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Abstract Quantum semitoric systems form a large class of quantum Hamiltonian
integrable systems with circular symmetry which has received great attention in the
past decade. They include systems of high interest to physicists and mathematicians
such as the Jaynes–Cummings model (1963), which describes a two-level atom inter-
acting with a quantized mode of an optical cavity, and more generally the so-called
systems of Jaynes–Cummings type. In this paper we consider the joint spectrum of
a pair of commuting semiclassical operators forming a quantum integrable system of
Jaynes–Cummings type. We prove, assuming the Bohr–Sommerfeld rules hold, that
if the joint spectrum of two of these systems coincide up to O(h̄2), then the systems
are isomorphic.
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1 Introduction

A natural question in semiclassical analysis is whether the knowledge of the joint
spectrum of a quantum integrable system allows to determine the classical dynam-
ics of the underlying integrable system. Pursuing this question in such generality has
been made possible thanks to the development of semiclassical analysis with microlo-
cal techniques (see for instance the recent books by Dimassi and Sjöstrand [17],
Guillemin and Sternberg [23], and Zworski [42] and the references therein) which
nowadays permits a constant interaction between symplectic geometry and spectral
theory. In particular, these techniques led to the resolution of the inverse spectral ques-
tion in a number of cases; for instance: (i) compact toric integrable systems, in the
context of Berezin and Toeplitz quantization [11]; (ii) semiglobal inverse problem near
the so called “focus–focus” singularities of 2D integrable systems, in the context of
h̄-pseudodifferential quantization [33]; (iii) inverse theory for the Laplacian on sur-
faces of revolution [40]; (iv) 1-dimensional pseudodifferential operators with Morse
symbol [39]. The flexibility of microlocal analysis makes us hope that more general
integrable systems will be treated in the future. An interesting step is to understand
what happens for semitoric systems on 4-dimensional phase spaces [31], which form
an important extension of toric systems.

Definition 1.1 A C∞ classical integrable system F := (J, H) : M → R
2 on a

connnected symplectic 4-dimensional manifold (M, ω) is semitoric if:

(H.i) J is the momentum map of an effective Hamiltonian circle action.
(H.ii) The singularities of F are non-degenerate with no hyperbolic component.
(H.iii) J is a proper map (i.e., the preimages of compact sets are compact).

A quantum semitoric integrable system (P, Q) is given by two semiclassical com-
muting self-adjoint operators whose principal symbols form a classical semitoric
integrable system. The notion of semiclassical operators that we use is defined in
Sect. 2.4; it includes standard semiclassical pseudodifferential operators, andBerezin–
Toeplitz operators.

Hypothesis (H.ii) means that if m ∈ M is a critical point of F then there is a 2 by 2
matrix B such that the following happens: if we write F̃ = B ◦ F , then there are local
symplectic coordinates near m in which:

(1) F̃(x, y, ξ, η) = (η + O(η2), x2 + ξ2 + O((x, ξ)3))

(2) dm F̃ = 0 and d2m F̃(x, y, ξ, η) = (x2 + ξ2, y2 + η2)

(3) dm F̃ = 0 and d2m F̃(x, y, ξ, η) = (xξ + yη, xη − yξ)

In case (1) the point m is called a transversally elliptic singularity (or codimension
1 elliptic singularity); in case (2) m is an elliptic-elliptic singularity (often the termi-
nology elliptic singularity is used to refer to either of them); in case (3) m is called a
focus–focus singularity.

When (M, ω) is four-dimensional, toric systems form a particular class of semitoric
systems forwhich F is themomentummapof aHamiltonianT2-action.The symplectic
classification of toric systems was done by Delzant [16], and the quantum spectral
theory in the case of Berezin–Toeplitz quantization was carried out in [11]. A simple
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corollary of this spectral theory is that the image F(M), which is the so-called Delzant
polytope, can be recovered from the joint spectrum; in view of the Delzant theorem,
this implies that the joint spectrum completely determines the triple (M, ω, F) up to
toric isomorphism.

The main difference with the toric case is that focus–focus singularities can appear
in a semitoric system, making the system more difficult to describe. For instance, if
there is at least one focus–focus singularity, the image of the moment map is no longer
a convex polygon. Moreover, new symplectic invariants appear; according to [30,31],
a semitoric system is determined up to isomorphisms1 by five symplectic invariants:

(1) the number of focus–focus singular values of the system;
(2) a Taylor series

∑
i, j∈N ai j Xi Y j for each focus–focus singularity ([30,37]);

(3) a height invariant h > 0 measuring the volume of certain reduced spaces at each
focus–focus singularity;

(4) a polygonal invariant (in fact, a family of polygons) obtained by unwinding the
singular affine structure of the system;

(5) an index associated with each focus–focus singularity, called the twisting index.

The polygonal invariant is described in more details in Theorem 4.2 and the subse-
quent paragraph; it is the image of F(M) by some homeomorphism (let us emphasize
again that in fact, there is a family of such homeomorphisms, giving rise to a family
of polygons). Given one polygon � = �(F(M)) in this family, the height invariant
associatedwith a focus–focus value c ∈ F(M) is simply the height of the point�(c) in
�. Other invariants are more involved: the Taylor series invariant encodes the behav-
iour of the periods of the integrable system near the singularity, while the twisting
index is an integer coming from the choice of a privileged toric momentum map near
the singularity. However, the true twisting index is rather the equivalence class of the
family of twisting indices associated with each singularity for the equivalence relation
given by addition of a common integer. Hence this invariant is not relevant for sys-
tems displaying a single focus–focus singularity. In the case of the Jaynes–Cummings
system, Figure 4 in the article [30] can help visualize invariants (1), (2), (3), (4).

