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Abstract Given an initial C1 hypersurface and a time-dependent vector field in a
Sobolev space, we prove a time-global existence of a family of hypersurfaces which
start from the given hypersurface and which move by the velocity equal to the mean
curvature plus the given vector field.We show that the hypersurfaces areC1 for a short
time and, even after some singularities occur, almost everywhere C1 away from the
higher multiplicity region.
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1 Introduction

A family {Mt }t≥0 of hypersurfaces in R
n is called mean curvature flow (MCF) if the

velocity vector v of Mt is equal to its mean curvature vector h at each point and time,
that is,
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v = h on Mt . (1.1)

As one of the fundamental geometric evolution problems, theMCFhas been studied by
numerous researchers in the past few decades. One of many facets of investigations is
the time-global existence question of such a family when given an initial hypersurface
M0. In general dimensions, there exists a unique smooth family of MCF for finite time
until singularities such as vanishing and pinch-off occur. Though the classical MCF
ceases to exist at this point, it is well-known that a unique time-global solution {Mt }t≥0
exists in a weak viscosity sense [11,16] despite the occurrence of singularities.

In this paper, we are interested in an aspect of time-global existence theory for a
related problem, and the questionwe ask is the following. Given an initial hypersurface
M0 and a vector field u, is there a family {Mt }t≥0 of hypersurfaces whose velocity
vector v is equal to its mean curvature h plus u? What is the minimum regularity
assumption on u for the existence and regularity of such a family? To be more precise,
since we would be interested in the normal velocity to see the motion, the requirement
is

v = h + (u · ν)ν on Mt (1.2)

where ν is the unit normal vector field of Mt and · is the inner product in R
n .

Motivation to investigate (1.2) is more than just to see what happens when an extra
lower order term is added.While theMCF is of premier importance, one wonders what
is the limit of applicability of various analytic techniques developed for theMCF if one
puts a wild perturbation. In a reverse context, if one understands the limit of generality
of the MCF, then some of the analytic techniques developed for more general settings
may be useful for the MCF. In fact, our investigation on (1.2) has already led us to the
development of a local regularity theory [30,46] which gives new insight to the MCF.
Physically, one may regard (1.2) as a surface tension driven phase boundary motion
with a given background transport effect such as fluid flow or external force field. One
can also find such motion law in a coupled system with the Navier-Stokes equation
modeling a flow of dry foam (see, for example, [31] for the numerical simulation and
references therein).

Though far fromcomplete, in this paperweobtain satisfactory time-global existence
and regularity theorems if we assume that M0 is C1 and u satisfies

(∫ T

0

(∫
Rn
|u(x, t)|p + |∇u(x, t)|p dx

) q
p

dt

) 1
q

<∞ (1.3)

for all T < ∞, with 2 < q < ∞ and nq
2(q−1) < p < ∞ ( 43 ≤ p in addition if

n = 2). Here ∇u = (∂x1u, . . . , ∂xn u) is the weak partial derivatives and u,∇u are
measurable with the stated integrability. We prove that the hypersurfaces remain C1

at least for a short time, and it is a.e. C1 away from a region where Mt develops higher
multiplicities. With more regularity assumption on u such as Hölder continuity, we
have C2 instead of C1 and (1.2) is satisfied classically. For the precise statement of
the regularity, see Theorem 2.3.
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Here we briefly discuss our approach. If u is regular enough with respect to x ,
for example Lipschitz continuous, the level set method approach works well with a
good order preserving property (see, for example, [22] and [20, Sect. 4.8]). Also for
regular enough u, there are a number of short time existence results which are often
stated for the MCF but which can be extended to include regular u: (1) solving an
evolution equation for the height function from the reference initial manifold [10], (2)
solving equations for signed distance function [17] (and elaborated further in [21]),
and (3) constructing an approximate solution by time-discrete minimal movement [3],
just to name a few examples. On the other hand, with irregular u, one can not expect
the order preserving property in general and even the short time existence of solution
can be a serious issue. Hence to characterize (1.2), we take an approach pioneered by
Brakke [6] using the notion of varifold from geometric measure theory. To construct
a sequence of approximate solutions, we use the Allen-Cahn equation [2] with an
extra transport term coming from u, (3.5). Much of the analysis of the present paper
concerns various ε-independent estimates of quantities associated with ϕε. We obtain
a desired solution by taking a limit ε→ 0. Thus the interest of the present paper can
be also the analysis of (3.5) itself. Once we verify that the limit satisfies (1.2) in a
weak sense of varifold as in Brakke’s formulation, we apply a local regularity theory
developed in [30,46] which is tailor-made for the present problem. To our knowledge,
under the assumption (1.3) of u, even the short time existence of C1 solution seems
new.

As for the MCF in general, there are a number of books and papers some of which
include up-to-date research results on the subject and we mention [4,5,12,14,20,35,
48]. Concerning a time-global existence for the MCF and the related problems, we
mention [3,6,11,16,29,34] and references therein. While there are numerous works
with varying generalities establishing the connection between theAllen-Cahn equation
and the MCF (for example [7,9,13,15,19,39]), analysis of the Allen-Cahn equation
using geometric measure theory was pioneered by Ilmanen [28] in which he proved
that the limit surface measures are rectifiable and satisfy (1.1) in the sense of Brakke’s
formulation. The second author proved that the limit surface measures are integral
[45]. There are a number of closely related works even if we restrict the scope within
some measure theoretic approach to the Allen-Cahn equation, and we further mention
[37,40,42,43] and references therein. The existence result of the present paper has
been proved by Liu et al. [33] for n = 2, 3 and with more restrictive assumptions on
p and q. The limitation of the dimensions was due to the use of results by Röger and
Schätzle [38], which gives a characterization of limit measures under an assumption
of uniform L2 bound of mean curvature-like quantity. In the present paper, we avoid
using [38], andwe follow the line of proofs of [28,45] combinedwith various estimates
from [33]. This frees us from any dimensional restriction. As a special case, the first
author investigated the graph-like problem of (1.2) with a better regularity assumption
on u and showed a unique short time existence [44].

The paper is organized as follows. In Sect. 2 we set our notations and explain the
main results. In Sect. 3 we briefly discuss some heuristic aspects of the Allen-Cahn
equation. Section 4 deals with the uniform upper density ratio bound andmonotonicity
formula, and this is the key to control the transport term subsequently. In Sect. 5, we
show that there exists a limit surface measure for all t ≥ 0. Section 6 proves that
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the limit measure is rectifiable and this part owes much to Ilmanen’s work [28]. In
Sect. 7, we prove that the limit measure has integer density modulo surface energy
constant. There, the idea of proof goes back to [27] and the parabolic version [45].
In Sect. 8 we prove the main results by combining all the results from previous four
sections. We record our final remarks in the last Sect. 9. We intended the paper to be as
self-contained as possible, only exception being the proof for regularity. There we cite
the main local regularity theorem which has a set of assumptions we need to check.

2 Preliminaries and main results

2.1 Basic notation

Let N be the set of natural numbers and R
+ := {x ≥ 0}. For 0 < r <∞ and a ∈ R

k

define

Bk
r (a) := {x ∈ R

k : |x − a| < r}.

We write Bk
r := Bk

r (0). When k = n, we omit writing n. We often identify R
n−1

with R
n−1 × {0} ⊂ R

n . On R
n we denote the Lebesgue measure by Ln and for

0 ≤ k ≤ n, the k-dimensional Hausdorff measure by Hk . Define ωn := Ln(B1).
Given a set A ⊂ R

n and a measure μ, the restriction of μ to A is denoted by μ	A.
The characteristic function of A is denoted by χA. Symbol ∇ always refers to a
differentiation with respect to the space variables. For a set of finite perimeter (see
[24] for the definition) A, we denote the total variation measure of the distributional
derivative ∇χA by ‖∇χA‖.

Throughout the paper, we set � to be either Tn , the n-dimensional unit torus, or
R
n . For� = T

n we often regard� as the unit square [0, 1)×· · ·×[0, 1) ⊂ R
n where

all the relevant quantities are extended periodically to the entire R
n . Objects such

as functions and sets in � are understood implicitly in this manner. For any Radon
measure μ on R

n and φ ∈ Cc(R
n) we often write μ(φ) for

∫
φ dμ. We write sptμ

for the support of μ. Thus x ∈ sptμ if ∀r > 0, μ(Br (x)) > 0. For 1 ≤ p ≤ ∞, we
write f ∈ L p(μ) if f is μ measurable and (

∫ | f |p dμ)1/p <∞. We use the standard

notation for Sobolev spaces such as W 1,p(�) and W 1,p
loc (�) from [23].

For A, B ∈ Hom(Rn;Rn) which we identify with n × n matrices, we define

A · B :=
∑
i, j

Ai j Bi j and |A| := √A · A.

‖A‖ denotes the operator norm. The identity of Hom(Rn;Rn) is denoted by I . For
k ∈ N with k < n, let G(n, k) be the space of k-dimensional subspaces of Rn .
The orthogonal complement of S ∈ G(n, k) is denoted by S⊥ ∈ G(n, n − k). For
a ∈ R

n , a⊗ a ∈ Hom(Rn;Rn) is the matrix with the entries aia j (1 ≤ i, j ≤ n). For
S ∈ G(n, k), we identify S with the corresponding orthogonal projection of Rn onto
S. In the case of k = n − 1, we also identify S ∈ G(n, n − 1) with the unit vector
±ν ∈ S

n−1 which is perpendicular to S. Note that we may express the relation by
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Existence and regularity of mean curvature flow... 861

S = I −ν⊗ν. The correspondence is a homeomorphism with respect to the naturally
endowed topologies on G(n, n − 1) and Sn−1/{±1}. For x, y ∈ R

n and t < s define

ρ(y,s)(x, t) := 1

(4π(s − t))
n−1
2

e−
|x−y|2
4(s−t) , (2.1)

which is the backward heat kernel with pole at (y, s).

2.2 Varifolds

We recall some definitions from geometric measure theory and refer to [1,6,41] for
more details. For any open setU ⊂ R

n letGk(U ) := U×G(n, k). A general k-varifold
in U is a Radon measure on Gk(U ). We denote the set of all general k-varifolds in U
by Vk(U ). For V ∈ Vk(U ), let ‖V ‖ be the weight measure of V , namely,

‖V ‖(φ) :=
∫
Gk (U )

φ(x) dV (x, S), ∀φ ∈ Cc(U ).

We say V ∈ Vk(U ) is rectifiable if there exist aHk measurable countably k-rectifiable
set M ⊂ U and a locally Hk integrable function θ defined on M such that

V (φ) =
∫
M

φ(x,Tanx M)θ(x) dHk (2.2)

for φ ∈ Cc(Gk(U )). Here Tanx M is the approximate tangent space of M at x which
existsHk a.e. on M . Rectifiable k-varifold is uniquely determined by its weight mea-
sure ‖V ‖ = θ Hn−1	M through the formula (2.2). For this reason, we naturally say
a Radon measure μ on U is rectifiable when one can associate a rectifiable varifold
V such that ‖V ‖ = μ. If θ ∈ N, Hk a.e. on M , we say V is integral. The set of all
integral k-varifolds in U is denoted by IVk(U ). If θ = 1, Hk a.e. on M , we say V is
a unit density k-varifold.

For V ∈ Vk(U ) let δV be the first variation of V , namely,

δV (g) :=
∫
Gk (U )

∇g(x) · S dV (x, S) (2.3)

for g ∈ C1
c (U ; Rn). If the total variation ‖δV ‖ of δV is locally bounded and absolutely

continuous with respect to ‖V ‖, by the Radon-Nikodym theorem, we have a ‖V ‖
measurable vector field h(V, ·) with

δV (g) = −
∫
U
g(x) · h(V, x) d‖V ‖(x). (2.4)

The vector field h(V, ·) is called the generalized mean curvature vector of V . For
any V ∈ IVk(U ) with an integrable h(V, ·), Brakke’s perpendicularity theorem [6,
Chapter 5] says that we have
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∫
U

(Tanx M)⊥(g(x)) · h(V, x) d‖V ‖(x) =
∫
U
g(x) · h(V, x) d‖V ‖(x) (2.5)

for all g ∈ Cc(U ;Rn). Here, M is related to V as in (2.2). In the case of k = n − 1,
note that (Tanx M)⊥ = ν(x)⊗ ν(x) for ‖V ‖ a.e. in U , where ν(x) is the unit normal
vector to Tanx M . With this notation (2.5) may be written as

∫
U

(g(x) · ν(x))(h(V, x) · ν(x)) d‖V ‖(x) =
∫
U
g(x) · h(V, x) d‖V ‖(x) (2.6)

for g ∈ Cc(U ;Rn). If h(V, ·) ∈ L2(‖V ‖), by approximation, (2.6) holds even for
g ∈ L2(‖V ‖).

2.3 Weak formulation of velocity

Let {Mt }t≥0 be a family of smoothhypersurfaces in�whosenormal velocity is denoted
by v. To formulate the velocity in a weak sense, observe the following characterization
of v: a smooth normal vector field ṽ on Mt is equal to v if and only if

d

dt

∫
Mt

φ dHn−1 ≤
∫
Mt

(∇φ − hφ) · ṽ + ∂tφ dHn−1 (2.7)

holds for all φ ∈ C1
c (�× [0,∞);R+) and for all t ≥ 0. Here h is the classical mean

curvature vector of Mt . To check this claim, after some calculation, one first sees that
v satisfies (2.7) with equality. Conversely, if ṽ satisfies (2.7), and already knowing that
v satisfies (2.7) with equality, we obtain

0 ≤
∫
Mt

(∇φ − hφ) · (ṽ − v) dHn−1

for φ ∈ C1
c (�;R+). For any x̂ ∈ Mt and λ > 0, let φλ(y) := λ2−nφ(λ−1(y − x̂)).

Substitute φλ and let λ ↓ 0. Since λ−1(Mt − x̂)→ Tanx̂ Mt , we obtain

0 ≤
∫
Tanx̂ Mt

∇φ dHn−1 · (ṽ(x̂)− v(x̂)).

The integration by parts shows
∫
Tanx̂ Mt

∇φ dHn−1 ⊥ Tanx̂ Mt . On the other hand, one
may choose this vector to be−(ṽ(x̂)−v(x̂)), for example. Thus we have ṽ(x̂) = v(x̂)
and we complete the proof of the claim. The characterization (2.7) motivates the
following definition.

Definition 2.1 A family of varifolds {Vt }t≥0 ⊂ Vn−1(�) is a generalized solution of
(1.2) if the following four conditions are satisfied.

(a) Vt ∈ IVn−1(�) for a.e. t ≥ 0.
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(b) For all T > 0,

sup
t∈[0,T ]

‖Vt‖(�) <∞ and sup
t∈[0,T ], Br (x)⊂�

‖Vt‖(Br (x))
ωn−1rn−1

<∞. (2.8)

(c) For all T > 0, ∫ T

0
dt
∫

�

|h|2 + |u|2 d‖Vt‖ <∞. (2.9)

(d) For all φ ∈ C1
c (�× [0,∞);R+) and 0 ≤ t1 < t2 <∞,

‖Vt‖(φ(·, t))
∣∣∣t2
t=t1
≤
∫ t2

t1
dt
∫

�

(∇φ − hφ) · {h + (u · ν)ν} + ∂tφ d‖Vt‖
(2.10)

holds, where we abbreviated h(Vt , x) by h.

The condition (b) may appear out of place in the definition of velocity. In fact, if u is 0
or a bounded function and if ‖V0‖ satisfies (2.8), one can derive (2.8) as a consequence
of (2.10) via Huisken’s monotonicity formula. However, if u is not bounded, it is not
clear how to obtain (2.8) from (2.10). The other important point is that, unless one
has (2.8), it is unclear how to make sense of (2.9) and (2.10). The difficulty is, u(·, t)
needs to be defined as a ‖Vt‖ measurable function for a.e. t ≥ 0. In general, u(·, t) is
assumed to be in some Sobolev space on �, and we need to define ‖Vt‖ measurable
u(·, t) as a trace function. If we have (2.8), wemay define the trace using the following
inequality.

Theorem 2.1 For a Radon measure μ on R
n with D := supBr (x)⊂Rn

μ(Br (x))
ωn−1rn−1 and

1 ≤ p < n, ∫
Rn
|φ| p(n−1)n−p dμ ≤ c(n, p)D

(∫
Rn
|∇φ|p dx

) n−1
n−p

(2.11)

holds for φ ∈ C1
c (R

n).

See [36] and [49] for the proof in the case of p = 1.The above inequality for 1 < p < n
may be derived by the Hölder and Sobolev inequalities.

Suppose thatwe have (2.8).Weonly need to define u as a function in L2
loc(‖Vt‖×dt)

to make sense of (2.9) and (2.10). Since W 1,p′
loc ⊂ W 1,p

loc if p′ > p, we need to
consider only 1 ≤ p < n. Using the Hölder inequality and (2.11), we obtain (with
D := supBr (x)⊂�

‖Vt‖(Br (x))
ωn−1rn−1 )

∫
�

|φ|2 d‖Vt‖ ≤
(∫

�

|φ| p(n−1)n−p d‖Vt‖
) 2(n−p)

p(n−1)
(‖Vt‖(spt φ))

pn+p−2n
p(n−1)

≤ (c(n, p)D)
2(n−p)
p(n−1)

(∫
�

|∇φ|p dx
) 2

p

(‖Vt‖(spt φ))
pn+p−2n
p(n−1) . (2.12)
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for φ ∈ C1
c (�). Here, we also need to assume that

p ≥ 2n

n + 1
(2.13)

so that p(n−1)
n−p ≥ 2. Since we will assume (2.14) in the next subsection, which implies

p > n
2 in particular, (2.13) will be relevant only for n = 2 and we will assume p ≥ 4

3
when n = 2. With this restriction, we may define u as an L2

loc(‖Vt‖× dt) function on

�×[0, T ] uniquely as long as u ∈ L2
loc([0,∞); (W 1,p

loc (�))n) by the standard density
argument. The function u in (2.9) and (2.10) is defined in this sense.

2.4 Main results

First we present some existence result for (1.2) when given a vector field u and an
initial hypersurface M0.

Theorem 2.2 Suppose n ≥ 2,

2 < q <∞,
nq

2(q − 1)
< p <∞

(
4

3
≤ p in addition if n = 2

)
(2.14)

and � = R
n or Tn. Given any

u ∈ Lq
loc([0,∞); (W 1,p(�))n) (2.15)

and a non-empty bounded domain �0 ⊂ � with C1 boundary M0 = ∂�0, there exist

(1) a family of varifolds {Vt }t≥0 ⊂ Vn−1(�) which is a generalized solution of (1.2)
as in Definition 2.1 with ‖V0‖ = Hn−1	M0 and

(2) a function ϕ ∈ BVloc(� × [0,∞)) ∩ C
1
2
loc([0,∞); L1(�)) with the following

properties.
(2a) ϕ(·, t) is a characteristic function for all t ∈ [0,∞),
(2b) ‖∇ϕ(·, t)‖(φ) ≤ ‖Vt‖(φ) for all t ∈ [0,∞) and φ ∈ Cc(�;R+),
(2c) ϕ(·, 0) = χ�0 a.e. on �,
(2d) writing ‖Vt‖ = θHn−1	Mt and ‖∇ϕ(·, t)‖ = Hn−1	M̃t

for a.e. t > 0, we
have

Hn−1(M̃t\Mt ) = 0 (2.16)

and

θ(x, t) =
{
even integer ≥ 2 if x ∈ Mt\M̃t ,

odd integer ≥ 1 if x ∈ M̃t
(2.17)

forHn−1 a.e. x ∈ Mt .
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(3) If p < n, then for any T > 0, setting s := p(n−1)
n−p , we have

(∫ T

0

(∫
�

|u|s d‖Vt‖
) q

s

dt

) 1
q

<∞. (2.18)

If p = n, then we have (2.18) locally for U ⊂⊂ � for any 2 ≤ s < ∞ and if

p > n, then we have (2.18) with Ls norm replaced by C1− n
p norm on �.

(4) There exists T1 > 0 such that Vt has unit density for a.e. t ∈ [0, T1). In addition
‖∇ϕ(·, t)‖ = ‖Vt‖ for a.e. t ∈ [0, T1).

The condition (2.14) on u is a dimensionally sharp condition in the following sense.
Consider a natural parabolic change of variables x̃ := x

λ
and t̃ := t

λ2
with λ > 0.

Since u is a velocity field, it should behave just like x/t , thus it is natural to consider
ũ := λu. Then we have

(∫ ∞
0

(∫
Rn
|∇u|p dx

) q
p

dt

) 1
q

= λ
n
p+ 2

q−2
(∫ ∞

0

(∫
Rn
|∇ũ|p d x̃

) q
p

dt̃

) 1
q

and n
p + 2

q − 2 < 0 is equivalent to the second inequality in (2.14). This guarantees
that u locally behaves more like a perturbative term. In (3), if p > n, then the result
follows from the standard Sobolev inequality on R

n .
To understand what Vt and ϕ are, assume for a moment that no singular behaviors

occur and we have a smooth family {Mt }t≥0 with the velocity given by (1.2). Then
we should have spt ‖Vt‖ = ∂{ϕ(·, t) = 1} = Mt . Since (1.2) is stated in terms of
Vt , it may first appear that ϕ is redundant. However, beside the fact that ϕ is obtained
naturally from the approach of the present paper, it has a few important roles. First, ϕ
helps to guarantee that Vt is non-trivial. Since ϕ(·, t) is continuous in L1(�) by (2),
‖ϕ(·, t)‖L1(�) cannot vanish instantaneously at some arbitrary time. As long as ϕ(·, t)
is not identically zero or identically 1, ‖Vt‖ is non-zero measure. Note that, given
arbitrary t0 > 0, by re-defining Vt := 0 for all t > t0, we obtain another generalized
solution of (1.2) due to the inequality in (2.10). Obviously, this is not a solution we
would like to obtain in the end. The second role of ϕ is that it gives some restriction
on the possible singularities of spt ‖Vt‖. For example, consider in the n = 2 case. One
can see that a unit density Vt cannot form a triple junction since ∂{ϕ(·, t) = 1} cannot
be a triple junction. Thus, having ϕ as an auxiliary object may be a useful tool to obtain
some better regularity results. As for the actual occurrence of the higher multiplicities,
Bronsard and Stoth [8] showed that one can have solution with θ ≥ 2 for a limit of
the Allen-Cahn equation, thus we may indeed have such solution in general.

We next state the regularity property of spt ‖Vt‖, which is obtained as an application
of [30,46]. To state the result, we recall some definitions from there.

Definition 2.2 A point x ∈ spt ‖Vt‖ is said to be a C1,ζ regular point if there exists
some open neighborhood O inRn+1 containing (x, t) such that O ∩∪s>0(spt ‖Vs‖×
{s}) is an embeddedn-dimensionalmanifoldwithC1,ζ regularity in space andC (1+ζ )/2

regularity in time. Similarly, we define aC2,α regular point by replacing the respective
regularities by C2,α in space and C1,α/2 in time.
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Theorem 2.3 Let {Vt }t≥0 be as in Theorem 2.2 .

(1) Suppose that there exist an open set U ⊂ � and an interval (t1, t2) such that Vt
is unit density in U for a.e. t ∈ (t1, t2). Then for a.e. t ∈ (t1, t2), there exists a
closed set Gt ⊂ U with Hn−1(Gt ) = 0 such that (U ∩ spt ‖Vt‖)\Gt is a set of
C1,ζ regular points where ζ := 2− n

p − 2
q if p < n. If p ≥ n, one may take any

ζ with 0 < ζ < 1− 2
q .

(2) There exists T2 > 0 such that every point of spt ‖Vt‖ is a C1,ζ regular point for
all t ∈ (0, T2) (that is, Gt = ∅), where ζ is as in (1).

(3) If u is Hölder continuous with exponent α in the parabolic sense, i.e.,

sup
�×[0,T ]

|u| + sup
x,y∈�,0≤t1<t2≤T

|u(x, t1)− u(y, t2)|
max{|x − y|α, |t1 − t2|α/2} <∞

for all 0 < T <∞, then the same results for (1) and (2) hold true with C1,ζ there
replaced by C2,α and (1.2) is satisfied pointwise.

(4) We have limt↓0 t−
1
2 dist (M0, spt ‖Vt‖) = 0 and spt ‖Vt‖ converges to M0 in

C1 topology as t ↓ 0. Namely, given ε > 0 there exists a finite number of
sets {Ui = xi + Oi (Bn−1

r × (−r, r))}Ni=1, where Oi is an orthogonal rotation
and xi ∈ M0, such that M0 ⊂ ∪Ni=1Ui , and C1 norms of difference of graphs
representing M0 and spt ‖Vt‖ over xi + Oi (Bn−1

r ) in Ui are less than ε for all
sufficiently small t > 0.

