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Abstract We introduce the notions of Glanon groupoids, which are Lie groupoids
equipped with multiplicative generalized complex structures, and of Glanon alge-
broids, their infinitesimal counterparts. Both symplectic and holomorphic Lie
groupoids are particular instances of Glanon groupoids. We prove that there is a bijec-
tion between Glanon algebroids on one hand and source connected and source-simply
connected Glanon groupoids on the other. As a consequence, we recover various
known integrability results and obtain the integration of holomorphic Lie bialgebroids
to holomorphic Poisson groupoids.

1 Introduction

In their study of quantization, Karasëv [19], Weinstein [34], and Zakrzewski [40,41]
independently introduced the notion of symplectic groupoids. By a symplectic
groupoid, we mean a Lie groupoid equipped with a multiplicative symplectic 2-form
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486 M. J. Lean et al.

on the space of morphisms. It is a classical theorem that the unit space of a symplec-
tic groupoid is naturally a Poisson manifold [7]. The Lie algebroid of a symplectic
groupoid Γ ⇒ M is naturally isomorphic to (T ∗M)π , the canonical Lie algebroid
associated to the Poisson manifold (M, π). Conversely, Mackenzie–Xu [29] proved
that, for a given Poisson manifold (M, π), if the Lie algebroid (T ∗M)π integrates
to an s-connected and s-simply connected Lie groupoid Γ ⇒ M , then Γ is naturally
a symplectic groupoid. As a consequence, they recovered the following theorem of
Karasev–Weinstein: every Poisson manifold of dimension n admits a symplectic real-
ization of dimension 2n. The symplectic groupoid structure on Γ was also obtained
by Cattaneo–Felder [6] using the Poisson sigma model. The full integrability crite-
rion for Poisson manifolds was obtained later by Crainic–Fernandes [10]. In fact,
symplectic groupoids constitute a particular class of a more general type of structures
called Poisson groupoids, which were discovered byWeinstein [35] and also comprise
Drinfeld’s Poisson groups [11]. In a Poisson groupoid, the Poisson bivector field and
the groupoid multiplication are required to be compatible: the Poisson bivector field
must be “multiplicative.” It was proved in [28] that a Poisson bivector field on a Lie
groupoid G ⇒ M with Lie algebroid A is multiplicative if and only if it induces a
morphism of Lie groupoids from the cotangent groupoid T ∗G ⇒ A∗ to the tangent
groupoid T G ⇒ T M . For instance, a Poisson bivector field on a Lie group G is
multiplicative in the sense of Drinfeld [11] if and only if it induces a morphism of
Lie groupoids from T ∗G ⇒ g∗ to T G ⇒ {∗}. A Poisson groupoid whose Poisson
bivector field is nondegenerate is a symplectic groupoid as the inverse of the Poisson
bivector is a multiplicative symplectic form in the sense of Coste–Dazord–Weinstein
[7].

Two of the authors have recently been interested in holomorphic Lie algebroids
and holomorphic Lie groupoids [24]. Finding out which holomorphic Lie algebroids
can be integrated is a very natural problem. In [23], together with Laurent-Gengoux,
they studied holomorphic Lie algebroids and their relation with real Lie algebroids. A
holomorphic Lie algebroid is a real Lie algebroid structure on a holomorphic vector
bundle A → X such that (1) the sheaf A of holomorphic sections of A is stable under
the Lie bracket of (all smooth) sections of A and (2) the restriction of the Lie bracket
to A is C-linear. Laurent-Gengoux et al. proved in particular that a holomorphic
Lie algebroid A can be integrated to a holomorphic Lie groupoid if and only if its
underlying real Lie algebroid AR is integrable as a real Lie algebroid [24].