Therefore, if one is able to recover these five invariants from the semiclassical
joint spectrum of a quantum integrable system quantizing (J, H), then in effect one
can recover the triple (M, ω, F) up to the appropriate notion of isomorphism. From
[33], the invariant (2) associated with a critical singularity of focus–focus type can be
recovered from the joint spectrum, provided that one knows the corresponding critical
value. The goal of this paper is to extend this result, namely to show that one can detect
in the joint spectrum the invariants (1) to (4). Let us be more precise and state our
main result. We will say that a semitoric integrable system F = (J, H) is simple if it
satisfies the following: if m is a focus–focus critical point for F , then m is the unique
critical point of the level set J−1(J (m)). Our main theorem is the following.

Theorem A Let (P, Q) be a quantum simple semitoric system on M for which the
Bohr–Sommerfeld rules hold. Then from the knowledge of the semiclassical joint
spectrum JointSpec(P, Q) +O(h̄2), one can recover the four following invariants of
the associated classical semitoric system:

1 The notion of isomorphism for semitoric systems is recalled in Definition 2.1.
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(1) the number m f of focus–focus values,
(2) the Taylor series associated with each focus–focus value,
(3) the height invariant associated with each focus–focus value,
(4) the polygonal invariant of the system.

Of course, Theorem A is not entirely satisfactory if one has in mind the problem
of completely recovering the classical system from the joint spectrum of its quantum
counterpart. However, there is one case where we can say more: for the simplest
examples of semitoric integrable systems, whichwe call systems of Jaynes–Cummings
type. The characteristic of such a system is to display only one focus–focus singularity.
One of the simplest yet most important models in classical and quantum mechanics
was proposed by Jaynes and Cummings [14,26] in 1963, and it is now known as the
Jaynes–Cummings model.2 The Jaynes–Cummings model is obtained by coupling a
spin with a harmonic oscillator. In this way one obtains a physical system with phase
space S2×R

2 andHamiltonian functions J := u2+v2

2 +z, H = ux+vy
2 , where (x, y, z)

denotes the point in the 2-sphere S2 ⊂ R
3 and (u, v) denote points in R

2 (J is the
momentum map for the combined rotational S1-actions about the origin in R

2 and
about the vertical axes on S2). Recently the second and third authors described in full
the semiclassical spectral theory of this system [32].

Definition 1.2 A classical integrable system F := (J, H) : M → R
2 on a symplectic

4-manifold (M, ω) is of Jaynes–Cummings type if:

(a) F is a semitoric system;
(b) F has one, and only one, singularity of focus–focus type.

A quantum integrable system (P, Q) of Jaynes–Cummings type is given by two semi-
classical commuting self-adjoint operators whose principal symbols form a classical
integrable system of Jaynes–Cummings type.

The Jaynes–Cummings model is a particular example of a system of Jaynes–
Cummings type. Jaynes–Cummings type systems form a large class of integrable
Hamiltonian systems because the structure of the singularity in part (b) is extremely
rich, and it is classified by a Taylor series

∑
i, j∈N ai j Xi Y j , according to [37] (two

such singularities are symplectically equivalent if and only if each and everyone of the
coefficients in the Taylor series coincide for both singularities). Moreover, by [31,37]
every such Taylor series can be realized as the Taylor series invariant of an integrable
system (in fact, of many inequivalent such systems). Accordingly, the moduli space of
Jaynes–Cummings type systems is, from the point of view of Hamiltonian dynamics,
extremely rich. As a corollary of Theorem A, we solve the inverse spectral problem
for quantum integrable systems of Jaynes–Cummings type. Indeed, as we explained
above, the twisting index invariant is always trivial for such systems.

2 The Jaynes–Cummings model was initially introduced to describe the interaction between an atom pre-
pared in a mixed state with a quantum particle in an optical cavity. It was found to apply to many physical
situations (quantum chemistry, quantum optics, quantum information theory, etc.) because it represents the
easiest way to have a finite dimensional state (like a spin) interact with an oscillator.
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Theorem B Let (P, Q) be a quantum integrable system of Jaynes–Cummings type
on M for which the Bohr–Sommerfeld rules hold. Then from the knowledge of
JointSpec(P, Q) + O(h̄2), one can recover the principal symbol σ(P, Q) up to iso-
morphisms of semitoric integrable systems.

This theorem gives the first global inverse spectral result that the authors are aware
of for integrable Hamiltonian systems with focus–focus singularities (and hence no
global action-angle variables). In the context of Hamiltonian toral actions (eg. toric
integrable systems), all singularities are of elliptic type, which is strongly related
to the dynamical and spectral rigidity of such systems [11]. We believe that allowing
focus–focus singularities, which have amuch larger moduli space, is an important step
forward in the study of the inverse spectral problem for general integrable systems.

The problem treated in this paper belongs to a class of semiclassical inverse spectral
questions which has attracted much attention in recent years, e.g. [15,21,24,25,29,34,
39], which goes back to pioneer works of Bérard [1], Brüning andHeintze [3], Colin de
Verdière [12,13], Duistermaat and Guillemin [19], and Guillemin and Sternberg [22],
in the 1970s/1980s, and are closely related to inverse problems that are not directly
semiclassical but do use similar microlocal techniques for some integrable systems,
as in [40] (see also [41] and references therein).

We conclude this section by a natural question. The following corollary of Theorem
A directly follows from the symplectic classification [30] of semitoric systems:

Corollary 1.3 Let (P, Q) and (P ′, Q′) be quantum simple semitoric systems on M
and M ′, respectively, for which the Bohr–Sommerfeld rules hold. If

JointSpec(P, Q) = JointSpec(P ′, Q′) + O(h̄2), (1)

and if the twisting index invariants of σ(P, Q) and σ(P ′, Q′) are equal, then σ(P, Q)

and σ(P ′, Q′) are isomorphic as semitoric integrable systems.

