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Abstract We study the relationship between tropical and classical Hurwitz moduli
spaces. Following recent work of Abramovich, Caporaso and Payne, we outline a trop-
icalization for the moduli space of generalized Hurwitz covers of an arbitrary genus
curve. Our approach is to appeal to the geometry of admissible covers, which compact-
ify the Hurwitz scheme. We study the relationship between a combinatorial moduli
space of tropical admissible covers and the skeleton of the Berkovich analytification
of the classical space of admissible covers. We use techniques from non-archimedean
geometry to show that the tropical and classical tautological maps are compatible via
tropicalization, and that the degree of the classical branch map can be recovered from
the tropical side. As a consequence, we obtain a proof, at the level of moduli spaces,
of the equality of classical and tropical Hurwitz numbers.
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1 Introduction

The primary objective of this paper is to establish a geometric and functorial rela-
tionship between the moduli space of Hurwitz covers of an algebraic curve, and a
combinatorial moduli space of tropical Hurwitz covers.1 Such a relationship is given
by a morphism of cone complexes from the skeleton of the Berkovich analytification
of the space of admissible covers to the moduli space of tropical Hurwitz covers. We
show that tropicalization commutes with the natural tautological source and branch
maps on these moduli spaces. Consequently, we recover the equality between tropical
and classical Hurwitz numbers, originally proved via combinatorial and topological
methods in [7,12].

1.1 Results

Fix a vector of partitions �μ = (μ1, . . . , μr ) of an integer d > 0.Denote byHg→h,d( �μ)

the space of degree d Hurwitz covers [D → C] of smooth genus h curves by genus g
curves with ramification μi over smooth marked points pi of C , and simple ramifica-
tion over smooth marked points q1, . . . , qs , and by Hg→h,d( �μ) its admissible cover
compactification. We denote by H

an
g→h,d( �μ) (resp. M

an
g,n) the Berkovich analytifica-

tion of the space of admissible covers (resp. the moduli space of stable curves). We use
H

trop
g→h,d( �μ) to denote the space of tropical admissible covers of genus h tropical curves

by genus g tropical curves, with expansion factors along infinite edges prescribed by
�μ. See Sects. 2, 3 for definitions and background.

Our first result studies the relationship between the set theoretic tropicalizationmap
from Han

g→h,d( �μ) to H
trop
g→h,d( �μ) (see Definition 25) and the canonical projection to

the skeleton from the space Han
g→h,d( �μ).

Theorem 1 The set theoretic tropicalization map trop : Han
g→h,d( �μ) → H

trop
g→h,d( �μ)

factors through the canonical projection from the analytification to its skeleton
�(H

an
g→h,d( �μ)),

(1)

1 The notion of a tropical Hurwitz cover for discrete graphs was introduced by Caporaso in [11], in order
to study the gonality of graphs. In particular she characterizes which graphs covering a tree are dual graphs
of a classical admissible cover.
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Furthermore the map trop� is a surjective face morphism of cone complexes, i.e. the
restriction of trop� to any cone of �(H

an
g→h,d( �μ)) is an isomorphism onto a cone of

the tropical moduli spaceHtrop
g→h,d( �μ). The map trop� extends naturally and uniquely

to the extended complexes �(H
an
g→h,d( �μ)) → H

trop
g→h,d( �μ).

The map trop depends on the choice of the admissible cover compactification
even when restricted to the analytification of the Hurwitz space. Intuitively, one may
think of a point inHan

g→h,d( �μ) as a family of smooth covers over a punctured disk. The
tropicalization of such point is obtained by extending the family to an admissible cover
and metrizing the dual graph of the central fibers by the valuations of the smoothing
parameters of the nodes.

The Hurwitz moduli spaces and their compactifications contain information about
the enumerative geometry of target curves. The (classical) Hurwitz number hg→h,d( �μ)

counts the number of covers with the above invariants and a fixed branch divisor. Note
that the definition ofHtrop

g→h,d( �μ) involves the algebraic data of tripleHurwitz numbers,
as in [9], closely related to the Hurwitz existence problem ([11, Section 2.2]). This
discussed in Sect. 3.

Our next result shows that the tropical moduli space (and skeleton) contain enough
information to recover Hurwitz numbers.

Theorem 2 Let σ� be any fixed top dimensional cone of the tropical moduli space

M
trop
h,r+s . Denote by σH

� �→ σ� a cone in the moduli spaceHtrop
g,d ( �μ) of combinatorial

type � such that the base graph of � is equal to �. The restriction of the tropical
branch map is a surjective morphism of cones with integral structure of the same
dimension, and consequently has a dilation factor which we denote d�(br).

Refer to Definition 22 for the precise definition of the weight ω(�). Informally, this
weight is a product of “local Hurwitz numbers”, expansion factors along bounded
edges, and an automorphism factor.

Then the Hurwitz number is equal to:

hg→h,d( �μ) =
∑

σH
� �→σ�

ω(�) · d�(br trop). (2)

When h = 0, and the profile �μ contains only two non-simple ramification types,
the above theorem fully determines these Hurwitz numbers (doubleHurwitz numbers)
in terms of purely tropical computations. For general �μ, the result gives an explicit
decomposition formula for the Hurwitz number hg→h,d( �μ) in terms of triple Hurwitz
numbers, i.e. Hurwitz numbers with three non-simple profiles.

The right hand side of (2) coincides with the definition of tropical Hurwitz numbers
in [7]. Theorem 2 then provides a geometric proof for the following correspondence
theorem.

Theorem 3 (Bertrand–Brugallé–Mikhalkin [7])Classical and tropical Hurwitz num-
bers coincide, i.e. we have hg→h,d( �μ) = htropg→h,d( �μ).

For us Theorem 2 is a consequence of the functoriality of the tropicalization map.
More precisely, theHurwitz number arises geometrically as the degree of a tautological
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map called the branch map, which takes a cover to its base curve, marked at its branch
points. The branch degree is computed in Sect. 6.2 by a computation on polyhedral
domains in analytifications of formal tori. This provides a conceptual explanation
for the determinantal formulas for tropical multiplicities obtained in [12], and related
works. In particular, the result seems adaptable tomore generalmoduli spaces ofmaps.

We also study the source map, taking a cover to its source curve, marked at the
entire inverse image of the branch locus. We have the diagram:

where s is the number of simple branch points. There are analogous tautological mor-
phisms on spaces of admissible covers of tropical curves. Tropicalization is compatible
with these two tautological morphisms to the moduli space of curves in the following
sense.

Theorem 4 Let br denote the branch map Hg→h,d( �μ) → Mh,r+s , and src denote

the source map Hg→h,d( �μ) → Mg,n, where n is the number of smooth points in the
inverse image of the branch locus. Then the following diagram is commutative:

The induced map on skeleta of the branch (resp. source) morphism factors as a
composition of the map trop� to �(H

an
g→h,d( �μ)), followed by the tropical branch

(resp. source) map, so br trop = trop� ◦ br� (resp. srctrop = trop� ◦ src�).

Note that the tautological branch morphism is toroidal: it is given analytically
locally by a dominant equivariant morphism of toric varieties. However, the source
map is not toroidal, but locally analytically given by an equivariant morphism of toric
varieties, see Definition 30 and [1, Remark 5.3.2].

It is proved in [1] that the skeleton�(M
an
g,n) is identifiedwithM

trop
g,n . In other words,

the analogue of the map trop� for Mg,n is an isomorphism. A crucial aspect of the

present work is analyzing precisely how the skeleton relates toH
trop
g→h,d( �μ), and indeed
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the naive extension of the result in loc. cit. does not hold. The map trop� records the
combinatorial data of an admissible cover. In particular, the failure of trop� to be an
isomorphism is due to two phenomena.

(A) Given a weighted dual graph �, there is a unique irreducible stratum of the
moduli space Mg,n corresponding to it. In our setting, for one combinatorial
type � = [�src → �tgt ] for a cover, there are multiple irreducible components
in the stratum inHg→h,d( �μ) having dual graph�. In particular, there aremultiple
zero strata corresponding to the same combinatorial data.

(B) The stack of admissible covers arises as the normalization of the stack of gen-
eralized Harris–Mumford coversHMg→h,d( �μ). There are multiple cones of the
skeleton �(H

an
g→h,d( �μ)) (corresponding to the multiple analytic branches at a

point of the moduli space HMg→h,d( �μ)) which all map isomorphically to the
same cone of the tropical moduli space. We discuss this in detail in Sect. 4.2.4.

All the results share two common ingredients. The first is the technology developed
in [1,30] that allows to study skeletons of toroidal compactifications of Deligne–
Mumford stacks over trivially valued fields. The second is a careful study of the
boundary stratification and deformation theory of the stack of admissible covers
from [2,22,26].

1.2 Context and motivation

Classical Hurwitz theory studies ramified maps between algebraic curves. Hurwitz
numbers count the number of covers of a genus h curve by a genus g curve, with pre-
scribed degree, ramification data, and branch points.As often is the case in enumerative
geometry, there is a tight dictionary between the enumerative data of Hurwitz numbers
and the intersection theory on the moduli spaces parameterizing Hurwitz covers.

Hurwitz spaces, which parameterize covers of smooth curves by smooth curves,
are not proper. For many applications, including enumerative geometry, it is desirable
to compactify the Hurwitz space. There are multiple approaches to compactifying this
space, each with its pros and cons. In this work we focus on the compactification by
admissible covers.

The notion of admissible coverswas first introduced byHarris andMumford in [22].
The fundamental idea is that source and target curvesmust degenerate together. Branch
points are not allowed to come together; as branch points approach, a new component
of the base curve “bubbles off”, and simultaneously the source curve splits into a nodal
curve.

The admissible covers that Harris and Mumford consider are covers of genus 0
curves, having only simple ramification—namely, such that the all ramification pro-
files are given by (2, 1, 1, . . . , 1). Their work is generalized by Mochizuki in his
thesis [26]. Mochizuki uses logarithmic geometry to understand the geometry of the
admissible cover space for covers of arbitrary genus and arbitrary ramification pro-
files. Abramovich, Corti, and Vistoli, in [2], reinterpret admissible covers using the
theory of twisted stable maps to classifying stacks BSd . A map from a curve C to the
stack BSd produces, by definition, a principal Sd bundle on C . Given such a principal

123



1280 R. Cavalieri et al.

Sd -bundle P → C , one can associate a finite étale cover of degree d, D → C , where
D = P/Sd−1. In fact, this gives an equivalence of categories between principal Sd -
bundles and finite étale covers ofC of degree d. By allowing orbifold structure at points
and nodes of C one introduces ramification over such points, and a map from the orbi-
curve to BSd corresponds to an admissible cover D → C where D = P/Sd−1. The
orbifold structure at the nodes of C is required to be balanced, which is precisely the
condition allowing thenodes to be smoothly deformed.TheAbramovich–Corti–Vistoli
stack of twisted stable maps is the normalization of the Harris–Mumford admissible
covers.