In this paper, we introduce the notion of Glanon groupoids: Lie groupoids equipped
with a multiplicative generalized complex structure. Recall that a generalized com-
plex structure in the sense of Hitchin [15] on a manifold M is a smooth bundle map
J : T M ⊕ T ∗M → T M ⊕ T ∗M such that J 2 = − idT M⊕T ∗ M , J preserves the
natural nondegenerate symmetric bilinear form on the fibers of T M ⊕ T ∗M , and the
+i-eigenbundle of J is involutive with respect to the Courant bracket (or, equiva-
lently, the Nijenhuis tensor of J vanishes). A generalized complex structure J on a
Lie groupoid Γ ⇒ M is said to be multiplicative if J is a Lie groupoid automorphism
of the Courant groupoid T Γ ⊕ T ∗Γ ⇒ T M ⊕ A∗ in the sense of Mehta [30]. When
J is the generalized complex structure determined by a symplectic structure on Γ , it
is clear that J is multiplicative if and only if the symplectic 2-form is multiplicative.
In this case, the Glanon groupoid is simply a symplectic groupoid. On the other hand,
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Glanon groupoids 487

whenJ is the generalized complex structure determined by a complex structure on Γ ,
J is multiplicative if and only if the complex structure on Γ is multiplicative. In this
case, the Glanon groupoid is simply a holomorphic Lie groupoid. On the infinitesimal
level, to each Glanon groupoid corresponds a Glanon Lie algebroid: a Lie algebroid
A equipped with a generalized complex structure JA : T A ⊕ T ∗ A → T A ⊕ T ∗ A
which is also an automorphism of the Lie algebroid T A ⊕ T ∗ A → T M ⊕ A∗. More
precisely, we prove the following main result:

Theorem A If Γ is an s-connected and s-simply connected Lie groupoid with Lie
algebroid A, then there is a bijection between Glanon groupoid structures on Γ and
Glanon Lie algebroid structures on A.

As a consequence, we recover the following standard results [24,29]:

Theorem B Let (M, π) be a Poisson manifold. If Γ is a s-connected and s-simply
connected Lie groupoid integrating the Lie algebroid (T ∗M)π , then Γ automatically
admits a symplectic groupoid structure.

Theorem C If Γ is a s-connected and s-simply connected Lie groupoid integrating
the real Lie algebroid AR underlying a holomorphic Lie algebroid A, then Γ is a
holomorphic Lie groupoid.

When thematrix representation of the generalized complex structureJ on aGlanon
groupoid Γ relative to the direct sum decomposition T Γ ⊕ T ∗Γ of the Pontryagin
bundle1 has the special form

J =
(

N π�

0 −N∗
)

,

Γ is simply a holomorphic Poisson groupoid and it is no surprise that its Lie algebroid
is necessarily part of a holomorphic Lie bialgebroid. We prove the following result.

Theorem D Given a holomorphic Lie bialgebroid (A, A∗), if the real Lie algebroid
AR underlying A integrates to a s-connected and s-simply connected Lie groupoid
Γ, then Γ is a holomorphic Poisson groupoid.

This theorem was proved in [24] using a different method in the special case of the
holomorphic Lie bialgebroid ((T ∗ X)π , T X) determined by a holomorphic Poisson
manifold (X, π). More precisely, it was proved that when the underlying real Lie
algebroid of (T ∗ X)π integrates to a s-connected and s-simply connected Lie groupoid
Γ , then Γ is automatically a holomorphic symplectic groupoid. To the best of our
knowledge, the integration problem for arbitrary holomorphic Lie bialgebroids had
remained open to this day. Solving it constituted one of the motivations behind our
study of Glanon groupoids.

1 Yoshimura and Marsden refer to the Whitney sum T M ⊕ T ∗M as the “Pontryagin bundle” of M because
of the fundamental role it plays in the geometric interpretation of Pontryagin’s maximum principle. Izu
Vaisman calls it the “big tangent bundle” of M . For more details, see [22].
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488 M. J. Lean et al.