In view of this result, one question remains: can one obtain the twisting index
invariant of a semitoric system from the data of the joint spectrum of the corresponding
quantum system? A positive answer to this question would lead to the definition of a
new quantum invariant which would be quite robust (since the twisting index between
two focus–focus singularities is just an integer).

2 Preliminaries

Let (M, ω) be a smooth, connected 4-dimensional symplectic manifold.

2.1 Integrable systems

An integrable system (J, H) on (M, ω) consists of two Poisson commuting functions
J, H ∈ C∞(M;R) i.e.:

{J, H} := ω(XJ , XH ) = 0,
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whose differentials are almost everywhere linearly independent 1-forms. HereXJ ,XH

are the Hamiltonian vector fields induced by J, H , respectively, via the symplectic
form ω: ω(XJ , ·) = −dJ , ω(XH , ·) = −dH . Moreover, the function F = (J, H)

will be assumed to be proper throughout this paper.
For instance, let M0 = T∗

T
2 be the cotangent bundle of the torus T2, equipped

with canonical coordinates (x1, x2, ξ1, ξ2), where x ∈ T
2 and ξ ∈ T∗

xT
2. The linear

system

(J0, H0) := (ξ1, ξ2)

isintegrable.
An isomorphism of integrable systems (J, H) on (M, ω) and (J ′, H ′) on (M ′, ω′)

is a diffeomorphism ϕ : M → M ′ such that ϕ∗ω′ = ω and

ϕ∗(J ′, H ′) = ( f1(J, H), f2(J, H))

for some local diffeomorphism ( f1, f2) of R2. This same definition of isomorphism
extends to any open subsets U ⊂ M , U ′ ⊂ M ′ (and this is the form in which we will
use it later). Such an isomorphism will be called semiglobal if U, U ′ are respectively
saturated by level sets {J = const1, H = const2} and {J ′ = const′1, H ′ = const′2}.

If F = (J, H) is an integrable system on (M, ω), consider a point c ∈ R
2 that is a

regular value of F , and such that the fiber 	c = F−1(c) is compact and connected.
Then, by the action-angle theorem [18], a saturated neighborhood of the fiber is iso-
morphic in the previous sense to the above linear model on M0 = T∗

T
2. Therefore, all

such regular fibers (called Liouville tori) are isomorphic in a neighborhood. The two
Hamiltonians given in the corresponding action-angle coordinates by the variables
(ξ1, ξ2) will be called a basis of action variables.

However, the situation changes drastically when the condition that c be regular is
violated. For instance, it has been proved in [37] that, when c is a so-called focus–
focus critical value, an infinite number of equations has to be satisfied in order for two
systems to be semiglobally isomorphic near the critical fiber.

2.2 Semitoric systems

Semitoric systems (Definition 1.1) form a particular class of integrable systems
admitting an S1 symmetry. It is therefore natural to introduce a suitable notion of
isomorphism for such systems, which mixes the general notion defined in the previ-
ous section with the more rigid one coming from Hamiltonian S1-manifolds.

Definition 2.1 The semitoric systems (M1, ω1, F1 := (J1, H1)) and (M2, ω2, F2 :
= (J2, H2)) are isomorphic if there exists a symplectomorphism ϕ : M1 → M2 such
that ϕ∗(J2, H2) = (J1, h(J1, H1)) for a smooth h such that ∂h

∂ H1
> 0.

2.3 The period lattice

Let F = (J, H) be an integrable system on a 4-dimensional symplectic manifold.
For any regular value c of F , the set of points (t, u) ∈ R

2 such that the vector field
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tXJ +uXH has a 2π -periodic flow on	c is a sublattice ofR2 called the period lattice
[18].When c varies in the set of regular values of F , the collection of the period lattices
is a Lagrangian subbundle of T ∗

R
2, called the period bundle.

Coming back to our case where F = (J, H) is a semitoric system, there is a
natural way to construct a basis of this lattice. Firstly, since J generates a S1-action,
(1, 0) belongs to the period lattice. Secondly, define two real numbers τ1(c), τ2(c) as
follows: choose a point m ∈ 	c, and define τ2(c) > 0 as the time of first return for
the Hamiltonian flow associated with H to the trajectory of the Hamiltonian flow of
J passing through m. Let τ1(c) ∈ [0, 2π) be the time that it takes to come back to m
following the flow of XJ . Because of the commutativity of the Hamiltonian flows of
J and H , the values of τ1(c), τ2(c) do not depend on the choice of the starting point
m ∈ 	c. The vector field τ1(c)XJ + τ2(c)XH defines a 1-periodic flow; hence, if we
define

ζ1(c) = τ1(c)

2π
, ζ2(c) = τ2(c)

2π
, (2)

then (ζ1(c), ζ2(c)) and (1, 0) form a basis of the period lattice.

2.4 Semiclassical operators

Let I ⊂ (0, 1] be any set which accumulates at 0. If H is a complex Hilbert space,
we denote by L(H) the set of linear (possibly unbounded) self-adjoint operators on
H with a dense domain.

A space � of semiclassical operators is a subspace of
∏

h̄∈I L(Hh̄), containing
the identity, and equipped with a weakly positive principal symbol map, which is an
R-linear map

σ : � → C∞(M; R),

with the following properties:

(1) σ(I ) = 1; (normalization)
(2) if P ∈ � then P2 ∈ �; (square)
(3) if P, Q are in � and if the composition P ◦ Q is well defined and is in �, then

σ(P ◦ Q) = σ(P)σ (Q); (product formula)
(4) if σ(P) ≥ 0, then there exists a function h̄ 
→ ε(h̄) tending to zero as h̄ → 0,

such that P ≥ −ε(h̄), for all h̄ ∈ I . (weak positivity).