The Hurwitz enumeration problem provides deep connections between the repre-
sentation theory of the symmetric group, enumerative geometry, intersection theory
on moduli spaces, and combinatorics. For example, see [18,19,27]. Tropical Hurwitz
theory was first introduced in [12], where the case of double Hurwitz numbers for
genus 0 targets is investigated. Further steps in the theory of tropical Hurwitz covers
have since been made by Bertrand et al. [7], and by Buchholz and Markwig [9].

At the base of any successful application of tropicalmethods to enumerative geome-
try are so-called correspondence theorems, which establish equality between classical
and tropical enumerative invariants. The first instance of such a result was demon-
strated by Mikhalkin [25], in his study of the Gromov–Witten invariants of toric
surfaces. His correspondence result follows from a direct bijection between the set of
algebraic curves satisfying fixed incidence conditions and the (weighted) set of corre-
sponding tropical curves. Subsequent breakthroughs in tropical enumerative geometry
have shared this feature of establishing direct set-theoretic bijections between the trop-
ical and classical objects. Enumerative invariants often represent degree zero Chow
cycles on a natural moduli space, and traditional correspondence theorems do not
link the classical and tropical problems at the level of moduli spaces. Tropical moduli
spaces and their intersection theory have been studied in order to express tropical
enumerative invariants, analogously to the algebraic setting, as intersection products
on a suitable moduli space [17]. In light of this, it is natural to seek an understanding
of the equality of classical and tropical enumerative invariants at the level of moduli
spaces.

In this paper, we present the first instance of such a result, by equating classical
Hurwitz numberswith tropical ones.We do so by appealing tomachinery of Berkovich
analytic spaces. The zero cycles representing Hurwitz numbers are obtained as the
degree of a naturally defined branch morphism on an appropriate compactification of
the Hurwitz space, namely the stack of admissible covers. This recovers previously
known results on double Hurwitz numbers [12]. The present framework also applies
equally well to more general settings, such as higher genus targets, and arbitrary
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ramification profiles. In particular, we can also reprove the general correspondence
theorem for tropical Hurwitz numbers from [7] at the level of moduli spaces.

Ourmethod for comparing classical and tropicalmoduli spaces of admissible covers
follows closely the work of Abramovich et al. [1] on the moduli space of curves.
The moduli space of genus g tropical curves, roughly speaking, parametrizes vertex
weighted metric graphs of a given genus [8,10,15]. This moduli space bears some
striking similarities to the moduli space of genus g Deligne–Mumford stable curves.
The spaces share the same dimension, and have similar stratifications. These analogies
are put on firm ground by realizing the space M

trop
g,n as a skeleton of the Berkovich

analytification of the stack Mg,n . The relationship between Mg,n and M
trop
g,n is not

unlike the relationship between a toric variety and its fan. This intuition ismade precise
by using a natural toroidal structure ofMg,n to obtain a skeleton ofM

an
g,n . Abramovich,

Caporaso, and Payne developed techniques, building on work of Thuillier [30], to
construct the skeleton of the analytification of any toroidal Deligne–Mumford stack,
and relate it to the cone complex naturally associated to the toroidal embedding [23].
As stacks of admissible covers are smooth with a toroidal structure induced by the
normal crossing boundary, these techniques apply directly to our setting.

The study of Hurwitz numbers of P1 has also interacted fruitfully with the theory
of stable maps and Gromov–Witten invariants of P1. In fact, the moduli space of Hur-
witz covers sits inside the moduli space of degree d relative stable maps to P1, relative
to the (special) branch divisor. Applying techniques of Gromov–Witten theory such
as Atyiah–Bott localization connected Hurwitz numbers to the tautological intersec-
tion theory on the moduli space of curves: the ELSV formula [16,20], which gives
a precise equality between simple Hurwitz numbers and one part Hodge integrals,
has been a key ingredient in Okounkov and Pandharipande’s proof [28] of Witten’s
Conjecture/Kontsevich’s Theorem.

In [12], the first and second authors, together with Paul Johnson, constructed and
studied a tropical analogue of the Gromov–Witten moduli stack of stable maps to
P
1, relative to a two-point special branch divisor. The corresponding classical moduli

space is a singular, non-equidimensional stack, and does not afford a direct application
of the techniques of Abramovich, Caporaso, and Payne.

The space of relative stablemaps can be seen as a “hybrid” theory, between admissi-
ble covers and (absolute) stable maps. More precisely, admissible covers is a theory of
relative stablemapswhen the entire branch divisor on the target curves is made relative
(and it is allowed to “move”). The admissible cover compactification of the Hurwitz
scheme admits a rational map to the relative stable map space which is dominant on
the main (expected dimensional) component. As a result, we see the study of admis-
sible covers as a natural first step towards a functorial and geometric understanding
of tropical relative Gromov–Witten theory.

2 Combinatorial constructions

A unifying feature of the numerous instances of tropicalization is that they associate
combinatorial and polyhedral structures to algebraic varieties. Examples of these are
finite andmetric graphs, cones, fans, and polyhedral complexes. Often, these structures
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are finite approximations to an appropriate Berkovich analytic space. In this section
we briefly recall the concepts relevant to this work.

2.1 Dual graphs

If C is a nodal curve, one may associate a vertex weighted dual graph or simply dual
graph �C as follows:

(i) the vertices of �C are the irreducible components of C ;
(ii) the edges of �C are the nodes of C ; an edge e is incident to a vertex v if the node

associated to e is contained in the component corresponding to v;
(iii) a vertex v is given a weight g(v), equal to the geometric genus of the component

corresponding to v.

If C is a pointed curve, with marked points p1, . . . , pn , then we add an infinite edge
for each pi , incident to the vertex whose component contains pi . We say that a dual
graph is totally degenerate if all vertices carry genus 0.

We call a dual graph stable if a nodal curve having that dual graph is stable. In other
words, all genus 0 vertices must be at least trivalent (counting infinite edges), and all
genus 1 vertices must be incident to an edge. Notice that loops and multiple edges are
allowed, and a loop contributes two to the valence of its adjacent vertex.

2.2 Tropical curves and morphisms

For our purposes, an n-pointed tropical curve is essentially a metrization of the dual
graph of an n-pointed nodal curve, where edges corresponding to marked points are
metrized as R>0 ∪ {∞}, and the metric must be singular at the ends of these infi-
nite edges. We sometimes refer to edges corresponding to nodes as interior edges to
distinguish them from infinite edges (Fig. 1).

In other words, a finite metric graph � is a compact 1-dimensional topological
space, locally homeomorphic to Sr , the “star with r branches”. Furthermore, there are
only finitely many points of � at which r �= 2. This unique integer r at each point is
called the valence of the point. The set of tangent directions at p ∈ � is defined as

Tp� := lim−→
U0

π0(Up\p),

where the limit is taken over neighborhoods of p homeomorphic to a star with r
branches. A tangent direction may be thought of as a germ of an edge. The size of this
set equals the valence of p.

Fig. 1 A tropical 3-pointed curve of genus 3, with two interior edges. Unmarked vertex weights are 0.
Lengths of interior edges are 1
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A tropical curve � is a connected metric graph with a weighting g : � → Z≥0,
which is zero outside finitely many points of �. This weight g(p) should be thought
of as the genus of a virtual algebraic curve lying above p. (This intuition can be made
concrete in terms of metrized complexes of curves and Berkovich skeleta, in the sense
of [4].) The genus of a graph � is given by

g(�) = h1(�) +
∑

p∈�

g(p).

Throughout the text, we consider n-pointed tropical curves, i.e. tropical curves with n
marked infinite edges. An (n-pointed) tropical curve is stable if every genus 0 vertex
is at least trivalent.

One can associate to any (pointed) tropical curve � a finite graph, which we refer
to as a combinatorial type, by taking its minimal finite graph model. That is, we take
the vertices to be those points of valence different from 2, or whose genus is nonzero.
The edges are formed in the obvious way. Conversely, given a combinatorial type, a
metrization is an assignment of lengths to the edges. Infinite edges are metrized as
[0,∞].

2.2.1 Harmonic morphisms of tropical curves

Let ϕ : �′ → � be a morphism of metric graphs, such that the restriction of ϕ to an
edge is affine linear. For an edge e′ of �′, the expansion factor along e′ of ϕ is defined
to be the ratio of lengths l(ϕ(e′))/ l(e′) and it is required to be an integer. We denote
this number de′(ϕ) and also call it the slope of ϕ along e′. We also fix slopes de′(ϕ)

for along each infinite edge e′.
A morphism of tropical curves is a harmonic morphism between the underlying

metric graphs with integer affine slopes, in the sense of [4, Section 1]. We recall that
a morphism ϕ as above is harmonic at p′ if for each tangent direction e ∈ Tϕ(p′)�,
the number

dp′(ϕ) :=
∑

e′∈Tp′�′
e′ �→e

de′(ϕ), (3)

is independent of e. In other words, the sum of outgoing expansion factors at p′
along tangent directions mapping to a chosen tangent direction e is independent of e.
The morphism ϕ is harmonic if it is surjective and harmonic at all points of �′ (i.e.
non-constant).

The integer dp′(ϕ) is called the local degree of ϕ at p′. Note that a harmonic
morphism has itself a degree, defined to be, for any vertex p in the base graph, the
sum of the local degrees of ϕ for all vertices p′ mapping to p.

Example 5 Consider the non-harmonic morphism depicted in Fig. 2. Observe that on
one side of the central vertex in the target, the sum of degrees mapping to it is 5, while
on the other side, it is 4. In particular, there is no well defined notion of degree for
such a map.
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Fig. 2 Depicted on the left is a non-harmonic morphism of graphs, and on the right a harmonic morphism.
Thenumbers on the source graph indicate the expansion factors along the corresponding edge.Themorphism
on the left is not harmonic in a neighborhood of the central vertex

2.3 Cones and cone complexes

A polyhedral cone with integral structure is a pair (σ, M) consisting of a topological
space σ , together with a finitely generated abelian group M of continuous real valued
functions on σ , such that the natural map σ → Hom(M,R) is a homeomorphism
onto a (strictly convex) polyhedral cone. We only consider rational cones, i.e. cones
whose image is rational with respect to the dual lattice Hom(M,Z). A good example
to have in mind is the cone defining an affine toric variety, where M is the character
lattice of the dense torus.

Let σ be a cone. The dual monoid Sσ of σ consists of those functions f ∈ M that
are nonnegative on σ . We can recover the original cone from its dual monoid as

σ = Hom(Sσ ,R≥0),

where R≥0 is taken with its usual additive monoid structure. The associated extended
cone is

σ = Hom(Sσ ,R≥0 ∪ {∞}).