It is known that a generalized complex structure on a manifold determines on it a
Poisson bivector field [2,14]. Therefore a Glanon groupoid is automatically a (real)
Poisson groupoid and we can consider the ‘Glanon to Poisson’ forgetful functor. On
the other hand, every Glanon Lie algebroid A admits a linear Poisson structure so
that its dual A∗ is also a Lie algebroid. We prove that, for any Glanon algebroid A,
the pair (A, A∗) automatically constitutes a Lie bialgebroid. Finally, we prove that
the ‘groupoid to algebroid’ Lie functor, which takes Glanon groupoids and Poisson
groupoids, respectively, toGlanon algebroids and Lie bialgebroids, commuteswith the
forgetful functor, which takes Glanon groupoids and Glanon algebroids, respectively,
to Poisson groupoids and Lie bialgebroids.

Note that in this paper we confine ourselves to the standard Courant groupoid
T Γ ⊕ T ∗Γ . Instead, one could have considered the twisted Courant groupoid
(T Γ ⊕T ∗Γ )H , where H is amultiplicative closed 3-form. This will be discussed else-
where. Note also that a multiplicative generalized complex structure on a groupoid
induces an endomorphism j : T M ⊕ A∗ → T M ⊕ A∗ of the unit space and an
endomorphism jA : A ⊕ T ∗M → A ⊕ T ∗M of the core2 of the VB-groupoid
T Γ ⊕ T ∗Γ . Thinking of multiplicative generalized complex structures as pairs of
complex conjugate multiplicative Dirac structures, we can conclude from results in
[18] that a multiplicative generalized complex structure on a groupoid is equiva-
lent to a pair of complex conjugate Dirac bialgebroids on its space of units. The
detailed study of properties of the maps jA and j , the Dirac bialgebroids, and the
associated Dorfman connections will be investigated in the spirit of [23] in a future
project.

Notation

In the following, Γ ⇒ M will always be a Lie groupoid with set of arrows Γ , set of
objects M , source and target s, t : Γ → M , object inclusion map ε : M → Γ and
inversion map i : Γ → Γ . The product of g, h ∈ Γ with s(g) = t(h) will be written
m(g, h) = g � h or simply gh.

The Lie functor that sends a Lie groupoid to its Lie algebroid and Lie groupoid
morphisms to Lie algebroid morphisms is A. For simplicity, we will write A(Γ ) = A.
The Lie algebroid qA : A → M is identified with T s

MΓ , the bracket [· , ·]A is defined
with the right invariant vector fields and the anchor ρA = ρ is the restriction of T t to
A. Hence, as a manifold, A is embedded in T Γ . The inclusion is ι : A → T Γ . Given
a ∈ Γ (A), the right-invariant section corresponding to a will simply be written ar ,
i.e. ar (g) = T Rga(t(g)) for all g ∈ Γ . We will write al for the left-invariant vector
field defined by a, i.e. al(g) = −T (Lg ◦ i)(a(s(g))) for all g ∈ Γ .

The projectionmap of a vector bundle A → M will always bewritten qA : A → M ,
unless specified otherwise. For a smooth manifold M , we fix once and for all the
notation pM := qT M : T M → M and cM := qT ∗ M : T ∗M → M . We will write PM

2 The Whitney sum T Γ ⊕ T ∗Γ , which is simultaneously a vector bundle with Γ as base manifold and a
Lie groupoid with T M ⊕ A∗ as unit space, is a VB-groupoid with the vector bundle A ⊕ T ∗M over M as
core [26,32]. It is well known that a morphism of VB-groupoids determines a morphism of their cores.
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Glanon groupoids 489

for the Pontryagin bundle T M ⊕ T ∗M over M , and prM for the canonical projection
qPM : PM → M .

A bundle morphismPM → PM , for a manifold M , will always be meant to be over
the identity on M .

2 Preliminaries

2.1 Dirac structures

Let A → M be a vector bundle with dual bundle A∗ → M . The natural pairing
A ⊕ A∗ → R, (am, ξm) �→ ξm(am) will be written � · , · �A or � · , · �qA if the vector
bundle structure needs to be specified. The direct sum A ⊕ A∗ is endowed with a
canonical fiberwise pairing (· , ·)A given by

((am, ξm), (bm, ηm))A = �bm, ξm �A + �am, ηm�A,

for all m ∈ M , am, bm ∈ Am and ξm, ηm ∈ A∗
m .

