (12) behind Theorem 3),
is new even in the case of Hilbert space contractions. In particular, it shows that the
operator K in Lemma 2 coincides with the operator S that gives the minimal solution
S∗ JT S to the completion problem associated with TC ; the J -contractivity of K itself
is equivalent to the fact that TC is also a solution precisely when κ̃ = κ − ν−(J ′

2).
(ii) The existence of a solution to Problem (∗)c is proved here using only the

condition κ̃1 = κ1 − ν−(J ′
2) (≥ 0). The corresponding result in [23, Lemma 2.2] is

formulated (and formally also proved) under the additional condition κ̃2 = κ2. In the
case that ν−(J1) < ∞ the equality κ̃2 = κ2 follows automatically from the equality
κ̃1 = κ1 − ν−(J ′

2): to see this apply (20) to T and Tc, which leads to ν−(J1) + κ2 =
ν−(J1) + κ̃2, so that ν−(J1) < ∞ implies κ2 = κ̃2. Naturally, in Lemma 2 the
condition κ̃2 = κ2 follows from the condition κ̃1 = κ1−ν−(J ′

2) also in the case where
ν−(J1) = ∞; see Corollary 3 below.

Finally, it is mentioned that for a Pontryagin space operator T the result in Lemma 2
was proved in [13, Lemma 5.2].

In a dual manner we can treat the following row extension problem; again initially
considered in [13,23]:

(∗)r Give a description of all operators Tr = (

T R
) ∈ [H1 ⊕ H′

1,H2], such that
ν−(J2 − Tr ˜J1T ∗

r ) = κ̃2 (< ∞).
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Analogous to the case of column operators, J2 − Tr ˜J1T ∗
r = J2 − T J1T ∗ − RJ ′

1R
∗

gives the estimate

κ̃2 ≥ κ2 − ν−(RJ ′
1R

∗) ≥ κ2 − ν−(J ′
1).

Moreover, it is clear that κ̃1 ≥ κ1.With theminimal value of κ̃2 all solutions to Problem
(∗)r are established by applying Theorem 1 to an associated 2× 2 block operator TR .

Lemma 3 Let κ̃2 = ν−(J2 −Tr ˜J1T ∗
r ) and assume that κ̃2 = κ2 −ν−(J ′

1)(≥ 0). Then
ran R ⊂ ran DT ∗ and the formula

Tr = (

T DT ∗ B
)

establishes a one-to-one correspondence between the set of all solutions to Problem
(∗)r and the set of all J -contractions B ∈ [H′

1,DT ∗ ].
Proof To prove the statement via Theorem 1 (cf. Theorem 3) consider

TR :=
(

J2 − T J1T ∗ R
R∗ J ′

1

)

=
(

I R J ′
1

0 I

) (

J2 − Tr ˜J1T ∗
r 0

0 J ′
1

) (

I 0
J ′
1R

∗ I

)

.

Then clearly ν−(TR) = ν−(J2 − Tr ˜J1T ∗
r ) + ν−(J ′

1) and hence the assumption κ̃2 =
κ2 − ν−(J ′

1) is equivalent to ν−(TR) = κ2 = ν−(J2 − T J1T ∗). Therefore, again the
statement follows from Theorem 1 or directly from Theorem 3.

Remarks similar to those made after Lemma 2 can be done here, too. In particu-
lar, the corresponding result in [23, Lemma 2.1] is formulated under the additional
condition κ̃1 = κ1: here this equality will be a consequence from the equality
κ̃2 = κ2 − ν−(J ′

1); cf. Corollary 3 below.
To prove the main result concerning parametrization of all 2× 2 liftings in a larger

Kreı̆n space with minimal signature for the defect operators an indefinite version of
the commutation relation of the form T DT = DT ∗T is needed; these involve so-called
link operators introduced in [13, Section 4].

We will give a simple proof for the construction of link operators (see [13, Propo-
sition 4.1]) by applying Heinz inequality combined with the basic factorization result
from [32]. The first step is formulated in the next lemma, which is connected to a
result of Kreı̆n [48] concerning continuity of a bounded Banach space operator which
is symmetric w.r.t. to a continuous definite inner product; the existence of link oper-
ators was proved in [13] via this result of Kreı̆n. Here a statement, analogous to that
of Kreı̆n, is formulated in pure Hilbert space operator language by using the modulus
of the product operator; see [34, Lemma B2], where Kreı̆n’s result is presented with
a proof due to W. T. Reid.

Lemma 4 Let S ∈ [H1,H2] and let H ∈ [H2] be nonnegative. Then

HS = (HS)∗ ⇒ |HS| ≤ μH for some μ < ∞.
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Proof Since HS is selfadjoint, one obtains

(HS)2 = HSS∗H ≤ μ2H2, μ = ‖S‖ < ∞.

Now by Heinz inequality (see e.g. [17, Theorem 10.4.2]) we get

|HS| = (HSS∗H)1/2 ≤ μH.

Corollary 2 Let T ∈ [H1,H2] and let J1 and J2 be symmetries in H1 and H2 as
above. Then there exist unique operators LT ∈ [DT ,DT ∗ ] and LT ∗ ∈ [DT ∗ ,DT ]
such that

DT ∗LT = T J1DT �DT , DT LT ∗ = T ∗ J2DT ∗�DT ∗;
in fact, LT = D[−1]

T ∗ T J1DT �DT and LT ∗ = D[−1]
T T ∗ J2DT ∗�DT ∗ .

Proof Denote S = JT ∗ J2T JT J1T ∗. Then (19) implies that

D2
T ∗ S = (J2 − T J1T

∗)J2T JT J1T
∗

= T J1(J1 − T ∗ J2T )JT J1T
∗

= T J1D
2
T J1T

∗ ≥ 0,

so that D2
T ∗S is nonnegative and, in particular, selfadjoint. By Lemma 4 withμ = ‖S‖

one has

0 ≤ T J1D
2
T J1T

∗ = D2
T ∗ S ≤ μD2

T ∗ .

This last inequality is equivalent to the factorization T J1DT �DT = DT ∗LT with a
unique operator LT ∈ [DT ,DT ∗ ], see [32, Theorem 1], which by means of Moore–
Penrose generalized inverse can be rewritten as indicated.

The second formula is obtained by applying the first one to T ∗.
The following identities can be obtainedwith direct calculations; see [13, Section 4]:

L∗
T JT ∗�DT ∗ = JT LT ∗;

(JT − DT J1DT )�DT = L∗
T JT ∗LT ;

(JT ∗ − DT ∗ J2DT ∗)�DT ∗ = L∗
T ∗ JT LT ∗ .

(21)

The next corollary contains the promised identity κ̃1 = κ1 under the assumption
κ̃2 = κ2 − ν−(J ′

2) ≥ 0 in Lemma 3. Similarly κ̃1 = κ1 − ν−(J ′
1) implies κ̃2 = κ2;

the general result for the first case can be formulated as follows (and there is similar
result for the latter case).