Every cone (resp. extended cone) inherits a topology by realizing it as a subspace
of the space RSσ≥0 (resp. the space (R≥0 � {∞})Sσ ).

A (rational polyhedral) cone complex is a topological space obtained from a finite
disjoint union of polyhedral cones with integral structures, by gluing cones along
isomorphic faces.

Fans are of course examples of cone complexes. We remark however that, in a cone
complex, the intersection of cones is allowed to be a union of faces, rather than a single
face of each. Additionally, a cone complex makes no reference to an abstract vector
space in which it is embedded. See [23] for further details. Extended cone complexes
are obtained analogously from extended cones.

A useful tool for us is the process of barycentric subdivision. The barycenter of a
cone σ is the ray in its interior spanned by the sum of the primitive generators of the
one-dimensional faces of σ . The barycentric subdivision of a cone complex � is the
iterated stellar subdivision of cones in �, in decreasing order of dimension. A more
elegant, if less concrete, definition of the barycentric subdivision is that it is obtained
as the poset of chains in the face poset of �, ordered by inclusion. The following
proposition is often useful.
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Proposition 6 ([3]) Let � be any cone complex. Then the barycentric subdivision of
� is isomorphic to a simplicial fan.

A face morphism is a morphism between cone complexes such that every cone
maps isomorphically onto a cone in the image.

Definition 7 A generalized cone complex is an arbitrary finite colimit of cones σi and
face morphisms ψi ,

� = lim−→(σi , ψi ).

These more general objects are built to allow these additional operations: gluing
two isomorphic faces of a single cone, and taking quotients of cones by a group of
automorphisms.

Here, generalized cone complexes appear as Berkovich skeleta of moduli spaces
of admissible covers, resp. as the corresponding tropical moduli spaces.

3 Classical and tropical admissible covers

3.1 Classical admissible covers and their moduli

Let (C, p1, . . . , pn) be a genus g n-pointed stable nodal curve.

Definition 8 An admissible cover π : D → C of degree d is a finite morphism of
pointed curves such that:

(i) The map π restricted to the complement of the inverse image of the marked
points and nodes is étale of constant degree d.

(ii) All inverse images of marked points of C are marked in D.
(iii) The set of nodes of D is precisely the preimage under π of the set of nodes of C .
(iv) Over a node, étale locally, D, C and π are described by

D : y1y2 = a

C : x1x2 = a


π : x1 = y

1, x2 = y


2 .

for some positive integer 
 ≤ d.

Remark 9 Intuitively, condition (i) means the branch locus of π is contained in the
union ofmarked points and nodes ofC . Condition (ii) spells that wewant to distinguish
the inverse images of each branch point: given a branch point, the markings of its
inverse images tell apart points with the same ramification index. Condition (iii) and
(iv) amount to saying that nodal covers arise as limit of covers of smooth curves where
source and target degenerate simultaneously. In particular we have a natural kissing
condition: if π is lifted to π̃ on the normalizations of D and C, then for each node of
D, the ramification indices of π̃ at the two points lying above the node coincide.
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There are several slight variations of moduli spaces of admissible covers. For
instance, the base curve can be fixed, or allowed to vary in moduli. Fixing both the
base curve and the branch locus, the moduli space becomes zero dimensional; the
degree of the fundamental class is called a Hurwitz number.

Fix a vector of partitions �μ = (μ1, . . . , μr ) of an integer d > 0.

Definition 10 Fix (r + s) points p1, . . . , pr , q1, . . . , qs on a smooth genus h curve
C . The Hurwitz number, denoted hg→h,d( �μ), is the weighted number of degree d
covers [π : D → C] such that π is unramified over the complement of {pi , q j }i, j ,
with ramification profile μi over pi and simple ramification over q j . Each cover is
weighted by 1/|Aut (π)|.

Notice that we mark all the preimages of branch points, this convention simplifies
combinatorial aspects in the tropical version.

Example 11 Here are some examples of Hurwitz numbers.

h0→0,d((d), (d)) = 1

d

h1→0,2 = 1

2
(all ramification is simple)

h1→0,4((2, 2), (4)) = 14 · 2 · 23.

The first two numbers are easily computed by counting monodromy representations
([14]). For an example computation of the third number via monodromy graphs,
see [12, Example 4.5]. We have a factor of 2 because we mark the two points giving
the profile (2, 2), contrary to [12], and a factor of 23 because the unramified inverse
images above each branch point are also marked.

The space of admissible covers is in general a non-normal stack, however
the normalization is always smooth. A modular interpretation of the normaliza-
tion as the stack of twisted stable maps to the classifying stack BSd was given
by Abramovich, Corti and Vistoli in [2]. Considering partitions of d as labelling
connected components of the inertia stack of BSd , the space ACVg→h,d( �μ) is
the component of the stack Mh,r+s(BSd , 0) identified by the inertial conditions∏r

i=1 ev
∗
i (μi )

∏s
i=1 ev

∗
r+i ((2, 1

d−2)). The number s of Z/2 twisted points pulling
back the class of a transposition is related to g via the Riemann–Hurwitz formula. We
provided a precise statement for the benefit of readers who are already familiar with
this language: however we will not make use of this language in any sophisticated
way.

Definition 12 We denote by Hg→h,d( �μ) the cover of ACVg→h,d( �μ) obtained by
marking the inverse images of all marked points in the corresponding admissible
covers. The coarse objects parameterized are admissible covers of degree d of a genus
h curvewith (r+s)marked branch points (p1, . . . , pr , q1, . . . , qs), by curves of genus
g, having ramification profiles μi over pi and simple ramification over qi (and no
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further ramification). Denote by Hg→h,d( �μ) the open substack parametrizing covers
whose source and target are smooth curves.

Remark 13 We refer to the normalized stack as the stack of admissible covers. When
we need to specifically point our attention to theHarris–Mumford spaces of admissible
covers, we explicitly say so and denote this stack byHMg→h,d( �μ). The open parts of
these moduli spaces coincide, that is, HMg→h,d( �μ) ∼= Hg→h,d( �μ). In other words,
the non-normality manifests in how boundary strata intersect. We will witness this
non-normality (as well as why the normalization is smooth) when we study the local
rings of these moduli spaces in Sect. 4.2.2.

Convention 14 The number s always denotes the number of simple branch points,
the number h the genus of the base curve. To avoid burdensome notation, we suppress
h and s and use Hg,d( �μ) to denote our moduli space, with the understanding that h
may be arbitrarily chosen but is fixed, and s is determined by the Riemann–Hurwitz
formula.

3.1.1 Toroidal embeddings

A toroidal scheme is a pair U ↪→ X which “locally analytically” looks like the
inclusion of the dense torus into a toric variety. That is, at every point p ∈ X , there is an
étale (or formal) neighborhood ϕ : V → X , which admits an étale map ψ : V → Vσ

to an affine toric variety, such that

ψ−1T = ϕ−1U,

where T is the dense open torus.
LetX be a Deligne–Mumford stack over a field, with coarse space X . LetU ⊂ X

be an open substack. For any morphism from a scheme h : V → X , denoteUV ⊂ V
the pre-image of U in V .

Definition 15 The inclusionU ↪→ X is a toroidal embedding of Deligne–Mumford
stacks if, for every morphism from a scheme V → X , the inclusion UV ↪→ V is a
toroidal embedding of schemes.

Toric varieties are obvious examples of toroidal embeddings. Another relevant
example is the inclusion of the complement of a normal crossings divisor, (X−D) ↪→
X . In fact, in this case, all local toric models can be taken to be affine spaces. The
moduli space of stable pointed curves,Mg,n is hence an example of a toroidal Deligne–
Mumford stack, since the boundaryMg,n\Mg,n is a divisor with normal crossings. If
in addition g = 0, the boundary divisor has strict normal crossings (i.e. the irreducible
components have no self intersections). Similarly, the stack Hg,d( �μ) is a smooth
Deligne–Mumford stack, and the boundaryHg,d( �μ)\Hg,d( �μ) is a divisor with normal
crossings, allowing us to apply the techniques developed by Abramovich, Caporaso,
and Payne in this setting. For admissible covers as well, if h = 0, the boundary divisor
has strict normal crossings.
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3.2 Tropical admissible covers and their moduli

3.2.1 Dual graphs of covers

Just as one can associate a dual graph to any nodal pointed curve, given an admis-
sible cover, we can associate to it the dual graphs of source and target, and a map
between them. This map is a well defined morphism of graphs by the axioms placed
on admissible covers.

Irreducible components map to irreducible components, marked points map to
marked points, and nodes map to nodes, inducing maps on vertices, infinite edges,
and edges, respectively. Note that no edges are contracted in the map of graphs, since
nodes map to nodes in an admissible cover.

Source and target curves Take the dual graph of the source and target curves in
the above sense. Call these graphs �src and �tgt respectively. Recall here that all
branch and ramification points are marked.
The map For an admissible cover, a component of the source maps onto precisely
one component of the target, yielding a map of vertices. Since nodes map to nodes,
edges map to edges.
Ramification We mark edges of �src with integers recording the ramification at
the corresponding node or marked point of the source curve. That is, if an edge
ẽ of �src maps to an edge e of �tgt , this corresponds to a special point p̃ of the
source curve mapping to a special point p of the target. We decorate ẽ with the
ramification index of the map at p̃.

3.2.2 Tropical admissible covers

We now recall the notion of a tropical admissible cover, slightly adapting Caporaso’s
definition in [11, Section 2]. We wish to study covers of genus g tropical curves, with
prescribed ramification data over r points and simple ramification over the remaining
s points. We say that a map of tropical curves satisfies the local Riemann–Hurwitz
condition if, when v′ �→ v with local degree d, then

2 − 2g(v′) = d(2 − 2g(v)) −
∑

(me′ − 1),

where e′ ranges over edges incident to v′, and me′ is the expansion factor of the
morphism along e′.

Definition 16 AHurwitz cover of a tropical curve is a harmonicmap of tropical curves
that satisfies the local Riemann–Hurwitz equation at every point.

3.2.3 Constructing the tropical moduli space: fixed combinatorial type

Throughout this subsection, we fix a degree d > 0 and vector of partitions of d
denoted �μ = (μ1, . . . , μr ). Let 
(μi ) denote the number of parts of the i th partition.
Furthermore fix two integers g and h which are to be the genera of the source and
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Fig. 3 A combinatorial type in the space H
trop
1→0,4((4), (2, 2)) representing a top dimensional stratum.

Vertices are undecorated to mean that their genus is 0. The markings of the infinite edges are not depicted
to avoid an overburdened figure. Edges of the top graph are decorated with their expansion factor. Note that
the local degree of the map at the leftmost vertex is 4, whereas at all other vertices is 2

target curve respectively. The Riemann–Hurwitz formula determines a number of
simple branch points for a curve with ramification profile �μ, and we let s be this
number. Finally, fix n = ∑

i 
(μ
i ) + s(d − 1).