In particular, the Pontryagin bundle PM = T M ⊕ T ∗M of a smooth manifold M
is endowed with the pairing (· , ·)T M , which will be written as usual 〈· , ·〉M .

The orthogonal of a subbundle E ⊆ A ⊕ A∗ relative to the pairing (· , ·)A will be
written E⊥. An almost Dirac structure [8] on M is a Lagrangian vector subbundle
D ⊂ PM . That is, D coincides with its orthogonal relative to 〈· , ·〉M , D = D⊥, so its
fibers are necessarily dim M-dimensional.

The set of sections Γ (PM ) of the Pontryagin bundle of M is endowed with the
Courant–Dorfman bracket, given by

�X + α , Y + β� = [X , Y ] + (£Xβ − iY dα) ,

for all X + α, Y + β ∈ Γ (PM ).
An almost Dirac structureD on amanifold M is aDirac structure if its set of sections

is closed under this bracket, i.e. �Γ (D), Γ (D)� ⊂ Γ (D).

2.2 Generalized complex structures

Let V be a vector space. Consider a linear endomorphism J of V ⊕ V ∗ such that
J 2 = − idV ⊕V ∗ and J is orthogonal with respect to the inner product

(X + ξ , Y + η)V = ξ(Y ) + η(X), ∀X, Y ∈ V, ξ, η ∈ V ∗.

Such a linear map is called a linear generalized complex structure by Hitchin [15].
The complexified vector space (V ⊕ V ∗) ⊗ C decomposes as the direct sum

(V ⊕ V ∗) ⊗ C = E+ ⊕ E−
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490 M. J. Lean et al.

of the eigenspaces of J corresponding to the eigenvalues ±i respectively, i.e.

E± = {
(X + ξ) ∓ iJ (X + ξ) | X + ξ ∈ V ⊕ V ∗} .

Both eigenspaces are maximal isotropic with respect to (· , ·)V and they are complex
conjugate to each other.

The following lemma is obvious.

Lemma 1 The linear generalized complex structures are in bijection with the split-
tings (V ⊕ V ∗) ⊗ C = E+ ⊕ E− with E± maximal isotropic and E− = E+.

Definition 1 Let M be a manifold and J a bundle endomorphism of PM = T M ⊕
T ∗M such that J 2 = − idPM , and J is orthogonal with respect to 〈· , ·〉M . Then J is
a generalized almost complex structure. In the associated eigenbundle decomposition

TCM ⊕ T ∗
C

M = E+ ⊕ E−,

if Γ (E+) is closed under the (complexified) Courant bracket, then E+ is a (complex)
Dirac structure on M and one says that J is a generalized complex structure [14,15].

If E+ is a Dirac structure, then E− must also be a Dirac structure since E− = E+.
Indeed (E+, E−) is a complex Lie bialgebroid in the sense of Mackenzie–Xu [28], in
which E+ and E− are complex conjugate to each other.

Definition 2 Let J : PM → PM be a vector bundle morphism. Then the generalized
Nijenhuis torsion associated to J is the map

NJ : PM ×M PM → PM

defined by

NJ (ξ, η) = �J ξ , J η� + J 2�ξ , η� − J (
�J ξ , η� + �ξ , J η�

)

for all ξ, η ∈ Γ (PM ), where the bracket is the Courant–Dorfman bracket.

Note that ifJ in the last definition is orthogonal with respect to 〈· , ·〉M and satisfies
J 2 = − id (i.e. if J is an almost complex structure), then its Nijenhuis torsion is a
tensor.

The following proposition gives two equivalent definitions of a generalized complex
structure.