Corollary 3 Let R be a bounded operator such that ran R ⊂ ran DT ∗ and let Tr be
the corresponding row operator and denote κ̃1 = ν−(˜J1 −T ∗

r J2Tr ). Then R = DT ∗ B
for a (unique) bounded operator B ∈ [H′

1,DT ∗ ] and
κ̃1 = κ1 + ν−(J ′

1 − B∗ JT ∗ B).

In particular, J -contractivity of B is equivalent to κ̃1 = κ1.
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Proof Recall that ran R ⊂ ran DT ∗ is equivalent to the factorization R = DT ∗ B. By
applying the commutation relations in Corollary 2 together with the identities (21)
one gets the following expression for JTr D

2
Tr
:

JTr D
2
Tr

=
(

J1 − T ∗ J2T −T ∗ J2DT ∗ B
−B∗DT ∗ J2T J ′

1 − B∗DT ∗ J2DT ∗ B

)

=
(

JT D2
T −DT LT ∗ B

−B∗L∗
T ∗ DT JBD2

B + B∗L∗
T ∗ JT LT ∗ B

)

.

(22)

Now apply Proposition 2 and calculate the Schur complement, cf. (18),

JBD
2
B + B∗L∗

T ∗ JT LT ∗ B − B∗L∗
T ∗ DT (D[−1]

T JT D
[−1]
T )DT LT ∗ B = JBD

2
B,

to see that κ̃1 = ν−(J1 − T ∗ J2T ) + ν−(J ′
1 − B∗ JT ∗ B).

By means of Lemmas 2, 3 and the link operators in Corollary 2 one can now
establish the main result concerning the lifting problem (∗).

First notice that if Problem (∗) has a solution, then by treating ˜T as a row extension
of its first column Tc and as a column extension of its first row Tr one gets from the
inequalities preceding Lemmas 2, 3 the estimates

κ̃1 ≥ κ1(Tr ) − ν−(J ′
2) ≥ κ1 − ν−(J ′

2);
κ̃2 ≥ κ2(Tc) − ν−(J ′

1) ≥ κ2 − ν−(J ′
1).

(23)

Under the minimal choice of the indices κ̃1 and κ̃2 Problem (∗) is already solvable;
all solutions are described by the following result, which was initially proved in [23,
Theorem 2.3] with the aid of [13, Theorem 5.3]. Here a different proof is presented,
again based on an application of Theorem 1.

Theorem 4 Let˜T be a bounded operator from (H1⊕H′
1, J1⊕J ′

1) to (H2⊕H′
2, J2⊕J ′

2)

such that P2˜T �H1 = T . Assume that 0 ≤ κ1 − ν−(J ′
2) = κ̃1 < ∞ and 0 ≤

κ2 − ν−(J ′
1) = κ̃2 < ∞. Then the Problem (∗) is solvable and the formula

˜T =
(

T DT ∗�1
�2DT −�2L∗

T JT ∗�1 + D�∗
2
�D�1

)

establishes a one-to-one correspondence between the set of all solutions to Problem
(∗) and the set of triplets {�1, �2, �} where �1 ∈ [H′

1,DT ∗ ] and �∗
2 ∈ [H′

2,DT ] are
J -contractions and � ∈ [D�1,D�∗

2
] is a Hilbert space contraction.

Proof Assume that there is a solution ˜T to Problem (∗) and write it in the form

˜T =
(

T R
C X

)

with the first column denoted by Tc and first row denoted by Tr , and assume that
κ̃1 = κ1 − ν−(J ′

2) and κ̃2 = κ2 − ν−(J ′
1). Then (23) shows that κ1 = κ1(Tr ) and

123



Completion, extension, factorization, and lifting . . . 1433

κ2 = κ2(Tc). Hence Lemma 3 can be applied by viewing ˜T as a row extension of Tc
to get a range inclusion and then from Corollary 3 one gets the equality κ̃1 = κ1(Tc).
Similarly applying Lemma 2 and the analog of Corollary 3 to column operator ˜T one
gets the equality κ̃2 = κ2(Tr ). Thus κ1(Tc) = κ1 − ν−(J ′

2) and κ2(Tr ) = κ2 − ν−(J ′
1).

Consequently, one can apply Lemma 2 to the first column Tc and Lemma 3 to the
first row Tr to get the stated factorizations C = �2DT and R = DT ∗�1 with unique
J -contractions �1 and �∗

2 .
To establish a formula for X we proceed by considering the block operator

H :=
(

JTr D
2
Tr

T ∗
r,2

Tr,2 J ′
2

)

,

where Tr,2 denotes the second row of ˜T . It is straightforward to derive the following
formula for the Schur complement

JTr D
2
Tr − T ∗

r,2 J
′
2Tr,2 = ˜J1 − ˜T ∗

˜J2˜T .

Thus ν−(H) = κ̃1 + ν−(J ′
2) = κ1 = ν−(JTr ) and one can apply Theorem 1 to get the

factorization T ∗
r,2 = DTr

˜K with a unique ˜K ∈ [H′
2,DTr ] satisfying ˜K ∗ JTr ˜K ≤ J ′

2,
i.e., ˜K is a J -contraction; see Theorem 3.

It follows from (22) that

JTr D
2
Tr =

(

DT 0
−�∗

1L
∗
T ∗ JT D�1

) (

JT 0
0 ID�1

) (

DT −JT LT ∗�1
0 D�1

)

=: B∗
̂J B.

Since here ν−(JTr ) = κ1 = ν−(JT ) and B is a triangular operatorwhose range is dense
inDT ⊕D�1 (the diagonal entries DT and D�1 of B have dense ranges by definition),
there is a unique Pontryagin space J -unitary operator U from DTr onto DT ⊕ D�1

such that B = UDTr ; see Proposition 1 (ii). It follows that K ∗ := (U−1)∗ ˜K is a J -
contraction from H′

2 toDT ⊕ D�1 and K B = ˜K ∗DTr = Tr,2. Now J ′
2 − K ̂J K ∗ ≥ 0

gives
0 ≤ K1K

∗
1 ≤ J ′

2 − K0 JT K
∗
0 , (24)

where K = (K0 K1) is considered as a row operator, and Tr,2 = K B reads as

�2DT = K0DT , X = −K0 JT LT ∗�1 + K1D�1 .

Since all contractions that are involved are unique, K0 = �2, J ′
2 − K0 JT K ∗

0 = D2
�∗
2
,

and (24) implies that there is a unique Hilbert space contraction � ∈ [D�1,D�∗
2
] such

that K1 = D�∗
2
�. The desired formula for ˜T is proven (cf. (21)). It is clear from the

proof that every operator ˜T of the stated form is a solution and that there is one-to-one
correspondence via the triplets {�1, �2, �} of J -contractions.
Remark 2 (i) By replacing ˜T with its adjoint ˜T ∗ it is clear that all formulas remain
the same and are obtained by changing T with T ∗ and interchanging the roles of the
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indices 1 and 2; see also (21). This connects the considerations with row and column
operators to each other.