Wewill nowconstruct a tropicalHurwitz spaceHtrop
g,d ( �μ) of degree d tropical covers

of genus h (r + s)-marked curves by genus g, n-marked curves, having ramification
profiles over the i th marked point given by the partition μi . This construction is a
variation on the procedure used in [1], which we briefly outline.

A combinatorial type � of a tropical admissible cover is the data of a tropical
admissible cover without the metric, as illustrated in Fig. 3. That is, � consists of
a morphism of finite graphs, together with a decoration of the edges of the source
with integers recording the expansion factors. Such decoration makes the morphism
harmonic. If �src → �tgt is a tropical admissible cover, we denote the associated
combinatorial type by [�src → �tgt ]. If e′ is an edge of the finite graph �src, we
denote by de′ the expansion factor on the metrized edge corresponding to e′, on any
tropical admissible cover of type �. When we wish to speak of a combinatorial type
without reference to the tropical cover that it came from, we refer to the type as a
combinatorial admissible cover. A metrization of the base graph fully determines the
tropical Hurwitz cover, as we see in the next lemma.

Lemma 17 Let� = [�src → �tgt ] be a combinatorial type for a tropical admissible
cover. Given ametrization 
 : E(�tgt ) → R≥0�{∞}, there exists a uniquemetrization
of �src making the resulting map an admissible cover of combinatorial type �.

Proof Let e′ be an edge of �src mapping to an edge e of �tgt . The type � carries
the datum of an expansion factor de′ on e. If 
(e) is the length of the edge e, then

(e′) = 
(e)/de′ is the unique length on e′ that makes the resulting map piecewise
linear of expansion factor de′ . Themaps on each edges glue, and satisfy the harmonicity
condition by virtue of � being a combinatorial type. ��
Definition 18 Let � = [θ : �src → �tgt ] be a combinatorial type for an admissible
cover. Then an automorphismof� is the data of a commuting square of automorphisms
of base and target
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where ϕsrc and ϕtgt are automorphisms, and ϕsrc is required to preserve expansion
factors on edges. That is, for any edge e′ ∈ �src, we have de′ = dϕ(e′).

We use Aut (�) to denote the (finite) group of automorphisms of �. We denote by
Aut0(�) the subgroup of Aut (�) where ϕtgt is the identity, that is, automorphisms
of �src which cover the identity map.

3.2.4 Hurwitz existence and local Hurwitz numbers

Let� = [θ : �src → �tgt ]be a combinatorial type for an admissible cover.Associated
to a vertex ṽ of �src, are local Hurwitz numbers. That is, for every ṽ ∈ θ−1(v), there
is a Hurwitz number hg→h,d( �μ). Here, g is the genus of ṽ, h is the genus of v, d
is the local degree of θ at v, and �μ is given by the expansion factors along tangent
directions at ṽ.We pause to note that such a local Hurwitz number can be zero. Finding
a characterization of when discrete invariants compatible with the Riemann–Hurwitz
equation give rise to a non-zero Hurwitz number is an open problem referred to as
the Hurwitz existence problem. It is sometimes convenient to study all local Hurwitz
numbers for vertices above a given vertex simultaneously. We denote by H(v) the
product of all local Hurwitz numbers over vertices lying above v.

Let B be the number of interior edges of the target curve of �. By Lemma 17,
a cover in this combinatorial type is determined by a choice of length in R≥0 for
each edge. Denote by σ� = (R≥0)

B . The moduli space Htrop
� parametrizing covers

with combinatorial type � is defined to be σ�/Aut (�). Denote by σ� the canonical
compactification (R≥0 ∪ +∞)B . The extended cone H

trop
� is the quotient of σ� by

Aut (�). We only consider cones such that H(v) is nonzero for all vertices v in �tgt .

3.2.5 Constructing the tropical moduli space: graph contractions and gluing

Aweighted graph contraction of� is a composition of edge contractions of the underly-
ing graph α : � → �̂, endowed with a canonical genus function, g�̂(v) = g�(α−1v).

Proposition 19 Given a combinatorial admissible cover θ : Gsrc → Gtgt , a graph
contraction Gtgt → Ĝtgt induces a graph contraction Ĝsrc of Gsrc, together with a
combinatorial admissible cover Ĝsrc → Ĝtgt .

Proof It suffices to prove the proposition for a single edge contraction Gtgt → Ĝtgt ,
contracting e. Define the contraction Gsrc → Ĝsrc by contracting every edge e′
that maps to e. The graph Ĝsrc inherits a canonical genus function as above. Define
θ̂ : Ĝsrc → Ĝtgt as follows. For a vertex v̂ of Ĝsrc, let v be any lift of v under the
map V (Gsrc) → V (Ĝsrc). Define θ̂ (̂v) to be the image of v under the composite
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Gsrc → Gtgt → Ĝtgt .

It is clear that this map is well defined. An edge of Ĝsrc corresponds to a unique edge
of Gsrc and thus determines a map of graphs θ̂ : Ĝsrc → Ĝtgt . The expansion factors
on Ĝsrc coincide with the expansion factors of the corresponding edges on Gsrc. The
result follows.

In other words, contractions of covers are fully determined by contractions of their
target graphs.

Let � = [θ : �src → �tgt ] be a combinatorial type of tropical admissible covers,
such that H(v) is nonzero for all v ∈ �tgt . Every automorphism of the combinatorial
type� determines an automorphism of the associated cone σ�. Moreover, every graph
contraction of combinatorial types � → �′ determines a map of cones σ�′ → σ�.
It is clear that ranging over � as above, this forms a directed system of topological
cones with integral structure.

The moduli space of tropical admissible covers is constructed as the topological
colimit

H
trop
g,d ( �μ) = lim−→(σ�, jω),

where� ranges over the combinatorial types, and jω is a contraction of combinatorial
types or an automorphism of types. After performing a barycentric subdivision, the
space Htrop

g,d ( �μ) inherits the structure of a cone complex with integral structure. The

extended cones σ� are glued similarly to obtainH
trop
g,d ( �μ), which naturally carries an

extended cone complex structure.

3.2.6 Automorphisms and weights on combinatorial types

A stable tropical curve with no loop edges generically has no automorphisms, since
generic edge lengths are distinct, and automorphisms are required to be isometries.
However, an admissible cover may have automorphisms generically, and act trivially
on ageneralized coneof themoduli space. Take for instance the cover depicted inFig. 4.
These automorphisms become relevantwhenwe extract enumerative information from
the degree of the branch map.

Remark 20 Recall that such automorphisms are familiar in the classical setting. The
hyperelliptic locus ofMg can be understood as the spaceHg→0,2((2), . . . , (2)), which
is the stack quotient of M0,2g+2 by the trivial Z/2 action. Here, the Z/2 is naturally
seen as acting on the covering curve, c.f. Fig. 5.

Remark 21 (Interpretation of the compactification) A compactification M
trop
g,n is

obtained from M
trop
g,n by allowing edge lengths of interior edges to become infinity.

This idea has a nice interpretation in terms of analytifications of curves. A skeleton of
a curve over a valued field which has an internal edge of infinite length corresponds
to a marked semistable model for that curve which has nodal generic fiber. In fact, the
generic fiber of a semistable model is singular if and only if the associated skeleton
has an infinite internal edge. See [5, Section 5] and [6, Section 1.4] for details (Fig. 6).

123



1292 R. Cavalieri et al.

Fig. 4 A combinatorial type and its associated cone. Undecorated internal edges of the top graph all have
expansion factor 1.The 2–1 map to the base identifies the top pair of interior edges, and the bottom pair
of interior edges. There is an effective Z/2 group of automorphism switching the two interior edges of
the bottom graph, and a (Z/2)2 worth of automorphisms acting trivially on the cone, corresponding to
switching pairs of interior edges in the top graph mapping to the same edge. The dashed line on the left
indicates folding from the automorphisms on the target

Fig. 5 A degree 2 cover. The
map identifies both finite edges
in the source to the unique edge
in the target. The involution acts
trivially on the one dimensional
cone parameterizing metrization
of the target edge

Fig. 6 An interior infinite edge, topologized as two infinite edges with the points at infinity identified

In identical fashion, we obtain a compactification of the tropical Hurwitz space of
tropical admissible covers, by allowing edges of the base, and the edges mapping to
it, to tend to infinity. This is precisely the space H

trop
g,d ( �μ).

The construction of Abramovich, Caporaso and Payne involves taking a colimit
of cone complexes in the category of topological spaces and not in the category of
topological stacks. As a consequence, we need to explicitly remember the data of
stabilizers in our enumerative calculations.

Definition 22 Let� be a combinatorial type.Wedefine itsweightω(�) as the product
of:

(W1) A factor of 1
|Aut0(�)| .

(W2) A factor of local Hurwitz numbers
∏

v∈�tgt
H(v).

(W3) A factor of M = ∏
e∈E(�tgt )

Me, where Me is the product of the expansion
factors above the edge e, divided by their LCM.

Remark 23 With apologies for some unavoidable forward-referencing, let us briefly
motivatewhere theseweight factors arise in our theory.While (W1)−(W3) are defined
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in terms of combinatorics of the tropical covers, they have natural counterparts in the
classical theory of admissible covers. Weight (W1) accounts for automorphisms of
covers lifting the identity map on the target curve. We emphasize that by construction,
these automorphisms act trivially on the space of tropical covers. Term (W2) encodes
the fact that there may be multiple zero dimensional strata inHg,d( �μ) which have the
same dual graph. The map

trop� : �(H
an
g→h,d( �μ)) → H

trop
g→h,d( �μ),

defined in Theorem 1 identifies the distinct generalized cones of �(H
an
g,d( �μ)) with a

given dual graph to a single generalized cone inHtrop
g,d ( �μ). See Sect. 4.2.4.

Finally (W3) can be thought of either as “ghost automorphisms” coming from the
orbifold structure on a twisted cover [2]. That is, it accounts for the fact that there one
may place orbifold structure on an untwisted admissible cover in different ways. It
may also be seen as arising from the normalization of the Harris–Mumford admissible
cover space. We discuss this further in Sect. 4.2.4, after discussing the deformation
theory ofHg,d( �μ). (W3) is also the generalization of the index of the matrix of “length
constraint equations” studied in [9,12].

3.3 Skeleta of toroidal embeddings

Associated to any toroidal embedding U ↪→ X is a cone complex with integral
structure which we refer to as the skeleton �(X). The idea is that locally analytically
near a point x , X looks like an affine toric varietyVσ . Thus,we canbuild a cone complex
from these cones σ . The key difference between fans and abstract cone complexes is
that abstract cone complexes do not come with a natural embedding into a vector
space. In the case that the toroidal embedding is a toric variety, this cone complex is
precisely the fan. It is worth observing though that unlike a toric variety, where the
fan determines the variety, the cone complex �(X) is far from determining X .