Proposition 1 A generalized complex structure is equivalent to any of the following:
1. A bundle endomorphism J of PM such that J is orthogonal with respect to

〈· , ·〉M , J 2 = − idPM and NJ = 0.
2. A complex Lie bialgebroid (E+, E−) whose double is the standard Courant alge-

broid TCM ⊕ T ∗
C

M, and E+ and E− are complex conjugate.
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Glanon groupoids 491

For a two-formω on M we denote byω� : T M → T ∗M the bundle map X �→ iXω,
while for a bivector π on M we denote by π� : T ∗M → T M the contraction with π .
Also if π is a Poisson bivector, we denote by [· , ·]π the Lie algebroid bracket defined
on the space of 1-forms on M by

[ξ, η]π = Lπ�ξ η − Lπ�ηξ − dπ(ξ, η)

for all ξ, η ∈ Ω1(M).
A generalized complex structure J : PM → PM can be written

J =
(

N π�

ω� −N∗
)

with π is a bivector field on M and π� : T ∗M → T M , π�(α) = π(α, ·) is the
vector bundle morphism defined by π , ω is a two-form on M and ω� : T M → T ∗M ,
X �→ iXω is the vector bundle morphism defined by ω, and N : T M → T M is a
bundle map. The geometric structures N , π and ω have to satisfy together a list of
identities [9]. In particular π is a Poisson bivector field.

Let IM : PM → PM be the endomorphism

IM =
(
idT M 0
0 − idT ∗ M

)
.

Then we have

〈IM (·) , IM (·)〉M = −〈· , ·〉M ,

�IM (·) , IM (·)� = IM�· , ·�

and the following proposition follows.

Proposition 2 If J is a generalized almost complex structure on M, then

J̄ := IM ◦ J ◦ IM (1)

is a generalized almost complex structure. Furthermore,

NJ̄ = IM ◦ NJ ◦ (IM , IM ).

Hence, J̄ is a generalized complex structure if and only if J is a generalized complex
structure.

The following are two standard examples [15].

1. Let J be an almost complex structure on M . Then

J =
(

J 0
0 −J ∗

)
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492 M. J. Lean et al.

is 〈·,·〉M -orthogonal and satisfiesJ 2 = − id.J is a generalized complex structure
if and only if J is integrable.

2. Let ω be a nondegenerate 2-form on M . Then

J =
(
0 − (

ω�
)−1

ω� 0

)

is a generalized complex structure if and only if dω = 0, i.e. if and only if ω is a
symplectic 2-form.

2.3 Pontryagin bundle over a Lie groupoid

The tangent prolongation of a Lie groupoidLetΓ ⇒ M be aLie groupoid.Applying
the tangent functor to each of the maps defining Γ yields a Lie groupoid structure on
T Γ with base T M , source T s, target T t, multiplication Tm : T (Γ ×M Γ ) → T Γ and
inversion T i : T Γ → T Γ . The identity at vp ∈ Tp M is 1vp = Tpεvp. This defines
the tangent prolongation T Γ ⇒ T M of Γ ⇒ M or the tangent groupoid associated
to Γ ⇒ M .
The cotangent Lie groupoid defined by a Lie groupoid If Γ ⇒ M is a Lie groupoid
with Lie algebroid A → M , then there is also an induced Lie groupoid structure on
T ∗Γ ⇒ A∗. The source map ŝ : T ∗Γ → A∗ is given by

ŝ(αg) ∈ A∗
s(g) for αg ∈ T ∗

g Γ, ŝ(αg)(a(s(g))) = αg(a
l(g))

for all a ∈ Γ (A), and the target map t̂ : T ∗Γ → A∗ is given by

t̂(αg) ∈ A∗
t(g), t̂(αg)(a(t(g))) = αg(a

r (g))

for all a ∈ Γ (A). If ŝ(αg) = t̂(αh), then the product αg � αh is defined by

(αg � αh)(vg � vh) = αg(vg) + αh(vh)

for all composable pairs (vg, vh) ∈ T(g,h)(Γ ×M Γ ).
This Lie groupoid structure was introduced in [7], see also [27,32]. Note that the

original definition was the following: let ΛΓ be the graph of the partial multiplication
m in Γ , i.e.

ΛΓ = {(g, h, g � h) | g, h ∈ Γ, s(g) = t(h)}.