The claim (1) says that wherever Vt is unit density in some space-time neighborhood,
spt ‖Vt‖ is locally a hypersurface with regularity ofC1,ζ in space andC (1+ζ )/2 in time,
almost everywhere in space and time. We can guarantee by (2) that there is some time
interval [0, T2) such that spt ‖Vt‖ is a C1,ζ hypersurface. We obtain a lower bound
on T2 in terms of M0 and the norm of u. On the other hand, T2 may be much larger
than the lower bound and it is the time when a non-C1,ζ regular point occurs for the
first time. In general, T2 ≤ T1 and it is plausible that some non-C1,ζ regular point
first appears at T2 but Vt may remain unit density for some more time. The claim (4)
shows that spt ‖Vt‖ has C1 uniform regularity and convergence as t ↓ 0. As for (3),
we first note that we can show the same existence results for Hölder continuous u (and
not in Lq

loc([0,∞); (W 1,p(�))n)) as in Theorem 2.2. In fact the proof is simpler if u
is bounded. C2,α regularity allows one to have pointwise mean curvature vector and
velocity vector of spt ‖Vt‖ and (1.2) is satisfied pointwise. At this point, we reach a
well-defined PDE setting, and spt ‖Vt‖ is as regular as what the standard parabolic
regularity theory shows depending on any additional regularity assumption imposed
on u.

3 Allen-Cahn equation with transport term

As stated in the introduction, the method of proof for the existence is to approxi-
mate (1.2) by the Allen-Cahn equation with an extra transport term coming from u.
Throughout the paper, we assume that a function W satisfies the following:
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W : R→ [0,∞) is C3 and W (±1) = W ′(±1) = 0. (3.1)

For some γ ∈ (−1, 1),W ′ < 0 on (γ, 1) and W ′ > 0 on (−1, γ ). (3.2)

For some α ∈ (0, 1) and κ > 0,W ′′(x) ≥ κ for all 1 ≥ |x | ≥ α. (3.3)

We also define a constant

σ :=
∫ 1

−1

√
2W (s) ds. (3.4)

Basically, above assumptions require W to be W-shaped with non-degenerate two
minima at ±1. Requiring (3.2) may appear non-essential, but it is used essentially
in deriving an upper bound for ξε in Lemma 4.2. Any such W satisfying above can
be used. The reader can take a concrete example such as W (s) = (1 − s2)2 in the
following.

Given u and M0 as in Theorem 2.2, the whole scheme of the present paper is to
approximate the motion law (1.2) by

∂tϕε + uε · ∇ϕε = �ϕε − W ′(ϕε)

ε2
, (3.5)

where ε > 0 is a small parameter tending to 0 and uε is a smooth approximation of
u. For readers who are not familiar with the Allen-Cahn equation, we give a quick
heuristic argument. Assume that u is smooth and that we have a family of domains
�t with smooth boundaries Mt = ∂�t . Let d(·, t) be the signed distance function to
Mt so that d(·, t) > 0 inside of �t . We let � : R→ (−1, 1) be an ODE solution of
� ′′ = W ′(�) with limx→±∞�(x) = ±1. Such solution exists and we may assume
�(0) = 0. If we postulate that ϕε(x, t) ≈ �(d(x, t)/ε) and ϕε satisfies (3.5), then we
expect that

� ′∂t d + uε ·� ′∇d ≈ � ′�d + ε−1(� ′′|∇d|2 −W ′(�)). (3.6)

Since d is a distance function, |∇d| = 1, and the last two terms cancel each other.
This leaves

∂t d + uε · ∇d ≈ �d. (3.7)

Due to the nature of the distance function, evaluated on Mt , ∂t d is the outward velocity
of Mt , uε · ∇d is the inward normal component of uε and �d is the mean curvature
of Mt . As ε → 0, this approximation may be expected to get better, and the relation
(3.7) motivates that {ϕε(·, t) = 0} should converge to Mt which moves by (1.2). This
heuristic argument may be justified if we know in advance that there exists a smooth
Mt moving by (1.2). Here, however, u is not smooth andwe aim to obtain a time-global
existence result which necessitates a framework inclusive of singularities. This is the
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reason to use the language of varifold in this paper as was done first by Ilmanen [28].
The basic approach is to prove that ϕε satisfying (3.5) has the property that

με :=
(

ε|∇ϕε|2
2

+ W (ϕε)

ε

)
dx ≈ σN (x, t)Hn−1	Mt (3.8)

when ε is small and where N (x, t) is some integer. At the same time we prove that
the limiting measure of με satisfies (2.10). The first key estimate to be established is
the analogue of (2.8) for ϕε which will be discussed in the next section.

4 Density ratio upper bound and energy monotonicity formula

In this section, we prove the upper density ratio bound for diffused interface energy
and energy monotonicity formula which are crucial in the limiting process. Estimates
in this section are similar to [33, Sect. 3] with some modifications.

4.1 The upper density ratio bound

We state the main theorem concerning the uniform density ratio upper bound inde-
pendent of ε of the Allen-Cahn equation with extra transport term. The proof takes
the entire Sect. 4. We establish the monotonicity formula which is a perturbed ver-
sion of Ilmanen’s monotonicity formula for the Allen-Cahn equation (and Huisken’s
monotonicity formula for the MCF [26]) along the way.

Theorem 4.1 Suppose n ≥ 2, � = T
n or Rn, p, q satisfy (2.14),

0 < β <
1

2
, (4.1)

0 < ε < 1 and ϕ satisfies

∂tϕ + u · ∇ϕ = �ϕ − W ′(ϕ)

ε2
on �× [0, T ], (4.2)

ϕ(x, 0) = ϕ0(x) on �. (4.3)

Assume u ∈ C∞c (� × [0, T ]), ∇ jϕ, ∂t∇kϕ ∈ C(� × [0, T ]) for k ∈ {0, 1} and
j ∈ {0, 1, 2, 3}. Let με

t be a Radon measure on � defined by

∫
�

φ(x) dμε
t (x) :=

∫
�

φ(x)

(
ε|∇ϕ(x, t)|2

2
+ W (ϕ(x, t))

ε

)
dx (4.4)

for φ ∈ Cc(�) and define

D(t) := max

{
1, με

t (�), sup
Br (x)⊂�

με
t (Br (x))

ωn−1rn−1

}
, t ∈ [0, T ]. (4.5)
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Assume

sup
�×[0,T ]

|ϕ| ≤ 1, (4.6)

sup
�

εi |∇ iϕ0| ≤ c1 for i ∈ {1, 2, 3}, (4.7)

lim
R→∞ Rk‖ϕ + 1‖C2((Rn\BR)×[0,T ]) = 0 for any k ∈ N in case� = R

n, (4.8)

sup
�

(
ε|∇ϕ0|2

2
− W (ϕ0)

ε

)
≤ ε−β, (4.9)

sup
�×[0,T ]

|u| ≤ ε−β, sup
�×[0,T ]

|∇u| ≤ ε−(β+1), (4.10)

‖u‖Lq ([0,T ];(W 1,p(�))n) ≤ c2 (4.11)

and

D(0) ≤ D0. (4.12)

Then there exist D1 = D1(c2, n, p, q, D0, T ) > 0 and ε1 = ε1(c2, n, p, q, D0, T, c1,
β,W ) > 0 such that

sup
t∈[0,T ]

D(t) ≤ D1 (4.13)

as long as ε < ε1.

Remark 4.1 If u = 0, με
t (�) is monotone decreasing, thus it is straightforward to

conclude that με
t (�) is bounded uniformly independent of ε if με

0(�) is. The uniform
density ratio boundmay be also obtained from Ilmanen’smonotonicity formula.When
u �= 0, however, it is non-trivial even to conclude that the total energy με

t (�) up to
time T has a uniform bound independent of ε. We will see that we need the density
ratio bound to estimate με

t (�).

4.2 Monotonicity formula

In this subsection as a first step we obtain a modified monotonicity formula analogous
to that of Ilmanen [28]. It is still not a very useful formula due to the possible negative
contribution coming from ξε defined below.Wewill show that the negative contribution
is small when ε is small.

To localize the computations, fix a radially symmetric cut-off function

η(x) ∈ C∞c
(
B 1

2

)
with η = 1 on B 1

4
, 0 ≤ η ≤ 1. (4.14)

Define

ρ̃(y,s)(x, t) := ρ(y,s)(x, t)η(x − y) = 1

(4π(s − t))
n−1
2

e−
|x−y|2
4(s−t) η(x − y) (4.15)
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for t < s and x, y ∈ � and define

eε := ε|∇ϕ|2
2
+ W (ϕ)

ε
, ξε := ε|∇ϕ|2

2
− W (ϕ)

ε
. (4.16)

Proposition 4.1 Suppose that ϕ satisfies (4.2). With the notation of (4.4), (4.15),
(4.16) and writing ρ̃ = ρ̃(y,s)(x, t), we have c3 depending only on n such that

d

dt

∫
�

ρ̃ dμε
t (x) ≤

1

2

∫
�

ρ̃|u|2 dμε
t (x)+

1

2(s − t)

∫
�

ξερ̃ dx

+ c3e
− 1

128(s−t) με
t (B 1

2
(y)) (4.17)

for y ∈ �, 0 < t < s <∞ and t < T .

Proof We define L as follows and by (4.2),

L := ∂tϕ + u · ∇ϕ = �ϕ − W ′(ϕ)

ε2
.

By integration by parts we have

d

dt

∫
�

eερ̃ dx =
∫

�

{eε∂t ρ̃ − ε(L − u · ∇ϕ)(∇ρ̃ · ∇ϕ + ρ̃L)} dx

=
∫

�

{
eε∂t ρ̃−ερ̃

(
L+∇ρ̃ · ∇ϕ

ρ̃

)2

+ε

(
L∇ρ̃ · ∇ϕ+ (∇ρ̃ · ∇ϕ)2

ρ̃

)

+ ερ̃u · ∇ϕ

(
L + ∇ρ̃ · ∇ϕ

ρ̃

)}
dx

≤
∫

�

{
eε∂t ρ̃ + ε

(
L∇ρ̃ · ∇ϕ + (∇ρ̃ · ∇ϕ)2

ρ̃

)
+ 1

4
ερ̃(u · ∇ϕ)2

}
dx .

(4.18)

Moreover by integration by parts we obtain

∫
�

εL∇ρ̃ · ∇ϕ dx =
∫

�

−ε(∇ϕ ⊗∇ϕ) · ∇2ρ̃ + eε�ρ̃ dx . (4.19)

Substitution of (4.19) into (4.18) gives

d

dt

∫
�

eερ̃ dx ≤
∫

�

(−ξε)(∂t ρ̃ +�ρ̃)+ ε|∇ϕ|2
(

∂t ρ̃ +�ρ̃ − ∇ϕ ⊗∇ϕ

|∇ϕ|2 · ∇2ρ̃

+ (∇ρ̃ · ∇ϕ)2

ρ̃|∇ϕ|2
)
+ 1

4
ερ̃(u · ∇ϕ)2 dx . (4.20)
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We remark that ρ (without multiplication by η) satisfies the following:

∂tρ +�ρ = − ρ

2(s − t)
, ∂tρ +�ρ − ∇ϕ ⊗∇ϕ

|∇ϕ|2 · ∇2ρ + (∇ρ · ∇ϕ)2

ρ|∇ϕ|2 = 0.

(4.21)

When one computes (4.21) with ρ̃ instead of ρ, we have additional terms com-
ing from differentiation of η. The integration of these terms can be bounded by

cμε
t (B1/2(y))e

− 1
128(s−t) for c = c(n) since |∇ jρ| ≤ c( j, n)e−

1
128(s−t) for any x, y ∈ �

with |x− y| > 1
4 and j = 0, 1. Thus, with an appropriate choice of c3 depending only

on n, we obtain (4.17). ��

4.3 Some estimates on � × [0, T ]

Lemma 4.1 Suppose that ϕ satisfies (4.2), (4.3), (4.6), (4.7) and (4.10). Then there
exists c4 > 0 depending only on n, c1,W such that

sup
�×[0,T ]

ε|∇ϕ| + sup
x,y∈�, t∈[0,T ]

ε
3
2
|∇ϕ(x, t)−∇ϕ(y, t)|

|x − y| 12
≤ c4. (4.22)

Proof Take any domain B3ε(x0) × [t0, t0 + 2ε2] ⊂ � × [0, T ]. Define ϕ̃(x, t) :=
ϕ(εx + x0, ε2t + t0) and ũ(x, t) := u(εx + x0, ε2t + t0) for (x, t) ∈ B3 × [0, 2]. By
(4.2) we have

∂t ϕ̃ + εũ · ∇ϕ̃ = �ϕ̃ −W ′(ϕ̃). (4.23)

Using the estimate of [32, p. 342, Theorem 9.1], if ∂tv−�v = f on B2× [0, 2] then
we have

‖∂tv,∇2v‖Lr (B1×[ j,2]) ≤ c(n, r)(‖ f,∇v, v‖Lr (B2×[0,2]))+(1− j)‖v(·, 0)‖W 2,r (B2))

(4.24)

for j = 0 (up to t = 0) or j = 1 (interior estimate) and for r ∈ (1,∞). Letφ ∈ C1
c (B3)

be a cut-off function and multiply φ2ϕ̃ to (4.23), then by integration by parts, (4.6),
(4.7) and (4.10), we have

∫ 2

0

∫
B2
|∇ϕ̃|2 dxdt ≤ c(W ). (4.25)

Hence by (4.6), (4.7), (4.10), (4.24) (r = 2) and (4.25) we obtain

∫ 2

0

∫
B1
|ϕ̃t |2 + |∇2ϕ̃|2 dxdt ≤ c(n, c1,W ).
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By applying (4.24) to the equation

∂t (ϕ̃xi )−�ϕ̃xi = −εũxi · ∇ϕ̃ − εũ · ∇ϕ̃xi −W ′′(ϕ̃)ϕ̃xi ,

and using (4.6), (4.7) and (4.10) again, we obtain

∫ 2

0

∫
B1
|∇ϕ̃t |2 + |∇3ϕ̃|2 dxdt ≤ c(n, c1,W ).

Therefore we obtain the W 1,2 estimates of ∇ϕ̃ on B1 × [0, 2], and by the Sobolev
inequality we have

‖∇ϕ̃‖
L

2(n+1)
n−1 (B1×[0,2])

≤ c(n, c1,W ).

We can use this estimate to (4.23) and (4.24) with r = 2(n+1)
n−1 .We repeat this argument

until r is large enough so that W 1,r ⊂ C
1
2 with appropriate modifications of the

domain. Then we obtain the desired estimate

‖∇ϕ̃‖
C

1
2 (B1×[0,2])

≤ c(n, c1,W ).

Since the domain was arbitrary, after returning to the original coordinate system, we
obtain (4.22). ��

Lemma 4.2 There exists ε2 = ε2(n,W, β) > 0 such that, if ε < ε2 and under the
assumptions of (4.1)–(4.3), (4.6), (4.7), (4.9) and (4.10), we have

ε|∇ϕ|2
2
− W (ϕ)

ε
≤ 10ε−β on �× [0, T ]. (4.26)

Proof Rescale the domain by x �→ x
ε
and t �→ t

ε2
. Under the change of variables, we

continue to use the same notations for ϕ and u. Define

ξ := |∇ϕ|2
2
−W (ϕ)− G(ϕ), (4.27)

where G will be chosen later. We compute ∂tξ + εu · ∇ξ −�ξ and obtain

∂tξ + εu · ∇ξ −�ξ

= ∇ϕ · ∇∂tϕ − (W ′ + G ′)∂tϕ + ε(u ⊗∇ϕ) · ∇2ϕ − ε(W ′ + G ′)u · ∇ϕ

−|∇2ϕ|2 − ∇ϕ · ∇(�ϕ)+ (W ′ + G ′)�ϕ + (W ′′ + G ′′)|∇ϕ|2. (4.28)
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Here, we denoted and will denoteW ′(ϕ) asW ′, G(ϕ) as G and so forth for simplicity.
Differentiate (4.23) with respect to x j , multiply ϕx j and sum over j to obtain

∇ϕ · ∇∂tϕ + ε∇u · (∇ϕ ⊗∇ϕ)+ ε(u ⊗∇ϕ) · ∇2ϕ

= ∇ϕ · ∇(�ϕ)−W ′′|∇ϕ|2. (4.29)

By (4.23), (4.28) and (4.29) we have

∂tξ + εu · ∇ξ −�ξ = W ′(W ′ + G ′)− |∇2ϕ|2
−ε∇u · (∇ϕ ⊗∇ϕ)+ G ′′|∇ϕ|2. (4.30)

Differentiating (4.27) with respect to x j and by using the Cauchy-Schwarz inequality
we have

n∑
j=1

(
n∑

i=1
ϕxi ϕxi x j

)2

=
n∑
j=1

(
ξx j + (W ′ + G ′)ϕx j

)2
= |∇ξ |2 + 2(W ′ + G ′)∇ξ · ∇ϕ + (W ′ + G ′)2|∇ϕ|2
≤ |∇ϕ|2|∇2ϕ|2. (4.31)

On {|∇ϕ| > 0}, divide (4.31) by |∇ϕ|2 and substitute into (4.30) to obtain

∂tξ + εu · ∇ξ −�ξ

≤ W ′(W ′ + G ′)− 1

|∇ϕ|2 (|∇ξ |2 + 2(W ′ + G ′)∇ξ · ∇ϕ + (W ′ + G ′)2|∇ϕ|2)
− ε∇u · (∇ϕ ⊗∇ϕ)+ G ′′|∇ϕ|2

≤ −(G ′)2 −W ′G ′ − 2(W ′ + G ′)
|∇ϕ|2 ∇ξ · ∇ϕ − ε∇u · (∇ϕ ⊗∇ϕ)

+G ′′|∇ϕ|2. (4.32)

By |∇ϕ|2 = 2(ξ +W + G) and (4.32) we have on {|∇ϕ| > 0}

∂tξ + εu · ∇ξ −�ξ ≤ −(G ′)2 −W ′G ′ + 2G ′′(ξ +W + G)

−2(W ′ + G ′)
|∇ϕ|2 ∇ξ · ∇ϕ − ε∇u · (∇ϕ ⊗∇ϕ). (4.33)

Let φ(x, t) = φ(x) ∈ C∞(B3ε−1) be such that

φ =
{
M := supRn×[0,ε−2T ]

( |∇ϕ|2
2 −W (ϕ)

)
on B3ε−1\B2ε−1 ,

0 on Bε−1 ,

and

0 ≤ φ ≤ M, |∇φ| ≤ 2εM, |�φ| ≤ 2nε2M.
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Note that M may be bounded depending only on n, c1,W by Lemma 4.1. Note also
that we may assume M > 0 since M ≤ 0 implies our conclusion (4.26) immediately.
Let

ξ̃ := ξ − φ and G(ϕ) := ε
1
2

(
1− 1

8
(ϕ − γ )2

)
,

where γ is as in (3.2). To derive a contradiction, suppose that

sup
B

ε−1×[0,ε−2T ]
ξ ≥ ε

1
2 .

Since ξ̃ ≤ 0 on (B3ε−1\B2ε−1) × [0, ε−2T ], ξ̃ ≤ ε1−β on B3ε−1 × {0} by (4.9) and

supB
ε−1×[0,ε−2T ] ξ̃ ≥ ε

1
2 , there exists some interiormaximumpoint (x0, t0) of ξ̃ where

∂t ξ̃ ≥ 0, ∇ ξ̃ = 0, �ξ̃ ≤ 0 and ξ̃ ≥ ε
1
2

hold. By the definition of φ we have at the point (x0, t0)

∂tξ ≥ 0, |∇ξ | ≤ 2εM, �ξ ≤ 2nε2M and |∇ϕ|2 ≥ 2ε
1
2 . (4.34)

Substitute (4.34) into (4.33). Using ε∇u · (∇ϕ ⊗ ∇ϕ) ≤ 2ε|∇u|(ξ + W + G) and
(4.10), we have

0 ≤ 2nε2M − (G ′)2 −W ′G ′ + 2G ′′(ξ +W + G)+ 4(|W ′| + |G ′|)εM(
2ε

1
2

) 1
2

+2ε1−β(ξ +W + G)+ 2ε2−βM. (4.35)

Since β < 1
2 and G ′′ = −ε

1
2 /4, for sufficient small ε depending only on β and W ,

2G ′′(ξ +W + G)+ 2ε1−β(ξ +W + G) ≤ G ′′(W + G). (4.36)

If |ϕ(x0, t0)| ≤ α, then

G ′′(ϕ(x0, t0))W (ϕ(x0, t0)) ≤ −ε
1
2

4
min|z|≤α

W (z),

which is a ‘big’ negative number compared to the rest, and one can check that this
and (4.36) (as well as W ′G ′ ≥ 0 and G > 0) lead to a contradiction in (4.35). If
|ϕ(x0, t0)| ≥ α, then we would have ‘big’ negative contributions coming from (all
evaluated at (x0, t0))

(G ′)2 ≥ ε(α − |γ |)2
64

and −W ′G ′ ≤ −ε
1
2 (α − |γ |)

4
|W ′|,
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which again lead to a contradiction in (4.35) for sufficiently small ε. This shows that

sup
B

ε−1×[0,ε−2T ]

( |∇ϕ|2
2
−W (ϕ)

)
≤ 2ε

1
2 ,

where G ≤ ε
1
2 is used. Now repeat the same argument, this time with M replaced by

2ε
1
2 and G replaced by 8ε1−β(1− 1

8 (ϕ − γ )2). If we assume

sup
B

ε−1×[0,ε−2T ]
ξ ≥ 2ε1−β,

ξ̃ = ξ − φ would attain some interior maximum in B3ε−1 × [0, ε−2T ] by (4.9) and

by the subtraction of φ. This time we would have ∂tξ ≥ 0, |∇ξ | ≤ 4ε
3
2 , �ξ ≤ 4nε

5
2

and |∇ϕ|2 ≥ 4ε1−β . With this (4.35) is

0 ≤ 4nε
5
2 − (G ′)2 −W ′G ′ + 2G ′′(ξ +W + G)+ 8(|W ′| + |G ′|)ε 3

2

(4ε1−β)
1
2

+2ε1−β(ξ +W + G)+ 4ε
5
2−β.

Exactly the same type of argument as before shows that we have a contradiction, and
since G ≤ 8ε1−β and ξ − G ≤ 2ε1−β , we have (4.26). ��

Lemma 4.3 Letμε
s , D(t) and ρ̃(y,s) be defined as in (4.4), (4.5) and (4.15). Let s, R, r

be positive with 0 ≤ s − ( Rr )2 ≤ T and R ∈ (0, 1
2 ). Set s̃ = s − ( Rr )2. Then there

exists c5 = c5(n) ≥ 1 such that, for any y ∈ �, we have

∫
�

ρ̃(y,s)(x, s̃) dμε
s̃ (x) ≤

( r√
4πR

)n−1 {
με
s̃ (BR(y))+ με

s̃ (B 1
2
(y)) exp

(
− r2

16R2

)}

+ c5D(s̃) exp
(
− r2

8

)
.

Proof First, on BR(y) we compute

∫
BR(y)

ρ̃(y,s)(x, s̃) dμε
s̃ ≤

(
r√
4πR

)n−1 ∫
BR(y)

e−
r2 |x−y|2

4R2 dμε
s̃

≤
(

r√
4πR

)n−1
με
s̃ (BR(y)).
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On �\BR(y) we have

(√
4πR

r

)n−1 ∫
�\BR(y)

ρ̃(y,s)(x, s̃) dμε
s̃ ≤

∫
B 1
2
(y)\BR(y)

e−
r2 |x−y|2

4R2 dμε
s̃

≤
∫ 1

0
με
s̃

((
B 1

2
(y)\BR(y)

)
∩
{
x | e− r2 |x−y|2

4R2 ≥ λ

})
dλ

≤
∫ exp(− r2

16R2
)

0
με
s̃

(
B 1

2
(y)\BR(y)

)
dλ+

∫ exp(− r2
4 )

exp(− r2

16R2
)

με
s̃ (B 2R

r

√
log λ−1(y)) dλ

≤ με
s̃

(
B 1

2
(y)
)
e−

r2

16R2 + D(s̃)ωn−1
(
2R

r

)n−1 ∫ r2

16R2

r2
4

l
n−1
2 e−l dl

≤ με
s̃

(
B 1

2
(y)
)
e−

r2

16R2 + c(n)D(s̃)

(
2R

r

)n−1
e−

r2
8 . (4.37)

Here we used the fact that there exists c = c(n) > 0 such that l
n−1
2 e−l ≤ ce− l

2 for
any l > 0. ��

4.4 Proof of Theorem 4.1

In this subsection,we alwaysworkunder the assumptions ofTheorem4.1. In particular,
results from the two preceding subsections are available. Furthermore, from now on
until Proposition 4.2, we assume

D(t) ≤ D1 (4.38)

holds for t ∈ [0, T1] and T1 ≤ T . Here, D1 ≥ 2D0 is a constant depending only on
c2, n, p, q, T, D0, and not on ε, and which will be determined after Proposition 4.2.
We need to be careful about the dependence of constants so that we do not end up a
circular argument. Any constant depending on D1 will be again a constant depending
on c2, n, p, q, T, D0. Note that such T1 > 0 exists because D1 > D0 and by the
continuity of D(t) in time. Such continuity follows from that of ϕ in the case of
� = T

n , and additionally from (4.8) in the case of � = R
n . T1 may depend on ε in

general, but in the end, we prove that T1 = T as long as ε is sufficiently small. First,
under this assumption we have the following a-priori estimate:

Lemma 4.4 There exists c6 depending only on n, p, q such that for any 0 ≤ t0 < t1
we have

sup
t∈[t0,t1]

με
t (�)+ 1

2

∫ t1

t0

∫
�

ε

(
�ϕ − W ′(ϕ)

ε2

)2

dxdt

≤ με
t0(�)+ c6(t1 − t0)

1− 2
q ‖u‖2Lq ([t0,t1];(W 1,p(�))n)

sup
t∈[t0,t1]

D(t). (4.39)
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In particular, there exists E0 depending only on c2, n, p, q, T, D0 such that

sup
t∈[0,T1]

με
t (�)+ 1

2

∫ T1

0

∫
�

ε

(
�ϕ − W ′(ϕ)

ε2

)2

dxdt ≤ E0. (4.40)

Proof By (4.2) we can compute

d

dt
με
t (�) ≤ −1

2

∫
�

ε

(
�ϕ − W ′(ϕ)

ε2

)2

dx + ε

∫
�

(u · ∇ϕ)2 dx . (4.41)

To estimate the last term of (4.41), we consider two cases p < 2 and p ≥ 2 separately.
In addition we consider � = T

n, Rn separately, and let us consider Tn first. Let
{ψα}α be a partition of unity on � such that ψα ∈ C∞c (�), diam (sptψα) ≤ 1/2 and
‖ψα‖C2 ≤ c(n). Consider p < 2 case first. Just as in (2.12), by setting s := p(n−1)

n−p ≥
2, we have

ε

∫
�

(u · ∇ϕ)2 dx ≤
(∫

�

|u|sε|∇ϕ|2 dx
) 2

s

(2με
t (�))1−

2
s

≤
(∑

α

c(n, p)
∫

�

|ψαu|sε|∇ϕ|2 dx
) 2

s

(2D(t))1−
2
s

≤
(∑

α

c(n, p)D(t)

(∫
sptψα

|u|p + |∇u|p dx
) s

p
) 2

s

(2D(t))1−
2
s

≤ c(n, p)D(t)‖u(·, t)‖2W 1,p(�)
(4.42)

where each constant is different. We used the local finiteness of {ψα}α and
∑

α A
s
p
α ≤

(
∑

α Aα)
s
p since s

p ≥ 1. For p ≥ 2, we have

ε

∫
�

(u · ∇ϕ)2 dx ≤
(∫

�

|u|pε|∇ϕ|2 dx
) 2

p

(2με
t (�))

1− 2
p

≤
(∑

α

c(n, p)
∫

�

|ψαu|p ε|∇ϕ|2 dx
) 2

p

(2D(t))1−
2
p

≤
(∑

α

c(n, p)D(t)
∫
sptψα

|u|p + |u|p−1|∇u| dx
) 2

p

(2D(t))1−
2
p

≤ c(n, p)D(t)‖u(·, t)‖2W 1,p(�)
. (4.43)

Here we used (2.11) with p = 1 there and φ = |ψαu|p. Integration of (4.39) over

[t0, t1] using (4.42) or (4.43) gives (4.39). We define E0 to be D0 + c6T
1− 2

q c22D1. In
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case of � = R
n , we do not need to take the partition of unity and the proof proceeds

similarly. ��
In the following we define β ′ by

β ′ := 1+ β

2
.