For our purposes, the most important example of a toroidal embedding is the inclu-
sion of the complement of a divisor with normal crossings, and we now explore this.
Let X be a normal scheme of dimension n. IfU ↪→ X is given by the complement of a
divisor with (not necessarily strict) normal crossings, then there is a natural stratifica-
tion on X . That is, the 0-strata are the n-fold intersections of divisors Di , the 1-strata
are the (n−1)-fold intersections and so on. The top dimensional stratum isU . Consider
a zero stratum x ∈ X . A formal neighborhood of x looks like n hyperplanes meeting
at x . Locally near x , up to scaling, we obtain defining equations of these hyperplanes,
say f1, . . . , fn . These equations yield a system of formal local monomial coordinates
near x . The completion of the local ring at x is the coordinate ring of a formal affine
space. The cone associated to this point is the standard cone for the toric variety A

n .
Call this cone σ . For a 1-stratumW , we get (n−1) defining equations, giving a formal
system of coordinates for an (n − 1) dimensional affine space. The cone associated
to W is the standard cone for An−1. Call this cone τ . Moreover, if x ∈ W , then the
associated cone complex naturally identifies τ as a face of σ . This construction gen-
eralizes in the natural way, and the cones assemble into a cone complex �(X). This
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yields an order reversing bijection between strata of the toroidal scheme X and cones
of the cone complex �(X).

In [30], Thuillier shows that this cone complex lives naturally inside the Berkovich
analytification of X . More precisely, given a toroidal embedding U ↪→ X with X
proper, he constructs a continuous (non-analytic) self-map of the Berkovich analytifi-
cation of X ,

pX : Xan → Xan .

For non-proper but separated X , the identical statement holds, upon replacing Xan

with Thuillier’s analytic formal fiber X�.

Definition 24 The image of pX is the skeleton of X , denoted �(X). The map pX is
referred to as the retraction to the skeleton.

The crucial fact for our purposes is the existence of such a map and its properties.
For an explicit realization in coordinates, see [1, Section 5.2]. Abramovich, Caporaso,
and Payne extend this construction to toroidal compactifications of Deligne–Mumford
stacks, and produce a generalized (extended) cone complex and a retraction from the
Berkovich analytification. We briefly describe the construction of the cone complex
here. A detailed discussion of this retraction map in the setting of log structures may
also be found in [31].

3.3.1 Local toric models

A toroidal schemeU ↪→ X is described in a formal neighborhood of every point x ∈ X
by a toric chart Vσ . The cone σ is described as follows. Let M be the group of Cartier
divisors supported on the complement of U . Let M+ be the submonoid of effective
Cartier divisors. Then the cone σ is identified with the space of homomorphisms to
the (additively written) monoid R≥0,

Hom(M+,R≥0),

equippedwith the natural structure of a rational polyhedral conewith integral structure.
In the language of logarithmic geometry, sheafifying M+ produces the characteristic
monoid sheaf, and M produces the characteristic abelian sheaf. The connections
between tropical geometry and log geometry have been explored by Gross and
Siebert [21, Appendix B], and Ulirsch, see [31].

4 Tropicalization of the moduli space of admissible covers

4.1 Abstract tropicalization for admissible covers

In this section we describe an abstract tropicalization for admissible covers. The fol-
lowing tropicalization map—which we denote trop, is obtained in direct analogy with
the moduli space of curves, discussed in [1].
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Let H
an
g,d( �μ) denote the Berkovich analytification of Hg,d( �μ). A point [D → C]

ofH
an
g,d( �μ) is represented by an admissible cover over Spec(K ), where K is a valued

field extension of C. By properness of the stackHg,d( �μ), after ramified base change,
the map extends uniquely to a family of curves over Spec(R), where R is a rank 1
valuation ring with valuation val(−). Let [�D → �C ] be the associated morphism
of dual graphs of the special fibers. This morphism is well defined by the axioms
placed on admissible covers. The ramification data of the admissible cover determines
the expansion factors on all edges, therefore, we obtain a tropical admissible cover by
metrizing these dual graphs. Let e be an edge of�C corresponding to a node q. Choose
an étale neighborhood of the node at q. The local equation is given by x1x2 = f . We
metrize the edge e as [0, val( f )]. Note that an edge is metrized with length ∞ when
f = 0. The analytification of the boundary ofH

an
g,d( �μ) parametrizes families of covers

over a valuation ring whose generic fiber is a map of nodal curves.

Definition 25 Let [D → C] be a point of H
an
g,d( �μ). With the notation above, we

define the map

trop : Han
g,d( �μ) → H

trop
g,d ( �μ)

[D → C] �→ [�D → �C ].

The map trop naturally restricts to the open moduli spaces to give a mapHan
g,d( �μ) →

H
trop
g,d ( �μ).

Given a family of admissible covers [π : D → C] over Spec(K ) where K is a
rank-1 valued field extending C, we have defined the associated tropical admissible
cover in terms of models. Instead, one may work with the analytic curves themselves.

In what follows, we freely use the language of semistable vertex sets from [5]. Let
[π : D → C] be as above, with associated tropical cover [π trop : �D → �C ].
Proposition 26 There exist embeddings σD : �D ↪→ Dan and σC : �C ↪→ Can such
that the image of σD (resp. σC ) is a strong deformation retract of the analytic curve
Dan (resp. Can). Moreover, the restriction of πan : Dan → Can to �D coincides with
the map π trop : �D → �C . That is, the following diagram commutes

Proof After a ramified base change, [π : D → C] extends to an admissible cover
of marked semistable R-curves D → C . Here, R is a rank-1 valuation ring with
residue field k = C. From [5, Section 5], the marked models D and C determine
semistable vertex decompositions for the analytic curves Dan and Can respectively.
Every component of Dk maps onto a component of Ck . Since the ramification points
are all marked, the result now follows from [4, Section 4]. ��
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Given a stable tropical curve �, there always exists a marked model C over a
rank-1 valuation ring, such that the metrized dual graph of C is �. The situation
for admissible covers is more complicated, but still controllable, as exhibited by the
following proposition.

Proposition 27 Let � be a combinatorial type for a tropical admissible cover, and
�src → �tgt be a metrization of �, with �tgt a totally degenerate, trivalent tropical
curve. Then, �src → �tgt arises as the skeleton of an admissible cover of curves if
and only if for all v ∈ �tgt , H(v) �= 0.

Proof It is clear that there exists an admissible cover over C whose dual graph has
combinatorial type � precisely when H(v) �= 0. The rest follows from the simulta-
neous smoothing theorem for metrized complexes in [4, Theorem B]. ��

Thus, if all ramification is marked, and the target graph is trivalent and totally
degenerate, these local Hurwitz numbers encode the number of ways in which a
morphism of metric graphs may be promoted to a morphism of nodal curves (or
metrized complexes).

4.2 Functorial tropicalization for the stack of admissible covers

In [1], it is shown that there is a generalized extended cone complex that is functorially
associated to any toroidal compactificationof aDeligne–Mumford stack,which lives as
a retract of the Berkovich analytification. To describe the construction in our specific
case, we first recall some facts about the deformation theory of admissible covers.
Along the way we gather facts which will be useful in studying the tautological maps
onH

trop
g→h,d( �μ).

4.2.1 Deformation spaces I: an example

We analyze the completed local rings of points of the moduli space Hg→h,d( �μ) by
explicitly normalizing the local rings of the Harris–Mumford stack HMg→h,d( �μ).

To aid the reader, we begin with a toy example that illustrates the key features of
the general case. Let [D → C] be an admissible cover inHMg→h,d( �μ). Assume that
[D → C] has no automorphisms. Let z be a node of C and assume that there are two
nodes z̃1, z̃2 above z, with ramification 2 and 3 respectively. Let ξ be the deformation
parameter of the node z, and let ξ̃1 and ξ̃2 be the deformation parameters of the nodes
z̃1, z̃2. The situation is depicted in terms of dual graphs in Fig. 7.

As we deform z, we need to deform z̃1 and z̃2 in accordance with the ramification
profiles. Thus, the coordinate ring of the versal deformation space is

C�ξ, ξ̃1, ξ̃2�/(ξ − ξ̃21 , ξ − ξ̃32 ) ∼= C�̃ξ1, ξ̃2�/(̃ξ
2
1 − ξ̃32 ).

This is the completed local ring of a cuspidal cubic, at the cusp, and it is not
integrally closed. Its integral closure is given by C�ζ �. The normalization map is
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Fig. 7 The dual graph of the
local picture at a node with
ramification profile (2, 3) over it

Fig. 8 The completed local ring
ofHMg,d ( �μ) and its
normalization for the (2, 4)
ramification discussed above

given by ξ̃1 �→ ζ 3 and ξ̃2 �→ ζ 2. Thus, there is a unique point in the normalization
Hg→h,d( �μ) lying above [D → C]. In particular, notice that ξ �→ ζ 6.

If we replace the ramification index 3 above with 4, then the completed local ring
is the completed local ring at (0, 0) of two parabolas meeting at the origin in A

2.
That is, the completed local ring at (0, 0) of the affine place curve V (̃ξ41 − ξ̃22 ). In
particular, notice that these completed local rings not only fail to be integrally closed,
but even fail to be an integral domain. In this case the normalization is C�ζ � ×C�ζ �,
and ξ �→ (ζ 4, ζ 4) (Fig. 8).

4.2.2 Deformation spaces II: the general case

We now tackle the general case, which is essentially the same as the example above,
with certain clerical difficulties.

Consider a point [π : D → C] ∈ HMg→h,d( �μ) and let [�src → �tgt ] be the
dual combinatorial type of tropical admissible covers. Let z1, . . . , zk be the nodes of
C , and let π−1(zi ) = {zi,1, . . . , zi,r(i)} be the preimages of the i th node. Assume
that the ramification at zi, j is given by p(i, j). Again assume that [D → C] has no
automorphisms. As argued in [22], the completed local ring ofHMg→h,d( �μ) is given
by

Ô[D→C] = C�ξ1, . . . , ξN , ξi, j �/(ξ
p(i, j)
i, j − ξi ).

Here, the first k ξi correspond to deformation parameters of the nodes of C , and the
remaining are the parameters for deformations of complex structure on C . Our task is
to compute the number of branches of the normalization of Ô[D→C].

Observe that the equations (ξ
p(i, j)
i, j − ξi ) involve the deformation parameters of a

node zi of the target curve C and those of the nodes of D mapping to zi , so may work
node by node.
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In other words, the number of branches in the normalization of Ô[D→C] is the
product over nodes zi of C of the number of branches in the normalization of

C�ξi , ξi, j �/(ξ
p(i, j)
i, j − ξi ).