(ii) If κ1 = 0 so that J1−T ∗ J2T ≥ 0, then the above proof becomes slightly simpler
since then JTr , JT , and J ′

2 are identity operators and ˜K is a Hilbert space contraction.
Then Theorem 4 gives all contractive liftings of a contraction in a Kreı̆n space. If in
addition κ2 = 0, then one gets all bicontractive liftings of a bicontraction in a Kreı̆n
space with Pontryagin spaces as exit spaces. In the special case that the exit spaces are
Hilbert spaces (ν−(J1) = ν−(J2) = 0 and κ1 = κ2 = 0) Theorem 4 coincides with
[33, Theorem 3.6]. In fact, the present proof can be seen as a further development of
the proof appearing in that paper; see also further references and historical remarks
given in [33,34].

5 Contractive extensions of contractions with minimal negative indices

Let H1 be a closed linear subspace of the Hilbert space H, let T11 = T ∗
11 ∈ [H1] be an

operator such that ν−(I − T 2
11) = κ < ∞. Denote

J = sign (I − T 2
11), J+ = sign (I − T11), and J− = sign (I + T11), (25)

and let κ+ = ν−(I−T11) and κ− = ν−(I+T11). It is obvious that J = J− J+ = J+ J−.
Moreover, there is an equality κ = κ− + κ+ as stated in the next lemma.

Lemma 5 Let T = T ∗ ∈ [H1] be an operator such that ν−(I − T 2) = κ < ∞ then
ν−(I − T 2) = ν−(I + T ) + ν−(I − T ).

Proof Let Et (·) be the resolution of identity of T . Then by the spectral mapping
theorem the spectral subspace corresponding to the negative spectrum of I − T 2

is given by Et ((∞;−1) ∪ (1;∞)) = Et ((−∞;−1)) ⊕ Et ((1;∞)). Consequently,
ν−(I − T 2) = dim Et ((−∞;−1)) + dim Et ((1;∞)) = ν−(I + T ) + ν−(I − T ).

The next problem concerns the existence and a description of selfadjoint operators
T such that ˜A+ = I + T and ˜A− = I − T solve the corresponding completion
problems

A0± =
(

I ± T11 ±T ∗
21±T21 ∗

)

, (26)

underminimal index conditions ν−(I +T ) = ν−(I +T11), ν−(I −T ) = ν−(I −T11),
respectively. Observe, that if I±T provides an arbitrary completion to A0± then clearly
ν−(I ±T ) ≥ ν−(I ±T11). Thus by Lemma 5 the two minimal index conditions above
are equivalent to the single condition ν−(I − T 2) = ν−(I − T 2

11).
Unlike with the case of a selfadjoint contraction T11, this problem need not have

solutions when ν−(I − T 2
11) > 0. It is clear from Theorem 1 that the conditions

ran T ∗
21 ⊂ ran |I − T11|1/2 and ran T ∗

21 ⊂ ran |I + T11|1/2 are necessary for the
existence of solutions; however alone they are not sufficient.

The next theorem gives a general solvability criterion for the completion problem
(26) and describes all solutions to this problem, when the criterion is satisfied. As in
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the definite case, there are minimal solutions A+ and A− which are connected to two
extreme selfadjoint extensions T of

T1 =
(

T11
T21

)

: H1 →
(

H1
H2

)

, (27)

nowwith finite negative index ν−(I −T 2) = ν−(I −T 2
11) > 0. The set of all solutions

T to the problem (26) will be denoted by Ext T1,κ (−1, 1).

Theorem 5 Let T1 be a symmetric operator as in (27) with T11 = T ∗
11 ∈ [H1] and

ν−(I − T 2
11) = κ < ∞, and let J = sign (I − T 2

11). Then the completion problem for
A0± in (26) has a solution I ± T for some T = T ∗ with ν−(I − T 2) = κ if and only
if the following condition is satisfied:

ν−(I − T 2
11) = ν−(I − T ∗

1 T1). (28)

If this condition is satisfied then the following facts hold:

(i) The completion problems for A0± in (26) have minimal solutions A±.
(ii) The operators Tm := A+ − I and TM := I − A− ∈ Ext T1,κ (−1, 1).
(iii) The operators Tm and TM have the block forms

Tm =
(

T11 DT11V
∗

V DT11 −I + V (I − T11)JV ∗
)

,

TM =
(

T11 DT11V
∗

V DT11 I − V (I + T11)JV ∗
)

,

(29)

where DT11 := |I − T 2
11|1/2 and V is given by V := clos (T21D

[−1]
T11

).
(iv) The operators Tm and TM are extremal extensions of T1:

T ∈ Ext T1,κ (−1, 1) iff T = T ∗ ∈ [H], Tm ≤ T ≤ TM . (30)

(v) The operators Tm and TM are connected via

(−T )m = −TM , (−T )M = −Tm . (31)

Proof It is easy to see that κ = ν−(I−T 2
11) ≤ ν−(I−T ∗

1 T1) ≤ ν−(I−T 2). Hence the
condition ν−(I−T 2) = κ implies (28). The sufficiency of this condition is established
while proving the assertions (i)–(iii) below. (i) If the condition (28) is satisfied then
ran T ∗

21 ⊂ ran |I − T 2
11|1/2 by Lemma 2. In fact, this inclusion is equivalent to the

inclusions ran T ∗
21 ⊂ ran |I ± T11|1/2, which by Theorem 1 means that both of the

completion problems, A0± in (26), are solvable. Consequently, the following operators

S− = |I + T11|[−1/2]T ∗
21, S+ = |I − T11|[−1/2]T ∗

21 (32)
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arewell defined and they provide theminimal solutions A± to the completion problems
for A0± in (26). Notice that the assumption that there is a simultaneous solution I ± T
with a single selfadjoint operator T is not yet used here.

(ii) & (iii) Proof of (i) shows that the inclusion ran T ∗
21 ⊂ ran |I − T 2

11|1/2 holds.
This last inclusion alone is equivalent to the existence of a (unique) bounded operator
V ∗ = D[−1]

T11
T ∗
21 with ker V ⊃ ker DT11 , such that T ∗

21 = DT11V
∗. The operators

Tm := A+ − I and TM := I − A− (see proof of (i)) can be now rewritten as in (29).
Observe that

S∓ = |I ± T11|[−1/2]DT11V
∗ = P∓|I ∓ T11|1/2V ∗ = |I ∓ T11|1/2P∓V ∗,

where P∓ are the orthogonal projections onto

(ker |I ± T11|1/2)⊥ = (ker |I ± T11|)⊥ = ran |I ± T11| = ran |I ± T11|1/2.