In fact, any number β ′ ∈ (β, 1) can be used. To fix the idea, we specify such β ′, and
suppose that β ′ depends on β for simplicity.

Lemma 4.5 There exist c7 > 1, 1 > c8 > 0 and ε3 > 0 with 0 < ε3 ≤ ε2 depending
only on n, c1, c2, p, q, T,W, β and D0 with the following property. Assume ε ∈ (0, ε3)
and |ϕ(y, s)| ≤ α < 1 with s ∈ (0, T1]. Here α is from (3.3). Then for any t ∈ [0, T1]
with max{0, s − 2ε2β′} ≤ t ≤ s we have

c8 ≤ 1

Rn−1με
t (BR(y)), (4.44)

where R = c7(s + ε2 − t)
1
2 .

Proof We will choose ε3 < ε2 and assume for the moment that ε < ε2. Set ρ̃ =
ρ̃(y,s+ε2)(x, t) in this proof. Assume |ϕ(y, s)| ≤ α < 1. We have

∫
�

ρ̃ dμε
s (x) =

∫
ε−1�

e−
|x̃ |2
4

(
√
4π)n−1

η(εx̃)

( |∇ϕ̃|2
2
+W (ϕ̃)

)
dx̃,

where ϕ̃(x̃, s) = ϕ(εx̃ + y, s). By |ϕ̃(0, s)| ≤ α < 1 and Lemma 4.1 there exists
0 < c9 = c9(n, c1,W ) < 1 such that

5c9 ≤
∫

�

ρ̃ dμε
s (x). (4.45)

From (4.10), (4.17), (4.26), (4.40) and ε < ε2 we have for λ ∈ [t, s)

d

dλ

∫
�

ρ̃ dμε
λ ≤ ε−2β

∫
�

ρ̃ dμε
λ +

10
√

πε−β

√
s − λ

+ c3e
−1

128(s+ε2−λ) D1. (4.46)

Here
∫
�

ρ̃ dx ≤ √4π(s − t) is used. Multiply (4.46) by eε−2β (s−λ) and integrate over

[t, s]. By t ≥ max{0, s − 2ε2β
′ } we have

eε−2β (s−λ)

∫
�

ρ̃dμε
λ(x)

∣∣∣s
λ=t ≤ εβ′−βe2ε

2(β′−β)

20
√
2π

+2c3D1e
2ε2(β

′−β)

e
−1

128(ε2+2ε2β′ ) ε2β′. (4.47)
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By (4.45) and (4.47) for sufficiently small ε depending only on D1, β, n and c3 we
have

2c9 ≤
∫

�

ρ̃ dμε
t (x). (4.48)

Next we use Lemma 4.37 with r :=
√
8 log(2c5D1c

−1
9 ), where we may assume that

c5, D1 > 1 and c9 < 1. We chose this r so that

c5D1e
− r2

8 = c9
2

. (4.49)

In Lemma 4.37, we replace s and s − ( Rr )2 by s + ε2 and t respectively. Remark that

R := r(s+ ε2− t)
1
2 ≤ r(ε2+ 2ε2β′) 1

2 since s− t ≤ 2ε2β′. Hence we have R < 1
2 by

restricting ε depending only on c5, D1 and c9. From (4.38), (4.40) and Lemma 4.37
we have∫

�

ρ̃ dμε
t (x) ≤

(
r/(
√
4πR)

)n−1 {με
t (BR(y))+ E0e

−r2/(16R2)} + c5D1e
−r2/8.

(4.50)

Note that r/R ≥ ε−β ′/
√
3. By (4.50), (4.48) and (4.49) for sufficiently small ε we

obtain

c9 ≤
(
r/(
√
4πR)

)n−1
με
t (BR(y)).

Set c7 := r =
√
8 log(2c5D1c

−1
9 ) and c8 = r1−n(

√
4π)n−1c9 and we have the desired

estimate (4.44). Note that the restriction on ε depends on c3, c5, D1, c9. Examining
the dependence, we may conclude the proof. ��
Lemma 4.6 There exists 0 < ε4 ≤ ε3 and c10 depending only on n, c1, c2, p, q, T , W ,
β and D0 with the following property. For any r ∈ (εβ′, 1

2 ) and t ∈ [2ε2β′, T ]∩[0, T1],
we have

∫
Br (y)

(
ε|∇ϕ|2

2
− W (ϕ)

ε

)
+

(x, t) dx ≤ c10ε
β′−βrn−1 (4.51)

provided ε ≤ ε4.

Proof We only need to prove the claim when T1 ≥ 2ε2β′ since the claim is vacuously
true otherwise. Let y ∈ �, r ∈ (εβ′, 1

2 ) and t∗ ∈ [2ε2β′, T ] ∩ [0, T1] be arbitrary and
fixed. We define

Ã :=
{
x ∈ B2r (y) : for some t̃ with t∗ − ε2β′ ≤ t̃ ≤ t∗, |ϕ(x, t̃)| ≤ α

}
,
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880 K. Takasao, Y. Tonegawa

A :=
{
x ∈ B2r+2c7εβ′(y) : dist(Ã, x) < 2c7ε

β′} .

By Vitali’s covering theorem applied to F = {B̄2c7εβ′(x) : x ∈ Ã} (note A ⊂
∪B∈F B), there exists a set of pairwise disjoint balls {B2c7εβ′(xi )}Ni=1 such that

xi ∈ Ã for each i = 1, . . . , N and A ⊂ ∪Ni=1 B̄10c7εβ′(xi ). (4.52)

By the definition of Ã, for each xi there exists t̃i such that

t∗ − ε2β′ ≤ t̃i ≤ t∗, |ϕ(xi , t̃i )| ≤ α. (4.53)

Define t̂ := t∗ − 2ε2β′. Since t∗ ≥ 2ε2β′, we have t̂ ≥ 0. By (4.53),

ε2β′ ≤ t̃i − t̂ ≤ 2ε2β′ (4.54)

and the assumption of Lemma 4.5 is satisfied for s = t̃i , y = xi , t = t̂ and Ri :=
c7(t̃i + ε2 − t̂)

1
2 if ε < ε3. Hence we may conclude that

c8R
n−1
i ≤ με

t̂
(BRi (xi )) for i = 1, . . . , N . (4.55)

By (4.54), we have c7(ε2β′ + ε2)
1
2 ≤ Ri ≤ c7(2ε2β′ + ε2)

1
2 ≤ 2c7εβ′, which shows

c11ε
β′(n−1) ≤ με

t̂
(B2c7εβ′(xi )) (4.56)

from (4.55) with c11 := c8c
n−1
7 . Since {B2c7εβ′(xi )}Ni=1 are pairwise disjoint and

B2c7εβ′(xi ) ⊂ B2r+2c7εβ′(y), (4.56) gives

Nc11ε
β′(n−1) ≤ με

t̂
(B2r+2c7εβ′(y)). (4.57)

Hence the n-dimensional volume of A is estimated by (4.52) and (4.57)

Ln(A) ≤ Nωn(10c7ε
β′)n ≤ ωn(10c7)nεβ′

c11
με
t̂
(B2r+2c7εβ′(y)).

By (4.38) and r ≥ εβ′,

Ln(A) ≤ ωn(10c7)nεβ′

c11
D1ωn−1(2r + 2c7ε

β′)n−1 ≤ c12ε
β′n−1, (4.58)

where c12 := ωnωn−1(10c7)n(2+ 2c7)n−1D1c
−1
11 . Hence by (4.26) and (4.58)

∫
A∩Br (y)

(
ε|∇ϕ|2

2
− W (ϕ)

ε

)
+

(x, t∗) dx ≤ Ln(A)10ε−β ≤ 10c12ε
β′−βrn−1.

(4.59)
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Next we estimate the surface energy on the complement of A which decays very
quickly. Define φ ∈ Lip(B2r (y)) such that

φ(x) :=
{
1 if x ∈ Br (y)\A,

0 if dist(x,Br(y)\A) ≥ εβ′,

|∇φ| ≤ 2ε−β ′ and 0 ≤ φ ≤ 1.

By r ≥ εβ′, 2c7εβ′ > εβ ′ and the definitions of Ã and φ, we have sptφ ∩ Ã = ∅,
hence

|ϕ(x, s)| ≥ α, for x ∈ sptφ, s ∈ [t∗ − ε2β′, t∗]. (4.60)

For each j differentiate the Eq. (4.2) with respect to x j , multiply φ2 ∂ϕ
∂x j

, sum over j
and integrate to obtain

d

dt

∫
�

1

2
|∇ϕ|2φ2 dx +

∫
�

(u ⊗∇ϕ · ∇2ϕ + ∇ϕ ⊗∇ϕ · ∇u)φ2 dx

=
∫

�

(
∇ϕ ·�∇ϕ − W ′′(ϕ)

ε2
|∇ϕ|2

)
φ2 dx . (4.61)

By integration by parts and the Cauchy-Schwarz inequality (4.61) gives

d

dt

∫
�

1

2
|∇ϕ|2φ2 dx ≤ 1

2

∫
�

|u|2|∇ϕ|2φ2 dx +
∫

�

|∇ϕ|2|∇u|φ2 dx

+ 4
∫

�

|∇φ|2|∇ϕ|2 dx −
∫

�

W ′′(ϕ)

ε2
|∇ϕ|2φ2 dx . (4.62)

By (4.60), W ′′(ϕ) ≥ κ on sptφ for t ∈ [t∗ − ε2β′, t∗]. By (4.10) and the definition of
φ, (4.62) gives

d

dt

∫
�

1

2
|∇ϕ|2φ2 dx ≤

∫
�

(
ε−2β

2
+ ε−1−β

)
|∇ϕ|2φ2 dx + 16ε−2β ′

∫
sptφ
|∇ϕ|2 dx

− κ

ε2

∫
�

|∇ϕ|2φ2 dx

≤ − κ

2ε2

∫
�

|∇ϕ|2φ2 dx + 16ε−2β ′
∫
sptφ
|∇ϕ|2 dx (4.63)

for small ε. By integrating (4.63) over [t∗ − ε2β′, t∗], we obtain∫
�

1

2
|∇ϕ|2φ2(x, t∗) dx ≤ e−κε2(β

′−1)
∫

�

1

2
|∇ϕ|2φ2(x, t∗ − ε2β′) dx

+
∫ t∗

t∗−ε2β′
e
− κ

ε2
(t∗−λ)16ε−2β ′

(∫
sptφ
|∇ϕ|2(x, λ) dx

)
dλ.

(4.64)
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Define

M := sup
λ∈[t∗−ε2β′,t∗]

∫
sptφ

1

2
|∇ϕ|2(x, λ) dx .

By (4.64) we have

∫
�

1

2
|∇ϕ|2φ2(x, t∗) dx ≤

(
e−κε2(β

′−1) + 32κ−1ε2−2β ′
)
M. (4.65)

By sptφ ⊂ B2r(y) and (4.38)

εM ≤ ωn−1D1(2r)
n−1. (4.66)

Since Br (y)\A ⊂ {φ = 1}, we have
∫
Br (y)\A

ε

2
|∇ϕ|2(x, t∗) dx ≤

∫
�

ε

2
|∇ϕ|2(x, t∗)φ2 dx . (4.67)

Recall that β ′ < 1. By (4.65)–(4.67), we obtain for sufficiently small ε (depending
only on κ)

∫
Br (y)\A

ε

2
|∇ϕ|2(x, t∗) dx ≤ 33κ−1ε2−2β ′D1ωn−1(2r)n−1. (4.68)

By (4.59) and (4.68), and since β ′ − β = 1−β
2 < 2− 2β ′ = 1− β, we obtain (4.51)

with an appropriate choice of c10. ��
Later in Sect. 7, we use the following estimate which follows from Lemma 4.6.

Corollary 4.1 For any 0 < r < 1
2 , ε ≤ ε4 and t ∈ [2ε2β′, T ] ∩ [0, T1], we have

∫ r

0

dτ

τ n

∫
Bτ (y)

(ε|∇ϕ|2
2
− W (ϕ)

ε

)
+(x, t) dx ≤ c10ε

β ′−β | log ε| + 10ωnε
β ′−β.

(4.69)

Proof For the integration over the range τ ∈ (0, εβ′), we simply use the estimate
(4.26). For the range τ ∈ (εβ′, r), we use (4.51). ��
Lemma 4.7 There exists a constant c13 depending only on n, c1, c2, p, q, T , D0, W ,
β such that for ε < ε4, t ∈ [0, T1] and t < s, we have

∫ t

0

{ 1

2(s − λ)

∫
�

(ε|∇ϕ|2
2
− W (ϕ)

ε

)
+ρ̃(y,s)(x, λ) dx

}
dλ ≤ c13ε

β ′−β | log ε|.
(4.70)
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Proof If t ≤ 2ε2β
′
then by using (4.26) and

∫
ρ dx = √4π(s − λ) we have

∫ t

0

{ 1

2(s − λ)

∫
�

(
ε|∇ϕ|2

2
− W (ϕ)

ε

)
+

ρ̃(y,s)(x, λ) dx
}
dλ

≤
∫ t

0

10ε−β
√

π√
s − λ

dλ ≤ 20
√
2πεβ ′−β. (4.71)

By the similar argument, if s > t ≥ s − 2ε2β
′
then we have

∫ t

s−2ε2β′

{
1

2(s − λ)

∫
�

(
ε|∇ϕ|2

2
− W (ϕ)

ε

)
+

ρ̃(y,s)(x, λ) dx

}
dλ

≤ 20
√
2πεβ ′−β. (4.72)

Hence we only need to estimate integral over [2ε2β ′ , t] with t ≤ s − 2ε2β
′
. First we

estimate on B
εβ′ (y). We compute using (4.26) and s − t ≥ 2ε2β

′
that

∫ t

2ε2β′
1

2(s − λ)

∫
B

εβ
′

(ε|∇ϕ|2
2
− W (ϕ)

ε

)
+ρ̃ dxdλ

≤
∫ t

2ε2β′
10ε−βεnβ

′
ωn

2(s − λ)
n+1
2 (
√
4π)n−1

dλ ≤ 10εβ ′−βωn

(
√
8π)n−1(n − 1)

. (4.73)

On � \ B
εβ′ (y), by (4.51), s− t ≥ 2ε2β

′
and computations similar to (4.37), we have

∫ t

2ε2β′
1

2(s − λ)

∫
�\B

εβ
′

(
ε|∇ϕ|2

2
− W (ϕ)

ε

)
+

ρ̃ dxdλ

≤
∫ t

2ε2β′
dλ

2(s − λ)
n+1
2 (
√
4π)n−1∫ 1

0

⎧⎨
⎩
∫
B 1
2
∩{x : e−

|x−y|2
4(s−λ) ≥l}\B

εβ
′ (y)

(
ε|∇ϕ|2

2
− W (ϕ)

ε

)
+

⎫⎬
⎭ dl

≤ c10c(n)εβ ′−β

∫ t

2ε2β′
e−

1
16(s−λ) + (s − λ)

n−1
2

(s − λ)
n+1
2

dλ

≤ c10c(n)εβ ′−β(1+ β ′ log(1/ε)). (4.74)

By (4.71)–(4.74) we obtain the desired estimate. ��

To utilize the formula (4.17), we next obtain the estimate for u.
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Lemma 4.8 There exists c14 depending only on n, p and q such that for any t0, t1
with s > t1 > t0 ≥ 0 we have∫ t1

t0

∫
�

ρ̃(y,s)|u|2 dμε
t dt ≤ c14(t1 − t0)

p̂‖u‖2Lq ([t0,t1];(W 1,p(B 1
2
(y)))n) sup

t∈[t0,t1]
D(t),

(4.75)

where (1) 0 < p̂ = 2pq−2p−nq
pq when p < n, (2) p̂ <

q−2
q may be taken arbitrarily

close to q−2
q when p = n (and c14 depends on p̂), and (3) p̂ = q−2

q when p > n.

Proof First, consider the case p < n. By the Hölder inequality, for l := p(n−1)
2(n−p) (which

is ≥ 1 due to (2.13)) we have

∫
�

ρ̃|u|2 dμε
t ≤

(∫
�

|η 1
2 u|2lρ dμε

t

) 1
l

⎛
⎝∫

B 1
2
(y)

ρ dμε
t

⎞
⎠

l−1
l

≤ (D(t))
l−1
l

(∫
�

|uη
1
2 |2lρ dμε

t

) 1
l

≤ (D(t))
l−1
l

(
1

(4π(s − t))
n−1
2

∫
�

|uη
1
2 |2l dμε

t

) 1
l

. (4.76)

By (4.76) and (2.11) we have

∫
�

ρ̃|u|2 dμε
t ≤

D(t)

(4π(s − t))
n−1
2l

⎛
⎜⎝c(n, p)

⎛
⎝∫

B 1
2
(y)
|u|p + |∇u|p dx

⎞
⎠

n−1
n−p
⎞
⎟⎠

1
l

≤ c15D(t)

(4π(s − t))
n−p
p

‖u‖2W 1,p(B 1
2
(y)), (4.77)

where c15 = c15(n, p). Hence by the Hölder inequality and (4.77) we obtain (with
‖u‖ := ‖u‖Lq ([t0,t1];(W 1,p(B 1

2
(y))n))

∫ t1

t0

∫
�

ρ̃|u|2 dμε
t dt ≤ c15‖u‖2 sup

t∈[t0,t1]
D(t)

(∫ t1

t0

1

(s − t)
(n−p)q
p(q−2)

dt

) q−2
q

≤ c15‖u‖2 sup
t∈[t0,t1]

D(t)c(n, p, q)((t1 − t0)
−(n−p)q
p(q−2) +1)

q−2
q

≤ c(n, p, q)c15(t1 − t0)
2pq−2p−nq

pq ‖u‖2 sup
t∈[t0,t1]

D(t).

We remark that (s− t0)ι−(s− t1)ι ≤ (t1− t0)ι for ι ∈ (0, 1) and −(n−p)q
p(q−2) +1 ∈ (0, 1).

By setting c14 := c(n, p, q)c15, we obtain the desired estimate when p < n. For
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p = n, since W 1,n
loc ⊂ W 1,p′

loc for p′ < n, we repeat the same argument as above

for p close to n. Note that 2pq−2p−nq
pq ↑ q−2

q as p ↑ n. This gives the estimate for

p = n case. For p > n, supB 1
2
(y) |η

1
2 u| ≤ c(n, p)‖u‖W 1,p(B 1

2
(y)). Thus

∫
ρ̃|u|2 dμε

t ≤
c(n, p)D(t)‖u‖2

W 1,p(B 1
2
(y))

. This gives the desired estimate for p > n. ��

Proposition 4.2 There exist c16 > 1 depending only on n, c17 > 0 depending only on
n, p, q and ε5 > 0 depending only on n, p, q, c1, c2, D0, T,W, β with the following
property. For t0, t1 with T1 ≥ t1 > t0 ≥ 0 and t1− t0 ≤ 1, suppose D(t1) = c16D(t0)
and supt∈[t0,t1] D(t) ≤ c16D(t0). Then, if ε < ε5, we have

(t1 − t0)
p̂‖u‖2Lq ([t0,t1];(W 1,p(�))n)

≥ c17, (4.78)

where p̂ is as in Lemma 4.8.

Proof First, for any s > t0, by direct computation and by the definition of D(t0), we
have ∫

�

ρ̃(y,s) dμε
t0 ≤ D(t0). (4.79)

Let c16 > 1 be a constant defined by

c16 := max

{
2 · 4n−1
ωn−1

,
(2+ c3)(4π)

n−1
2

ωn−1e−
1
4

}
. (4.80)

By definition, c16 depends only on n. Suppose that t1 satisfies the assumptions.
Recalling the definition of D(t1), we have the following three possibilities, (a)
D(t1) = με

t1(�), (b) there exists Br (y) ⊂ � such that D(t1) = 1
ωn−1rn−1 μ

ε
t1(Br (y))

and r ≥ 1
4 , and (c) the same as (b) except that r < 1

4 . For (b), we have the following

ωn−1
4n−1

D(t1) ≤ ωn−1rn−1D(t1) = με
t1(Br (y)) ≤ με

t1(�).

Since ωn−1/4n−1 ≤ 1, either (a) or (b), we have

ωn−1
4n−1

D(t1) ≤ με
t1(�). (4.81)

Then, by (4.39), we obtain with (4.81) that

c16D(t0) = D(t1)≤ 4n−1

ωn−1
με
t1(�)≤ 4n−1

ωn−1

(
D(t0)+c6(t1 − t0)

q−2
q ‖u‖2c16D(t0)

)
,

(4.82)
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where ‖u‖ := ‖u‖Lq ([t0,t1];(W 1,p(�))n). By (4.80), 4n−1
ωn−1 ≤ c16

2 , thus (4.82) shows

1

2c6
≤ (t1 − t0)

q−2
q ‖u‖2. (4.83)

This is the conclusion deduced from (a) and (b). Next consider the case (c). Let
s = t1 + r2. By (4.17), (4.70), (4.75) and (4.39), we have

∫
�

ρ̃(y,s) dμε
t1 ≤

∫
�

ρ̃(y,s) dμε
t0 + c13ε

β′−β | log ε| + c14c16D(t0)(t1 − t0)
p̂‖u‖2

+c3(t1 − t0)(D(t0)+ c6c16D(t0)(t1 − t0)
q−2
q ‖u‖2). (4.84)

We compute using η = 1 on B 1
4
(y) and r ≤ 1

4 that

∫
�

ρ̃(y,s) dμε
t1 ≥

∫
Br (y)

ρ(y,s) dμε
t1 ≥

e− 1
4

(4π)
n−1
2 rn−1

με
t1(Br (y))

= c16D(t0)ωn−1e−
1
4

(4π)
n−1
2

≥ (2+ c3)D(t0), (4.85)

where s = t1 + r2, the properties of t1 and c16 are used. By (4.79), (4.84) and (4.85)
give (using also t1 − t0 ≤ 1)

D(t0) ≤ c13ε
β′−β | log ε| + c14c16D(t0)(t1 − t0)

p̂‖u‖2
+ c3c6c16D(t0)(t1 − t0)

2− 2
q ‖u‖2. (4.86)

Since D(t0) ≥ 1 by definition, we may restrict ε depending on c13 (see Lemma
4.7) so that c13εβ′−β | log ε| < 1/2, for example. Now, examining the dependence of
constants, we obtain (4.78) from (4.83) and (4.86) by choosing an appropriate c17 > 0.
Here we also use p̂ < 2− 2

q and t1 − t0 ≤ 1. ��
Proof of Theorem 4.1. We first choose 0 < Tb ≤ 1 so that

T p̂
b c22 ≤ c17 (4.87)

holds. Due to the dependence of c17, Tb depends only on n, p, q, c2. Then set

D1 := D0c
[T/Tb]+1
16 (≥ 2D0 by (4.80)), (4.88)

so that D1 depends only on n, p, q, c2, T, D0. Finally restrict ε < ε5 as in Proposition
4.2. Now we claim that

D(t) ≤ D0c
[t/Tb]+1
16 (4.89)
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holds for all t ∈ [0, T ], thus proving D(t) ≤ D1 for all t ∈ [0, T ] and T1 = T . Suppose
there exists 0 < t ≤ T such that (4.89) fails. Then there must exist some 0 < T1 < T
such that D(t) ≤ D0c

[t/Tb]+1
16 for all t ∈ [0, T1] and D(T1) = D0c

[T1/Tb]+1
16 . Note that

D(t) ≤ D1 for t ∈ [0, T1], satisfying (4.38). If T1 < Tb, we apply Proposition 4.2
with t0 = 0 and t1 = T1. We have D(T1) = c16D0 and supt∈[0,T1] D(t) ≤ c16D0.
Thus (4.78) shows

T p̂
1 c22 ≥ c17,

but this contradicts T1 < Tb and (4.87). Thus, we have T1 ≥ Tb. If T1 ∈ [Tb, 2Tb),
then D(T1) = D0c216. Thus there must exist t0 ∈ [Tb, T1) such that D(t0) = c16D0
and T1− t0 < Tb (note that D(t) ≤ D0c16 for all t ∈ [0, Tb)). By Proposition 4.2 with
t1 = T1, we have (T1 − t0) p̂c22 ≥ c17, again contradicting T1 − t0 < Tb and (4.87).
Continuing this manner, we conclude that T1 = T , which is a contradiction. Thus we
proved that (4.89) holds for all t ∈ [0, T ]. Also this concludes the proof of Theorem
4.1. ��

Since we proved T = T1, i.e., the assumption (4.38) is true for all [0, T ], all
the estimates in this section hold with T1 replaced by T . In particular, we have the
following monotonicity formula which follows from (4.17), (4.75) and (4.70).