If P = (Ph̄)h̄∈I ∈ �, the image σ(P) is called the principal symbol of P .
There are two major examples of such semiclassical operators. One is given by

semiclassical pseudodifferential operators, as described for instance in [17] or [42],
when the symbols are assumed to be uniformly bounded, together with all their deriv-
atives. The boundedness assumption is needed for axiom (4); we could extend the
validity to much larger classes by considering the full symbol instead of the principal
symbol, since by Gårding’s inequality, the statement (4) for theWeyl symbol holds for
very general classes of pseudodifferential operators. However, this would add tech-
nicalities which are not really necessary, because in many cases, when studying the
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spectrum of an elliptic operator below a certain threshold, one is able to truncate the
symbol in order to make it bounded, without changing the spectrum modulo O(h̄∞)

(see for instance [17, Chapter 10]). The second category of semiclassical operators is
less well known, but developing very fast: semiclassical (or Berezin)-Toeplitz opera-
tors, as described in [4,6–9,27,35] following the pioneer work [2].

2.5 Semiclassical spectrum

Recall that when A and B are unbounded self-adjoint operators, they are said to
commute when their projector-valued spectral measures commute.

If P = (Ph̄)h̄∈I and Q = (Qh̄)h̄∈I are semiclassical operators on (Hh̄)h̄∈I , in the
sense of Sect. 2.4, we say that they commute if for each h̄ ∈ I the operators Ph̄ and
Qh̄ commute.

If P and Q commute, we may define for fixed h̄, the joint spectrum of (Ph̄, Qh̄)

to be the support of the joint spectral measure. It is denoted by JointSpec(Ph̄, Qh̄).
If Hh̄ is finite dimensional (or, more generally, when the joint spectrum is discrete),
then

JointSpec(Ph̄, Qh̄) =
{
(λ1, λ2) ∈ R

2 | ∃v �= 0, Ph̄v = λ1v, Qh̄v = λ2v
}
.

The joint spectrum of P, Q is the collection of all joint spectra of (Ph̄, Qh̄), h̄ ∈ I .
It is denoted by JointSpec(P, Q). For convenience of the notation, we will also view
the joint spectrum of P, Q as a set depending on h̄.

2.6 Joint spectrum and image of the joint principal symbol

Proposition 2.2 If F := (J, H) : M → R
2 is an integrable system on a 4-

dimensional connected symplectic manifold and P, Q are commuting semiclassical
operators with principal symbols J, H : M → R, then

E /∈ F(M) ⇒ ∃ε > 0 ∃h̄0 ∈ I ∀h̄ ≤ h̄0 ∈ I,

JointSpec(Ph̄, Qh̄) ∩ B(E, ε) = ∅.

This proposition is well-known for pseudodifferential and Toeplitz operators; it is
interesting to notice that, in fact, it directly follows from the axioms we chose for
semiclassical operators in Sect. 2.4.

Proof If E = (E1, E2) does not belong to F(M), then the function

f = (J − E1)
2 + (H − E2)

2

never vanishes. Thus, by the normalization, the product rule and the weak positivity
of the principal symbol (items (1), (3) and (4) in Sect. 2.4), we have

(P − E1)
2 + (Q − E2)

2 ≥ C, (3)
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for some constant C > 0, when h̄ is small enough. If fact, since F(M) is closed
(because F is proper), the same holds uniformly when E varies is a small ball. Let
�Q(dλ) and �P (dμ) be the spectral measures of P and Q respectively (now h̄ is
fixed). We have

(P − E1)
2 + (Q − E2)

2 =
∫

(λ − E1)
2�P (dλ) +

∫

(μ − E2)
2�Q(dμ).

Suppose that (E1, E2) belongs to the joint spectrum of (P, Q). Then for each n ≥ 0
one can find a vector un of norm 1 such that

un ∈ Ran(�P ([E1 − 1
n , E1 + 1

n ])) ∩ Ran(�Q([E2 − 1
n , E2 + 1

n ])).

Then

∣
∣
∣〈(P − E1)

2un, un〉
∣
∣
∣ =

∣
∣
∣
∣
∣

∫

[E1− 1
n ,E1+ 1

n ]
(λ − E1)

2〈�P (dλ)un, un〉
∣
∣
∣
∣
∣

≤ 1

n2

∫

|〈�P (dλ)un, un〉| ≤ 1

n2 .

Similarly,
∣
∣〈(Q − E2)

2un, un〉∣∣ ≤ 1
n2
. Letting n → ∞, we contradict (3). Thus E /∈

JointSpec(P,Q), which proves the proposition. ��

2.7 Bohr–Sommerfeld rules

Recall that the Hausdorff distance between two bounded subsets A and B of R2 is

dH (A, B) := inf{ε > 0 | A ⊆ Bε and B ⊆ Aε},

where for any subset X of R2, the set Xε is

Xε :=
⋃

x∈X

{m ∈ R
2 | ‖x − m‖ ≤ ε}.

If (Ah̄)h̄∈I and (Bh̄)h̄∈I are sequences of uniformly bounded subsets of R2, we say
that

Ah̄ = Bh̄ + O(h̄N )

if there exists a constant C > 0 such that

dH (Ah̄, Bh̄) ≤ Ch̄N

for all h̄ ∈ I . If A or B are not uniformly bounded, we shall say that Ah̄ = Bh̄ +O(h̄N )

on a ball D if there exists a sequence of sets Dh̄ , all diffeomorphic to D, such that
Dh̄ = D + O(h̄N ) and
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Ah̄ ∩ D = Bh̄ ∩ Dh̄ + O(h̄N ).