Since ker V ⊃ ker DT11 implies ran V ∗ ⊂ ran DT11 ⊂ ran |I ± T11|1/2, it follows that

S− = |I − T11|1/2V ∗, S+ = |I + T11|1/2V ∗.

Consequently, see (25),

S∗− J−S− = V |I − T11|1/2 J−|I − T11|1/2V ∗ = V (I − T11)JV
∗,

S∗+ J+S+ = V |I + T11|1/2 J+|I + T11|1/2V ∗ = V (I + T11)JV
∗,

which implies the representations for Tm and TM in (29). Clearly, Tm and TM are
selfadjoint extensions of T1, which satisfy the equalities

ν−(I + Tm) = κ−, ν−(I − TM ) = κ+.

Moreover, it follows from (29) that

TM − Tm =
(

0 0
0 2(I − V JV ∗)

)

. (33)

Now the assumption (28) will be used again. Since ν−(I − T ∗
1 T1) = ν−(I − T 2

11)

and T21 = V DT11 it follows from Lemma 2 that V ∗ ∈ [H2,DT11 ] is J -contractive:
I −V JV ∗ ≥ 0. Therefore, (33) shows that TM ≥ Tm and I +TM ≥ I +Tm and hence,
in addition to I + Tm , also I + TM is a solution to the problem A0+ and, in particular,
ν−(I+TM ) = κ− = ν−(I+Tm). Similarly, I−TM ≤ I−Tm which implies that I−Tm
is also a solution to the problem A0−, in particular, ν−(I − Tm) = κ+ = ν−(I − TM ).
Now by applying Lemma 5 we get

ν−(I − T 2
m) = ν−(I − Tm) + ν−(I + Tm) = κ+ + κ− = κ,

ν−(I − T 2
M ) = ν−(I − TM ) + ν−(I + TM ) = κ+ + κ− = κ.
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Therefore, Tm, TM ∈ Ext T1,κ (−1, 1) which in particular proves that the condition
(28) is sufficient for solvability of the completion problem (26).

(iv) Observe, that T ∈ Ext T1,κ (−1, 1) if and only if T = T ∗ ⊃ T1 and ν−(I±T ) =
κ∓. By Theorem 1 this is equivalent to

S∗− J−S− − I ≤ T22 ≤ I − S∗+ J+S+. (34)

The inequalities (34) are equivalent to (30).
(v) The relations (31) follow from (32) and (29).

For aHilbert space contraction T1 one has ν−(I−T 2
11) ≤ ν−(I−T ∗

1 T1) = 0, i.e., the
criterion (28) is automatically satisfied. In this case Theorem 5 has been proved in [39].
As Theorem 5 shows, under the minimal index condition ν−(I − T 2) = ν−(I − T 2

11),
the solution set Ext T1,κ (−1, 1) admits the same attractive description as an operator
interval determined by the two extreme extensions Tm and TM as was originally proved
by Kreı̆n in his paper [47] when describing all contractive selfadjoint extensions of
a Hilbert space contraction. In particular, Theorem 5 shows that if there is a solution
to the completion problem (26), i.e. if T1 satisfies the index condition (28), then all
selfadjoint extensions T of T1 satisfying the equality ν−(I − T 2) = ν−(I − T ∗

1 T1)
are determined by the operator inequalities Tm ≤ T ≤ TM . The original paper [47] of
M. G. Kreı̆n has never been translated: for some literature in English where many of
the original ideas of Kreı̆n have been presented we refer to the monographs [1,9,51]
and the papers [11,39].

The original proof of Kreı̆n in [47] for the description of all contractive selfadjoint
extensions of a Hilbert space contraction T1 as the operator interval in (30) was based
on the notion of shortening or shorted operator; cf. (1). To get this result Kreı̆n first
constructed one contractive selfadjoint extension T for T1 and then used it together
with the following two formulas involving shortening of I + T and I − T to the
subspace N = H � dom T1 = H2:

Tm = T − (I + T )N, TM = T + (I − T )N,

see [47, Theorem 3]. It follows from Theorem 1, see also (10), and the formulas for Tm
and TM in Theorem 5 that these descriptions of Tm and TM remain true in the present
setting: indeed, using the given block formulas one can directly check that

I + T = I + Tm + (I + T )N, I − T = I − TM + (I − T )N,

where the shortening is calculated as defined in (17).
Notice that T belongs to the solution set Ext T1,κ (−1, 1) precisely when T = T ∗ ⊃

T1 and ν−(I ± T ) = κ∓. This means that every selfadjoint extension of T1 for which
(I − T 2) = ν−(I − T ∗

1 T1) admits precisely κ− eigenvalues on the interval (−∞,−1)
and κ+ eigenvalues on the interval (1,∞); in total there are κ = κ− + κ+ eigenvalues
outside the closed interval [−1, 1]. The fact that the numbers κ∓ = ν−(I ± T ) are
constant in the solution set Ext T1,κ (−1, 1) is crucial for dealing properly with the
Cayley transforms in the next section.
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6 A generalization of M. G. Kreı̆n’s approach to the extension theory
of nonnegative operators

6.1 Some antitonicity theorems for selfadjoint relations

The notion of inertia of a selfadjoint relation in a Hilbert space is defined by means
of its associated spectral measure. In what follows the Hilbert space is assumed to be
separable.

Definition 1 Let H be a selfadjoint relation in a separableHilbert spaceH and let Et (·)
be the spectral measure of H . The inertia of H is defined as the ordered quadruplet
i(H) = {i+(H), i−(H), i0(H), i∞(H)}, where

i+(H) = dim ran Et ((0,∞)), i−(H) = dim ran Et ((−∞, 0)),

i0(H) = dim ker H, i∞(H) = dimmul H.

In particular, for a selfadjoint relation H in C
n , the quadruplet i(H) consists of the

numbers of positive, negative, zero, and infinite eigenvalues of H ; cf. [15]. Hence, if
H is a selfadjoint matrix in Cn , then i∞(H) = 0 and the remaining numbers make up
the usual inertia of H .

The following theorem characterizes the validity of the implication

H1 ≤ H2 ⇒ H−1
2 ≤ H−1

1

for a pair of bounded selfadjoint operators H1 and H2 having bounded inverses; in
the infinite dimensional case it has been proved independently in [30,40,61]; cf. also
[41]. Some extensions of this result, where the condition min{i+2 , i−1 } < ∞ is relaxed,
are also contained in [40,41,61].

Theorem 6 Let H1 and H2 be bounded and boundedly invertible selfadjoint operators
in a separable Hilbert space H. Let i(Hj ) = {i+j , i−j , i0j , i

∞
j } be the inertia of Hj ,

j = 1, 2, and assume that min{i+2 , i−1 } < ∞ and that H1 ≤ H2. Then

H−1
2 ≤ H−1

1 if and only if i(H1) = i(H2).

Very recently two extensions of Theorem 6 have been established in [15] for a gen-
eral pair of selfadjoint operators and relations without any invertibility assumptions.
For the present purposes we need the second main antitonicity theorem from [15],
which reads as follows.