Theorem 4.2 Under the same assumptions of Theorem 4.1, if ε < ε1 and for s >

t1 > t0, t0, t1 ∈ [0, T ], and y ∈ � we have

∫
�

ρ̃ dμε
t

∣∣∣∣
t1

t=t0
+
∫ t1

t0

dt

2(s − t)

∫
�

|ξε|ρ̃ dx ≤ c14c
2
2(t1 − t0)

p̂ D1

+ c13ε
β′−β | log ε| + c3e

− 1
128(s−t0) (t1 − t0)D1, (4.90)

where ρ̃ = ρ̃(y,s)(x, t) and ξε are defined as in (4.15) and (4.16), and p̂ is as in Lemma
4.8.

The point of the right-hand side is that it is bounded independent of ε, and it can be
made arbitrarily small when ε→ 0 and t0 → t1.

5 Existence of limit measures

In this section we construct a sequence of approximate diffused interface solution for
(1.2), given any bounded hypersurface M0 = ∂�0 which is C1, and any vector field u
satisfying (2.15). We then prove that we may extract a subsequence which converges
to a family of Radon measures {μt }t≥0.

We first construct a convergent sequence of domains �i
0 with C∞ boundary Mi

0
which converges inC1 topology. This can be carried out by locally representing M0 by
a C1 graph and by some suitable mollification. Let di be the signed distance function
to Mi

0 which is positive inside of �i
0, and which is smooth in some ri -neighborhood

of Mi
0. Let hi ∈ C∞(R) be a monotone increasing function such that hi (s) = s for
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0 ≤ s ≤ ri/3, hi (s) = ri/2 for s > 2ri/3, h′i (s) ≤ 1 for s > 0 and hi (s) = −hi (−s)
for s < 0. Then define d̃i (x) := hi (di (x)) for x ∈ �. We next choose a sequence of
εi > 0 so that

lim
i→∞
√

εi/ri = 0. (5.1)

We define the initial data (ϕεi ) differently depending on � = T
n or Rn as follows.

For � = T
n , we define

(ϕεi )0 := �

(
d̃i (x)

εi

)
. (5.2)

Here and in the following, � is the solution for � ′′ = W ′(�) (and � ′ = √2W (�))
with �(0) = 0. For � = R

n , we will truncate the function to be −1 outside of a
compact set as follows. Due to the definition, note that for x ∈ R

n with dist(x,�i
0) ≥

2ri/3, we have d̃i (x) = −ri/2. Choose a sufficiently large R > 0 such that

{x : dist(x,�i
0) ≤ 2ri/3} ⊂ BR (5.3)

for all i . Then we have d̃i (x) = −ri/2 on R
n\BR . Let g : R+ → [0, 1] be a smooth

decreasing function such that g(r) = 1 for 0 ≤ r ≤ R, g(r) = 0 for R + 1 ≤ r <∞
and |g′| ≤ 2. Define

(ϕεi )0(x) := g(|x |)�
(
d̃i (x)

εi

)
+ g(|x |)− 1. (5.4)

Then (ϕεi )0(x) = �
(
d̃i (x)

εi

)
on BR , and it smoothly changes from �(−ri/2εi ) to

−1 as |x | increases from R to R + 1. We may show from � ′ = √2W (�) that
0 < �(−ri/2εi ) + 1 ≤ c exp(−c′ri/εi ) for some positive constants c, c′ depending
only on W . Thus the difference between (ϕεi )0 and −1 is exponentially small on
BR+1\BR by (5.1), and (ϕεi )0(x) = −1 on R

n\BR+1.
For both cases, one can check that (4.7) is satisfied for (ϕεi )0 with some i-

independent c1, where we may need to take a smaller εi depending on the growth
of C3 norm of the graph functions representing Mi

0. We fix β

β = 1

4
, (5.5)

though any 0 < β < 1/2 can be chosen. Using the fact that � solves � ′ = √2W (�)

and |∇d̃i | ≤ 1, one can check that (4.9) is satisfied for all i . We may also assume that

lim
i→∞

∫
�

∣∣∣ (ϕεi )0 + 1

2
− χ�0

∣∣∣ dx = 0,

lim
i→∞

(εi |∇(ϕεi )0|2
2

+ W ((ϕεi )0)

εi

)
dx = σ‖∇χ�0‖ = σHn−1	M0 (5.6)
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where the second identity is in the sense ofmeasure convergence.Wemay also assume,
due to the assumption that M0 is C1, that we have some D0 depending on M0 such
that D(0) as in (4.5) corresponding to (ϕεi )0 is uniformly bounded by D0 independent
of i .

We next let Ti = i so that limi→∞ Ti = ∞, and let {ui }∞i=1 be a sequence of
C∞ vector fields with compact support such that ‖ui − u‖Lq ([0,Ti ];(W 1,p(�))n) → 0 as
i →∞, which can be constructed by the standard density argument. Then for each i
we associate j (i) so that (4.10) is satisfied, i.e.,

sup
�×[0,Ti ]

{|ui |, ε j (i)|∇ui |} ≤ ε
−β

j (i) (5.7)

for all i , and at the same time, ε j (i) < ε1 where ε1 is determined by Theorem 4.1
corresponding to D0, T = Ti and c2 = ‖ui‖Lq ([0,Ti ];(W 1,p(�))n). We relabel ε j (i) as εi
and ui as uεi .

With these choices, for each i ∈ N, we solve (4.2) and (4.3) on � × [0, Ti ] with
initial data (ϕεi )0 and u replaced by uεi . For � = T

n , the standard parabolic PDE
theory shows the existence of classical solution which we denote ϕεi . The maximum
principle shows (4.6). Due to the choice of εi , for each fixed T > 0, we have all the
assumptions of Theorem 4.1 satisfied on [0, T ] for all sufficiently large i , thus we
have (4.13). The same can be said about Theorem 4.2. For � = R

n and for each fixed
i , we construct the solution by domain approximation. Namely, for each k ∈ N with
k > 3R (where R is defined in (5.3)), solve

⎧⎪⎨
⎪⎩

∂tϕ + uεi · ∇ϕ = �ϕ − W ′(ϕ)

ε2i
on Bk × [0, Ti ],

ϕ = (ϕεi )0 on Bk × {0},
ϕ = −1 on ∂Bk × [0, Ti ].

(5.8)

By the standard parabolic existence theory, there exists a classical solution which we
denote by ϕεi ,k . By the maximum principle, we have −1 ≤ ϕεi ,k < 1. We claim that

ϕεi ,k(x, t) < �

(
3R + t‖uεi ‖L∞ − |x |

εi

)
=: ψεi (x, t) (5.9)

for all k by the maximum principle. To see this, on ∂Bk×[0, Ti ], we have ϕεi ,k(x, t) =
−1 < ψεi (x, t) by (5.8) and (5.9). On Bk × {0} where ϕεi ,k = (ϕεi )0, we may check
ψεi > (ϕεi )0 as follows. When |x | ≥ R + 1, ψεi (x, 0) > −1 = (ϕεi )0(x), and when
R ≤ |x | ≤ R + 1, (ϕεi )0(x) ≈ −1 < �(0) < ψεi (x, 0). When |x | < R,

(ϕεi )0(x) ≤ �

(
d̃i (x)

εi

)
< �

(
2R

εi

)
≤ �

(
3R − |x |

εi

)
= ψεi (x, 0)

since |d̃i (x)| ≤ |di (x)| < 2R from Mi
0 ⊂ BR . ψεi is a super-solution since, for

|x | �= 0,
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∂tψεi + uεi · ∇ψεi −�ψεi +
W ′(ψεi )

ε2i

= � ′(ψεi )

εi

(
‖uεi ‖L∞ +

n − 1

|x | −
x

|x | · uεi

)
> 0.

Wenote that ϕεi ,k cannot touchψεi from below at |x | = 0. Thus wemay prove (5.9) by
the standard argument of the maximum principle. Now let k →∞ and we may prove
that ϕεi ,k converge to a solution ϕεi of (4.2) onR

n×[0, Ti ] satisfying−1 ≤ ϕεi ≤ ψεi .
Hence, we have (4.6). Due to (5.9), for each fixed i , we have the exponential approach
of ϕεi to −1 as |x | → ∞, which is (4.8). Thus, in the case of � = R

n , we have all
the assumptions of Theorem 4.1 satisfied and we may obtain the desired conclusion.

We next prove that there exists a family of Radon measures {μt }t≥0 such that, after
choosing a subsequence, μ

εi j
t → μt as j →∞ for all t ≥ 0.

Proposition 5.1 Corresponding to T > 0 and φ ∈ C2
c (�;R+), there exists c18 > 0

depending only on n, p, q, T, D0, c2 and ‖φ‖C2(�) such that, for all i with i > T and
μ

εi
t constructed as above, the function

μ
εi
t (φ)− c18

(∫ t

0
‖uεi (·, s)‖2W 1,p(�)

ds + t

)
(5.10)

of t is monotone decreasing on [0, T ].
Proof By (4.2) and integration by parts we have

d

dt
μ

εi
t (φ) =

∫
�

−εiφ

(
�ϕεi −

W ′(ϕεi )

ε2i

)2

− εi∇φ · ∇ϕεi

(
�ϕεi −

W ′(ϕεi )

ε2i

)

+ εiφ

(
�ϕεi −

W ′(ϕεi )

ε2i

)
uεi · ∇ϕεi + εi (∇ϕεi · ∇φ)(uεi · ∇ϕεi ) dx . (5.11)

By the Cauchy-Schwarz inequality and estimating as in the proof of Lemma 4.4, we
have

d

dt
μ

εi
t (φ) ≤

∫
�

εi |∇ϕεi |2
|∇φ|2

φ
+ εiφ|uεi |2|∇ϕεi |2 dx

≤ 4(sup ‖∇2φ‖)D(t)+ sup |φ|c(n, p)D(t)‖uεi (·, t)‖2W 1,p(�)
. (5.12)

Thus with a suitable constant independent of i and Theorem 4.1, we have (5.10). ��
Proposition 5.2 (See [28,33]) There exist a family of Radon measures {μt }t≥0 and a
subsequence (denoted by the same index) such that for all t ≥ 0,

lim
i→∞μ

εi
t = μt as Radon measures.
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Proof Fix T > 0 and φ ∈ C2
c (�;R+). By the Cauchy-Schwarz inequality and q > 2,

∫ t2

t1
‖uεi (·, s)‖2W 1,p(�)

ds ≤ (t2 − t1)
q−2
q ‖uεi ‖2Lq ([0,T ];(W 1,p(�))n)

for 0 ≤ t1 < t2 ≤ T . Hence the last term of (5.10) is uniformly bounded in
Hölder continuous norm with exponent q−2

q . Thus by the Ascoli-Arzelà compact-
ness theorem, there exists a subsequence which converges uniformly on [0, T ]. By
the monotone decreasing property due to Proposition 5.1, we can choose a subse-
quence such that μ

εi
t (φ) converges on a co-countable set B(φ) ⊂ [0, T ]. Choose

a countable set {φk}∞k=1 ⊂ C2
c (�;R+) which is dense in Cc(�;R+). By the similar

argument we can choose a subsequence such thatμεi
t (φk) converges on a co-countable

set B = ∩∞k=1B(φk). For any k ≥ 1 we define μt (φk) = limi→∞ μ
εi
t (φk) for t ∈ B.

Then we may define μt (φ) = limi→∞ μ
εi
t (φ) for any φ ∈ Cc(�;R+) and for any

t ∈ B since {φk}∞k=1 is dense in Cc(�;R+) and the measures are uniformly bounded.
Since [0, T ]\B is countable, we can choose a subsequence so that μεi

t (φk) converges
on [0, T ]\B for any k. Thus we have the limit μt (φ) for all φ ∈ Cc(�;R+) and for
all t ∈ [0, T ]. Now by letting T → ∞ and by diagonal argument, we may choose a
subsequence so that μεi

t (φ) converges for all t ≥ 0 and φ ∈ Cc(�;R+). ��
We also denote, after choosing a further subsequence,

Definition 5.1 Let μ be a measure on � × [0,∞) such that dμ = lim j→∞ dμ
ε j
t dt

locally as measures.

Since supt∈[0,T ] μ
ε j
t (�) is bounded uniformly in j for all T , the dominated conver-

gence theorem shows dμ = dμt dt . On the other hand, note that sptμ may not be the
same as ∪t≥0sptμt × {t}. In the following section we also use the following notation.
Definition 5.2 Define (sptμ)t ⊂ � as (sptμ)t := {x ∈ � : (x, t) ∈ sptμ}.
We have the following inclusion.

Lemma 5.1 For all t > 0,

sptμt ⊂ (sptμ)t . (5.13)

Proof Suppose x ∈ sptμt0 and assume for a contradiction that (x, t0) /∈ sptμ. Then
there exists r > 0 such thatμ(Br (x)×(t0−r2, t0+r2)) = 0. Takeφ ∈ C2

c (Br (x);R+)

with φ = 1 on Br/2(x). Since x ∈ sptμt0 , we have μt0(φ) > 0. By Proposition 5.1
and 5.13, μt (φ)− c18(

∫ t
0 ‖u(·, s)‖2

W 1,p ds+ t) is monotone decreasing. Thus one sees
that for all sufficiently small h > 0, we have μt0−h(φ) ≥ μt0(φ)− o(1) ≥ μt0(φ)/2
where o(1)→ 0 as h→ 0. Since dμ = dμt dt , this contradicts (x, t0) /∈ sptμ. ��

6 Rectifiability of limit measures

Throughout this section, let ϕεi , μ
εi
t , uεi , μt and μ be as in Sect. 5 and let ρ̃(y,s), eεi

and ξεi be as in (4.15) and (4.16). We fix arbitrary T > 0 and let c2 be as in (4.11)
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with this T . Note that all the estimates in the previous two sections hold in [0, T ]
for all sufficiently large i (such that Ti > T ). For simplicity we often drop i from
these quantities. In this section we prove that for a.e. t ≥ 0, there exists a countably
(n − 1)-rectifiable set Mt such that μt = θ(x, t)Hn−1	Mt , where θ is a non-negative
Hn−1 measurable function. The important ingredient for the proof is the vanishing of
the discrepancy measure defined below. As stated in the introduction, the content of
this section is based on [28] with some modifications coming from the transport term.
First we note

Lemma 6.1 Let ϕεi and μ
εi
t be the sequences constructed in Sect. 5. Then there exist

a subsequence (denoted by the same index) and a Radom measure |ξ | such that

lim
i→∞

∫ t1

t0

∫
�

|ξεi |φ dxdt =
∫ t1

t0

∫
�

φ d|ξ | (6.1)

for all 0 ≤ t0 < t1 <∞ and φ ∈ Cc(�× [0,∞)).

Due to the uniform estimate supi∈N supt∈[0,T ] μ
εi
t (�) for any fixed T , the existence of

such subsequence follows from theweak compactness ofmeasures. Since |ξ |measures
the difference between the two terms inμ

εi
t in the limit,wemay call |ξ | as a discrepancy

measure. Unlike μ
εi
t , which converges to μt for all t ≥ 0, note that we do not claim

any convergence of |ξεi (·, t)| dx in general. Instead, we will prove

Theorem 6.1 |ξ | = 0 on �× [0,∞).

6.1 Forward density lower bound

Lemma 6.2 There exist 1 > γ1, η1 > 0 depending only on n, c1, c2, p, q, T , W ,
D0 and 1 > η2 > 0 depending only on n, c1, W with the following property. Given
0 ≤ t < s < T/2 with s − t ≤ η1, set r := √2(s − t) and t ′ := s + r2/2. If x ∈ �

satisfies

∫
�

ρ̃(y,s)(x, t) dμs(y) < η2, (6.2)

then (Bγ1r (x)× {t ′}) ∩ sptμ = ∅.

Remark 6.1 Note that t < s < t ′ < T with s = t ′+t
2 . The Lemma says that, unless

there is at least a certain amount of measure, there would be no measure later in
the neighborhood. The monotonicity formula (4.90) plays a crucial role for such
conclusion.

Proof Assume for a contradiction that (x ′, t ′) ∈ sptμ for some x ′ ∈ Bγ1r (x) under
the assumption of (6.2), where γ1 will be chosen later. Then there is a sequence
{(x j , t j )}∞j=1 and {εi( j)}∞j=1 such that lim j→∞(x j , t j ) = (x ′, t ′) and |ϕεi( j) (x j , t j )| <
α for all j . We relegate its proof to Lemma 6.3. We re-index i( j) as j . Then just as in
the proof of (4.45), there exists η2 = η2(n, c1,W ) > 0 such that
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3η2 ≤
∫
Bε j (x j )

W (ϕε j (y, t j ))

ε j
ρ̃(x j ,t j+ε2j )

(y, t j ) dy

≤
∫

�

ρ̃(x j ,t j+ε2j )
(y, t j ) dμ

ε j
t j (y). (6.3)

We use Theorem 4.2. By restricting t ′ − s ≤ η1 small so that

c14c
2
2(t j − s) p̂ D1 + c3e

− 1
128(t j+ε2j−s) (t j − s)D1 < η2

in (4.90) for all sufficiently large j , we obtain∫
�

ρ̃(x j ,t j+ε2j )
(y, t j ) dμ

ε j
t j (y)

≤
∫

�

ρ̃(x j ,t j+ε2j )
(y, s) dμ

ε j
s (y)+ c13ε

β′−β
j | log ε j | + η2. (6.4)

Letting j →∞, we obtain by (6.3) and (6.4)

2η2 ≤
∫

�

ρ̃(x ′,t ′)(y, s) dμs(y). (6.5)

We next want to change the center of the kernel from x ′ to x . Fix 0 < δ < 1/2 so
that 2δD1 < η2. Corresponding to δ, a direct computation shows that we may choose
γ1 > 0 so that∫

�

ρ̃(x ′,t ′)(y, s) dμs(y) ≤ δD1 + (1+ δ)

∫
�

ρ̃(x,t ′)(y, s) dμs(y) (6.6)

if |x − x ′| ≤ γ1r . By the choice of δ, (6.5) and (6.6) show

η2 ≤
∫

�

ρ̃(x,t ′)(y, s) dμs(y). (6.7)

Finally, since t ′−s = s− t , we have ρ̃(x,t ′)(y, s) = ρ̃(y,s)(x, t). This is a contradiction
to (6.2). Thus we proved (x ′, t ′) /∈ sptμ. ��
Lemma 6.3 Assume (x ′, t ′) ∈ sptμ. Then there are sequences {(x j , t j )}∞j=1 and
{εi( j)}∞j=1 such that lim j→∞(x j , t j ) = (x ′, t ′) and |ϕεi( j) (x j , t j )| < α for all j .

Proof If the claim were not true, there would be 0 < r0 < 1/2 such that

inf
Br0 (x ′)×[t ′−r20 ,t ′+r20 ]

|ϕεi | ≥ α (6.8)

for all sufficiently large i . Let φ ∈ C2
c (Br0(x

′)) be a function such that |∇φ| ≤ 2/r0,
0 ≤ φ ≤ 1 on Br0(x

′) and φ = 1 on Br0/3(x
′). Then the same computations following

(4.60) using (6.8) show
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d

dt

∫
�

1

2
|∇ϕεi |2φ2 dx ≤ − κ

2ε2i

∫
�

|∇ϕεi |2φ2 dx + 16r−20

∫
sptφ
|∇ϕεi |2 dx

for t ∈ [t ′ −r20 , t ′ +r20 ]. Writing Mi := supλ∈[t ′−r20 ,t ′+r20 ]
∫
sptφ

1
2 |∇ϕεi (x, λ)|2 dx , and

proceeding similarly as in (4.65), we obtain

∫
�

1

2
|∇ϕεi (·, λ)|2φ2 dx ≤

(
e
− κ

ε2i
(λ−t ′+r20 ) + 32ε2i

r20κ

)
Mi (6.9)

for λ ∈ [t ′ − r20 , t ′ + r20 ]. Since εi Mi is uniformly bounded, we see from (6.9) that

lim
i→∞ sup

λ∈[t ′− r20
2 ,t ′+r20 ]

∫
�

εi

2
|∇ϕεi (·, λ)|2φ2 dx = 0. (6.10)

Next, due to (6.8) and the continuity of ϕεi , we may assume 1 ≥ ϕεi ≥ α on Br0(x
′)×

[t ′ − r20 , t ′ + r20 ] without loss of generality. Otherwise, we have −1 ≤ ϕεi ≤ −α and
we may argue similarly. In the following, we use

W ′(s)(s − 1) ≥ (s − 1)2κ ≥ c(W )W (s) (6.11)

for some c(W ) > 0 if s ∈ [α, 1]. Multiply the equation (4.2) by (ϕεi − 1)φ2 and
integrate over Q := � × [t ′ − r20 , t ′ + r20 ]. By integration by parts, the Cauchy-
Schwarz inequality, |ϕεi − 1| ≤ 1 and (6.11), one obtains

c(W )

∫
Q

φ2W (ϕεi )

ε2i
dxdt ≤ 1

2

∫
�

φ2 dx +
∫
Q
2|∇φ|2 + 1

2
|uεi |2φ2 dxdt. (6.12)

Since the right-hand side of (6.12) is uniformly bounded, we obtain

lim
i→∞

∫
Q

φ2W (ϕεi )

εi
dxdt = 0. (6.13)

The estimates (6.10) and (6.13) show that

lim
i→∞

∫ t ′+r20
t ′−r20 /2

μ
εi
t (φ2) dt = 0. (6.14)

By Fatou’s lemma, Proposition 5.13 and (6.14), we have

∫ t ′+r20
t ′−r20 /2

μt (φ
2) dt = 0. (6.15)

This proves that (x ′, t ′) /∈ sptμ. ��
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Corollary 6.1 Let U ⊂ � be open. For 0 < t ≤ T , there exists c19 depending only
on n, c1, c2, p, q, T,W, D0 with the property that

Hn−1((sptμ)t ∩ U) ≤ c19 lim inf
r→0

μt−r2(U) (6.16)

and

Hn−1(sptμt ∩U ) ≤ c19 lim inf
r→0

μt−r2(U ). (6.17)

Proof We only need to prove the result for every compact set K ⊂ U . Set Xt =
(sptμ)t ∩ K. For any (x, t) ∈ Xt , by the same argument leading to (6.5), we have

2η2 ≤
∫

�

ρ̃(x,t)(y, t − r2) dμt−r2(y) (6.18)

for sufficiently small r > 0. For 0 < L < 1/(2r), using the upper density ratio bound,
we have

∫
�\BrL (x)

ρ̃(x,t)(y, t − r2) dμt−r2(y)

≤ D1ωn−1(π)−
n−1
2

∫ ∞
L2/4

s
n−1
2 e−s ds. (6.19)

Thus by choosing sufficiently large L depending only on n, D1 and η2, (6.18) and
(6.19) show

η2 ≤
∫
BrL (x)

ρ̃(x,t)(y, t − r2) dμt−r2(y). (6.20)

Since ρ̃(x,t)(·, t − r2) ≤ (4π)−(n−1)/2r−(n−1), from (6.20) we obtain

(4π)
n−1
2 rn−1η2 ≤ μt−r2(BrL(x)). (6.21)

Let B = {B̄r L(x) ⊂ U | x ∈ Xt } which is the covering of Xt by closed balls centered
at x ∈ Xt . By the Besicovitch covering theorem, there exist a finite sub-collection
B1, . . . ,BB(n) such that each Bi is a pairwise disjoint family of closed balls and

Xt ⊂ ∪B(n)
i=1 ∪B̄r L (x j )∈Bi

B̄r L(x j ). (6.22)

LetHn−1
δ be defined as in [41], so thatHn−1 = limδ↓0 Hn−1

δ . By the definition, (6.21)
and (6.22) we obtain
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Hn−1
2r L (Xt ) ≤

B(n)∑
i=1

∑
B̄r L (x j )∈Bi

ωn−1(r L)n−1

≤
B(n)∑
i=1

ωn−1Ln−1

(4π)
n−1
2 η2

∑
B̄r L (x j )∈Bi

μt−r2(BrL(x j ))

≤
B(n)∑
i=1

ωn−1Ln−1

(4π)
n−1
2 η2

μt−r2(U ) = ωn−1Ln−1B(n)

(4π)
n−1
2 η2

μt−r2(U ).