To reduce the burden of notation, we drop subscripts: let z be a node of C , and
z̃1, . . . , z̃r be the nodes of D mapping to C . Assume that the ramification order at z j
is given by p( j). Consider the ring

R = C�ξ, ξ̃1, . . . , ξ̃r �/(ξ = ξ̃
p(1)
1 = · · · = ξ̃

p(r)
r ).

The scheme Spec(R) is a singular curve, and the normalization π : Spec(R̃) →
Spec(R) consists of a disjoint union of a number of copies of Spec(C�s�). The number
of such copies is precisely the number of analytic branches we wish to compute. Let
L be the LCM of the orders of ramification p( j) taken over the nodes z̃ j mapping to
z. Upon restriction to an irreducible component of Spec(R̃), π must be dual to a map
of rings

π# : C�ξ, ξ̃1, . . . , ξ̃r �/(ξ = ξ̃
p(1)
1 = · · · = ξ̃

p(r)
r ) → C�s�,

such that π#(ξ) = sL . In order to satisfy the equations amongst the parameters ξ̃
p( j)
j

we are forced to set π# (̃ξ j ) = ω · sL/p( j), where ω is a p( j)th root of unity. For
each given node there are p( j) such choices of roots of unity. Furthermore, there is
a simultaneous scaling of the coordinates ξ and ξ̃ j by a choice of Lth root of unity,
so the total number of isomorphism classes of maps π# satisfying π#(ξ) = sL is
precisely

∏
j p( j)/L . Recombining these computations over all nodes of C we see

that the normalization of O[D→C] is

M∏

i=1

C�ζ1, . . . , ζN �,

where M = ∏
e∈E(�tgt )

Me, and Me is the product of the ramification indices above
the node corresponding to e, divided by their LCM. This gives us the desired explicit
formula for how the deformation parameters for the nodes of C pull back to the
deformation parameters of the corresponding node in [D → C].

A main technical result of [1] is that the skeleton of a toroidal Deligne–Mumford
stack decomposes as a disjoint union of extended open cones corresponding to each
stratum of the stack, modulo the appropriate monodromy.

Recall from Definition 24 that a point of the skeleton �(H
an
g,d( �μ)) is a point in the

image of the retraction map pH : Han
g,d( �μ) → Han

g,d( �μ). Thus, given a point of the
skeleton, represented by an admissible cover [D → C] over a valued extension field
of C, we obtain, by taking dual graphs of the special fiber, a point [�D → �C ] of the
space Htrop

g,d ( �μ).

123



Tropicalizing the space of admissible covers 1299

Definition 28 Themap trop� : �(H
an
g,d( �μ)) → H

trop
g,d ( �μ) is defined to be the restric-

tion of trop to the skeleton. As above, it sends an admissible cover [D → C] to the
tropical cover [�D → �C ].

4.2.3 Proof of Theorem 1

Let p ∈ Hg,d( �μ) be a point contained in a locally closed stratum W corresponding
to a cover [D → C]. Assume that the generic point of W parametrizes a cover with
combinatorial type�. The point p has an étale neighborhood V → Hg,d( �μ), such that
the locus parametrizing deformations of [D → C] where the i th node of C persists
is a smooth and irreducible principal divisor cut out by a function fi . Ranging over
the nodes of C , we obtain a collection of monomials f1, . . . , fk in bijection with the
nodes of C . The skeleton of V� is a copy of the extended cone σ� and the retraction

V� → σ�

is given by sending a valuation ν to the tuple (ν( f1), . . . , ν( fk)). Upon application
of [1, Proposition 6.2.6], the image of σ� in�(H

an
g,d( �μ)) is the quotient of the relative

interior σ ◦
� of σ� by Aut (�). As a consequence we obtain a decomposition of the

skeleton

�(Hg,d( �μ)) =
⊔

W

σ ◦
�/Aut (�),

where the disjoint union is taken over the locally closed strata W of Hg,d( �μ). Note
that unlike the case of Mg,n , there are multiple zero-dimensional strata of Hg,d( �μ)

that have the same underlying combinatorial type.
The tropical moduli space similarly decomposes as

�(Hg,d( �μ)) =
⊔

�

σ ◦
�/Aut (�),

and thus we obtain a well-defined map of generalized extended cone complexes

� : �(Hg,d( �μ)) → H
trop
g,d ( �μ).

Given a locally closed stratum W whose generic point parametrizes a combinatorial
type �, the map � simply identifies the generalized cone associated to W with the
generalized cone in H

trop
g,d ( �μ) associated to �. The map � is manifestly continuous

and surjective, and an isomorphism upon restriction to any generalized cone of the
skeleton. We claim that this map � coincides with the map trop� . To see this, choose
a point p′ of Han

g,d( �μ) such that the reduction of p′ is p. Locally, such a point gives
rise to a valuation

ν : C[V ] → R � ∞,
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and trop� is defined by evaluating ν at the monomials fi . On the other hand, observe
that the monomials f1, . . . , fk are precisely the deformation parameters of the univer-
sal base curve in an étale neighborhood V of p, and their valuations give rise to the
edge lengths on the dual graph of C that define the map trop. As a result the map �

coincides with the restriction of trop to the skeleton, so we conclude that� = trop� .
We have obtain the desired factorization

��

4.2.4 The map from the skeleton to the tropical moduli space

The skeleton �(M
an
g,n) is a subset of the analytic spaceM

an
g,n and one may restrict the

pointwise tropicalization map to this subset to obtain a map �(M
an
g,n) → M

trop
g,n . One

way in which to view [1, Theorem 1.2.1] is that this natural map is an isomorphism.
This is not the case for admissible covers. The map

trop� : �(H
an
g,d( �μ)) → H

trop
g,d ( �μ),

does not distinguish between strata which are “combinatorially indistinguishable”.
Said more precisely, there are multiple zero dimensional strata in Hg,d( �μ) corre-
sponding to the same combinatorial type � = [�src → �tgt ]. However, this loss
of information can be completely characterized. Distinct generalized cones in the
skeleton become identified inH

trop
g,d ( �μ) for the following reasons.

(A) There are multiple lifts of a trivalent, totally degenerate combinatorial type � to
an admissible cover of nodal curves [C → D],

(B) A nodal admissible cover [D → C] is really an element of the Harris–Mumford
moduli space HMg,d( �μ). As discussed in Sect. 4.2.1, there are multiple points
in the normalization Hg,d( �μ) that lie above [D → C]. As we have seen in
Sect. 4.2.1 , there are precisely M such points, where M = ∏

e∈E(�tgt )
Me, and

Me is the product of the ramification indices above the node corresponding to
the edge e, divided by their LCM.

These explain the weights on the tropical moduli space described in Sect. 3.2.5. The
product of the local Hurwitz numbers from (A) above gives (W2). The weight (W3)
on H

trop
g→h,d( �μ) is an artifact of (B) above. In the following section, we will see both

(A) and (B) as a correction to the dilation factor d�(br trop) referred to in Theorem 2.

Remark 29 The tropical moduli space H
trop
g,d ( �μ) is naturally a generalized extended

cone complex, but as we have seen the map from the skeleton of the classical space
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collapses several cones onto one. One may ask if there is a natural space whose
analytification admits a tropicalization map toHtrop

g,d ( �μ). The discussion of deforma-

tion spaces in Sect. 4.2.2 implies that the space HMg→h,d( �μ) is locally analytically
isomorphic to a possibly non-normal toric variety and hence has the structure of a log-
arithmic scheme that is fine but possibly not saturated. Though tropicalization has not
been explicitly studied in this setting, following [31], one expects a continuous map
from HM

an
g→h,d( �μ) to the R≥0 ∪ ∞ valued points of the Kato fan of HMg→h,d( �μ),

and that this extended cone complex essentially coincides with H
trop
g,d ( �μ).

5 Classical and tropical tautological maps

5.1 The branch maps

The classical admissible cover space Hg,d( �μ) admits a branch map, recording the
base curve, marked at its branch points:

br : Hg,d( �μ) → Mh,r+s

[D → C] �→ [(C, p1, . . . , pr , q1 . . . , qs)].

The degree of this map is the corresponding Hurwitz number. Intuitively, fixing a point
p in Mh,r+s , the cardinality of the fiber over p is the number of covers having given
discrete data, (d, g, h, �μ) over the specific pointed stable curve Cp.

The tropical branch map is defined similarly, taking values in the space of pointed
tropical (r + s)-pointed curves.

br trop : Htrop
g,d ( �μ) → M

trop
h,r+s

[�src → �tgt ] �→ [�tgt ].

5.2 Tropicalizing the branch map

Wewant to compare the classical and tropical branchmaps in a functorial manner. The
process of taking skeletons for toroidal Deligne–Mumford stacks is compatible with
toroidal and subtoroidal morphisms. Recall that a toroidal morphism φ : X → Y is
a morphism such that for every point x ∈ X , there exist compatible étale toric charts
around x and φ(x), on which the morphism is given by a dominant equivariant map
of toric varieties. We remark that although this is not pursued in [1], we can impose
a weaker condition on morphisms between toroidal embedding for which there is an
induced map on skeleta.

Definition 30 A morphism ϕ : X → Y of toroidal embeddings is said to be locally
analytically toric if for every point x ∈ X , there exist étale charts around x and
φ(x) such φ is given by an equivariant toric morphism. That is, we have the following
diagram
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where the top row is a local toric chart around x in X , and the bottom row is a local
toric chart around ϕ(x) in Y . The leftmost vertical arrow is torus equivariant.

It is easy to see that any morphism that is locally analytically toric induces a map on
skeleta, and the statements for toroidal and subtoroidal morphisms in [1] go through
without any substantial changes, see Remark 5.3.2 of loc. cit.

Lemma 31 The branch map br : Hg,d( �μ) → Mh,r+s is locally analytically toric,
where Mh,r+s is given the toroidal structure from the inclusion Mh,r+s ↪→ Mh,r+s .

Proof To prove this, we need to find compatible local toric models for the points
x ∈ Hg,d( �μ) and br(x) ∈ Mh,r+s , such that br is given by an equivariant locally
analytic toric morphism. It is sufficient to check that locally analytically br pulls back
monomials to monomials. However, this is clear from the discussion of deformation
theory in Sect. 4.2.2: deformations of an admissible cover being controlled by defor-
mations of the target curve amounts precisely to saying that the local affine models
around a boundary point are identified via the branch map. ��

Identifying the skeleton of M
an
h,r+s with the tropical moduli space M

trop
h,r+s , we

immediately have the following consequence.

Corollary 32 The analytified branch map bran : Han
g→h,d( �μ) → M

an
h,r+s induces a

map on skeleta, �(H
an
g→h,d( �μ)) → M

trop
h,r+S.