Definition 2.3 Let F := (J, H) : M → R
2 be an integrable system on a 4-

dimensional connected symplectic manifold, with connected regular fibers. Let P
and Q be commuting semiclassical operators with principal symbols J, H : M → R.
We say that JointSpec(P, Q) satisfies the Bohr–Sommerfeld rules if for every regular
value c of F there exists a small ball B(c, εc) centered at c, such that,

JointSpec(P, Q) = gh̄(2π h̄Z2 ∩ D) + O(h̄2) on B(c, εc), (4)

with

gh̄ = g0 + h̄g1,

where g0, g1 are smooth maps defined on a bounded open set D ⊂ R
2, g0 is a

diffeomorphism into its image, c ∈ g0(D) and the components of g−1
0 = (A1, A2)

are such that (A1 ◦ F,A2 ◦ F) form a basis of action variables, see Sect. 2.1.

In this situation, if h̄ is small enough, then gh̄ is a diffeomorphism into its image,
and its inverse admits an asymptotic expansion in non-negative powers of h̄ for the
C∞ topology; we call (gh̄)−1 an affine chart for JointSpec(P, Q).

Bohr–Sommerfeld rules are known to hold for integrable systems of pseudodiffer-
ential operators (thus M is a cotangent bundle) [5,36], or for integrable systems of
Toeplitz operators on prequantizable compact symplectic manifolds [10]. It would be
interesting to formalize the minimal semiclassical category where Bohr-Sommerfeld
rules are valid.

Note that action variables are not unique. Thus, if (gh̄)−1 is an affine chart for
JointSpec(P, Q) and B ∈ GL(2,Z) then B ◦ (gh̄)−1 is again an affine chart. In view
of the discussion in Sect. 2.3, this remark implies the following proposition.

Proposition 2.4 If F is a semitoric system, then in Definition 2.3, we can assume that
A1(c1, c2) = c1. Therefore, there exists an integer k such that the actions A1,A2
satisfy:

dA1 = dc1, dA2 = (ζ1 + k)dc1 + ζ2dc2, (5)

where ζ1, ζ2 are defined in (2).

3 Main result

We state in this section a more precise version of our main result, Theorem A, which
explicitly indicates what we mean by “from the knowledge of the semiclassical joint
spectrum JointSpec(P, Q) + O(h̄2), one can recover the four following invariants of
the associated classical semitoric system”. Let MST be the set of semitoric systems
(i.e. triples (M, ω, F) satisfying Definition 1.1) modulo isomorphisms (as defined in
Definition 2.1).

For each of the four invariants (1), (2), (3), or (4)mentioned in Sect. 1,wemay define
a map I j , j = 1, 2, 3, 4, fromMST with value in the appropriate space corresponding
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to the invariant (we refer to [30] for these spaces; here we simply denote them by B j ,
j = 1, 2, 3, 4, as their precise definition is not important for our purpose).
Let QST be the set of all quantum simple semitoric systems for which the Bohr–

Sommerfeld rules hold, equipped with the natural arrow

σ : QST → MST

induced by the principal symbol map. We introduce now the joint spectrum map

JS : QST −→ P(R2)I

(P, Q) 
−→ JointSpec(P, Q),

where we recall that I is the set where the semiclassical parameter h̄ varies. Let us
denote by P2 the set of equivalence classes of h̄-dependent subsets of R2 with respect
to the equality modulo O(h̄2) on every ball, and JS : QST → P2 the quotient map
of JS. Let � ⊂ P2 be the range of JS, i.e. the subset of all joint spectra of semitoric
systems, modulo O(h̄2). Then Theorem A can be rephrased as follows:

Theorem 3.1 For each j = 1, 2, 3, 4, there exists a map Î j : � → B j such that the
following diagram

QST
JS ��

σ

��

�

Î j
��

MST
I j �� B j

is commutative.

Corollary 3.2 If two quantum simple semitoric systems for which the Bohr–
Sommerfeld rules hold have the same joint spectrum modulo O(h̄2), then the
underlying classical systems have the same set of invariants (1), (2), (3), (4). In partic-
ular, if two quantum Jaynes–Cummings type systems for which the Bohr–Sommerfeld
rules hold have the same joint spectrum modulo O(h̄2), then the underlying classical
systems are isomorphic.

4 Proof of Theorem 3.1

Let P, Q be a quantum simple semitoric system with joint principal symbol F =
(J, H). Remember that we want to prove that the knowledge of the joint spectrum of
P, Q moduloO(h̄2) allows to recover invariants (1) to (4). For the sake of clarity, we
divide the proof into five steps.

Step 1 We recover the image F(M) thanks to Proposition 2.2. Indeed, choose a point
E = (E1, E2) in R2; assume that the following condition holds:

(C) for every ε > 0 and for every h̄0 ∈ I , there exists h̄ ≤ h̄0 in I such that
JointSpec(Ph̄, Qh̄) ∩ B(E, ε) �= ∅.
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Then Proposition 2.2 implies that E belongs to F(M). Conversely, assume E ∈ Br ,
where Br is the set of regular values of F . Because of the Bohr-Sommerfeld rules,
there exists a small ball around E in R

2 in which the joint spectrum is a deformation
of the lattice 2π h̄Z2. Hence when h̄ is small enough, this ball always contains some
element of the joint spectrum (the number of joint eigenvalues grows like h̄−2), which
says that Condition (C) holds. Let S be the set of E ∈ R

2 for which (C) holds. We
have

Br ⊂ S ⊂ F(M).

Butwe know from [38, Proposition 2.9] that the closure of Br equals F(M). Therefore,
S = F(M), which proves that the image F(M) can be recovered from the joint
spectrum.

Note that this step would also work with a weaker hypothesis than the Bohr–
Sommerfeld rules. For instance, having a C∞

0 functional calculus for the semiclassical
operators, or being able to construct microlocal quasimodes (which is common in
pseudodifferential or Toeplitz analysis) would be sufficient for recovering F(M).