By setting c19 to be the constant above and letting r ↓ 0, we obtain (6.16). The second
inequality (6.17) follows immediately from (6.16) and Lemma 5.1. ��
Lemma 6.4 For 1 ≤ T <∞, let η2 be as in Lemma 6.2 corresponding to T . Define

ZT :=
{

(x, t) ∈ spt μ : 0 ≤ t ≤ T/2, lim sup
s↓t

∫
�

ρ̃(y,s)(x, t) dμs(y) ≤ η2/2

}
.

Then we have μ(ZT ) = 0.

Proof For 0 < τ ≤ η1, where η1 is as in Lemma 6.2, define

Z τ :=
{
(x, t) ∈ spt μ : 0≤ t < T/2,

∫
�

ρ̃(y,s)(x, t) dμs(y)<η2, ∀s∈(t, t + τ ]
}

.

Note that ZT ⊂ ∪∞m=1Z τm for some {τm}∞m=1 with limm→∞ τm = 0. Hence we only
need to prove μ(Z τ ) = 0. In the following we fix 0 < τ ≤ η1. For 0 ≤ t ≤ T/2 and
x ∈ �, set

Pτ (x, t) := {(x ′, t ′) : τ > |t − t ′| > γ−21 |x − x ′|2}, (6.23)

where γ1 is as in Lemma 6.2. For (x, t) ∈ Z τ , we use Lemma 6.2 to prove

Pτ (x, t) ∩ Z τ = ∅. (6.24)

Suppose for a contradiction that (x ′, t ′) ∈ Pτ (x, t)∩ Z τ . Suppose first that t ′ > t . Set
r := √t ′ − t and s := (t ′+t)/2 so that t ′ = s+r2/2. Note that we have |x−x ′| < γ1r
by (x ′, t ′) ∈ Pτ (x, t). Since s − t < τ ≤ η1, we may apply Lemma 6.2 to conclude
that (x, t) ∈ Z τ implies (x ′, t ′) /∈ sptμ, and in particular, (x ′, t ′) /∈ Z τ , which is a
contradiction. Next suppose that t ′ < t . We change the role of (x, t) and (x ′, t ′) in the
previous case, and conclude that (x ′, t ′) ∈ Z τ implies (x, t) /∈ Z τ , which is again a
contradiction. This proves (6.24). Next, for (x0, t0) ∈ �× [τ/2, T/2], define

Z τ,x0,t0 = Z τ ∩ B 1
2
(x0)× (t0 − τ/2, t0 + τ/2). (6.25)

123



Existence and regularity of mean curvature flow... 897

Then Z τ can be covered by an at most countable union of Z τ,x j ,t j with a suitable
choice of {(x j , t j )}. Thus we only need to prove μ(Z τ,x0,t0) = 0. With arbitrary
0 < r ≤ γ1

√
τ , consider a family of closed balls {B̄r (x)}(x,t)∈Z τ,x0,t0 and apply the

Besicovitch covering theorem. Then we have a finite subfamily B̄r (x1), . . . , B̄r (xN )

with (x j , t j ) ∈ Z τ,x0,t0 ( j = 1, . . . , N ) and

{x ∈ B 1
2
(x0) : (x, t) ∈ Z τ,x0,t0} ⊂ ∪Nj=1 B̄r (x j ), Nrn ≤ 2B(n)(1/2)n . (6.26)

Note that for each j = 1, . . . , N , by (6.24) and (6.25), we have

Z τ,x0,t0 ∩ B̄r (x j )× (t0−τ/2, t0+τ/2)⊂ B̄r (x j )× (t0−τ/2, t0+τ/2)\Pτ (x j , t j ).

(6.27)

The inclusions (6.26) and (6.27) show

Z τ,x0,t0 ⊂ ∪Nj=1 B̄r (x j )× (t0 − τ/2, t0 + τ/2)\Pτ (x j , t j ). (6.28)

Since B̄r (x j )× (t0−τ/2, t0+τ/2)\Pτ (x j , t j ) ⊂ B̄r (x j )×[t j −γ−21 r2, t j +γ−21 r2],
from (6.28) we obtain

Z τ,x0,t0 ⊂ ∪Nj=1 B̄r (x j )× [t j − γ−21 r2, t j + γ−21 r2]. (6.29)

Since dμ = dμt dt , (6.29), (4.13) and (6.26) show

μ(Z τ,x0,t0) ≤
N∑
j=1

∫ t j+γ−21 r2

t j−γ−21 r2
μt (B̄r (x j )) dt ≤ 2ωn−1D1r

n+1γ−21 N

≤ 22−nωn−1B(n)D1rγ
−2
1 . (6.30)

Since 0 < r ≤ γ1
√

τ is arbitrary, (6.30) shows μ(Z τ,x0,t0) = 0. This concludes the
proof. ��

6.2 Vanishing of ξ

First we remark the following

Lemma 6.5 For 1 ≤ T < ∞ there exists c20 depending only on n, c1, c2, p, q, T ,
W , D0 with the following property. For any (y, s) ∈ �× (0, T ), we have∫

�×(0,s)

ρ̃(y,s)(x, t)

s − t
d|ξ |(x, t) ≤ c20. (6.31)

Proof In (4.90), set t0 = 0 and t1 = s − ε for 0 < ε < s. We simply let εi → 0
and we set the supremum of the right-hand side of (4.90) (with no ε term) plus D0
(coming from the left-hand side) to be c20. Then letting ε → 0, we obtain (6.31). ��
We are ready to prove Theorem 6.1.
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Proof We integrate (6.31) with respect to dμsds over � × (0, T ) and use Fubini’s
theorem to obtain

∫
�×(0,T )

(∫
�×(t,T )

ρ̃(y,s)(x, t)

s − t
dμs(y)ds

)
d|ξ |(x, t) ≤ c20D1T . (6.32)

The finiteness of (6.32) shows

∫
�×(t,T )

ρ̃(y,s)(x, t)

s − t
dμs(y)ds <∞ (6.33)

for |ξ | a.e. (x, t) ∈ �× (0, T ). Next, we claim that, whenever (6.33) holds at (x, t),
we have

lim
s↓t

∫
�

ρ̃(y,s)(x, t) dμs(y) = 0. (6.34)

We use the monotonicity formula (4.90) for the proof. Set λ := log(s − t) and

h(s) :=
∫

�

ρ̃(y,s)(x, t) dμs(y).

After the change of variable, (6.33) is equivalent to

∫ log(T−t)

−∞
h(t + eλ) dλ <∞. (6.35)

We fix θ ∈ (0, 1] in the following. Corresponding to this θ , by (6.35), there exists a
decreasing sequence {λi }∞i=1 such that

λi ↓ −∞, λi − λi+1 ≤ θ, h(t + eλi ) ≤ θ. (6.36)

For arbitrary λ ∈ (−∞, λ1), choose i such that λ ∈ [λi , λi−1). Then by (4.90) (with
ε→ 0) applied with t0 = t + eλi < t1 = t + eλ, we have

h(t + eλ) =
∫

�

ρ̃(y,t+eλ)(x, t) dμt+eλ(y) =
∫

�

ρ̃(y,t+2eλ)(x, t + eλ) dμt+eλ(y)

≤
∫

�

ρ̃(y,t+2eλ)(x, t + eλi ) dμt+eλi (y)+ o(1) (6.37)

where limθ→0 o(1) = 0. On the other hand, by (6.36) we have

∫
�

ρ̃(y,t+eλi )(x, t) dμt+eλi (y) = h(t + eλi ) ≤ θ. (6.38)
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By direct calculation,∫
�

ρ̃(y,t+2eλ)(x, t + eλi ) dμt+eλi (y)

≤ o(1)+
∫
B
M
√

2eλ−eλi
(y)

ρ̃(y,t+2eλ)(x, t + eλi ) dμt+eλi (y) (6.39)

where limM→∞ o(1) = 0 and the convergence does not depend on θ . For any fixed
M , we have

sup
x∈B

M
√

2eλ−eλi
(y)

ρ̃(y,t+2eλ)(x, t + eλi )/ρ̃(y,t+eλi )(x, t)

≤ exp
(
M2(eλ−λi − 1)/2

) ≤ 1+ o(1) (6.40)

where limθ→0 o(1) = 0. The inequalities (6.37)–(6.40) show that h(t + eλ) is
made arbitrarily small for all λ < λ1 and prove (6.34). Finally define a(x, t) :=
lim sups↓t

∫
�

ρ̃(y,s)(x, t) dμs(y) and note that � × (0, T ) may be split into two dis-
joint sets

A ∪ B := {(x, t) : a(x, t) = 0} ∪ {(x, t) : a(x, t) > 0}.
The claim (6.34) proved |ξ |(B) = 0. On the other hand, by Lemma 6.4 we have
μ(A) = 0. Since |ξ | ≤ μ by definition, this proves |ξ |(�× (0, T )) = 0. Since T > 0
is arbitrary, we have |ξ |(�× (0,∞)) = 0. ��

6.3 Associated varifolds and rectifiability theorem

We have so far obtained μt as a limit of Radon measures {μεi
t }∞i=1. To prove the

rectifiability of μt for a.e. t ≥ 0, we now consider a sequence of varifolds which are
naturally associated with {μεi

t }∞i=1.
Definition 6.1 For ϕεi (·, t), we define V εi

t ∈ Vn−1(�) as follows. For φ ∈
Cc(Gn−1(�)),

V εi
t (φ) :=

∫
�∩{|∇ϕεi (x,t)|�=0}

φ

(
x, I − ∇ϕεi (x, t)

|∇ϕεi (x, t)|
⊗ ∇ϕεi (x, t)

|∇ϕεi (·, t)|
)

dμ
εi
t (x).

(6.41)

Lemma 6.6 For g = (g1, . . . , gn) ∈ C1
c (�;Rn), we have

δV εi
t (g) =

∫
�

(g · ∇ϕεi )

(
εi�ϕεi −

W ′(ϕεi )

εi

)
dx

−
∫

�∩{|∇ϕεi |=0}
W (ϕεi )

εi
I · ∇g dx

+
∫

�∩{|∇ϕεi |�=0}
∇g ·

( ∇ϕεi

|∇ϕεi |
⊗ ∇ϕεi

|∇ϕεi |
)

ξεi dx . (6.42)
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Proof We omit i in the following. The first variation of V ε
t with respect to g is

δV ε
t (g) =

∫
Gn−1(�)

∇g(x) · S dV ε
t (x, S)

=
∫

�∩{|∇ϕε |�=0}
∇g ·

(
I − ∇ϕε

|∇ϕε| ⊗
∇ϕε

|∇ϕε|
)(

ε

2
|∇ϕε|2 + W

ε

)
dx .

(6.43)

By repeated integration by parts, we have

∫
�∩{|∇ϕε |�=0}

∇g · I ε

2
|∇ϕε|2 dx = −ε

∫
�

n∑
j,l=1

g j (ϕε)x j xl (ϕε)xl dx

= ε

∫
�

∇g · (∇ϕε ⊗∇ϕε)+ (g · ∇ϕε)�ϕε dx .

(6.44)

Also by integration by parts,

∫
�∩{|∇ϕε |�=0}

∇g · I W

ε
dx = −

∫
�∩{|∇ϕε |=0}

∇g · I W

ε
dx

−
∫

�

(g · ∇ϕε)
W ′

ε
dx . (6.45)

Now substituting (6.44) and (6.45) into (6.43), we obtain (6.42). ��
Proposition 6.1 For a.e. t ≥ 0, μt is rectifiable, and any convergent subsequence

{V εi j
t }∞j=1 with

lim inf
j→∞

∫
�

εi j

(
�ϕεi j

(x, t)−
W ′(ϕεi j

(x, t))

ε2i j

)2

dx <∞ (6.46)

converges to the unique varifold associated with μt .

Proof By Theorem 6.1 and by the dominated convergence theorem, we have

lim
i→∞

∫
�

|ξεi (·, t)| dx = 0. (6.47)

for full sequence for a.e. t ≥ 0. By Lemma 4.4, we see that

∫ T

0

∫
�

εi

(
�ϕεi −

W ′

ε2i

)2

dxdt ≤ 2E0.
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Thus, by Fatou’s lemma, we have

lim inf
i→∞

∫
�

εi

(
�ϕεi (x, t)−

W ′(ϕεi (x, t))

ε2i

)2

dx <∞ (6.48)

for a.e. t ≥ 0. Suppose t ≥ 0 satisfies both (6.47) and (6.48). Since ‖V εi
t ‖(�) ≤

μ
εi
t (�) is uniformly bounded in i , by the weak compactness theorem for measures,

there exists a convergent subsequence {V εi j
t }∞j=1 which satisfies (6.46) and which

converges to a varifold Vt . Due to Proposition 5.13 and (6.47), we have

‖Vt‖ = μt . (6.49)

Next, a standard measure theoretic argument (see for example [41, 3.2(2)]) shows

μt

({
x ∈ sptμt : lim sup

r↓0
μt (Br (x))

ωn−1rn−1
≤ s

})
≤ 2n−1sHn−1(sptμt ) (6.50)

for any s > 0. By (6.17), Hn−1(sptμt ) <∞, thus (6.50) shows

μt ({x ∈ sptμt : lim
r↓0 r

1−nμt (Br (x)) = 0}) = 0. (6.51)

The two equalities (6.49) and (6.51) show that

Vt = Vt	{x∈� : lim supr↓0 r1−n‖Vt‖(Br (x))>0}×G(n,n−1). (6.52)

Next we use (6.42). For any fixed g ∈ C1
c (�;Rn), (6.47) shows that the limits of the

last two terms of (6.42) are both 0. Thus we have

lim
j→∞ |δV

εi j
t (g)| ≤ lim inf

j→∞

(∫
�

εi j |∇ϕεi j
|2 dx

)1/2

×
⎛
⎝∫

�

εi j

(
�ϕεi j

− W ′

ε2i j

)2

dx

⎞
⎠

1/2

(6.53)

for g with sup |g| ≤ 1. Since the right-hand side of (6.53) does not depend on g and

since δV
εi j
t (g)→ δVt (g), we have

sup
g∈C1

c (�;Rn), sup |g|≤1
|δVt (g)| <∞

which shows that the total variation ‖δVt‖ is a Radon measure. Allard’s rectifiability
theorem [1] shows that the right-hand side of (6.52) is rectifiable, and hence so is
Vt . Once we know that Vt is rectifiable, Vt is determined uniquely by ‖Vt‖ = μt .
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902 K. Takasao, Y. Tonegawa

In particular, this shows that μt is rectifiable. The argument up to this point is valid
for any convergent subsequence with (6.46) and (6.47). On the other hand, note that

μt does not depend on the choice of subsequence {V εi j
t }∞j=1. Since μt determines Vt

uniquely, any converging subsequence of {V εi
t }∞i=1 with (6.46) and (6.47) has the same

limit Vt . This completes the proof. ��

7 Integrality of limit measures

In this section we prove that the density function ofμt is integer-valuedμt a.e.modulo
division by σ .

7.1 Separating sheets

We prove in this subsection that, if a set of appropriate quantities are controlled, then
we have a lower bound on a measure in terms of a sum of densities of vertically
aligned points. As the name of the present subsection indicates, what one carries out
in essence is to decompose the domain horizontally so that each separated domain
contains approximately one sheet of diffused interface. The original idea comes from
[1] and it has been first used in the context of the diffused interface problem in [27].

Lemma 7.1 Suppose

(1) N ∈ N, Y is a finite subset of Rn, 0 < R < ∞, 1 < M < ∞, 0 < a < ∞, 0 <

ε < 1, 0 < � <∞, 0 < E0 <∞ and −∞ ≤ l1 < l2 ≤ ∞.
(2) Y has no more than N + 1 elements, and Y ⊂ {(0, . . . , 0, xn) : l1 + a < xn <

l2 − a}. Moreover |x − z| > 3a for x, z ∈ Y with x �= z.
(3) (M + 1)diamY < R, and put R̃ := MdiamY.
(4) We have ϕ ∈ C2({y ∈ R

n : dist(y,Y) < R}).
(5) For all x = (0, . . . , 0, xn) ∈ Y ,

∫ R

a

dτ

τ n

∫
Bτ (x)∩{yn=l j }

|eε(yn − xn)− εϕxn (y − x) · ∇ϕ| dHn−1(y) ≤ �

(7.1)

for j = 1, 2, where eε is defined as in (4.16).
(6) For all x ∈ Y and a ≤ r ≤ R,∫

Br (x)
|ξε| + (1− (νn)

2)ε|∇ϕ|2 + ε|∇ϕ|
∣∣∣∣�ϕ − W ′(ϕ)

ε2

∣∣∣∣ dy ≤ �rn−1,

(7.2)

where ξε is defined as in (4.16) and ν = (ν1, . . . , νn) = ∇ϕ
|∇ϕ| .

(7) For all x ∈ Y ,

∫ R

a

dτ

τ n

∫
Bτ (x)

(ξε)+ dy ≤ �. (7.3)
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(8) For all x ∈ Y and a ≤ r ≤ R,

∫
Br (x)

ε|∇ϕ|2 dy ≤ E0r
n−1. (7.4)

Then we have the following:

(A) With S := {x : l1 < xn < l2} and for all x ∈ Y and a ≤ r < R,

1

rn−1

∫
Br (x)∩S

eε ≤ 1

Rn−1

∫
BR(x)∩S

eε + �(3+ R). (7.5)

(B) There exists l3 ∈ (l1, l2) such that |xn − l3| ≥ a and

∫ R̃

a

dτ

τ n

∫
Bτ (x)∩{yn=l3}

|eε(yn − xn)− εϕxn (y − x) · ∇ϕ| dHn−1(y)

≤ 3(N + 1)NM

(
� + E

1
2
0 �

1
2

)
(7.6)

for any x = (0, ·, 0, xn) ∈ Y .
(C) Put

Y1 := Y ∩ {x : l1 < xn < l3}, Y2 := Y ∩ {x : l3 < xn < l2},
S0 := {x : l1 < xn < l2 and dist(Y, x) < R},
S1 := {x : l1 < xn < l3 and dist(Y1, x) < R̃},
S2 := {x : l3 < xn < l2 and dist(Y2, x) < R̃}.

Then Y1 and Y2 are non-empty,

diamY j ≤ N − 1

N
diamY for j = 1, 2 (7.7)

and

1

R̃n−1

(∫
S1
eε +

∫
S2
eε

)
≤
(
1+ 1

M

)n−1 { 1

Rn−1

∫
S0
eε + �(3+ R)

}
.

(7.8)

Proof For any x ∈ Y , after a parallel translation, assumewithout loss of generality that
x = 0 for the proof of (A). Let ζ1(y) be a smooth approximation of the characteristic
function χBr (0), where a ≤ r < R. Let ζ2(y) be a smooth approximation to the
characteristic function of S which depends only on yn . Let us denote
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904 K. Takasao, Y. Tonegawa

hε := �ϕ − W ′(ϕ)

ε2
. (7.9)

Multiply (7.9) by (y ·∇ϕ)ζ1ζ2. After integration by parts twice (as in the computation
for (6.42)) and letting ζ1→ χBr (0), we obtain

d

dr

{
1

rn−1

∫
Br

eεζ2

}
+ 1

rn

∫
Br

(ξε + εhε(y · ∇ϕ))ζ2 − ε

rn+1

∫
∂Br

(y · ∇ϕ)2ζ2

− 1

rn

∫
Br
{eε yn − εϕxn (y · ∇ϕ)}ζ ′2 = 0. (7.10)

We estimate the integral over [r, R] (r ≥ a) of the second term in (7.10) first. We let
ζ2 → χS and compute

∫ R

r

dτ

τ n

∫
Bτ∩S

(ξε + εhε(y · ∇ϕ)) ≤
∫ R

r

dτ

τ n

(∫
Bτ

(ξε)+
)

+
∫ R

r

dτ

τ n−1

(∫
Bτ

ε|hε||∇ϕ|
)
≤ (1+ R)� (7.11)

where (7.2) and (7.3) are used. From (7.10), (7.11) and (7.1), we obtain (7.5), proving
(A).Next, choose ỹ, z̃ ∈ Y such that z̃n− ỹn ≥ diamY

N andY∩{x : ỹn < xn < z̃n} = ∅.
Let l̃1 = ỹn+ z̃n−ỹn

3 and l̃2 = z̃n− z̃n−ỹn
3 . To choose an appropriate l3 ∈ (l̃1, l̃2)which

satisfies (7.6), we first observe, for x ∈ Y and y ∈ Br (x),

I := |eε(yn − xn)− εϕxn (y − x) · ∇ϕ|
= |(−ξε)(yn − xn)+ ε|∇ϕ|2((yn − xn)− νn(y − x) · ν)|
≤ |ξε|r + ε|∇ϕ|2r

(
1− (νn)

2 +
√
1− (νn)2

)
. (7.12)

Thus by Fubini’s theorem (7.12), (7.2) and (7.4) we obtain

∫ l̃2

l̃1
dl
∫ R̃

a

dτ

τ n

∫
Bτ (x)∩{yn=l}

I dHn−1

=
∫ R̃

a

dτ

τ n

∫
Bτ (x)∩{l̃1<yn<l̃2}

I dy ≤ R̃

(
� + E

1
2
0 �

1
2

)
. (7.13)

The inequality (7.13) is satisfied for each x ∈ Y , hence we guarantee that there exists
l3 ∈ (l̃1, l̃2) such that

∫ R̃

a

dτ

τ n

∫
Bτ (x)∩{yn=l3}

I dHn−1(y) ≤
(N + 1)R̃

(
� + E

1
2
0 �

1
2

)
l̃2 − l̃1

123



Existence and regularity of mean curvature flow... 905

for each x ∈ Y . Since l̃2− l̃1 ≥ diamY
3N , we have R̃

l̃2−l̃1 ≤ 3MN , and we obtain (B). We

have S1 ∪ S2 ⊂ B
(R̃+diamY)

(x) ∩ S for x ∈ Y and S1 ∩ S2 = ∅. Thus, using also (3)

and (7.5) with r = R̃ + diamY < R, we have

1

R̃n−1

(∫
S1
eε +

∫
S2
eε

)
≤ 1

R̃n−1

∫
B

(R̃+diamY)
(x)∩S

eε

≤
(
1+ 1

M

)n−1 { 1

Rn−1

∫
BR(x)∩S

eε + �(3+ R)

}
.

(7.14)

Since BR(x) ∩ S ⊂ S0, we obtain (7.8). One can check that z̃n − ỹn ≥ diamY
N implies

(7.7). This proves (C). ��
Proposition 7.1 Corresponding to 0 < R < ∞, 0 < E0 < ∞, 0 < s < 1 and
N ∈ N, there exists 0 < � < 1 with the following property: Assume Y ⊂ R

n has no
more than N + 1 elements and Y ⊂ {(0, . . . , 0, xn) : xn ∈ R}. For some 0 < a < R
and for all y, z ∈ Y with y �= z, we have |y − z| > 3a and diamY ≤ �R. In addition
we assume (4), (6), (7), (8) of Lemma 7.1. Then we have

∑
x∈Y

1

an−1

∫
Ba(x)

eε ≤ s + 1+ s

Rn−1

∫
{x : dist(Y,x)<R}

eε. (7.15)

Proof Denote the number of elements in Y by #Y . If #Y = 1, the proof leading to
the conclusion (A) of Lemma 7.1 (with l1 = −∞ and l2 = +∞) gives (7.15) if
�(1 + R) < s. Note that M is irrelevant in this case since diamY = 0. If 1 < #Y ≤
N + 1, we use Lemma 7.1 inductively. First, we choose M > 1 depending only on
s, n, N so that

(
1+ 1

M

)(n−1)N
< 1+ s and

N − 1

N
<

M

M + 1
. (7.16)

Suppose (M + 1)diamY < R. Then all the assumptions of Lemma 7.1 are satisfied,
and we obtain Y1 and Y2 with the estimates. We apply Lemma 7.1 again to both Y1
and Y2 with R there replaced by R̃ = MdiamY. Due to (7.7) and (7.16), we have the
assumption (3) satisfied:

(M + 1)diamYj < MdiamY

for j = 1, 2. We have (7.1) with the right-hand side given by the right-hand side of
(7.6). For each j = 1, 2, if #Y j = 1, then we obtain (7.5) with r = a. Otherwise, we
separate Y j into two non-empty sets. Each time, all the assumptions of Lemma 7.1
are satisfied. Thus, after (#Y − 1)-times, we separate Rn into #Y disjoint horizontal
stacks, each having one element of Y . With (7.16), (7.8) and (7.5), we may choose a
sufficiently small � depending only on s, n, N , R, E0 so that (7.15) holds. ��
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906 K. Takasao, Y. Tonegawa

7.2 The ε-scale estimate

Next proposition is almost identical to [27] and [45]. It shows that the energy behaves
more or less like a 1-D simple ODE solution if certain quantities are controlled.