Theorem 7 Let H1 and H2 be selfadjoint relations in a separable Hilbert space H
which are semibounded from below. Let i(Hj ) = {i+j , i−j , i0j , i

∞
j } be the inertia of Hj ,

j = 1, 2, and assume that i−1 < ∞ and that H1 ≤ H2. Then

H−1
2 ≤ H−1

1 if and only if i−1 = i−2 .
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The ordering appearing in Theorem 7 is defined via

H1 ≤ H2 ⇔ 0 ≤ (H2 − aI )−1 ≤ (H1 − aI )−1,

where a < min{μ(H1), μ(H2)} is fixed and μ(Hi ) ∈ R stands for the lower bound
of Hi , i = 1, 2. Notice that the conditions H1 ≤ H2 and i−1 < ∞ imply i−2 < ∞;
in particular these conditions already imply that the inverses H−1

1 and H−1
2 are also

semibounded from below. For further facts on ordering of semibounded selfadjoint
operators and relations the reader is referred to [15,42].

6.2 Cayley transforms

Define the linear fractional transformation C, taking a linear relation A into a linear
relation C(A), by

C(A) = { { f + f ′, f − f ′} : ̂f = { f, f ′} ∈ A } = −I + 2(I + A)−1. (35)

Clearly, Cmaps the (closed) linear relations one-to-one onto themselves, C2 = I , and

C(A)−1 = C(−A), (36)

for every linear relation A. Moreover,

dom C(A) = ran (I + A), ran C(A) = ran (I − A),

ker (C(A) − I ) = ker A, ker (C(A) + I ) = mul A.

In addition, C preserves closures, adjoints, componentwise sums, orthogonal sums,
intersections, and inclusions. The relation C(A) is symmetric if and only if A is sym-
metric. It follows from (35) and

‖ f + f ′‖2 − ‖ f − f ′‖2 = 4Re ( f ′, f ) (37)

that C gives a one-to-one correspondence between nonnegative (selfadjoint) linear
relations and symmetric (respectively, selfadjoint) contractions. Observe the following
mapping properties of C on the extended real line R ∪ {±∞}:

C([0, 1]) = [0, 1]; C([−1, 0]) = [1,+∞];
C([1,+∞]) = [−1, 0]; C([−∞,−1]) = [−∞,−1]. (38)

If H is a selfadjoint relation then

i−(I + H) = i−(C(H) + I ), i−(I − H) = i−(C(H)−1 + I ),
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and hence

σ(H) ∩ (−∞,−1) = σ(C(H)) ∩ (−∞,−1),

σ (H) ∩ (1,+∞) = σ(C(H)−1) ∩ (−∞,−1) = σ(C(H)) ∩ (−1, 0); (39)

which can also be seen from (38).

6.3 M. G. Kreı̆n’s approach to the extension theory with a minimal negative
index

InM.G.Kreı̆n’s approach to the extension theory of nonnegative operators the idea is to
make a connection to the selfadjoint contractive extensions of a hermitian contraction
T via the Cayley transform in (35). The extension of this approach to the present
indefinite situation is based on the fact that the Cayley transform still reverses the
orderingof selfadjoint extensions due to the antitonicity result formulated inTheorem7
and the fact that in Theorem 5 T ∈ Ext T1,κ (−1, 1) if and only if T = T ∗ ⊃ T1 and
ν−(I ± T ) = κ∓.

A semibounded symmetric relation A is said to be quasi-nonnegative if the associ-
ated form a( f, f ) := ( f ′, f ), { f, f ′} ∈ A, has a finite number of negative squares, i.e.
every A-negative subspace L ⊂ dom A is finite dimensional. If the maximal dimen-
sion of A-negative subspaces is finite and equal to κ ∈ Z+, then A is said to be
κ-nonnegative; the more precise notations ν−(a), ν−(A) are used to indicate the max-
imal number of negative squares of the form a and the relation A, respectively; here
ν−(a) = ν−(A). A selfadjoint extension ˜A of A is said to be a κ-nonnegative extension
of A if ν−(˜A) = κ . The set of all such extension will be denoted by Ext A,κ (0,∞).

If A is a closed symmetric relation in the Hilbert space H with κ−(A) < ∞, then
the subspace H1 := ran (I + A) is closed, since the Cayley transform T1 = C(A) is a
closed bounded symmetric operator inHwith dom T1 = H1. Let P1 be the orthogonal
projection onto H1 and let P2 = I − P1. Then the form

a1( f, f ) := (P1 f
′, f ), { f, f ′} ∈ A, (40)

is symmetric and it has a finite number of negative squares.

Lemma 6 Let A be a closed symmetric relation in H with κ−(A) < ∞ and let
T1 = C(A). Then the form a1 is given by

a1( f, f ) = a( f, f ) + ‖P2 f ‖2 (41)

with ν−(a1) ≤ ν−(A). Moreover,

4a1( f, f ) = ‖g‖2 − ‖T11g‖2, 4a( f, f ) = ‖g‖2 − ‖T1g‖2,

where { f, f ′} ∈ A, g = f + f ′, and T11 = P1T1. In addition, T21 = P2T1 satisfies
‖T21g‖2 = ‖P2 f ‖ = −(P2 f, f ′).
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Proof The formula (37) shows that if T1 = C(A) and { f, f ′} ∈ A, then

‖g‖2 − ‖T1g‖2 = 4( f ′, f ) = 4a( f, f ), g = f + f ′ ∈ dom T1 = H1.

Moreover, T21g = P2( f − f ′) = 2P2 f = −2P2 f ′ gives (P2 f ′, f ) = −‖P2 f ‖2
and

‖T21g‖2 = −4(P2 f
′, P2 f ) = −4(P2 f

′, f ).

In particular, (41) follows from

a( f, f ) = (P1 f
′, f ) + (P2 f

′, f ) = a1( f, f ) − ‖P2 f ‖2.

Finally, (41) combined with ‖T21g‖2 = 4‖P2 f ‖2 leads to

4a1( f, f ) = ‖g‖2 − ‖T1g‖2 + ‖T21g‖2 = ‖g‖2 − ‖T11g‖2.