Proof Locally analytically, monomials are pulled back to monomials. Thus, it follows
that there is an induced map on each cone of �(H

an
g→h,d( �μ)) to the skeletonM

trop
h,r+S .

The fact that these maps glue to give a global map is straightforward. ��

5.2.1 Proof of Theorem 4, part one: branch map

It is clear from the description of the abstract tropicalization map for covers and
for curves, that the tropical and classical branch maps fit together in a commutative
diagram:
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We recall from [1, Section 6], taking skeletons is functorial for toroidal morphisms.
We thus also obtain the following more detailed commutative diagram. The commuta-
tivity of the left square follows by functoriality of taking skeletons.We use [1, Theorem
1.2.1] to identify the skeleton ofMh,r+s with the tropical moduli spaceM

trop
h,r+s . The-

orem 1 asserts that trop� is an isomorphism on each cone. Thus we get an extension
of left square to the full diagram below.

The tropical branch map br trop fills in the far right vertical arrow, making the
entire diagram commute, since ψ is an isomorphism, and trop� is an isomorphism
when restricted to any cone. It follows that the tropical branch map is indeed the
tropicalization of the classical branch map, as desired. ��

5.3 The source maps

The “classical” source map takes a cover [D → C] to its source curve [D] ∈ Mg,n

where n is the number of smooth ramification points, which is equal to the sum
of the lengths of the partitions μi . Similarly, there is a tropical source map taking
[�src → �tgt ] to the source graph �src. We wish to show that the tropical source map
is naturally identified with the tropicalization of the analytified source map.

5.3.1 Proof of Theorem 4, part two: source map

We want to show that in an étale neighborhood of a point x ∈ Hg,d( �μ), the map
src is given by a toric morphism. Let x = [D → C], and let [�src → �tgt ] be its
(unmetrized) dual graph. In Hg,d( �μ), the local monomial coordinates are given by

123



1304 R. Cavalieri et al.

Fig. 9 Cones in �(H
an
g,d ( �μ)) lying above a top dimension stratum in M

trop
h,r+s

the deformation parameters of the nodes of C . Let us focus on a single node p ∈ C
and on p̃1, . . . , p̃m the nodes of D mapping to p. The nodes p̃i can be independently
deformed, and their deformation parameters ξ1, . . . , ξm are the local monomial coor-
dinates onMg,n . The deformations of [D] which come from deformations of the map
[D → C] satisfy the relations

ξ
w1
1 = ξ

w2
2 = · · · = ξwm

m ,

where wi is the ramification on the node of [D] corresponding to p̃i . Thus, locally
analytically, src maps Hg,d( �μ) via a toric morphism. This map induces a map on
skeleta.

To metrize [�src → �tgt ] the above equations yield length conditions on edges ẽi
of �src mapping to a fixed edge e of �tgt :

w1
(̃e1) = w2
(̃e2) = · · · = wm
(̃em),

wherewi is the expansion factors along ẽi . This collection of linear conditions cuts out
a subcone of M

trop
g,n . The result now follows from similar arguments to Sect. 5.2.1. ��

5.4 The degree of the branch map

In this section we prove Theorem 2, by extracting the degree of the branch morphism
(the Hurwitz number) from the associated map on skeleta.We can compute this degree
over any point of the moduli space Mh,r+s . Loosely speaking, the proof proceeds by
first choosing a maximally degenerate base curve corresponding to a zero-stratum of
the moduli space of targets. The branch map is given étale locally by a locally toric
morphism, whose degree can be computed in local analytic monomial coordinates
(Fig. 9). Since both the source and target of the branch maps are stacks, care is needed
to make this precise.

5.4.1 Proof of Theorem 2

The proof proceeds in two steps. We first show that the degree of the branch map
can be recovered from the maps on skeleta. We then proceed to show that with the
weighting introduced in Sect. 3.2.5, the degree of the tropical branch map is equal to
the degree of the map on skeleta.

The branch morphism analytifies to a map bran : Han
g,d( �μ) → M

an
h,r+s of analytic

stacks, and we wish to compute the degree of this map. Let � be a combinatorial graph
of genus h, with k = 3h − 3+ r + s internal edges. That is, � is dual to a maximally
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degenerate curve C . This curve gives rise to a moduli map Spec(C) → Mh,r+s and
hence a point p of the stack. There is an étale neighborhoodU� → Mh,r+s of p and an
étale mapU� → Spec(C�ξ1, . . . , ξk�). Note that the degree of themapU� → Mh,r+s

is precisely |Aut (�)|. The open setU� is a versal deformation space for the curve dual
to�, and ξi is identifiedwith the smoothing parameter for the node ofC corresponding
to the i th edge of�. Themaximal dimensional coneσ�

∼= R
k≥0 is canonically identified

with the skeleton of the analytic space U�

� .
Choose an admissible cover [D → C], such thatC is dual to�. Fix an identification

of the dual graph of C with �. Let � be the associated combinatorial type for this
cover and σ� the moduli space of tropical admissible covers with type �. The choice
of identification of the nodes of C with the edges of � gives rise to a fiber diagram

Here U� is an étale neighborhood of [D → C]. Note that the local coordinates given
byU� are precisely the deformation parameters for the nodes of C , and thus give rise
to local coordinates onU�. SinceU� parametrizes singular curves withmarked nodes,
the only possible automorphisms on covers parametrized by U� are those which act
trivially on the base. That is, U� is isomorphic to the stack quotient [Ak/Aut0(�)],
where Aut0(�) acts trivially on A

k . Recall that Aut0(�) consists of automorphisms
of the cover � that lift the identity on �. After taking a further cover ofU� to account
for this stabilizer, we see that the local degree of the map of affinoid domains

b̃r
�

� : U�

� → U�

�

is given by 1
|Aut0(�)| times the degree of the map A

k
�

→ A
k
�
induced by the map of

cones σ� → σ� .
Consider the two projection maps pH : U�

� → σ� and pM : U�

� → σ� . The
inverse images of σ� and σ� respectively give rise to polyhedral domains UH and
UM in analytifications of formal tori. By [29, Section 6] the degree of the map bran

restricted toUH is given by the determinant of the morphism σ� → σ� . Furthermore,
we have coordinates on these analytic tori, given by the deformation parameters, as
previously discussed. Let ξi be coordinates on UM and ξ̃i the coordinates on UH . It
follows from the discussion in Sect. 4.2.1 that ϕ∗(ξi ) = ξ̃ N

i where N is the LCM of
the ramification indices at the nodes lying over the i th node. This is precisely equal
to the dilation factor in the i th coordinate for this map of covers of cones. Hence,
locally analytically, the degree of this map is equal to the product of the LCM’s of the
ramifications over each node.

We now need to pass from the skeleton�(H
an
g,d( �μ)) to the tropical spaceHtrop

g,d ( �μ).
Continue tofix the target graph�, and the combinatorial type�of the admissible cover.
Choose an identification of the dual graph of the target with �. We need to understand

123



1306 R. Cavalieri et al.

how many points of Hg,d( �μ) have type �. By choice of �, we can uniquely build a
curve C , up to automorphisms of �, such that the dual graph of C is �. The number of
Harris–Mumford admissible covers such that the dual graph of the target is identified
with � is by definition the product of the local Hurwitz numbers of �. Moreover,
for each such algebraic admissible cover [D → C] in HMg,d( �μ), the number of
preimages of [D → C] inHg,d( �μ) is given by the weight (W3) in Sect. 3.2.5, namely,
the product

∏
e∈E(�tgt )

Me, where Me is the product of the ramification indices above
the node corresponding to e, divided by their LCM. These precisely are the weights
on the tropical admissible cover space, and thus, we see that the weighted degree of
the map br trop is equal to the degree of the map br� .

To conclude, observe that after a barycentric subdivision of source and target of
br trop, the branch map

br trop : B(H
trop
g,d ( �μ)) → B(M

trop
h,r+s)

is amorphism of cone complexes, and each cone of B(H
trop
g,d ( �μ))maps isomorphically

onto a an extended cone in the target, ignoring integral structures. Following the
discussion in [1, Section 4.2], any top dimensional cone σ of B(M

trop
h,r+s) has an

associated combinatorial type �, and similarly, any top dimensional extended cone σ ′
of B(H

trop
g,d ( �μ)) has a combinatorial type�. If σ ′ lies over σ , then the base graph of�

is identified with �. By the computation above, the weighted sum of dilation factors
of cones of B(H

trop
g,d ( �μ)) mapping to σ precisely recovers the degree of bran and the

result follows. ��

6 Applications to previous work

In this section, we recover known correspondence theorems for tropical Hurwitz num-
bers at the level of moduli spaces. In Sect. 6.1, we return to the motivating case of
double Hurwitz numbers. The first correspondence theorem for double Hurwitz num-
bers was proved in [12]. In that work, a tropical analogue of the relevant relative
stable map space is constructed, in order to carry out the relevant intersection theory
computations. We pay special attention to the relation of our tropical admissible cover
spaces to the ones used there. The equality of tropical and classical double Hurwitz
numbers can also be deduced from the general correspondence theorem of [7], which
we recover at the level of moduli spaces in Sect. 6.2.

6.1 Monodromy graphs and tropical double Hurwitz numbers

Wenow frame the “monodromy graphs” computation for the doubleHurwitz numbers,
introduced by the first two authors and Paul Johnson, in a geometric context. First, we
briefly recall the relevant aspects of [12].

We fix two partitions μ1 = (μ1
1, . . . , μ

1
k) and μ2 = (μ2

1, . . . , μ
2

) of degree d,

and denote s = 2g − 2 + 
 + k, the number of simple branch points, determined by
Riemann–Hurwitz.
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Fig. 10 A genus 1 monodromy
graph for degree 4 covers of P

1

with ramification profiles (4)
over 0 and (2, 2) over ∞

Definition 33 Monodromy graphs project to the segment [0, s+1] and are constructed
as follows:

(i) Start with k small segments over 0, with weights μ1
1, . . . , μ

1
k .

(ii) Over the point 1, create a trivalent vertex by either joining two strands or splitting
two strands. When joining two strands, label the outgoing edge with the sum of
the incoming weights. In case of a cut, label the two new strands in all possible
positive ways of adding theweight of the split edge. Each choice of split produces
a distinct monodromy graph.

(iii) Repeat this process for integers up to s.
(iv) Retain all connected graphs that terminate with 
 points of weights μ2

1, . . . , μ
2



over s + 1.

It is proved in [12] that such graphs produce a formula for the double Hurwitz
number.

Theorem 34 (C–Johnson–M) The double Hurwitz number is equal to

hg→0,d( �μ) =
∑

�

1

|Aut (�)|
∏

w(e),

where we take the sum over isomorphism classes of monodromy graphs, and the
product of interior edge weights of each graph (i.e. edges not over 0 or s + 1).