Step 2 In this step, we show how to recover the periods of the classical system at
regular values from the knowledge of the joint spectrum. In order to do so, we adapt
an argument from [39] for the resolution of a similar inverse problem in dimension
2. Although in our case we are working in dimension 4, which makes the study more
difficult, the situation is also simpler by some aspects, because we know from [38,
Theorem 3.4] that the regular fibers are connected.

Let c0 be a regular value of F , and let B be a ball centered at c0 in which the joint
spectrum is described by the Bohr–Sommerfeld rules (4). Let D and gh̄ be as in the
statement of the latter. We can assume that gh̄ is a diffeomorphism from g−1

h̄ (B) into
B. We recall that

JointSpec(Ph̄, Qh̄) ∩ B = gh̄(2π h̄Z2 ∩ D) ∩ Bh̄ + O(h̄2),

where B = Bh̄ + O(h̄2).
Now, let χ be a non-negative smooth function with compact support K ⊂ B, equal

to 1 on a compact subset of B. We consider the spectral measure

D(λ, h̄) =
∑

c∈JointSpec(P,Q)∩B

χ(c)δc(λ)

where δc is the Dirac distribution at c. Let Fh̄ stand for the semiclassical Fourier
transform, so that

Fh̄( f )(ξ) = 1

(2π h̄)2

∫

R2
exp

(
−i h̄−1〈x, ξ 〉

)
f (x)dx,
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for smooth, compactly supported functions f , and introduce

Z(t, h̄) = (2π h̄)2Fh̄(D(·, h̄))(t) =
∑

c∈JointSpec(P,Q)∩B

χ(c) exp
(
−i h̄−1〈c, t〉

)
.

Thanks to the Bohr–Sommerfeld conditions, we may estimate this quantity as

Z(t, h̄) =
∑

s∈2π h̄Z2∩D

ϕt (gh̄(s), h̄) + O(h̄)

with

ϕt (u, h̄) = χ(u) exp
(
−i h̄−1〈u, t〉

)
.

Because χ(gh̄(s)) = 0 if s /∈ D, this yields

Z(t, h̄) =
∑

α∈Z2

ϕt (gh̄(2π h̄α), h̄) + O(h̄).

By the Poisson summation formula, we thus obtain

Z(t, h̄) =
∑

β∈Z2

Zβ(t, h̄) + O(h̄)

with

Zβ(t, h̄) = 1

(2π h̄)2

∫

R2
exp

(
−i h̄−1 (〈β, s〉 + 〈gh̄(s), t〉)

)
χ(gh̄(s))ds.

Since gh̄ is a diffeomorphism from g−1
h̄ (B) into B, we can use the change of variables

c = gh̄(s), s = fh̄(c), which yields:

Zβ(t, h̄) = 1

(2π h̄)2

∫

R2
exp

(
−i h̄−1 (〈β, fh̄(c)〉 + 〈c, t〉)

)
χ(c)| det J fh̄ (c)|dc,

which means that Zβ(t, h̄) = Fh̄(ψβ)(t) where

ψβ(c) = exp
(
−i h̄−1〈β, fh̄(c)〉

)
χ(c)| det J fh̄ (c)|

is a WKB function with phase

θβ(c) = −〈β, f0(c)〉 = −β1A1(c) − β2A2(c).
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Since by Eq. (5)

∇θβ(c) = −
(

β1 + β2(ζ1(c) + k)

β2ζ2(c)

)

,

the associated Lagrangian submanifold is the set

{
(c, t) ∈ R

4 | (t1, t2) = −(β1 + β2(ζ1(c) + k), β2ζ2(c))
}
. (6)

One can easily check that this submanifold is indeed Lagragian: the 1-form ν =
(β1 + β2(ζ1(c) + k)) dc1 + β2ζ2(c)dc2 is closed, as

ν = d(β1A1 + β2A2).

Since the Jacobian | det J fh̄ (c)| does not vanish in the support K of χ , this implies
that the semiclassical wavefront set of Zβ(·, h̄) is

WFh̄(Zβ(·, h̄)) =
{
(c, t) ∈ R

4 | (t1, t2) = −(β1 + β2(ζ1(c) + k), β2ζ2(c)), c ∈ K
}

=Lβ(K )

To obtain a similar result on Z(·, h̄), we still need to sum over β ∈ Z
2. Let t0 =

(t01 , t02 ) ∈ (R∗)2, ε > 0, and let ρ ∈ C∞
0 (B(t0, ε)).

Lemma 4.1 If there exists a solution (c, t) of (6) with t in the support of ρ, then β is
such that

max(|β1|, |β2|) ≤ M

where M is defined as

M = ε + ‖t0‖
minK |ζ2| max

(

1,min
K

|ζ2| + |k| + max
K

|ζ1|
)

.

Proof For such a solution, we have ‖t‖ ≤ ε + ‖t0‖, thus

(β1 + β2(ζ1(c) + k))2 + β2
2ζ2(c)

2 ≤ (ε + ‖t0‖)2,

which implies that

|β2| ≤ ε + ‖t0‖
minK |ζ2| . (7)

Since we also have

|β1 + β2(ζ1(c) + k)| ≤ ε + ‖t0‖,
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we deduce from the previous inequality that

|β1| ≤ (ε + ‖t0‖)
(

1 + |k| + maxK |ζ1|
minK |ζ2|

)

, (8)

which proves the result. ��
Using the proof of the non-stationary phase lemma, we can write for such a β and

any N ≥ 1

(2π h̄)2Zβ(t, h̄)

equals

(
i h̄

max(|β1|, |β2|)
)N ∫

R2
exp

(
−i h̄−1(〈β, fh̄(c)〉 + 〈c, t〉)

)
L N (a(c, h̄))dc,

where a(·, h̄) is compactly supported and admits an asymptotic expansion in non-
negative powers of h̄ in the C∞ topology, and L is the differential operator defined
as

Lu = ∇
(

max(|β1|, |β2|) u

|V |2 V

)

with

V (c) = −
(

t1 + β1 + β2(ζ1(c) + k)

t2 + β2ζ2(c)

)

.