The main result in this section concerns the existence and a description of all
selfadjoint extensions ˜A of a symmetric relation A for which ν−(˜A) < ∞ attains the
minimal value ν−(a1). A criterion for the existence of such a selfadjoint extension
is established, in which case all such extensions are described in a manner that is
familiar from the case of nonnegative operators. To formulate the result assume that
the selfadjoint quasi-contractive extensions Tm and TM of T1 as in Theorem 5 exist,
and denote the corresponding selfadjoint relations AF and AK by

AF = X (Tm) = −I + 2(I + Tm)−1, AK = X (TM ) = −I + 2(I + TM )−1. (42)

Theorem 8 Let A be a closed symmetric relation in H with ν−(A) < ∞ and denote
κ = ν−(a1) (≤ ν−(A)), where a1 is given by (40). Then Ext A,κ (0,∞) is nonempty if
and only if ν−(A) = κ . In this case AF and AK are well defined and they belong to
Ext A,κ (0,∞). Moreover, the formula

˜A = −I + 2(I + T )−1 (43)

gives a bijective correspondence between the quasi-contractive selfadjoint extensions
T ∈ Ext T1,κ (−1, 1) of T1 and the selfadjoint extensions ˜A = ˜A∗ ∈ Ext A,κ (0,∞) of
A. Furthermore, ˜A = ˜A∗ ∈ Ext A,κ (0,∞) precisely when

AK ≤ ˜A ≤ AF , (44)

or equivalently, when A−1
F ≤ ˜A−1 ≤ A−1

K , or

(AF + I )−1 ≤ (˜A + I )−1 ≤ (AK + I )−1. (45)
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The set Ext A−1,κ (0,∞) is also nonempty and ˜A ∈ Ext A,κ (0,∞) if and only if ˜A−1 ∈
Ext A−1,κ (0,∞). The extreme selfadjoint extensions AF and AK of A are connected
to those of A−1 via

(A−1)F = (AK )−1, (A−1)K = (AF )−1. (46)

Proof Since ν−(A) < ∞, the Cayley transform T1 = C(A) defines a bounded sym-
metric operator in H with H1 = dom T1 = ran (I + A). It follows from Lemma 6
that

ν−(A) = ν−(a) = ν−(I − T ∗
1 T1), ν−(a1) = ν−(I − T 2

11),

and therefore the condition ν−(A) = κ is equivalent to solvability criterion (28) in
Theorem 5. Moreover, ˜A is a selfadjoint extension of A if and only if T = C(˜A)

is selfadjoint extension of T1 and by Lemma 6 the equality ν−(˜A) = ν−(I − T 2)

holds. Therefore, it follows from Theorem 5 that the set Ext A,κ (0,∞) is nonempty
if and only if ν−(A) = κ and in this case the formula (43) establishes a one-to-one
correspondence between the sets Ext A,κ (0,∞) and Ext T1,κ (−1, 1).

Next the characterizations (44) and (45) for the set Ext A,κ (0,∞) are established.
Let ˜A ∈ Ext A,κ (0,∞) and let T = C(˜A). According to Theorem 7 T = C(˜A) ∈
Ext T1,κ (−1, 1) if and only if T satisfies the inequalities Tm ≤ T ≤ TM . It is clear
from the formulas (42) and (43) that the inequalities I + Tm ≤ I + T ≤ I + TM are
equivalent to the inequalities (45).

On the other hand, ν−(I − T 2
11) = ν−(I − T 2) and hence the indices κ+ = ν−(I −

T11) = ν−(I − T ) and κ− = ν−(I + T11) = ν−(I + T ) do not depend on T = C(˜A);
cf. (25). The mapping properties (39) of the Cayley transform imply that the number
of eigenvalues of ˜A on the open intervals (−∞,−1) and (−1, 0) are also constant and
equal to κ− and κ+, respectively. In particular, since κ− = ν−(I + T ) is constant we
can apply Theorem 6 to conclude that the inequalities I + Tm ≤ I + T ≤ I + TM are
equivalent to

(I + TM )−1 ≤ (I + T )−1 ≤ (I + Tm)−1,

which due to the formulas (42) and (43) can be rewritten as AF + I ≤ ˜A+ I ≤ AK + I ,
or as AF ≤ ˜A ≤ AK . This proves (44). Since ν−(˜A) = κ = κ− + κ+ is also constant,
an application of Theorem 7 shows that the inequalities (44) are also equivalent to
A−1
F ≤ ˜A−1 ≤ A−1

K .
As to the inverse A−1, notice that ν−(A−1) = ν−(A). Moreover, since A−1 =

C(−T1) it is clear that ran (I + A−1) = dom T1 and thus the form associated to A−1

via (40) satisfies a(−1)
1 ( f ′, f ′) = (P1 f, f ′) = (P1 f ′, f ) = a1( f, f ). In particular,

ν−(a(−1)
1 ) = ν−(a1). Moreover, it is clear that ν−(A−1) = ν−(A). Consequently,

the equality ν−(A) = ν−(a1) is equivalent to the equality ν−(A(−1)) = ν−(a(−1)
1 ).

Furthermore, it is clear that ˜A ∈ Ext A,κ (0,∞) if and only if ˜A−1 ∈ Ext A−1,κ (0,∞).
Finally, the relations (46) are obtained from (31), (36), and (42).
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It follows from Theorem 8 that the extensions ˜A ∈ Ext A,κ (0,∞) admit a uniform
lower bound μ ≤ μ(˜A) (μ ≤ 0). This leads to the following inequalities for the
resolvents.

Corollary 4 With the assumptions as in Theorem 8 let ν−(a1) = ν−(A) < ∞ and
μ ≤ 0 be a uniform lower bound for the extensions ˜A ∈ Ext A,κ (0,∞). Then the
resolvents of these extensions satisfy the inequalities

(AF + a)−1 ≤ (˜A + a)−1 ≤ (AK + a)−1, a > −μ. (47)

Proof Let T = C(˜A) ∈ Ext T1,κ (−1, 1) be the Cayley transform of the extension
˜A ∈ Ext A,κ (0,∞) and rewrite the resolvent of ˜A in the form

(˜A + a)−1 = 1

a − 1
I − 2

(a − 1)2

(

T + a + 1

a − 1

)−1

.

Since −a < μ ≤ μ(˜A), T admits precisely κ− eigenvalues below the number
−(a + 1)/(a − 1) < −1. Therefore the inequalities Tm ≤ T ≤ TM in Theorem 5
or, equivalently, the inequalities

Tm + a + 1

a − 1
≤ T + a + 1

a − 1
≤ TM + a + 1

a − 1

imply the inequalities (47) by Theorem 6.

The antitonicity Theorems 6, 7 can be also used as follows. If the inequalities (44)
and A−1

F ≤ ˜A−1 ≤ A−1
K hold, then κ = ν−(˜A) = ν−(AK ) = ν−(AF ) is constant.

If, in addition, (45) is satisfied, then it follows from (44) that κ− = ν−(I + ˜A) =
ν−(I +AK ) = ν−(I +AF ) is constant, so that also κ+ = ν−(I − ˜A) = ν−(I −AK ) =
ν−(I − AF ) is constant. However, in this case the equality ν−(a1) = ν−(A) need not
hold and there can also be selfadjoint extensions ˜A of A with

ν−(˜A) = ν−(AK ) = ν−(AF ) > ν−(A) ≥ ν−(a1),

which neither satisfy the inequalities (44) and (45), nor the equalities ν−(I + ˜A) = κ−
and ν−(I − ˜A) = κ+. It is emphasized that the result in Theorem 8 characterizes
all selfadjoint extensions in Ext A,κ (0,∞) under the minimal index condition κ =
ν−(a1) = ν−(A).