Proposition 7.2 Given 0 < s, b, β < 1, and 1 < c <∞, there exist 0 < �, ε6 < 1
and 1 < L <∞ (which also depend on n and W) with the following property:

Assume 0 < ε < ε6, ϕ ∈ C2(B4εL) and

sup
B4εL

ε|∇ϕ| ≤ c, sup
x,y∈B4εL

ε
3
2
|∇ϕ(x)−∇ϕ(y)|
|x − y| 12

≤ c, |ϕ(0)| < 1− b, (7.17)

∫
B4εL

(|ξε| + (1− (νn)
2)ε|∇ϕ|2) dx ≤ �(4εL)n−1 (7.18)

and

sup
B4εL

(ξε)+ ≤ ε−β, (7.19)

where ν and ξε are as in (7.2) and (4.16). Then for J := B3εL ∩{x = (0, . . . , 0, xn)},

inf
x∈J ∂xnϕ(x) > 0, (or sup

x∈J
∂xnϕ(x) < 0), and [−1+ b, 1− b] ⊂ ϕ(J ). (7.20)

We also have ∣∣∣∣σ − 1

ωn−1(Lε)n−1

∫
BεL

eε

∣∣∣∣ ≤ s. (7.21)

Proof Rescale the domain by x �→ x
ε
. The rescaled function defined on B4L is denoted

by ϕ̃. Let � : R→ (−1, 1) be the unique solution of the ODE

{
� ′(t) = √2W (�(t)) for t ∈ R,

�(0) = ϕ̃(0).
(7.22)

We have

∫
R

1

2
|� ′(t)|2 dt =

∫
R

√
W (�(t))

2
� ′(t) dt =

∫ 1

−1

√
W (s)

2
ds = σ

2
. (7.23)

Define �̂(x) = �̂(x1, x2, . . . , xn) := �(xn) for x ∈ R
n . Using (7.23), it is not

difficult to check that limL→∞ 1
ωn−1Ln−1

∫
BL

( |∇�̂|2
2 +W (�̂)

)
= σ . Thus depending

only on n, s, b,W , we may choose a sufficiently large L > 0 such that
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∣∣∣σ − 1

ωn−1Ln−1

∫
BL

(
|∇�̂|2

2
+W (�̂)

) ∣∣∣ ≤ s

2
(7.24)

whenever |�̂(0)| = |ϕ̃(0)| ≤ 1 − b. After fixing such L , we next observe that, for a
constant c̃ = c̃(W ),

|∇ϕ̃|2
2
− c̃(1± ϕ̃)2 ≤ |∇ϕ̃|2

2
−W (ϕ̃) = ε(ξε)+ ≤ ε1−β on B4L (7.25)

by (7.19). Some simple ODE argument combined with (7.25) shows that there exist
0 < b̃ < b and 0 < ε6 < 1 depending only on b, β, L ,W such that, whenever
|ϕ̃(0)| ≤ 1− b and ε < ε6, we have |ϕ̃| ≤ 1− b̃ on B4L .

Next, we define z : B4L → R by z(x) = �−1(ϕ̃(x)), where �−1 is the inverse
function of �. By � ′ > 0 and |ϕ̃| ≤ 1− b̃, �−1 and z are well-defined and

� ′(z(x)) ≥ min
|ϕ̃|≤1−b̃

√
2W (ϕ̃) (7.26)

for x ∈ B4L . By (7.17), we have ‖ϕ̃‖
C1, 12 (B4L )

≤ 2c. Since ‖�−1‖C2({t : |t |≤1−b̃}) is
bounded depending only on b, β, L ,W due to (7.26), we have

‖z‖
C1, 12 (B4L )

≤ C(b, β, L ,W, c). (7.27)

We next note that ϕ̃ = � ◦ z and (7.22) give

|∇ϕ̃|2
2
−W (ϕ̃) = 1

2
(� ′(z))2(|∇z|2 − 1),

|∇ϕ̃|2(1− (νn)
2) = (� ′(z))2(|∇z|2 − (∂xn z)

2). (7.28)

After rescaling (7.18) and using (7.26) and (7.28), we obtain

∫
B4L

(||∇z|2 − 1| + |∇z|2 − (∂xn z)
2) dx ≤ max

|t |≤1−b̃
W (t)−1�(4L)n−1. (7.29)

For a non-negative function f ∈ C
1
2 (B4L), suppose maxB̄3L f = f (x̂) > 0 for

x̂ ∈ B̄3L . Then it is easy to check that f (x) ≥ f (x̂)/2 as long as |x − x̂ | ≤
( f (x̂))2/(2‖ f ‖

C
1
2 (B4L )

)2 =: r . Then we have

f (x̂) ≤ 1

ωnrn

∫
Br (x̂)

2 f dx ≤
2 · 4n‖ f ‖2n

C
1
2 (B4L )

ωn( f (x̂))2n

∫
B4L

f dx
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908 K. Takasao, Y. Tonegawa

and thus we obtain

(max
B̄3L

f )2n+1 ≤ 2 · 4n‖ f ‖2n
C

1
2 (B4L )

∫
B4L

f dx . (7.30)

By (7.27), (7.29) and (7.30), we have

max
B̄3L

(||∇z|2 − 1| + |∇z|2 − (∂xn z)
2) ≤ C(b, β, L ,W, c)�

1
2n+1 . (7.31)

Since �(0) = ϕ̃(0) = �(z(0)), we have z(0) = 0. Note that (7.31) for sufficiently
small � shows that∇z ≈ (0, . . . , 0,±1) uniformly on B3L . This shows that z ≈ xn or
−xn inC1(B3L)when � is small, and in particular, we have (7.20). For the former case,
we have ϕ̃(x) = �(z(x)) ≈ �(xn) = �̂(x), and (7.24) gives (7.21) for sufficiently
small � with the right dependence. In the case of −xn , we simply note that changing
�̂ to �(−xn) does not affect the proof. ��

7.3 Estimate on {|ϕε| ≥ 1 − b}

We need to show some uniform smallness of energy on {|ϕε| ≥ 1 − b} for the final
step of this section.

Lemma 7.2 Suppose ϕε and uε are the solutions for (4.2) constructed in Sect. 5.
Given 0 < δ < T , there exist c21 and ε7 depending only on n, c1,W with the following
property. Suppose for (x0, t0) ∈ �× (δ, T ) and 0 < λ ≤ 2/3,

ϕε(x0, t0) < 1− ελ (or ϕε(x0, t0) > −1+ ελ), (7.32)

where λ additionally satisfies

1 ≤ r̃ := c21λ| log ε| ≤ ε−1 min{√δ/2, 1/2}. (7.33)

Then

inf
Bεr̃ (x0)×(t0−ε2r̃2,t0)

ϕε < α

(
resp. sup

Bεr̃ (x0)×(t0−ε2r̃2,t0)
ϕε > −α

)

if ε ∈ (0, ε7).

Proof First note that Bεr̃ (x0)× (t0−ε2r̃2, t0) ⊂ �× (0, T ) due to (7.33). Rescale the
domain by x �→ x−x0

ε
and t �→ t−t0

ε2
, so that we are concerned with the domain Br̃ ×

(−r̃2, 0). Let ϕ̃ε(x, t) := ϕε(εx + x0, ε2t + t0) and ũε(x, t) := uε(εx + x0, ε2t + t0).
As a comparison function, we need a function ψ with the following property⎧⎪⎨

⎪⎩
∂tψ = �ψ − κ

2ψ on R
n × (−∞, 0),

ψ(x, t) ≥ e
|x |+|t |
c21 on R

n × (−∞, 0)\Bn+1
1 (0, 0),

ψ(0, 0) = 1,

(7.34)
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for some c21 > 0. To find such a function, solve �ψ̃ = κψ̃/4 with ψ̃(0) = 1 on
R
n among radially symmetric functions. One can show that ψ̃ grows exponentially as
|x | → ∞ and ψ̃ achieves its minimum at the origin, thus ψ̃ ≥ 1 on R

n in particular.
Then set ψ(x, t) := e−κt/4ψ̃(x). With a suitably large c21 depending only on n and
κ , this ψ satisfies (7.34). Next set r̃ := c21λ| log ε|. We choose such r̃ so that

1− ελe
r̃

c21 = 0. (7.35)

Under the assumption of (7.32) which is equivalent to

ϕ̃ε(0, 0) < 1− ελ, (7.36)

for a contradiction, assume

inf
Br̃×(−r̃2,0)

ϕ̃ε ≥ α. (7.37)

Define φε := 1−ελψ . By (7.34) we have ∂tφε = �φε+ κ
2 (1−φε) onRn× (−∞, 0).

Furthermore, on the parabolic boundary of Br̃ × (−r̃2, 0), ψ ≥ e
r̃

c21 by r̃ ≥ 1 and
(7.34), hence

φε ≤ 1− ελe
r̃

c21 = 0 < α ≤ ϕ̃ε (7.38)

where (7.35) and (7.37) are used. On the other hand φε(0, 0) = 1 − ελψ(0, 0) =
1−ελ > ϕ̃ε(0, 0) by (7.34) and (7.36). Hence a positive maximum value of φε− ϕ̃ε is
achieved at a parabolic interior point (x ′, t ′) ∈ Br̃ × (−r̃2, 0]. We have ∂t (φε − ϕ̃ε)−
�(φε − ϕ̃ε) ≥ 0 at (x ′, t ′) and φε(x ′, t ′) > ϕ̃ε(x ′, t ′). The latter inequality combined
with (7.37) and (3.3) impliesW ′(ϕ̃ε) < W ′(φε). By substituting the equations satisfied
by φε and ϕ̃ε into the former inequality, we obtain

0 ≤ κ

2
(1− φε)+ εũε · ∇ϕ̃ε +W ′(ϕ̃ε) <

κ

2
(1− φε)+ ε

3
4 ‖∇ϕ̃ε‖L∞ +W ′(φε)

≤ −κ

2
(1− φε)+ ε

3
4 ‖∇ϕ̃ε‖L∞ ≤ −κ

2
ελ + ε

3
4 ‖∇ϕ̃ε‖L∞ ,

where W ′(φε) ≤ −κ(1 − φε) follows from (7.37) and (3.3) and |ũε| ≤ ε−β = ε− 1
4

by (5.7) and (5.5). We also used ψ ≥ ψ̃ ≥ 1 in the last inequality. Since ‖∇ϕ̃ε‖L∞ is
bounded uniformly in ε (see Lemma 4.1) and λ ≤ 2/3 < 3/4, for sufficiently small
ε, this is a contradiction. The other case may be proved similarly. ��
Lemma 7.3 Under the assumptions of Lemma 7.2, there exist c22 and ε8 with the
following property. For t0 ∈ (δ, T ) and 0 < r < 1/2 define

Zr,t0 :=
{
x ∈ � : inf

Br (x)×(t0−r2,t0)
|ϕε| < α

}
. (7.39)
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If 0 < ε < ε8, then

Ln(Zr,t0) ≤ c22r. (7.40)

Proof For x0 ∈ Zr,t0 , we claim that there exist positive constants c23 and c24 such
that

με
t0−2r2(Bc23r (x0)) ≥ c24r

n−1. (7.41)

Once (7.41) is proved, the Besicovitch covering theorem and (4.40) prove (7.40)
with an appropriate choice of c22. To prove (7.41), for each x0 ∈ Zr,t0 we have
(x ′, t ′) ∈ Br (x0) × (t0 − r2, t0) such that |ϕε(x ′, t ′)| < α. Just as in the proof of
Lemma 4.5, we have

3c24 ≤
∫

�

ρ̃(x ′,t ′+ε2)(x, t
′) dμε

t ′(x). (7.42)

By (4.90) with t1 and t0 there replaced by t ′ and t0 − 2r2, and restricting r and ε

appropriately depending on constants appearing in the right-hand side of (4.90), we
obtain

∫
�

ρ̃(x ′,t ′+ε2)(x, t) dμε
t (x)

∣∣∣∣
t ′

t=t0−2r2
≤ c24. (7.43)

The inequalities (7.42) and (7.43) show that

2c24 ≤
∫

�

ρ̃(x ′,t ′+ε2)(x, t0 − 2r2) dμε
t0−2r2(x). (7.44)

Using the estimate (4.13), we may choose a large c23 > 1 depending only on D1 so
that

∫
�\Bc23r (x ′)

ρ̃(x ′,t ′+ε2)(x, t0 − 2r2) dμε
t0−2r2(x) ≤ c24. (7.45)

By (7.44) and (7.45) we obtain

c24 ≤
∫
Bc23r (x

′)
ρ̃(x ′,t ′+ε2)(x, t0 − 2r2) dμε

t0−2r2(x). (7.46)

Since ρ̃(x ′,t ′+ε2)(x, t0−2r2) ≤ r1−n and Bc23r (x
′) ⊂ B(c23+1)r (x0), by setting c23+1

to be again c23, we obtain (7.41). We restricted r to be small, but when r does not
satisfy the restriction, we may choose c22 large so that (7.40) holds trivially. ��
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Proposition 7.3 Suppose ϕε and uε are the solutions for (4.2) constructed in Sect. 5.
Given 0 < δ < T and 0 < s < 1, there exist 0 < b < 1 and 0 < ε9 < 1 such that∫

{x∈� : |ϕε(x,t)|≥1−b}
W (ϕε(x, t))

ε
dx ≤ s (7.47)

for all t ∈ (δ, T ) if 0 < ε ≤ ε9.

Proof We restrict 0 < b to be small in the following independent of ε. Assume that

1−√b > α, c21| log b| ≥ 1. (7.48)

Choose J = J (ε, b) ∈ N such that

ε
1

2J+1 ∈ (b,
√
b]. (7.49)

Restrict ε so that ε ≤ min{ε7, ε8} and c21| log ε| ≤ ε−1 min{√δ/2, 1/2}. Note that,
with this choice of b and J , we have by (7.49) and (7.48) that

c21
1

2J
| log ε| ≥ c21| log b| ≥ 1. (7.50)

Fix t0 ∈ (δ, T ) and we define

A j :=
{
x ∈ � : 1− ε

1
2 j+1 ≤ |ϕε(x, t0)| ≤ 1− ε

1
2 j

}
for j = 1, . . . , J. (7.51)

For any point x0 ∈ A j , we apply Lemma 7.2 with λ = 1
2 j . Note that the condition

(7.33) is satisfied due to (7.50). Thus setting r̃ := c21| log ε|/2 j , we obtain

inf
Bεr̃ (x0)×(t0−ε2r̃2,t0)

|ϕε| < α. (7.52)

With the notation of (7.39), (7.52) shows

A j ⊂ Zc21ε| log ε|/2 j ,t0 (7.53)

and the application of Lemma 7.3 to (7.53) shows

Ln(A j ) ≤ c22c212
− jε| log ε| (7.54)

for all j = 1, . . . , J . On A j , by |ϕε| ≥ 1− ε
1

2 j+1 , we have

W (ϕε)

ε
≤
(
max[−1,1] |W

′′|
)
· ε−1

(
ε

1
2 j+1

)2

2
≤ c(W )ε2

− j−1. (7.55)
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912 K. Takasao, Y. Tonegawa

Set Y := {x ∈ � : 1− b ≤ |ϕε(x, t0)| ≤ 1−√ε}. By (7.51) and (7.49), we have

Y ⊂ ∪J
j=1A j . (7.56)

Combining (7.54)–(7.56) and setting c25 := c(W )c22c21,

∫
Y

W (ϕε)

ε
≤

J∑
j=1

∫
A j

W (ϕε)

ε
≤ c25| log ε|

J∑
j=1

2− jε2
− j

≤ c25| log ε|
∫ J+1

1
2−tε2−t dt = c25

ε
1

2J+1 −√ε

log 2
≤ c25

√
b

log 2
(7.57)

where we used the fact that 2−xε2−x is monotone increasing for x ∈ [1, J +1] as long
as log

√
b ≤ −1, and (7.49). We restrict b so that the right-hand side of (7.57) is less

than s/2. The similar estimate shows∫
{1−√ε≤|ϕε |≤1−ε

2
3 }

W (ϕε)

ε
≤ c25ε| log ε|. (7.58)

Recalling that |ϕε| ≤ 1, we have

∫
{1−ε

2
3≤|ϕε |}

W (ϕε)

ε
≤ c(W )(ε

2
3 )2 · 1

ε
≤ c(W )ε

1
3 . (7.59)

By (7.57)-(7.59) we restrict ε depending on s so that we have (7.47). ��

7.4 Proof of integrality

Finally we prove the integrality of μt .

Theorem 7.1 For a.e. t > 0, μt = θHn−1	Mt , where Mt is countably (n − 1)-
rectifiable and θ(x, t) = N (x, t)σ for someHn−1measurable integer-valued function,
μt a.e. x ∈ �.

Proof By the argument in the proof of Proposition 6.1, for a.e. t ≥ 0, we may choose

a subsequence {V εi j
t }∞j=1 such that (6.47) and (with the notation of (7.9))

ch(t) := sup
j

∫
�

εi j |hεi j
∇ϕεi j

|(x, t) dx <∞ (7.60)

hold while V
εi j
t → Vt . Here Vt is the rectifiable varifold uniquely determined by μt

and recall that μt = ‖Vt‖. In the following we fix any such t and show the claim of
the theorem for μt . All functions are evaluated at the same t , and we do not write out
the time variable (except for μt and Vt with or without εi ) for simplicity. Moreover,
though it is important to note that we are discussing a particular subsequence (or its
further subsequence), we denote εi j by εi for simplicity.
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For any m ∈ N, we define

Ai,m :=
{
x ∈ � :

∫
Br (x)

εi |hεi∇ϕεi | dx ≤ mμ
εi
t (Br (x)) for all 0 < r < 1/2

}
.

(7.61)

The Besicovitch covering theorem with (7.60) and (7.61) shows that

μ
εi
t (�\Ai,m) ≤ c(n)ch(t)

m
. (7.62)

We then set

Am := {x ∈ � : there exist xi ∈ Ai,m for infinitely many i with xi → x} (7.63)

and

A := ∪∞m=1Am . (7.64)

We claim

μt (�\A) = 0. (7.65)

Otherwise, we would have a compact set K ⊂ �\A such that μt (K ) ≥ 1
2μt (�\A).

For any m ∈ N we have K ⊂ �\Am by (7.64). For each point x ∈ K , by (7.63), there
exists a neighborhood of x which does not intersect with Ai,m for all sufficiently large
i . Due to the compactness, thus, there exist i0 and an open set Om such that K ⊂ Om

and Om ∩ Ai,m = ∅ for all i ≥ i0. Let φm ∈ Cc(Om;R+) such that 0 ≤ φm ≤ 1 and
φm = 1 on K . Then

μt (K ) ≤
∫

�

φm dμt = lim
i→∞

∫
�

φm dμ
εi
t = lim

i→∞

∫
�\A j,m

φm dμ
εi
t

≤ lim inf
i→∞ μ

εi
t (�\A j,m) (7.66)

for all j ≥ i0. Since the last quantity of (7.66) is less than c(n)ch(t)/m by (7.62), and
since m is arbitrary, we obtain μ(K ) = 0. This proves the claim (7.65).

Since μt is rectifiable, μt a.e. point x has an approximate tangent space. By (7.65),
we may also assume that for μt a.e. x there exists some m ∈ N such that x ∈ Am .
We fix any such point, and after a parallel translation, we may assume that x = 0.
Furthermore, after a rotation, we may assume that the approximate tangent space is
P := {xn = 0}. Denote θ := limr↓0 ‖Vt‖(Br (x))ωn−1rn−1 . We will be done if we prove that

σ−1θ ∈ N.
For any sequence ri ↓ 0, we have limi→∞(�ri )#Vt = θ |P|, where�ri (x) = x

ri
and

(�ri )# is the usual push-forward of varifold. |P| is the unit density varifold naturally
derived from P . Since 0 ∈ Am , there exists a subsequence (denoted by the same index)
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914 K. Takasao, Y. Tonegawa

xi ∈ Ai,m such that limi→∞ xi = 0. After choosing a further subsequence, we may
assume that

lim
i→∞(�ri )#V

εi
t = θ |P|, (7.67)

lim
i→∞

xi
ri
= 0 (7.68)

and

lim
i→∞

ε
β′−β
i | log εi |

rn−1i

= 0. (7.69)

For a such choice, we also have limi→∞ εi
ri
= 0. Rescale the coordinates by x̃ := x

ri
and define ε̃i := εi

ri
→ 0. Define ϕ̃ε̃i (x̃) := ϕεi (ri x̃). We also define ξ̃ε̃i and h̃ ε̃i as in

(4.15) and (7.9) corresponding to ε̃i and ϕ̃ε̃i . Due to (6.47), we may choose a further
subsequence so that

lim
i→∞

∫
B3
|ξ̃ε̃i | dx̃ = 0. (7.70)

Due to Corollary 4.1 and (7.69), for any y ∈ B2 and 0 < r < 2, we have

∫ r

0

d τ̃

τ̃ n

∫
Bτ̃ (y)

(ξ̃ε̃i )+ dx̃ =
1

rn−1i

∫ rri

0

dτ

τ n

∫
Bτ (ri y)

(ξεi )+ dx

≤ 2c10ε
β′−β
i | log εi |
rn−1i

→ 0 (7.71)

as i →∞. For h̃ ε̃i , we have

ε̃i

∫
B3
|h̃ ε̃i∇ϕ̃ε̃i | dx̃ =

εi

rn−2i

∫
B3ri

|hεi∇ϕεi | dx ≤
m

rn−2i

μ
εi
t (B4ri (xi ))

≤ m4n−1ωn−1D1ri → 0 (7.72)

as i →∞, where we used (7.68), xi ∈ Ai,m , (7.61) and (4.13). If one defines a varifold

Ṽ ε̃i
t corresponding to ϕ̃ε̃i as in (6.41), then one can check that Ṽ

ε̃i
t = (�ri )#V

εi
t . Next

we claim ∫
B3

(1− (νn)
2)ε̃i |∇ϕ̃ε̃i |2 dx̃ → 0 (7.73)

as i →∞, where ν = (ν1, . . . , νn) = ∇ϕ̃ε̃i|∇ϕ̃ε̃i
| . Note first that Gn−1(Rn) ∼= S

n−1/{±1}
and a function defined by ψ : ±ν ∈ S

n−1/{±1} �−→ 1− ν2n is continuous. Thus for
any φ ∈ Cc(R

n), we have by (7.67)
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Ṽ ε̃i
t (φψ) =

∫
φ(x̃)(1− (νn)

2) d‖Ṽ ε̃i
t ‖(x̃)→ θ |P|(φψ) (7.74)

and since P = {xn = 0},

θ |P|(φψ) = θ

∫
P

φ(x̃)ψ((0, ·, 0,±1)) dHn−1(x̃) = 0. (7.75)

In particular, (7.74) and (7.75) prove (7.73). In the following we fix this subsequence
and drop the tilde for simplicity.

Assume that N is the smallest positive integer greater than σ−1θ , that is,

θ ∈ [(N − 1)σ, Nσ). (7.76)

Let s > 0 be arbitrary. By Proposition 7.3 and (7.70), there exists 0 < b < 1 such
that

∫
B3∩{|ϕεi |≥1−b}

(
εi |∇ϕεi |2

2
+ W (ϕεi )

εi

)
≤ s (7.77)

for all sufficiently large i . Corresponding to s and b as well as c given by Lemma 4.1,
by Proposition 7.2, we choose � and L (with a restriction on εi ). Then with R = 2,
by Proposition 7.1, we restrict � further if necessary. We use Proposition 7.1 with
a = Lεi . For all large i we define

Gi := B2 ∩ {|ϕεi | ≤ 1− b} ∩
{
x :

∫
Br (x)

εi |hεi∇ϕεi | + |ξεi |

+(1− (νn)
2)εi |∇ϕεi |2 ≤ � μ

εi
t (Br (x)) if εi L ≤ r ≤ 1

}
. (7.78)

By the Besicovitch covering theorem, we obtain

μ
εi
t (B2 ∩ {|ϕεi | ≤ 1− b}\Gi ) ≤ c(n)

�

∫
B3

εi |hεi∇ϕεi | + |ξεi |

+(1− (νn)
2)εi |∇ϕεi |2. (7.79)

The right hand side goes to 0 as i →∞ by (7.72), (7.70), (7.73). Next we claim the
following lower bound for all sufficiently large i :

μ
εi
t (Br (x)) ≥ (σ − 2s)ωn−1rn−1 (7.80)

for all Lεi ≤ r ≤ 1 and x ∈ Gi . To see this, first note that the assumptions of
Proposition 7.2 are all satisfied due to Lemma 4.1, (7.78) and (4.26). This proves the
inequality (7.80) with r = Lεi and with 2s replaced by s. Next the identity (7.10)
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916 K. Takasao, Y. Tonegawa

with ζ2 ≡ 1, (7.11), (7.71) and (7.78) shows

1

τ n−1
μ

εi
t (Bτ (x))

∣∣∣r
τ=Lεi

≥ o(1)−
∫ r

Lεi

�
μ

εi
t (Bτ (x))

τ n−1
dτ

≥ o(1)− ωn−1D1� (7.81)

after integrating over [Lεi , r ]. We may restrict � so that D1� < s. Thus (7.81) gives
(7.80) for all sufficiently large i . Since μ

εi
t = ‖V εi

t ‖ → θHn−1	P , (7.80) shows that
points in Gi converge uniformly to P as i →∞.