Introduce the function b = (max(|β1|, |β2|)/|V |2)V ; one has

|b(c)| =
((

t1 + β1 + β2(ζ1(c) + k)

max(|β1|, |β2|)
)2

+
(

t2 + β2ζ2(c)

max(|β1|, |β2|)
)2

)−1/2

.

Then b is uniformly bounded on K for β such that max(|β1|, |β2|) > M and, for every
� ∈ N

2, there exists a constant C� such that

|∂c�b| = |∂c1�1 ∂c2�2 b| ≤ C�

on K . Consequently, there exists a constant C̃N > 0 such that

|ρ(t)Zβ(t, h̄)| ≤ C̃N

(
h̄

max(|β1|, |β2|)
)N
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when max(|β1|, |β2|) > M . Therefore, for N ≥ 4, we have

∑

β∈Z2

max(|β1|,|β2|)>M

|ρ(t)Zβ(t, h̄)| ≤ ĈN h̄N

for some constant ĈN > 0. This shows that only a finite number of terms contribute
to ρ(t)Z(t, h̄) up to O(h̄∞), hence

WFh̄(ρZ(·, h̄)) ⊂
{

(c1, c2,−β1 − β2(ζ1(c) + k),−β2ζ2(c)) ∈ R
4|

(c1, c2) ∈ K ,max(|β1|, |β2|) > M

}

and finally

WFh̄(Z(·, h̄)) =
{
(c1, c2,−β1 − β2(ζ1(c) + k),−β2ζ2(c)) ∈ R

4 |
(c1, c2) ∈ K , β ∈ Z

2
}

=L(K ),

which is exactly the restriction of the period bundle over K (see Sect. 2.3).
The last part of this step is to explain how one can extract the functions (τ1, τ2) from

the data of L(K ) = ⋃
β∈Z2 Lβ(K ), which is the disjoint union of smooth surfaces

in R
4. Endow R

4 with the coordinates (x1, x2, x3, x4), and introduce the plane � =
{x ∈ R

4 | x1 = c01, x2 = c02}, for a fixed c0 ∈ K . Then the set

E = L(K ) ∩ � = {(c01, c02,−β1 − β2(ζ1(c
0) + k),−β2ζ2(c

0)) | β ∈ Z
2}

is discrete, and the set {x4 | x ∈ E} ∩ R
∗+ is bounded from below. Let F be the set of

points in E with minimal coordinate x4; then

F = {(c01, c02, ζ1(c
0) + k − β1, ζ2(c

0)) | β1 ∈ Z}.

Again, the set {x3 | x ∈ F} ∩ R
∗+ is bounded from below, and the point of this set

with minimal coordinate x3 is (c01, c02, ζ1(c
0), ζ2(c0)). The connected component of

this point in L(K ) is the graph of the function

c ∈ K 
→ (ζ1(c), ζ2(c)) = 1

2π
(τ1(c), τ2(c)).

Step 3 Let us now explain how to recover the position of the focus–focus values from
the joint spectrum. Thanks to step 1, we know F(M). By [38, Theorem 3.4], we
know that the boundary of F(M) consists of the singularities of elliptic–elliptic and
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transversally elliptic type, and that the only singular values in the interior of F(M) are
the images of the focus–focus singularities. Let A be any point lying on the boundary
∂ F(M). Let C1, . . . , Cm f be the images of the focus–focus points in F(M), labelled
in such a way that

J (m1) < J (m2) < · · · < J (mm f ),

where for i in {1, . . . , m f }, mi is the only focus–focus-point in F−1(Ci ). Consider the
distanced = min1≤i≤m f ‖A−Ci‖ and let j ∈ {1, . . . , m f }be such thatd = ‖A−C j‖;
since C j lies in the interior of F(M), we have that d > 0. Let Br be the set of regular
values of F ; for every ε in (0, d], the intersection

Xε = B(A, ε) ∩ ˚F(M)

of the ball of radius ε centered at A with the interior of F(M) is contained in Br . Thus,
from step 2, we can compute the function τ2|Xε

from the joint spectrum. It follows
from [37, proposition 3.1] that τ2 has a logarithmic behavior near C j . Hence, if τ2|Xε

can be extended to a continuous function on B̄(A, ε)∩ ˚F(M), then necessarily ε < d.
This allows to find d; the point C j belongs to the circle C of radius d centered at A.
Furthermore, the only points in C ∩ ˚F(M) where τ2 admits a logarithmic singularity
are some of the Ci (including C j ), that we recover this way.

We obtain the positions of the other focus–focus values by applying this method
recursively. For instance, we recover another point Ck by considering circles of grow-
ing radius centered at C j , and so on (let us recall that m f is finite).

Step 4 Since we now know precisely the position of the focus–focus values, [33,
Theorem 3.3] implies that the Taylor series invariant associated with each focus–focus
singularity can be recovered from the joint spectrum.

Step 5 In this step, we prove that from the data of the joint spectrum, one can deduce
the polygonal invariant introduced in [38].

Recall that a map U ⊂ R
n → V ⊂ R

n is integral affine on U if it is of the form
x ∈ U 
→ Ax + b, where A ∈ GL(n,Z) and b ∈ R

n . An integral affine structure on a
smooth n-dimensional manifold is the data of an atlas (Ui , ϕi ) such that for all i , the
transition function ϕi ◦ ϕ−1

j is integral affine.
As a consequence of the action-angle theorem, the integrable system (J, H) induces

an integral affine structure on the set Br of regular values of F . The charts are action
variables, that is maps ϕ : U → R

2 where U is a small open subset of Br and ϕ ◦ F
generates a T2-action.