In the case that A is nonnegative one has automatically κ = ν−(a1) = ν−(A) = 0.
Therefore, Theorem 8 is a precise generalization of the well-known characterization
of the class Ext A(0,∞) (with κ = 0) due to M. G. Kreı̆n [47] to the case of a finite
negative (minimal) index κ > 0. The selfadjoint extensions AF and AK of A are called
the Friedrichs (hard) and the Kreı̆n–von Neumann (soft) extension, respectively; these
notions go back to [36,56]. The extremal properties (47) of the Friedrichs and Kreı̆n–
von Neumann extensions were discovered by Kreı̆n [47] in the case when A is a
densely defined nonnegative operator. The case when A ≥ 0 is not densely defined
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was considered by Ando and Nishio [5], and Coddington and de Snoo [22]. In the
nonnegative case the formulas (46) can be found in [5,22]. Notice that in view of
(43) and (44) the minimal solution of the completion problem for a nonnegative block
operator A0 can be also interpreted by means of the Kreı̆n–von Neumann extension
of the first column col (A11, A21) in (2); cf. [7, Section 4], [39, Section 4.9].

6.4 Kreı̆n’s uniqueness criterion

To establish a generalization of Kreı̆n’s uniqueness criterion for the equality AF = AK

in Theorem 8, i.e., for Ext A,κ (0,∞) to consists only of one extension, we first derive
some general facts on J -contractions by means of their commutation properties.

Let H1 and H2 be Hilbert spaces with symmetries J1 and J2, respectively, and let
T ∈ [H1,H2] be a J -contraction, i.e., J1 − T ∗ J2T ≥ 0. Let DT and DT ∗ be the
corresponding defect operators and let JT and JT ∗ be their signature operators as
defined in Sect. 4. The first lemma connects the kernels of the defect operators DT and
DT ∗ .

Lemma 7 Let T ∈ [H1,H2], let Ji be a symmetry in Hi , i = 1, 2, and let DT and
DT ∗ be the defect operators of T and T ∗, respectively. Then

J2T (ker DT ) = ker DT ∗ , T ∗ J2(ker DT ∗) = ker DT . (48)

In particular,

ker DT = {0} if and only if ker DT ∗ = {0}.

Proof It suffices to show the first identity in (48). If ϕ ∈ ker DT = ker JT D2
T , then

the second identity in (19) implies that J2Tϕ ∈ ker JT ∗ D2
T ∗ = ker DT ∗ . Hence,

J2T (ker DT ) ⊂ ker DT ∗ . Conversely, let ϕ ∈ ker DT ∗ . Then 0 = JT ∗ D2
T ∗ϕ or,

equivalently, ϕ = J2T J1T ∗ϕ, and here J1T ∗ϕ ∈ ker DT by the first identity in (19).
This proves the reverse inclusion.

Lemma 8 Let the notations be as in Lemma 7. Then

ran T ∩ ran DT ∗ = ran T J1DT = ran DT ∗LT ,

where LT is the link operator defined in Corollary 2.

Proof By the commutation formulas in Corollary 2 we have ran T J1DT =
ran DT ∗LT ⊂ ran T ∩ ran DT ∗ . Hence, it suffices to prove the inclusion

ran T ∩ ran DT ∗ ⊂ ran T J1DT .

Suppose that ϕ ∈ ran T ∩ ran DT ∗ . Then Corollary 2 shows that T ∗ J2ϕ = DT f for
some f ∈ DT , while the second identity in (19) implies that

(J2 − T J1T
∗)J2ϕ = T J1DT g,
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for some g ∈ DT . Therefore,

ϕ = (J2 − T J1T
∗)J2ϕ + T J1T

∗ J2ϕ = T J1DT g + T J1DT f = T J1DT (g + f )

and this completes the proof.

We can now characterize J -isometric operators T ∈ [H1,H2] as follows.
Proposition 3 With the notations as in Lemma 7 the following statements are equiv-
alent:

(i) T is J -isometric, i.e., T ∗ J2T = J1;
(ii) ker T = {0} and ran T ∩ ran DT ∗ = {0};
(iii) for some, and equivalently for every, subspace L with ran J2T ⊂ L one has

sup
f ∈L

|( f, Tϕ)|
‖DT ∗ f ‖ = ∞ for every ϕ ∈ H1\{0}, (49)

i.e., there is no constant 0 ≤ C < ∞ satisfying |( f, Tϕ)| ≤ C‖DT ∗ f ‖ for every
f ∈ L, if ϕ �= 0.

Proof (i) ⇒ (iii) Let L be an arbitrary subspace with ran J2T ⊂ L. Assume that the
supremum in (49) is finite for some ϕ = J1ψ ∈ H1. Then there exists 0 ≤ C < ∞,
such that

|( f, T J1ψ)| ≤ C‖DT ∗ f ‖ for every f ∈ L.

Since ran J2T ⊂ L and T is J -isometric, also the following inequality holds:

‖ψ‖2 = (J1T
∗ J2Tψ,ψ) ≤ C‖DT ∗ J2Tψ‖. (50)

By taking adjoints (and zero extension for LT ∗) in the second identity in Corollary 2 it
is seen that DT ∗ J2Tψ = L∗

T ∗ DTψ = 0, since T is J -isometric. Hence (50) implies
ϕ = J1ψ = 0. Therefore (49) holds for every ϕ �= 0.

(iii) ⇒ (ii) Assume that (49) is satisfied with some subspace L. If (ii) does not
hold, then either ker T �= {0}, in which case (49) does not hold for 0 �= ϕ ∈ ker T , or
ran T ∩ ran DT ∗ �= {0}. However, then with 0 �= Tϕ = DT ∗h the supremum in (49)
is finite even if f varies over the whole space H2. Thus, if (ii) does not hold then (49)
fails to be true.

(ii)⇒ (i) Let ran T ∩ ran DT ∗ = {0}. Then by Lemma 8 one has T J1DT = 0 and it
follows from ker T = {0} that DT = 0, i.e., T is isometric. This completes the proof.