For any x ∈ P ∩ B1 and |l| ≤ 1− b, we next prove

#(P−1(x) ∩ Gi ∩ {ϕεi = l}) ≤ N − 1. (7.82)

If the claim were not true, we choose N elements and set it to be Y , and apply
Proposition 7.1 with R = 1, ϕ = ϕεi and a = Lεi . The property |y− z| > 3Lεi holds
due to (7.20), diam Y ≤ � due to the uniform convergence of Gi to P , (6), (7) are
due respectively to (7.78) and (7.71). Thus all the assumptions of Proposition 7.1 are
satisfied and we have

∑
y∈Y

1

(Lεi )n−1
μ

εi
t (BLεi (y)) ≤ s + (1+ s)μεi

t ({z : dist (Y, z) < 1}) (7.83)

for all sufficiently large i . Since limi→∞ μ
εi
t ({z : dist (Y, z) < 1}) = θωn−1, #Y = N

and (7.80), we obtain

N (σ − 2s)ωn−1 ≤ s + (1+ s)θωn−1. (7.84)

Since σN > θ by definition, (7.84) is a contradiction for sufficiently small s depending
only on σ , θ and n. Thus we proved (7.82).

To conclude the proof, we consider push-forward of

V̂ εi
t := V εi

t 	{|xn |≤1}×G(n,n−1)

by P , P# V̂
εi
t . For any φ(x, S) ∈ Cc((P ∩ B2) × G(n, n − 1)), we have (for all

sufficiently large i)

P# V̂
εi
t (φ) =

∫
{|xn |≤1}

φ(P(x), P)|�n−1P ◦ (I − ν ⊗ ν)| dμ
εi
t . (7.85)

Here �n−1A denotes the Jacobian of A ∈ Hom(Rn;Rn) ([1]). One can check that

|�n−1P ◦ (I − ν ⊗ ν)| = |νn| = |∂xnϕεi ||∇ϕεi | . Due to the varifold convergence (7.67), we
have P# V̂

εi
t → P#(θ |P|) = θ |P| as i →∞. In the following we also use

lim
i→∞

∫
B3

∣∣∣∣εi |∇ϕεi |2
2

+ W (ϕεi )

εi
− |∇ϕεi |

√
2W (ϕεi )

∣∣∣∣ dx = 0 (7.86)
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which follows from (7.70). Now we have

ωn−1θ = ‖θ |P|‖(B1) = lim
i→∞‖P# V̂

εi
t ‖(B1) = lim

i→∞

∫
B1
|νn| dμ

εi
t

≤ lim inf
i→∞

∫
B1∩{|ϕεi |≤1−b}∩Gi

|νn| dμ
εi
t + 2s

≤ lim inf
i→∞

∫
B1∩{|ϕεi |≤1−b}∩Gi

|νn||∇ϕεi |
√
2W (ϕεi ) dx + 2s (7.87)

due to (7.77), (7.79) and (7.86). By the co-area formula [41, 10.6], we obtain

∫
B1∩{|ϕεi |≤1−b}∩Gi

|νn||∇ϕεi |
√
2W (ϕεi ) dx

=
∫ 1−b

−1+b
dτ

∫
{ϕεi=τ }∩B1∩Gi

|νn|
√
2W (τ ) dHn−1. (7.88)

Then by the area formula [41, 12.4] applied to the map P : {ϕεi = τ } → {xn = 0},
we have ∫

{ϕεi=τ }∩B1∩Gi

|νn| dHn−1

=
∫
{xn=0}

H0({ϕεi = τ } ∩ B1 ∩ Gi ∩ P−1(x)) dHn−1(x). (7.89)

Now the integrand of the right-hand side of (7.89) is≤ N−1 due to (7.82) for |x | ≤ 1,
and 0 otherwise. Combining (7.87)–(7.89), we finally obtain

ωn−1θ ≤ 2s + lim inf
i→∞ ωn−1(N − 1)

∫ 1−b

−1+b

√
2W (τ ) dτ

≤ 2s + ωn−1(N − 1)σ. (7.90)

Since s > 0 is arbitrary, (7.90) shows θ ≤ (N−1)σ . By (7.76), we have θ = (N−1)σ .
��

8 Proof of the main theorem

We finally define a family of varifolds which will be a generalized solution of (1.2).
To remove the multiple of σ , we re-define Vt as follows.

Definition 8.1 For a.e. t ≥ 0 whenμt is rectifiable and integral modulo division by σ ,
let Vt be the uniquely defined integral varifold by σ−1μt . For any other t > 0, define Vt
by Vt (φ) := σ−1

∫
U φ(x, P0) dμt (x) for φ ∈ Cc(Gn−1(U )), where P0 ∈ G(n, n−1)

is an arbitrary fixed element.
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918 K. Takasao, Y. Tonegawa

With this definition, we have ‖Vt‖ = σ−1μt for all t ≥ 0, and Vt ∈ IVn−1(�)

for a.e. t ≥ 0 by Theorem 7.1. Thus (a) of Definition 2.1 is satisfied. The con-
dition (b) is satisfied due to (4.13). Let us consider (c). The L2 integrability of u,∫ T
0

∫
�
|u|2 d‖Vt‖dt < ∞, may be proved as in (4.42) and (4.43) once (b) is estab-

lished. For h, we prove the following.

Proposition 8.1 For a.e. t ≥ 0, Vt has a generalized mean curvature h(Vt ) and we
have

∫
�

φ|h(Vt )|2 d‖Vt‖ ≤ σ−1 lim inf
i→∞

∫
�

εiφ

(
�ϕεi −

W ′(ϕεi )

ε2i

)2

dx <∞ (8.1)

for any φ ∈ Cc(� ; R+).

Proof Just as in the proof of Proposition 6.1, for a.e. t ≥ 0, we may assume (6.47)

and (6.48) and there exists a subsequence {V εi j
t }∞j=1 converging to σVt (note that

we re-defined Vt ) with (6.46). By arguing as in the proof of Proposition 6.1, for any
g ∈ C1

c (� ; Rn), we have

|δVt (g)| ≤ σ−1
(∫

�

|g|2 dμt

)1/2

lim inf
j→∞

⎛
⎝∫

�

εi j

(
�ϕεi j

− W ′

ε2i j

)2

dx

⎞
⎠

1/2

.

(8.2)

The inequality and (6.46) show that the total variation ‖δVt‖ of δVt is absolutely
continuous with respect to μt = σ‖Vt‖. Thus by the Radon-Nikodym theorem there
exists a ‖Vt‖ measurable vector field h(Vt ) (generalized mean curvature vector) such
that

δVt (g) = −
∫

�

g · h(Vt ) d‖Vt‖. (8.3)

Since Vt is rectifiable, going back to the definition of countably (n−1)-rectifiable set,
one can show that C1

c (�) is dense in L2(‖Vt‖). Then a standard approximation argu-
ment shows h(Vt ) ∈ L2(‖Vt‖) and (8.1) with φ = 1. Next, given φ ∈ Cc(� ; R+),
let ψ j ∈ C1

c (� ; R+) be a sequence such that limk→∞ ‖φ − ψk‖C0(�) = 0. Using
ψkg in the proof of Proposition 6.1 and letting k →∞, we obtain

∣∣∣∣
∫

�

φg · h(Vt ) dμt

∣∣∣∣ ≤
(∫

�

φ|g|2 dμt

)1/2

lim inf
j→∞

⎛
⎝∫

�

εi j φ

(
�ϕεi j

− W ′

ε2i j

)2

dx

⎞
⎠

1/2

.

(8.4)

By approximation, we obtain (8.1) from (8.4). ��
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Now Proposition 8.1 combined with Lemma 4.4 and Fatou’s lemma proves (c). For
the proof of (d), one point which we need to be careful about is that we may not have
the whole sequence {V εi

t }∞i=1 converging to Vt as varifold for a.e. t ≥ 0 even though
{‖V εi

t ‖}∞i=1 converges to σ‖Vt‖ = μt for all t ≥ 0.

Proposition 8.2 The family of varifolds {Vt }t≥0 defined in Definition 8.1 is a gener-
alized solution of (1.2).

Proof We prove (2.10) for φ ∈ C2
c (�× [0,∞) ; R+). For φ ∈ C1

c , one can approxi-
mate φ by a sequence of C2

c functions and obtain the same result in the limit. First by
modifying (5.11) we obtain (with the notation (7.9))

μ
εi
t (φ(·, t))

∣∣∣t2
t=t1
=
∫ t2

t1

∫
�

−εiφh
2
εi
− εi hεi∇φ · ∇ϕεi + εiφhεi uεi · ∇ϕεi

+ εi (∇ϕεi · ∇φ)(uεi · ∇ϕεi ) dxdt +
∫ t2

t1

∫
�

∂φ

∂t
dμ

εi
t dt. (8.5)

Modulo division by σ , the left-hand side of (8.5) converges to that of (2.10) due to
Proposition 5.13. The same is true for the last term of (8.5). Hence we focus on the
middle 4 terms. First we approximate uεi by a fixed smooth ũ as follows. Given ε > 0,
we choose a large j so that t2 < Tj and

‖u − uε j ‖Lq ([0,Tj ];W 1,p(�)) < ε and ‖uε j − uεi ‖Lq ([0,Tj ];W 1,p(�)) < ε (8.6)

for all i ≥ j . This is possible since uεi converges to u in this norm. Set ũ := uε j . Then
we have∣∣∣∣
∫ t2

t1

∫
�

εiφhεi (uεi − ũ) · ∇ϕεi + εi (∇ϕεi · ∇φ)((uεi − ũ) · ∇ϕεi )

∣∣∣∣
≤
(∫ t2

t1

∫
�

2εi
(
φ2h2εi + |∇φ|2|∇ϕεi |2

))1/2 (∫ t2

t1

∫
�

|uεi − ũ|2 dμ
εi
t dt

)1/2

.

(8.7)

As in the proof of Lemma 4.4, and by (4.13) and (8.6), we have

∫ t2

t1
dt
∫

�

|uεi − ũ|2 dμ
εi
t ≤ c(n)D1(t2 − t1)

1− 2
q ‖uεi

−ũ‖2Lq ([t1,t2];W 1,p(�))
< cε2. (8.8)

By (8.7) and (8.8), replacing uεi by ũ in (8.5) produces error of cε2. Similarly we
have

∣∣∣ ∫ t2

t1

∫
�

(−hφ +∇φ) · ((u − ũ) · ν)ν dμt dt
∣∣∣ ≤ c′ε. (8.9)
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Thus we will finish the proof if we prove

lim inf
i→∞

∫ t2

t1

∫
�

−εiφh
2
εi
− εi hεi∇φ · ∇ϕεi + εiφhεi ũ · ∇ϕεi

+ εi (∇ϕεi · ∇φ)(ũ · ∇ϕεi ) dxdt ≤
∫ t2

t1
B(μt , ũ(·, t), φ(·, t)) dt, (8.10)

where we denote

B(μt , ũ(·, t), φ(·, t)) :=
∫

�

(∇φ − hφ) · (h + (ũ · ν)ν) dμt .

By the Cauchy-Schwarz inequality, we have

âi (t) := εi

∫
�

−φh2εi − hεi∇φ · ∇ϕεi + φhεi ũ · ∇ϕεi + (∇ϕεi · ∇φ)(ũ · ∇ϕεi )

≤
∫

�

εi

2
|∇ϕεi |2

( |∇φ|2
φ
+ φ|ũ|2 + 2|ũ||∇φ|

)

≤
∫

�

εi

2
|∇ϕεi |2(φ̂ + φ|ũ|2 + 2|ũ||∇φ|) =: b̂i (t), (8.11)

where φ̂ ∈ Cc(�;R+) is chosen so that |∇φ|2
φ
≤ φ̂. This in particular shows b̂i (t) −

âi (t) ≥ 0 for t1 ≤ t ≤ t2. Using the general fact that lim inf i→∞(ai + bi ) ≤
lim supi→∞ ai + lim inf i→∞ bi and Fatou’s lemma, we have

lim inf
i→∞

∫ t2

t1
âi (t) dt ≤ − lim inf

i→∞

∫ t2

t1
(b̂i (t)− âi (t)) dt + lim inf

i→∞

∫ t2

t1
b̂i (t) dt

≤ −
∫ t2

t1
lim inf
i→∞ (b̂i (t)− âi (t)) dt + lim inf

i→∞

∫ t2

t1
b̂i (t) dt.

(8.12)

Since b̂i (t) converges to 1
2

∫
�
(φ̂ + φ|ũ|2 + 2|ũ||∇φ|) dμt for all t1 ≤ t ≤ t2 and

bounded uniformly, from (8.12) and the dominated convergence theorem we have

lim inf
i→∞

∫ t2

t1
âi (t) dt ≤ −

∫ t2

t1
lim inf
i→∞ (−âi (t)) dt. (8.13)

Thus we may finish the proof of (8.10) via (8.13) if we prove

− lim inf
i→∞ (−âi (t)) ≤ B(μt , ũ(·, t), φ(·, t)) (8.14)
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for a.e. t ∈ [t1, t2]. Fix t such that the claim of Proposition 8.1 holds. Let {εi j }∞j=1 be
a subsequence such that

lim inf
i→∞ (−âi (t)) = lim

j→∞(−âi j (t)). (8.15)

We may choose a further subsequence (denoted by the same index) such that V
εi j
t →

σ Ṽt as varifold. By the Cauchy-Schwarz inequality,

− âi (t) ≥
∫

�

1

2
εiφh

2
εi
−
( |∇φ|2

φ
+ |ũ|2 + |ũ||∇φ|

)
εi |∇ϕεi |2 dx (8.16)

where the last negative term is bounded uniformly. If lim inf j→∞
∫
�

εi j φh
2
εi j

dx is

infinity,we have (8.14)with the left-hand side= −∞. Thuswemay assume otherwise.
At this point, arguing just as in the proof of Proposition 6.1, wemay prove that Ṽt	{φ>0}
is rectifiable and Ṽt	{φ>0}= Vt	{φ>0}. Then the argument in the proof of Proposition

8.1 shows (8.1). For the remaining three terms in âi j (t), since V
εi j
t 	{φ>0}→ σVt	{φ>0}

as varifold and by (6.41), we have for any φ̃ ∈ C2
c ({φ > 0} ; R+)

lim
j→∞ εi j

∫
�

hεi j
∇φ̃ · ∇ϕεi j

− φ̃hεi j
ũ · ∇ϕεi j

− (∇ϕεi j
· ∇φ̃)(ũ · ∇ϕεi j

) dx

= σδVt (∇φ̃ − ũφ̃)−
∫

�

(∇φ̃ · ν)(ũ · ν) dμt

=
∫

�

−h · (∇φ̃ − ũφ̃)− (∇φ̃ · ν)(ũ · ν) dμt . (8.17)

We may construct a sequence of approximation {φ̃k}∞k=1 such that limk→∞ ‖φ −
φ̃k‖C2 = 0, φ ≥ φ̃k and spt φ̃k ⊂ {φ > 0}. For such approximating sequence,

∣∣∣∣
∫

�

εi j hεi j
∇(φ − φ̃k) · ∇ϕεi j

∣∣∣∣
≤
(∫

�

εi j h
2
εi j

φ

)1/2
(∫

�

|∇(φ − φ̃k)|2
φ − φ̃k

εi j |∇ϕεi j
|2
)1/2

≤
(∫

�

εi j h
2
εi j

φ

)1/2 (
2‖φ − φ̃k‖C2

)1/2
(2μ

εi j
t (�))1/2 → 0 (8.18)

as k → ∞ uniformly in j . The error of replacing φ̃ = φ̃k in (8.17) by φ can be
approximated similarly. Thus (8.17) holds also for φ instead of φ̃. Recall that we have
taken a subsequence so that (8.15) holds. Combined with (8.1) and (8.17) with φ̃ = φ,
and recalling that h · ũ = h · (ũ · ν)ν for μt a.e. by Brakke’s perpendicularity theorem
[6, Ch.5], we have proved (8.14). This concludes the proof. ��
We next discuss the proof of Theorem 2.2 (2).

123



922 K. Takasao, Y. Tonegawa

Proposition 8.3 There exists a further subsequence (denoted by the same index)

{ϕεi }∞i=1 and a function ϕ ∈ BVloc(� × [0,∞)) ∩ C
1
2
loc([0,∞); L1(�)) such that

for all t ≥ 0,

wεi (·, t)→ ϕ(·, t) (8.19)

strongly in L1
loc(�) and ϕ satisfies the properties of Theorem 2.2 (2). Here wεi is

defined by

wεi := � ◦ ϕεi with �(s) := σ−1
∫ s

−1

√
2W (y) dy.

Proof Note that �(1) = 1 and �(−1) = 0. We compute

|∇wεi | = σ−1|∇ϕεi |
√
2W (ϕεi ) ≤ σ−1

(
εi |∇ϕεi |2

2
+ W (ϕεi )

εi

)
.

Fix T > 0. For all sufficiently large i , by (4.13) we have

∫
�

|∇wεi (·, t)| dx ≤
∫

�

σ−1
(

εi |∇ϕεi |2
2

+ W (ϕεi )

εi

)
dx ≤ σ−1D1 (8.20)

for any t ∈ [0, T ]. By the similar argument we have

∫ T

0

∫
�

|∂twεi | dxdt ≤ σ−1
∫ T

0

∫
�

(
εi |∂tϕεi |2

2
+ W (ϕεi )

εi

)
dxdt

≤ σ−1
∫ T

0

∫
�

εi

{
(uεi · ∇ϕεi )

2 +
(

�ϕεi −
W ′(ϕεi )

εi

)2
}

dxdt

+ σ−1
∫ T

0

∫
�

W (ϕεi )

εi
dxdt, (8.21)

and the last quantity is uniformly bounded due to Lemma 4.4. By (8.20) and (8.21)
{wεi }∞i=1 is bounded in BVloc(�×[0, T ]). By the standard compactness theorem and
a diagonal argument, there exists a subsequence (denoted by the same index) {wεi }∞i=1
and w ∈ BVloc(�× [0,∞)) such that

wεi → w strongly in L1
loc(�× [0,∞)) (8.22)

and a.e. pointwise. We set ϕ := (1+�−1 ◦ w)/2. We have

ϕεi → 2ϕ − 1 a.e. in �× [0,∞)

and by this with |ϕεi | ≤ 1 we obtain

ϕεi → 2ϕ − 1 in L1
loc(�× [0,∞)).
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Due to the uniform bound on
∫
�

W (ϕεi )

εi
dx , one can prove by Fatou’s lemma that

ϕεi → ±1 for a.e. (x, t) and hence ϕ = 1 or = 0 a.e. on � × [0,∞). In particular,
since ϕ = 1 ⇐⇒ w = 1 and ϕ = 0 ⇐⇒ w = 0, we have w = ϕ on
�× [0,∞). This in particular proves the BVloc(�× [0,∞)) property of ϕ. For a.e.
0 ≤ t1 < t2 ≤ T and any open set U ⊂⊂ �, we have

∫
U
|ϕ(·, t1)− ϕ(·, t2)| dx = lim

i→∞

∫
U
|wεi (·, t1)− wεi (·, t2)| dx

≤ lim inf
i→∞

∫
U

∫ t2

t1
|∂twεi | dtdx

≤ lim inf
i→∞ σ−1

∫
�

∫ t2

t1

(
εi |∂tϕεi |2

2

√
t2 − t + W (ϕεi )

εi
√
t2 − t

)
dtdx .

Note that the right-hand side does not depend on U . Thus, by the similar argument to
(8.21) we have with c = c(c2, n, p, q, D0, T,W )

∫
�

|ϕ(·, t1)− ϕ(·, t2)| dx ≤ c
√
t2 − t1. (8.23)

Since (1+ϕεi (·, 0))/2→ χ�0 by (5.6), we have (2c).We assumed that�0 is a bounded
domain, hence, (8.23) shows that ϕ(·, t) ∈ L1(�) for a.e. t ≥ 0. Moreover, we may

define ϕ(·, t) as a characteristic function for all t ≥ 0 so that ϕ ∈ C
1
2
loc([0,∞); L1(�))

due to (8.23). This proves (2a) and C
1
2
loc property for ϕ. From (8.22), for a.e. t ≥ 0,

wεi (·, t) → ϕ(·, t) in L1
loc(�) strongly. Using (8.23), one can show by a simple

telescopic argument that the convergence is true for all t ≥ 0 instead of a.e. t , which
proves (8.19). By the standard lower semicontinuity property of BV norm, for any
φ ∈ Cc(�;R+) and 0 ≤ t <∞, we have

∫
�

φ d‖∇ϕ(·, t)‖ ≤ lim inf
i→∞

∫
�

φ|∇wεi | dx

≤ lim
i→∞ σ−1

∫
�

(
εi |∇ϕεi |2

2
+ W (ϕεi )

εi

)
φ dx =

∫
�

φ d‖Vt‖.

This proves (2b).
To prove (2d), we consider the a.e. t ≥ 0 for whichwe have proved the integrality of

Vt . Writing ‖Vt‖ = θHn−1	Mt , we already know that θ is integer-valued ‖Vt‖ a.e. and
that Mt is countably (n− 1)-rectifiable. In addition, by (2.8), we have 1 ≤ θ ≤ N (t),
Hn−1 a.e. on Mt for some integer N (t). The latter shows in particular that

Hn−1	Mt≤ ‖Vt‖ ≤ N (t)Hn−1	Mt . (8.24)

By (2a) and (2b), we know that ‖∇ϕ(·, t)‖ = Hn−1	M̃t
for some countably (n − 1)-

rectifiable set by De Giorgi’s theorem (see [24, 4.4]). To prove (2.16), assume the
contrary. Then by the standard argument (see [41, 3.5]), there would be a point x ∈
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924 K. Takasao, Y. Tonegawa

M̃t\Mt with limr↓0 Hn−1(Br (x) ∩ M̃t )/ωn−1rn−1 = 1 while limr↓0 Hn−1(Br (x) ∩
Mt )/ωn−1rn−1 = 0. Then, using also (8.24), one would then have a contradiction to
Theorem 2.2 (2b). Thus we have (2.16).

To prove (2.17), we closely follow the proof of integrality again. We already know
that for ‖Vt‖ a.e. x , we have the properties described in the proof of Theorem 7.1. By
thewell-known property of set of finite perimeter ([24, 3.8]), forHn−1 a.e. x ∈ M̃t , the
blow-up limit of ϕ centered at x is supported by a half-space. ForHn−1 a.e. x ∈ �\M̃t

(in particular on Mt\M̃t ), the blow-up limit centered at x is a constant function with
value either 0 or 1. By (8.19), up to Hn−1 null set, we may assume in addition to the
properties of {V εi

t }∞i=1 in the proof of Theorem 7.1 that w̃εi (x̃) := wεi (ri x̃) converges
strongly in L1

loc(R
n) and pointwise Ln a.e. to χ{xn≥0} (or χ{xn≤0}) if x = 0 is in M̃t ,

or to 1 (or 0) if x = 0 is in Mt\M̃t . Since the proof for other cases is similar, we
only discuss the case of M̃t and limi→∞ w̃εi = χ{xn≥0} in the following. In terms
of ϕεi (which is the relabeling of ϕ̃εi ), note that this means that ϕεi converges a.e. to
χ{xn≥0} − χ{xn<0}.