Example 35 Consider for instance the monodromy graph depicted in Fig. 10. This
graph has two automorphisms, coming from the double edge (“wiener”). We ignore
the automorphisms coming from the “fork” since the ends are nowmarked.Theproduct
of the weights of interior edges is 16, so this graph contributes 8 to the sum in the
preceding theorem.

We now study themonodromy graphs in terms of admissible covers, and recover the
above formula. Moreover, we reinterpret the expected dimensional cells in the tropical
moduli space of parametrized covers as a collection of cones inH

trop
g→0,d(μ

1, μ2), lying

over a chosen cell inM
trop
0,2+s . From this vantage point, we see the factors appearing in

the above sum from the geometric perspective developed in previous sections.

6.1.1 The CJM covers of P1
trop

In order to reinterpret the CJM formula in our framework, we need to build tropi-
cal admissible covers from the tropical relative stable maps considered in [12]. Not
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all relative stable maps produce admissible covers, but those combinatorial types of
expected dimension do produce admissible covers. Denote by P1

trop, the “two pointed”
tropicalP1,R∪{±∞}.We first recall the definition of tropical covers ofP1

trop as stated
in [12].

Definition 36 Let μ1, μ2 be partitions of d. Let � be a genus g, 
((μ1) + 
(μ2))-
pointed tropical curve. A parametrized tropical curve of genus g and degree (μ1, μ2)

in P1 is a integral harmonic morphism θ : � → P
1
trop, where � has genus g, such that

(i) The image of � without its infinite edges is inside R.
(ii) The multiset of expansion factors over the +∞ segment is given by μ1, and the

multiset of expansion factors over the −∞ segment is given by μ2.

A combinatorial type of a parametrized tropical curve inP1 is the data obtained from
dropping the edge length data and remembering only the source curve together with
its expansion factors. For a combinatorial type [α] of covers, we build an unbounded,
open unbounded convex polyhedron, formed by varying edge lengths. These cells glue
together to form a moduli space Mg(P

1
trop, μ

1, μ2). We refer to [12] for details on the
construction.

The key difference between parametrized tropical curves in P
1
trop and admissible

covers is that parametrized curves inP1
trop may contract subgraphs. However, if there is

a combinatorial typewith a contracted component, itwill not be of expected dimension,
and will not contribute to the degree. In fact, the moduli space of tropical covers
constructed in [12] does not consider cells where the associated combinatorial type is
not of expected dimension.

It is shown in [12] that the moduli space admits a natural branch map to (P1
trop)

s

where s is the number of simple branch points. Moreover, by weighting this moduli
space appropriately, the degree of this branch map essentially recovers the formula
above. In particular, the factor

∏
w(e) arises as a product of the determinant of the

branch map, times a certain weight on each cone of Mg(P
1
trop, μ

1, μ2). We remark
that in the construction of Mg(P

1
trop, μ

1, μ2), it is necessary to disregard cells of
unexpected dimension, in order to obtain a well defined degree.

Given a parametrized tropical coverwhose combinatorial type is of expected dimen-
sion, we obtain a admissible cover by first giving the base P1

trop the natural structure
of a 2-pointed tropical curve as follows. We mark the images of all branch points of
�. Since the combinatorial type is of expected dimension, there are precisely s points
which are marked, where s is the number of simple branch points.

Additionally, we subdivide � such that vertices map to vertices. This amounts to
making each point in the preimage of a branch point into a vertex, see Fig. 11. Finally,
we add an infinite edge to each of the s marked points on the base obtaining what
we call the path graph on s vertices. The ramification over these infinite edges is
simple. By the local Riemann–Hurwitz condition, there is a unique way to add (d−1)
infinite edges mapping to each new infinite edge added on the base graph, such that the
ramification over each infinite edge is simple. We record the following observation.
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Fig. 11 A parametrized tropical curve of genus 1 on the left, and the corresponding admissible cover on
the right. The infinite edges carry simple ramification (2, 1, . . . , 1). The expansion factors of 2 occur on
trivalent vertices of the parametrized tropical curve

Proposition 37 Let � be the path graph on s vertices, and let H� be subcomplex of
H

trop
g,d (μ1, μ2) such that �tgt = �. Then, there is an identification of cone complexes

H�
∼= Mg(P

1
trop, μ

1, μ2).

The proof follows immediately from the preceding discussion.
When covers have no contracted components, and the cell of the tropical moduli

space of the expected dimension, we essentially recover a cone of tropical admis-
sible covers. The only change is that here, we drop the data of the root vertex,
which is irrelevant, since the combinatorics does not change if we translate the s
branch points by a fixed real number. It is easy to see that the branch map defined
in [12] transforms naturally into the map br trop defined here. With this transla-
tion, we recover the previously defined tropical double Hurwitz numbers, as we now
demonstrate.

6.1.2 The CJM formula for the double Hurwitz number

We now turn our attention to the expression of double Hurwitz numbers in terms of
monodromy graphs, studied in [12].

The following useful proposition is due to Lando and Zvonkine [24].

Proposition 38 Let μ1 = (d) and μ2 be arbitrary with t parts. Then we have the
formula

h0→0,d(μ
1, μ2) = (t − 1)!dt−2.

Observe that if μ2 is a two-part partition, i.e. t = 2, then h0→0,d(μ
1, μ2) = 1.

Warning 39 Given a parametrized tropical curve, when we subdivide, we create new
vertices and consequently new interior edges. There is a unique expansion factor on his
new interior edges by the harmonicity condition. Let v be a new vertex created in such
a manner by subdivision. The local Hurwitz number at v is given by h0→0,d((d), (d)),
which we know to be 1/d. It will be crucial in the forthcoming discussion that the
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Fig. 12 The chosen cell M� in

M
trop
0,2+s

quantity h0→0,d((d), (d)), times the weight on the new bounded edge is 1. See Fig. 11.
For a related issue, see the discussion in [9, Lemma 3.5].

Proof of the CJM formula We work with the tropical admissible cover space
H

trop
g→0,d(μ

1, μ2). Since the degree of the tropical branch map is constant, we may

choose to compute it over a fixed top dimensional cell inM
trop
0,2+s , where s is the num-

ber of simple branch points. We choose the locus of curves whose combinatorial type
is a path graph, augmented with one infinite edge at every bivalent vertex, as shown
in Fig. 12. We denote this combinatorial type by [�], and by M� the corresponding
cell of the tropical moduli space.

It was observed in [12, Remark 5.2] that the combinatorial types lying overM� have
a totally degenerate genus function on the source curve. Furthermore, after contracting
the infinite edges corresponding to the s simple branch points and their preimages,
every edge of �src is trivalent. Consequently we see that the profiles for the local
Hurwitz numbers of �src are given by (d) (total ramification) and a two-part ramifi-
cation profile. Thus, all local Hurwitz numbers are 1 by Proposition 38, except those
introduced by subdivision, which were discussed in Warning 39.

The cones mapping onto M� via the branch map are precisely those cones H�

where � = [�src → �]. Here the �src precisely correspond to the monodromy
graphs of [12]. To compute the degree of the branch map over this cell M� , we need
only compute the degrees of maps from the individual top dimensional cells lying over
M� , and add the resulting contributions.

Consider an admissible cover [D → C] in Hg→0,d(μ
1, μ2) lying over the stable

nodal genus 0 curve [C] inM0,2+s . We denote by ξi the deformation parameter of the
i th node of [C], and by ξ̃i the deformation parameter of the i th node of the base of the
admissible cover.

With the above discussion in mind, fix a top dimensional cell H� in the tropical
Hurwitz space. We need to understand the dilation factor that this map induces on
integral structures. Recall that the coordinates on the coneM�src are given by val(ξi ),
the valuation of the deformation parameters. Recall from our deformation theory
computations in Sect. 4.2.2,

br∗(ξi ) = ξ̃i
Ni ,

where Ni is the LCM of the ramification above the nodes of D lying above the i th
node of C . It follows that

val(br∗(ξi )) = Ni · val(ξi ).

However, as we discussed in Sect. 4.2.2, there are M = ∏
e∈E(�tgt )

Me zero strata

in the space Hg→h,d( �μ) for each chosen nodal cover, where Me is the product of
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the ramification indices above the node corresponding to e, divided by their LCM.
Clearly the total contribution MeNe at a node corresponding to e is the product of
the ramification indices above that node. Ranging over all nodes, we see that the total
degree is the product of the edge weights. Keeping in mindWarning 39, we see that for
each combinatorial type, we recover the weight in the CJM formulae. Appropriately
taking into account automorphisms, we recover the desired formula

hg→0,d( �μ) =
∑

�

1

|Aut (�)|
∏

w(e).

Remark 40 The induced map br� on skeleta is an isomorphism on each cone if we
forget about the integral structure. The same is true for br trop. The enumerative infor-
mation relies crucially on the integral structure of these cones and the weights, which
in turn, relies heavily on the deformation theory.

Remark 41 Although tropicalization is a relatively new to the study of Hurwitz
numbers, the spirit of these results is quite classical—namely, using degeneration
techniques to study (enumerative) geometry. In the above computations, we choose a
suitable degeneration of the base curve to a rational curve with desirable properties.
For instance, the caterpillar curve above (Fig. 12) has the property that it allows us
to easily compute local Hurwitz numbers. This strategy was actualized for double
Hurwitz numbers in [13].

6.2 The general correspondence theorem for Hurwitz numbers

We now reprove the general correspondence theorem for Hurwitz numbers from [7]
at the level of moduli spaces using our newly developed techniques.

Recall from [7] that for a tropical admissible cover of combinatorial type � = [θ :
�src → �tgt ] as in Sect. 3.2.2, the multiplicity (depending only on the combinatorial
type) is defined to be

1

|Aut0(�)| ·
∏

v∈�tgt

H(v) ·
∏

e∈�src

de(θ), (4)

where the second product goes over all interior edges e of �src and de(θ) denotes
their expansion factors. We decide to mark preimages of branch points, resulting in a
simplification in our expression of the local Hurwitz numbers compared to [7].

For a fixed trivalent target tropical curve of genus h with totally degenerate genus
function �tgt , in [7] the tropical Hurwitz number htropg→h,d( �μ) is defined to be the
weighted number of admissible covers of �tgt , satisfying the prescribed genus and
ramification conditions, counted with the multiplicity defined in (4). This number
does not depend on the choice of �tgt .
Proof of Theorem 3 From Theorem 2, we know already that hg→h,d( �μ), which equals
the degree of the branchmap, also equals the degree of the tropical branchmap.All that
remains to be seen is that the multiplicity of an admissible cover defined above equals
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the dilation factors times the weight of the cone of the corresponding combinatorial
type. This follows analogously to the proof of the monodromy graph formula as in
Sect. 6.1.2. ��

The monodromy graph formula is implied by Theorem 3 using the method of
attaching infinite edges in the manner described in Sect. 6.1.
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