After these preparations we are ready to prove the analog of Kreı̆n’s uniqueness
criterion for the equality Tm = TM in the case of quasi-contractions appearing in
Theorem 5.
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Theorem 9 Let the Hilbert space H be decomposed as H = H1 ⊕ H2 and let T1 ∈
[H1,H] be a symmetric quasi-contraction satisfying the condition (28) in Theorem 5.
Then Tm = TM if and only if

sup
f ∈H1

|(T1 f, ϕ)|2
(|I − T ∗

1 T1| f, f )
= ∞ for every ϕ ∈ H2\{0}. (51)

Proof Let J = sign (I − T 2
11). According to Theorem 5 there is V ∈ [DT11 ,H2], such

that T21 = V DT11 ; moreover, V ∗ is a J -contraction, i.e., I −V JV ∗ ≥ 0. This implies
that

(T1 f, ϕ) = (T21 f, ϕ) = (DT11 f, V
∗ϕ), (52)

and a direct calculation shows that

I−T ∗
1 T1 = I−T 2

11−T ∗
21T21 = J D2

T11−DT11V
∗V DT11 = DT11DV JV DV DT11 . (53)

By construction DV ∈ [DT11] and therefore ran DV DT11 is dense in DV = ran DV .
Furthermore, since V ∗ is J -contractive it follows from Lemma 1 that ν−(JV ) =
ν−(J ) = ν−(I − T 2

11) and, therefore, the assumption (28) shows that ν−(JV ) =
ν−(I − T ∗

1 T1). Now according to Proposition 1 (ii) if follows from (53) that there is
a unique J -unitary operator C ∈ [DT1,DV ] such that DV DT11 = CDT1 .

In view of (33) Tm = TM if and only if V ∗ is J -isometric. Since ran JV ∗ ⊂
ran DT11 , it follows from (i) and (iii) in Proposition 3 that T := V ∗ satisfies the
condition (49) with L = ran DT11 .

On the other hand, it follows from (53) and J -unitarity of C ∈ [DT1,DV ] that

‖DV DT11‖ ≤ ‖C‖ ‖DT1‖, ‖DT1‖ ≤ ‖C−1‖ ‖DV DT11‖.

By combining this equivalence between the norms of ‖DT1‖ and ‖DV DT11‖ with the
equality (52) one concludes that V ∗ satisfies the condition (49) precisely when T1
satisfies the condition (51).

Remark 3 In the case of a hermitian contraction acting in a Hilbert space the criterion
in Theorem 9 was proved by Kreı̆n [47].

As to the geometric interpretation of the condition in Theorem 9, observe that if
the supremum (51) is finite for some ϕ, then T ∗

21ϕ ∈ ran DT1 (see e.g. [38, Corol-
lary 2]) and as the proof shows DT1 = DT11DVC−∗, which gives the equation
DT11V

∗ϕ = DT11DVC−∗v for some v. Consequently, V ∗ϕ = DVC−∗v and hence
again an application of Proposition 3 to V ∗, now using items (i) and (ii), shows that
(51) is equivalent to V ∗ being J -isometric. Here (see (33))

TM − Tm =
(

0 0
0 2(I − V JV ∗)

)

.

Recall that the minimal and maximal extension Tm and TM of T1 are determined
via the minimal solutions A+ = I + Tm = S∗− J−S− and A− = I − TM = S∗+ J+S+
to the completion problems (26), where
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S− = |I + T11|[−1/2]T ∗
21, S+ = |I − T11|[−1/2]T ∗

21.

Here Qm := S∗− J−S− = V (I − T11)JV ∗ and QM := S∗+ J+S+ = V (I + T11)JV ∗
appear when calculating the generalized Schur complements of the block operators
A+ and A− using proper range inclusions; see Proposition 2 and (17). These two
operators can be expressed either by limit values or by integrals as follows:

Qm = T21(I + T11)
(−1)T ∗

21 := lim
ε↑1 T21(I + εT11)

−1T ∗
21 =

∫ ‖T11‖

−‖T11‖
T21dEt T ∗

21

1 + t
,

QM = T21(I − T11)
(−1)T ∗

21 := lim
ε↑1 T21(I − εT11)

−1T ∗
21 =

∫ ‖T11‖

−‖T11‖
T21dEt T ∗

21

1 − t
,

where ε is sufficiently close to 1 (to guarantee proper invertibility of indicated inverses)
and Et stands for the spectral family of T11.With these notations the equality Tm = TM
can be also rewritten in the form Qm − I = I − QM , i.e. 2I = Qm + QM = 2V JV ∗
or, equivalently,

∫ ‖T11‖

−‖T11‖
T21dEt T ∗

21

1 − t2
= I. (54)

In the special case of finite defect numbers (dim (dom T1)⊥ < ∞) the condition (54)
appears in Langer and Textorius [53, Theorem2.8]. Notice, that using the factorization
T21 = V DT11 and the formula I − T 2

11 = J DT 2
11
the condition (54) can immediately

be rewritten in the form V JV ∗ = I .

The criterion in Theorem 9 can be translated to the situation of Theorem 8 via
Cayley transform to get the analog of Kreı̆n’s uniqueness criterion for the equality
AF = AK .

Corollary 5 Let A be a closed symmetric relation in H satisfying the condition
ν−(A) = ν−(a1) < ∞ in Theorem 8. Then the equality AF = AK holds if and
only if the following condition is fulfilled:

sup
g∈H1

|((A + I )−1g, ϕ)|2
(|̂A|g, g) = ∞ for every ϕ ∈ ker (A∗ + I )\{0}, (55)

where ̂A = (I + A)−∗A(I + A)−1 is a bounded selfadjoint operator in H1 = ran
(A + I ).

Proof Let T1 = C(A) so that { f, f ′} ∈ A if and only if { f + f ′, 2 f } ∈ T1 + I ; see
(35). Then with g = f + f ′ ∈ dom T1 = H1 and ϕ ∈ H2 = (dom T1)⊥ one has

(T1g, ϕ) = ((T1 + I )g, ϕ) = 2((A + I )−1g, ϕ).
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Let As = Ps A be the operator part of A; here Ps stands for the orthogonal projection
ontomul A = (dom A∗)⊥ = ker (T1+ I ). Then the form a( f, f ) = ( f ′, f ) associated
with A can be rewritten as a( f, f ) = (As f, f ), f ∈ dom A, and thus

((I − T ∗
1 T1)g, g) = 4( f ′, f ) = 4(As(I + A)−1g, (I + A)−1g)),

where 2(I + A)−1 = T1 + I is a bounded operator from H1 into H. Then clearly
̂A = (I + A)−∗As(I + A)−1 is a bounded selfadjoint operator in H1 and, moreover,
ν−(̂A) = ν−(a) = ν−(I − T ∗

1 T1); see Lemma 6. Thus, it follows from Proposition
1 that there is a J -unitary operator C from ran ̂A into DT1 such that DT1 = C |̂A|1/2.
As in the proof of Theorem 8 this implies the equivalence of the conditions (51) and
(55).

Observe that if A is nonnegative then with { f, f ′} ∈ A and g = f + f ′ ∈ H1,

((A + I )−1g, ϕ) = ( f, ϕ), (As(I + A)−1g, (I + A)−1g)) = (As f, f ),

and, therefore, in this case the condition (55) can be rewritten as

sup
{ f, f ′}∈A

|( f, ϕ)|2
( f ′, f )

= ∞ for every ϕ ∈ ker (A∗ + I )\{0},

the criterion which for a densely defined operator A was obtained in [47] and for a
nonnegative relation A can be found in [38,39].
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