As one follows the proof of Theorem 7.1, the difference occurs at (7.76), where
we already know that θ is an integer multiple of σ . So let N − 1 := σ−1θ(≥ 1). We
want to conclude that N is an even integer. We follow the proof until (7.89), and at
this point, define for i ∈ N (and writing Y (τ, x) := {ϕεi = τ } ∩ B1 ∩ Gi ∩ P−1(x))

Ãi := {x ∈ Bn−1
1 : ∀τ ∈ (−1+ b, 1− b)⇒ H0(Y (τ, x)) ≤ N − 2},

Ai := {x ∈ Bn−1
1 : ∃τ ∈ (−1+ b, 1− b)⇒ H0(Y (τ, x)) = N − 1}. (8.25)

We know from (7.82) thatH0(Y (τ, x)) has to be≤ N −1, thus, Bn−1
1 = Ãi ∪ Ai and

Hn−1( Ãi ) = ωn−1 −Hn−1(Ai ) (8.26)

for all sufficiently large i . In (7.90), we have

ωn−1σ(N − 1) ≤ 2s + lim inf
i→∞

∫ 1−b

−1+b

√
2W (τ ){(N − 2)Hn−1( Ãi )

+(N − 1)Hn−1(Ai )} dτ ≤ 2s + (N − 2)σωn−1 + σ lim inf
i→∞ Hn−1(Ai ) (8.27)

where we used (8.26). Thus we have from (8.27)

ωn−1 − 2σ−1s ≤ lim inf
i→∞ Hn−1(Ai ). (8.28)

By (7.20), for all sufficiently large i and any point x ∈ Ai , the image ϕεi (B1∩P−1(x))
covers [−1 + b, 1 − b] at least N − 1 times. The each covering is monotone, thus
we know that ϕεi (y) as y moves from P−1(x) ∩ {xn = −s} to P−1(x) ∩ {xn = s}
along P−1(x) has to go up and down between−1+ b and 1− b at least N − 1 times.
Next, since ϕεi converges a.e. pointwise to χ{xn≥0} − χ{xn<0}, by Egoroff’s Theorem
and then Fubini’s Theorem, there exists s1 ∈ [s, 2s], s2 ∈ [−2s,−s], C1 ⊂ Bn−1

1
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and C2 ⊂ Bn−1
1 such that ϕεi converges uniformly to 1 on C1 × {s1} and to −1 on

C2 × {s2} while

Hn−1(Ci ) ≥ ωn−1 − s for i = 1, 2. (8.29)

Set C3 = C1 ∩ C2 so that, by (8.29),

Hn−1(C3) ≥ ωn−1 − 2s. (8.30)

Now, for a contradiction, assume that N is odd. For x ∈ Ai ∩ C3, consider the
image of ϕεi on {(x, xn) : xn ∈ [s2, s1]}. By the uniform convergence and x ∈ C3,
for sufficiently large i , ϕεi (x, s2) < −1 + b and ϕεi (x, s1) > 1 − b. Since ϕεi is
continuous, image of ϕεi having at least even N − 1 covering of [−1 + b, 1 − b]
implies that there has to be at least another covering of [−1+b, 1−b]. Thus, for each
τ ∈ [−1+ b, 1− b] and x ∈ Ai ∩ C3, we have

H0({xn ∈ [s2, s1] : ϕεi (x, xn) = τ }) ≥ N . (8.31)

Then by the coarea formula and (8.31), we have

∫ s1

s2

√
2W (ϕεi (x, xn))|∂xnϕεi (x, xn)| dxn

=
∫ 1

−1

√
2W (τ )H0({xn ∈ [s2, s1] : ϕεi (x, xn) = τ }) dτ

≥ N
∫ 1−b

−1+b

√
2W (τ ) dτ. (8.32)

Note that by (8.28) and (8.30), we have for sufficiently large i

Hn−1(Ai ∩ C3) ≥ ωn−1 − (3+ 2σ−1)s. (8.33)

Integrating (8.32) over Ai ∩ C3 and (8.33) give

∫
B1

√
2W (ϕεi )|∇ϕεi | ≥

∫
(Ai∩C3)×[s2,s1]

√
2W (ϕεi )|∂xnϕεi |

≥ (ωn−1 − (3+ 2σ−1)s)N
∫ 1−b

−1+b

√
2W (τ ) dτ. (8.34)

We may choose b so that
∫ 1−b
−1+b

√
2W (τ ) dτ ≥ σ − s. On the other hand, by (7.67),

we have

∫
B1

√
2W (ϕεi )|∇ϕεi | dx ≤

∫
B1

εi |∇ϕεi |2
2

+ W

εi
dx → ωn−1(N − 1)σ. (8.35)
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926 K. Takasao, Y. Tonegawa

For sufficiently small s depending only on n, N and σ , (8.34) and (8.35) lead to a
contradiction. This proves N has to be even. As we mentioned, other cases of ϕ being
constant (either 0 or 1) can be similarly proved. This concludes the proof of (2.17)
and (2d). ��
We next verify

Proposition 8.4 The function u satisfies the property of Theorem 2.2 (3).

Proof Consider the case p < n and fix T > 0. Since
limi→∞ ‖uεi − u‖Lq ([0,T ];(W 1,p)n) = 0, {uεi } is a Cauchy sequence in this norm.

By (2.11) with s = p(n−1)
n−p , we have

∫ T

0
dt

(∫
�

|uεi − uε j |s d‖Vt‖
) q

s ≤ c(n, p, q, D1)‖uεi − uε j ‖qLq ([0,T ];(W 1,p(�))n)
.

(8.36)

By a standard argument, we may subtract a subsequence {uεi j
}∞j=1 which converges

pointwise ‖Vt‖ × dt a.e. on �× [0, T ] to an element of
Lq([0, T ]; (Ls(‖Vt‖))n). This limit function is uniquely determined by u indepen-

dent of the approximate sequence and (2.18) holds. For p = n, we apply the same
argument locally for p′ < n which gives (2.18) with any 2 ≤ s <∞. For p > n, the
standard Sobolev inequality and the Hölder inequality prove the claim immediately.

��
To conclude the proof of Theorem 2.2 we prove

Proposition 8.5 We have T1 > 0 with the property described in Theorem 2.2 (4).

Proof By integrality, we already know that ‖Vt‖ = θHn−1	Mt for a.e. t ≥ 0, where θ

is integer-valuedHn−1 a.e. onMt . Thuswe should prove thatHn−1({θ(·, t) ≥ 2}) = 0
for a.e. 0 < t < T1 for some T1 > 0. We will determine the lower bound of T1 in
the following. Assume there exist 0 < t̂ < T1 and x̂ ∈ Mt̂ such that Mt̂ has the
approximate tangent space at x̂ and the density θ(x̂, t̂) ≥ 2. Then it is not difficult to
check that

lim
r→0

∫
�

ρ̃(x̂,t̂+r2) d‖Vt̂‖ = θ(x̂, t̂) ≥ 2. (8.37)

Since ‖V0‖ = Hn−1	M0 and M0 is C1, we have

∫
�

ρ̃(x,t) d‖V0‖ ≤ 3/2 (8.38)

for any (x, t) ∈ �× (0, T1], where T1 depends only on M0. We then use (4.90) with
ε→ 0. We then have

lim
r→0

∫
�

ρ̃(x̂,t̂+r2) d‖Vt‖
∣∣∣t̂
t=0 ≤ c14c

2
2 t̂

p̂ D1 + c3e
− 1

128t̂ t̂ D1, (8.39)
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and the right hand side of (8.39) may be made smaller than 1/2 by restricting T1.
Then we would have a contradiction since the left-hand side is ≥ 1/2 due to (8.37)
and (8.38). This proves the first part of (4). We next prove ‖∇ϕ(·, t)‖ = ‖Vt‖ a.e.
t ∈ [0, T1]. With the notation of (2d), for a.e. t ∈ [0, T1], we have ‖Vt‖ = Hn−1	Mt

since θ = 1 a.e. from the first part. But then, by (2.17), Hn−1(Mt\M̃t ) = 0 since
θ = 1 and odd. Thus combined with (2.16), M̃t = Mt modulo null set, and this shows
the claim. We may take T1 to be sup{t > 0 : Vt is unit density for a.e.t ∈ [0, t]}. ��
As for the proof of Theorem 2.3, (1) and (3) follow from [30] and [46], respectively,
which give criterion for partial C1,ζ and C2,α regularity. For (1), we check that [30,
Sect. 3.1 (A1)–(A4)] are all satisfied. Namely, (A1) asks Vt to be unit density for a.e.
t , (A2) is on the uniform density ratio upper bound which follows from (2.8), (A3)
is on the integrability of u which is given by (2.18) and (A4) is the flow equation
which is (2.10). If p < n, the exponent of integrability of u in (2.18) has to satisfy
ζ := 1 − (n − 1)/s − 2/q = 2 − n/p − 2/q > 0, and this follows from (2.14). If
p ≥ n, we may choose any s > (n − 1)q/(q − 2) in (2.18) so that we have 0 < ζ ,
and we may take sufficiently large s so that 0 < ζ < 1− 2/q can be arbitrarily close
to 1 − 2/q. This proves (1). The conclusion for C2,α is precisely the claim of [46].
Thus we only need to prove (2) and (4).

Proposition 8.6 The family of varifolds {Vt }t≥0 satisfies the property of Theorem 2.3
(2) and (4)

Proof For a.e. 0 ≤ t < T1, we have proved that Vt has unit density property, thus we
may use results in [30] for {Vt }0≤t<T1 . We first claim that there exists 0 < T3 ≤ T1
depending only on D1, n, p, q, ‖u‖Lq ([0,T1];(W 1,p(�))n) (D1 corresponding to T1) and
c26 = c26(D1, n) such that

dist (spt ‖Vt‖, M0) ≤ c26
√
t (8.40)

for a.e. 0 ≤ t ≤ T3. For the proof, we use [30, Proposition6.2]. Citing the result for
the convenience of the reader, we have for x ∈ � and 0 < r < 1

∫
Br (x)

ρ̂(x,t+ε)(·, t) d‖Vt‖ −
∫
Br (x)

ρ̂(x,t+ε)(·, 0) d‖V0‖

≤ c(n, s, q)‖u‖2Ls,q D
1− 2

s
1 tζ + c(n)D1r

−2t, (8.41)

where s := p(n−1)
n−p if p < n and any (n−1)q

q−2 < s <∞ if p ≥ n, ζ = 1−(n−1)/s−2/q
and ‖u‖Ls,q := (

∫ t
0 (
∫
Br (x)
|u|s d‖Vλ‖)q/s dλ)1/q . ρ̂(x,t+ε) is ρ(x,t+ε) times a radially

symmetric cut-off function with support in B14r/15(x) and = 1 near x . Note that
‖u‖Ls,q may be bounded in terms of D1 and ‖u‖Lq ([0,T1];(W 1,p(�))n) as was done for
the proof of (2.18). By restricting T3 small, we may conclude from (8.41) that

∫
Br (x)

ρ̂(x,t+ε)(·, t) d‖Vt‖ −
∫
Br (x)

ρ̂(x,t+ε)(·, 0) d‖V0‖ ≤ 1

2
+ c(n)D1r

−2t. (8.42)

123



928 K. Takasao, Y. Tonegawa

Let c26 be a constant to be fixed shortly and assume that there exists x ∈ spt ‖Vt‖ such
that dist (x, M0) > c26

√
t and 0 < t ≤ T3. We may assume that Vt is unit density and

has approximate tangent space with multiplicity 1 at x , since such time and point are
generic. In particular, one can check that limε→0+

∫
Br (x)

ρ̂(x,t+ε)(·, t) d‖Vt‖ = 1 and
(8.42) thus shows

1

2
−
∫
Br (x)

ρ̂(x,t)(·, 0) d‖V0‖ ≤ c(n)D1r
−2t. (8.43)

We now choose r = c26
√
t/2. Since Br (x) ∩ M0 = ∅, the integral in (8.43) is 0.

Hence we obtain 1
2 ≤ 4c(n)D1c

−2
26 . If we choose a sufficiently large c26 depending

only on n and D1, we obtain a contradiction. This proves (8.40).
Next, since spt ‖∇ϕ(·, t)‖ ⊂ spt ‖Vt‖ byTheorem2.2 (2b), (8.40) shows thatϕ(·, t)

is a constant function on each connected component of�\{x : dist (x, M0) ≤ c26
√
t}

for a.e. 0 ≤ t ≤ T3. Since ϕ(·, t) is a characteristic function and is continuous in L1

norm with respect to time, one sees that

ϕ(·, t) = 1 on {x ∈ �0 : dist (x, M0) > c26
√
t},

ϕ(·, t) = 0 on {x /∈ �0 : dist (x, M0) > c26
√
t} (8.44)

for all 0 ≤ t ≤ T3. We now estimate the location of spt ‖Vt‖ during the short initial
time. Since M0 is assumed to be C1, there exists r1 > 0 such that, for each x ∈ M0
(we may assume that x is the origin and TxM0 = R

n−1×{0} after parallel translation
and orthogonal rotation), M0 is locally represented as a C1 graph g : Bn−1

r1 → R on
Bn−1
r1 × (−r1, r1). We take the coordinate system so that �0 is located on the upper

side, above the graph of g. We may also restrict r1 (uniformly on M0) so that for all
r ≤ r1, we have

sup
x∈Bn−1

r

|g(x)| ≤ r

10
. (8.45)

For t ∈ [0, (10c26)−2r2], (8.44) and (8.45) show that

ϕ(·, t) = 1 on Bn−1
9r/10 × [r/5, r1),

ϕ(·, t) = 0 on Bn−1
9r/10 × (−r1,−r/5]. (8.46)

Next we use [30, Theorem 8.7]. Using the notation there, corresponding to 1 ≤
E1 < ∞, 0 < ν < 1, p, q with 1 − (n − 1)/p − 2/q > 0, there exist 4 constants
(ε6, σ,�3, c19 in [30]) with the stated properties. Here, we use E1 = D1, ν = 1/2,
p = s above and the same q. The condition 1− (n−1)/p−2/q > 0 is then satisfied.
To avoid confusion in the following, we denote the constants in [30] corresponding to
these choices by ε6,KT , σKT ,�3,KT , c19,KT . In the following, let P ∈ G(n, n − 1)
be the projection R

n → R
n−1 × {0} and P⊥ be its orthogonal complement. We then

use [30, Proposition 6.5] with
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� = �3,KT /18 (8.47)

to obtain c6,KT with the property that

1

rn+1

∫
Br
|P⊥(x)|2 d‖Vt‖ ≤ exp(1/(4�))

1

rn+1

∫
BLr

|P⊥(x)|2 d‖V0‖

+ c6,KT {(r2ζ‖u‖2Ls,q + r ζ‖u‖Ls,q )L2 + Ln+1 exp(−(L − 1)2/(8�))} (8.48)

for all t ∈ [0,�r2] provided 2 ≤ L < ∞ and r L ≤ 1. Here c6,KT depends only on
s, q, D1,�3,KT but not on L . Given 1 > ε > 0, we may choose L ≥ 2 so that

c6,KT L
n+1 exp(−(L − 1)2/(8�)) < ε (8.49)

and then choose r2 ≤ L−1 uniformly on M0 so that (using M0 is C1)

exp(1/(4�)) sup
0<r≤r2

1

rn+1

∫
BLr

|P⊥(x)|2 d‖V0‖ < ε,

c6,KT

(
r2ζ2 ‖u‖2Ls,q + r ζ

2 ‖u‖Ls,q

)
L2 < ε. (8.50)

The inequalities (8.48)–(8.50) gives for r ≤ r2 and t ∈ [0,�r2]
1

rn+1

∫
Br
|P⊥(x)|2 d‖Vt‖ ≤ 3ε. (8.51)

We next use [30, Proposition 6.4] on Br ×[0,�r2]with a slight modification. Instead
of obtaining result on the time interval [R2/5,�] as in [30], we modify the proof so
that we obtain the similar estimate on the time interval [(10c26)−2r2,�r2]. This is
achieved by a simple replacement of the cut-off function.We have a different constants
which depends also on c26. Citing the result from [30, Proposition6.4], we obtain

spt ‖Vt‖ ∩ B4r/5 ⊂ {|P⊥(x)| ≤ μr} for t ∈ [(10c26)−2r2,�r2], (8.52)

where

μ2 := c5,KT

rn+3

∫ �r2

0

∫
Br
|P⊥(x)|2 d‖Vt‖dt + c2,KT ‖u‖2Ls,q D

1− 2
s

1 �ζ r2ζ (2+�)

(8.53)

and where c5,KT and c2,KT depend only on n, s, q and c26. If we restrict r2 further so
that the second term of (8.53) is smaller than ε, (8.51)-(8.53) with sufficiently small
ε gives

spt ‖Vt‖ ∩ B4r/5 ⊂ {|P⊥(x)| ≤ r/5} for t ∈ [(10c26)−2r2,�r2]. (8.54)
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Combining (8.46) and (8.54), and using the L1 continuity of ϕ(·, t), we obtain

ϕ(·, t) = 1 on B4r/5 ∩ {P⊥(x) ≥ r/5},
ϕ(·, t) = 0 on B4r/5 ∩ {P⊥(x) ≤ −r/5} (8.55)

for t ∈ [0,�r2]. Since Bn−1
r/2 × [−r/2, r/2] ⊂ B4r/5, (8.55) shows

ϕ(·, t) = 1 on Bn−1
r/2 × [r/5, r/2],

ϕ(·, t) = 0 on Bn−1
r/2 × [−r/2,−r/5],

spt ‖Vt‖ ∩ (Bn−1
r/2 × [−r/2, r/2]) ⊂ Bn−1

r/2 × [−r/5, r/5] (8.56)

for t ∈ [0,�r2] and r ≤ r2. At this point, because of the third claim of (8.56), by
setting Vt = 0 on Bn−1

r/2 × (R\[−r/2, r/2]), we may assume that {Vt }0≤t≤�r2 satisfies

(2.10) on (Bn−1
r/2 × R) × [0,�r2]. We next want to apply [30, Theorem 8.7] with

R := r/6. For the application, we need to check the conditions (8.83)–(8.86) of [30].
The first condition (8.83), the smallness of space-time L2-height may be achieved
due to (8.51), (8.56) and by restricting ε depending on ε6,KT and �3,KT . The second
condition (8.84), the smallness of ‖u‖, may be achieved by simply restricting r2. Thus
we need to check the last two conditions, (8.85) and (8.86) of [30]. Let φP,R and c
be defined as in [30, Definition 5.1]. We need to show that (recall that we have set
ν = 1/2)

∃t1 ∈ (3R2/2, 2R2) : R−(n−1)‖Vt1‖(φ2
P,R) <

3

2
c (8.57)

and

∃t2 ∈ ((2�3,KT − 2)R2, (2�3,KT − 3/2)R2) : R−(n−1)‖Vt2‖(φ2
P,R) >

1

2
c.

(8.58)

First we show (8.57). Since M0 is C1, we may restrict r2 uniformly in x so that for all
R = r/6 ≤ r2/6, we have

R−(n−1)‖V0‖(φ2
P,R) ≤ R−(n−1)

∫
P

φ2
P,R dHn−1 + 1

10
c = 11

10
c. (8.59)

By (2.10), we have for t1 ∈ (3R2/2, 2R2)

‖Vt‖(φ2
P,R)

∣∣∣t1
t=0 ≤

∫ t1

0

∫
(−hφ2

P,R + ∇φ2
P,R) · (h + (u · ν)ν) d‖Vt‖dt. (8.60)

By (2.5) and (2.6), we may replace∇φ2
P,R by S⊥(∇φ2

P,R) for ‖Vt‖ a.e., where S is the
approximate tangent space at the point. Since ∇φP,R = P(∇φP,R) (note φP,R(x) =
φP,R(P(x)) by definition), we have
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S⊥(∇φ2
P,R) = (I − S) ◦ (P(∇φ2

P,R)) = (P − S) ◦ (P(∇φ2
P,R)). (8.61)

Thus, by using the Cauchy-Schwarz inequality to (8.60) and by (8.61), we obtain

‖Vt‖(φ2
P,R)

∣∣∣t1
t=0 ≤

∫ t1

0

∫
−1

2
|h|2φ2

P,R + 2|u|2φ2
P,R

+8‖S − P‖2|∇φP,R |2 dVt (·, S)dt. (8.62)

The first term on the right-hand side of (8.62) can be dropped. The second term can
be estimated using the Hölder inequality as

∫ t1

0

∫
2|u|2φ2

P,R d‖Vt‖dt ≤
∫ t1

0

(∫
|u|s d‖Vt‖

) 2
s

dt · sup
t∈[0,t1]

‖Vt‖(φ2
P,R)1−

2
s

≤ ‖u‖2Ls,q t
1− 2

q
1 · sup

t∈[0,t1]
‖Vt‖(φ2

P,R)1−
2
s . (8.63)

Due to the third claim of (8.56), spt ‖Vt‖ ∩ spt φP,R ⊂ B3R , for example. Thus we
have ‖Vt‖(φ2

P,R) ≤ D1ωn−1(3R)n−1. Since t1 ≤ 2R2, we obtain from (8.63)

∫ t1

0

∫
2|u|2φ2

P,R d‖Vt‖dt ≤ c(D1, n, s, q)‖u‖2Ls,q Rn−1+2ζ . (8.64)

For the third term of (8.62), we use [30, Lemma 11.2] (or [1, 8.13]), namely, for
φ = φP,R

∫
‖S − P‖2 |∇φ|2 dVt (·, S) ≤ 16

∫
|P⊥(x)|2|∇|∇φ||2 d‖Vt‖

+4( ∫ |h|2|∇φ|2 d‖Vt‖
) 1
2
( ∫ |P⊥(x)|2|∇φ|2 d‖Vt‖

) 1
2 . (8.65)

By repeating a similar argument leading to (8.62) with slightly larger test function
which is 1 on spt φP,R , one can obtain

∫ t1

0

∫
|h|2|∇φP,R |2 d‖Vt‖ ≤ c(n)Rn−3. (8.66)

Since we have spt ‖Vt‖ ∩ spt φP,R ⊂ B3R and by (8.51), we obtain

∫ t1

0

∫
|P⊥(x)|2|∇φP,R |2 d‖Vt‖dt ≤ 3ε(3R)n+1t1 sup |∇φP,R |2 ≤ c(n)εRn+1.

(8.67)
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Thus, by (8.66) and (8.67) and similarly estimating the last term, we obtain from (8.65)
that ∫ t1

0

∫
‖S − P‖2|∇φP,R |2 dVt (·, S)dt ≤ c(n)(

√
ε + ε)Rn−1. (8.68)

Combining (8.59), (8.62), (8.64) and (8.68), we obtain

R−(n−1)‖Vt1‖(φ2
P,R) ≤ 11

10
c + c(D1, n, s, q)‖u‖2Ls,q R2ζ + c(n)(

√
ε + ε). (8.69)

Thus, by restricting r < r2 and ε in (8.69), we can guarantee that (8.57) holds. To see
(8.58) holds, we use the first two claims of (8.56). Due to the unit density property,
recall that for a.e. t , we have ‖Vt‖ = ‖∇{ϕ(·, t) = 1}‖ = Hn−1	∂∗{ϕ(·,t)=1}, where
∂∗A denotes the reduced boundary of A (see [24]). Let νn be the xn component of
the inward pointing unit normal vector of ∂∗{ϕ(·, t) = 1}. We apply the generalized
divergence theorem valid for sets of finite perimeter, in this case, {ϕ(·, t) = 1}∩{xn ≤
r/3}. Then we have for a.e. t ∈ [0,�r2]∫

φ2
P,R d‖Vt‖ ≥

∫
∂∗{ϕ(·,t)=1}

νnφ
2
P,R dHn−1

= −
∫
{ϕ(·,t)=1}∩{xn≤r/3}

∂xnφ
2
P,R dx +

∫
{xn=r/3}

φ2
P,R dHn−1 = Rn−1c (8.70)

since φ2
P,R does not depend on xn and by the definition of c. In particular, we have

proved (8.58). Now we are ready to apply [30, Theorem 8.7]. For all sufficiently small
ε > 0, we have seen that we may choose r2 independent of x ∈ M0 such that all the
assumptions of [30, Theorem 8.7] hold on (Br/2 × R)× [0,�r2] for all r ≤ r2. The
conclusion is that in Bn−1

σKT R
×R and for t ∈ ((�3,KT − 1/4)R2, (�3,KT + 1/4)R2),

spt ‖Vt‖ is represented as a graph F(·, t) of C1,ζ function and it is C (1+ζ )/2 in time,
with |∇F | + R−1|F | bounded by a constant multiple of ε (see (8.89) of [30]). The
argument up to this point can be carried out for each point on x ∈ M0 uniformly
and spt ‖Vt‖ can be covered by such graphs. This shows that for all small t > 0,
spt ‖Vt‖ is C1,ζ everywhere. We have the local graph representation as claimed in (4)
and t−1/2dist (spt ‖Vt‖, M0)→ 0 as t → 0. It is possible that spt ‖Vt‖ remains C1,ζ

for some more time, and let T2 be the maximal time without non-C1,ζ regular point.
In case that u is α-Hölder continuous, the regularity criterion are the same (see [46,
Theorem 3.6]) except that the constant corresponding to ε6,KT may need to be smaller
there. Thus, in this case, there is a short initial time interval such that spt ‖Vt‖ is a
C2,α hypersurface. This ends the proof of (2) and (4). ��

9 Final remarks

9.1 Non-uniqueness

The solution may be non-unique without having singularities of Mt , as a simple exam-
ple demonstrates. An example such as M0 = {x2 = 0} ⊂ T

2 and u(x1, x2) =

123



Existence and regularity of mean curvature flow... 933

(0,
√|x2|) ∈ (W 1,p(T2))2 (p < 2) has an obvious ODE-level non-uniqueness. Thus,

on top of the non-uniqueness issues generally associated with singularity occurrences
of theMCF, one has far richer source of possible non-uniqueness with irregular u, even
though we have a local regularity theory. It is interesting to investigate how generic
the uniqueness may hold for the flow in this paper with respect to the initial data
and the transport term. We mention that there is a nice generic property for the MCF
besides the existence of unique viscosity solution. If M0 is C2 and d0 is the signed
distance function toM0, then the viscosity solution for theMCF starting from {d0 = s}
in the sense of [11,16] is a unit density Brakke MCF for a.e. s ∈ (−r0, r0), where
r0 > 0 is some small number depending on M0 [18]. For such level set, a phenomena
called fattening does not occur in particular. It is interesting to see if there is some
generalization of this type to the setting of this paper.

9.2 Structure of singularities

There have been intensive effort to understand the nature of singularities for the MCF
in recent years. A particular emphasis has been placed on themean convex flow andwe
mention names of Andrews, Huisken, Sinestrari and White who analyzed structure
of singularities in depth. We mention a recent work by Haslhofer and Kleiner [25]
for a streamlined treatment of the regularity theory of mean convex flows as well as
up-to-date references. Note that many of the techniques used by White such as the
dimension reducing and stratification of singularities [47] may be used for the flow in
this paper. While there may be some limitation compared to the mean convex flow, it
is interesting and challenging problem to investigate the singularities in the setting of
the present paper.
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