Let εi ∈ {−1, 1} and let �εi
i be the vertical segment starting at the focus–focus value

Ci , going upwards (respectively downwards) if εi = 1 (respectively εi = −1), and
ending at the boundary of F(M). Set �ε = ⋃

i �
εi
i .

Theorem 4.2 ([38, Theorem 3.8]) For ε ∈ {−1, 1}m f , there exists a homeomorphism
� from B = F(M) to � = �(B) ⊂ R

2 such that:

(1) �|B\�ε is a diffeomorphism into its image,
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(2) �|Br \�ε is affine: it sends the integral affine structure of Br to the standard integral
affine structure of R2,

(3) � preserves J : �(x, y) = (x,�2(x, y)),
(4) �|Br \�ε extends to a smooth multi-valued map from Br to R

2 and for any i ∈
{1, . . . , m f } and any c ∈ �̊i , then

lim
(x,y)→c

x<xi

d�(x, y) =
(
1 0
1 1

)

lim
(x,y)→c

x>xi

d�(x, y),

(5) � is a rational convex polygon.

The polygon � is the sought invariant; in fact, the real invariant is a family of such
polygons, more precisely the set of all such� for all possible choices of ε ∈ {−1, 1}m f

and all their images by linear maps leaving the vertical direction invariant. We refer
the reader to [30, Section 4.3] for more precise statements.

Proposition 4.3 Given any ε ∈ {−1, 1}m f , the corresponding polygon � = �ε is
determined by the integral affine structure of Br .

Proof Once a starting point c0 ∈ Br is chosen (which, by convention, is taken to
be on the left of the first focus–focus critical value, when these values are ordered
by non-decreasing abscissae), the affine map �|Br \�ε is uniquely determined by the
affine structure. Indeed, the set Br\�ε is simply connected and � is the developing
map of the induced affine structure. The crucial observation is that it follows from
the construction in [38] that the map �|B\�ε is the natural extension of �|Br \�ε to the
boundary of Br\�ε away from the half-lines �ε, and this boundary consists of elliptic
(or transversally elliptic) singularities. Precisely, the extension is obtained as follows.
Near a 1-dimensional family of transversally elliptic singularities, we use the normal
form due to Miranda and Zung [28]: if ce is a transversally elliptic value, there exist
a symplectomorphism ϕ from a neighborhood of F−1(ce) in M to a neighborhood
of {I = x = ξ = 0} in T∗S1 × R

2 with coordinates ((θ, I ), (x, ξ)) and standard
symplectic form dI ∧ dθ + dξ ∧ dx , which sends the set {F = constant} to the set
{I = constant, x2 + ξ2 = constant}, and a smooth function g such that

(F ◦ ϕ−1)(θ, I, x, ξ) = g(I, x2 + ξ2)

where ϕ−1, g are defined. Let (A1,A2) be an affine chart for Br inside this neigh-
borhood where the normal form holds. Since (I, (x2 + ξ2)/2) is also an affine chart,

there exists a matrix A =
(

α β

γ δ

)

∈ GL(2,Z) such that

A1(c) = α I + β(x2 + ξ2)/2; A2(c) = γ I + δ(x2 + ξ2)/2 (9)

where m = ϕ−1(θ, I, x, ξ) ∈ M is a regular point for F and c = F(m). Since
α, β, γ, δ are constant, Formula (9) naturally gives the required extension of (A1,A2)

(and hence �) to the boundary near ce. Near an elliptic-elliptic point, we can apply
the same reasoning, using Eliasson’s normal form [20]. ��
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In view of the proposition, step 5 will be treated as soon as we show that the integral
affine structure on Br can be recovered from the joint spectrum JointSpec(P, Q) up to
O(h̄2), which can be done as follows. From the previous steps, we can recover F(M)

and the position of the focus–focus values Ci = (xi , yi ), 1 ≤ i ≤ m f . Therefore, we
know the set of regular values Br , which is the interior of F(M)minus the focus–focus
critical values.

In a small ball B0 ⊂ Br , we can construct action variables (A1,A2). Indeed, from
step 2 we can recover the functions τ1, τ2 on B0. Fixing a point s ∈ B0, we can pick
for every point c ∈ B0 a smooth path γc : [0, 1] → B0 such that γc(0) = s, γc(1) = c
and compute

A(0)
1 (c) = c1; A(0)

2 (c) =
∫ 1

0

〈(
ζ1(γc(t))
ζ2(γc(t))

)

, γ ′
c(t)

〉

dt,

where we recall that τi = 2πζi for i = 1, 2. In this way, we have constructed the inte-
gral affine structure of Br from the joint spectrum. In remains to apply Proposition 4.3
to construct �, and hence � by Theorem 4.2.

Step 6 It only remains to prove that we can recover the height invariant associated
with each focus–focus singularity from the joint spectrum. In order to do so, let i ∈
{1, . . . , m f } and consider a sequence (Yn)n∈N of points of B such that every Yn has the
same abscissa asCi and ordinate smaller than the one ofCi , and such thatYn −→

n→+∞ Ci .

We may assume that Y0 lies on the boundary of B. Let � be a homeomorphism from
B to � as in the previous step. Then the point

P = lim
n→+∞ �(Yn)

is well-defined and P is the image of the focus–focus value in the polygon �. The
height invariant that we seek is the difference between the ordinate of P and the
ordinate of �(Y0).

Remark 4.4 Another way of obtaining the height invariant associated with Ci would
have been to count the joint eigenvalues lying on a vertical line below Ci and use a
Weyl law to relate this number to the volume of the set J−1(Ci ) ∩ {H < H(mi )}.
Although it may seem more natural than our method, it is also more technical, and
that is why we have chosen not to treat the problem this way.
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