The isomorphismψ : (T ∗Γ )3 → (T ∗Γ )3,ψ(α, β, γ ) = (α, β,−γ ) sends the conor-
mal space (T ΛΓ )◦ ⊆ (T ∗Γ )3|ΛΓ to a submanifold Λ∗ of (T ∗Γ )3. It is shown in
[7] that Λ∗ is the graph of a groupoid multiplication on T ∗Γ , which is exactly the
multiplication defined above.
The “Pontryagin groupoid” of a Lie groupoid If Γ ⇒ M is a Lie groupoid with
Lie algebroid A → M , according to [30], there is hence an induced VB-Lie groupoid
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Glanon groupoids 493

structure on PΓ = T Γ ⊕ T ∗Γ over T M ⊕ A∗, namely, the product groupoid, where
T Γ ⊕ T ∗Γ and T M ⊕ A∗ are identified with the fiber products T Γ ×Γ T ∗Γ and
T M ×M A∗, respectively. It is called a Courant groupoid by Mehta [30].

Proposition 3 Let Γ ⇒ M be a Lie groupoid with Lie algebroid A → M. Then the
Pontryagin bundle PΓ = T Γ ⊕ T ∗Γ is a Lie groupoid over T M ⊕ A∗, and the
canonical projection PΓ → Γ is a Lie groupoid morphism.

We will write Tt for the target map PΓ → T M ⊕ A∗ defined by Tt(vg, αg) =(
T t(vg), t̂(αg)

)
, Ts for the source map PΓ → T M ⊕ A∗, and Tε, Ti, Tm for the

embedding of the units, the inversion map, and the multiplication of this Lie groupoid.

2.4 Pontryagin bundle over a Lie algebroid

Given any vector bundle qA : A −→ M , the map T qA : T A −→ T M has a vector
bundle structure obtained by applying the tangent functor to the operations in A −→
M . The operations in T A −→ T M are consequently vector bundle morphisms with
respect to the tangent bundle structures in T A −→ A and T M −→ M and T A with
these two structures is therefore a double vector bundle which we call the tangent
double vector bundle of A −→ M (see [26] and references given there).

If (qA : A → M, [·,·]A, ρA) is a Lie algebroid, then there is a Lie algebroid structure
on T qA : T A −→ T M defined in [28], with respect to which pA : T A −→ A is a
Lie algebroid morphism over pM : T M −→ M ; this is the tangent prolongation of
A −→ M .

For a general vector bundle q : A −→ M , there is also a double vector bundle

T ∗ A

cA

��

rA �� A∗

q∗
��

A qA
�� M

.

Here the map rA is the composition of the Legendre transformation T ∗ A → T ∗ A∗
with the projection T ∗ A∗ → A∗. Elements of T ∗ A can be represented locally as
(ω, a, φ) where ω ∈ T ∗

m M, a ∈ Am, φ ∈ A∗
m for some m ∈ M . The Legendre

transformation

T ∗ A � (ω, φ, a) �→ (−ω, a, φ) ∈ T ∗ A∗

is an isomorphism of double vector bundles preserving the side bundles; that is to
say, it is a vector bundle morphism over both A and A∗. An intrinsic definition of the
Legendre transformation can be found in [28].

Since A is a Lie algebroid, its dual A∗ has a linear Poisson structure, and the
cotangent space T ∗ A∗ has a Lie algebroid structure over A∗. Hence, there is a unique
Lie algebroid structure on rA : T ∗ A → A∗ with respect to which the projection
cA : T ∗ A → A is a Lie algebroid morphism over A∗ → M .
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494 M. J. Lean et al.

Now one can form the fibered product Lie algebroid T A ×A T ∗ A → T M ×M A∗.

Proposition 4 Let A → M be a Lie algebroid. Then the Pontryagin bundle PA is
naturally a Lie algebroid. Moreover, the canonical projection PA → A is a Lie
algebroid morphism.

The double vector bundle (PA, T M ⊕ A∗, A, M) is a VB-Lie algebroid in the sense
of Gracia-Saz and Mehta [13].

2.5 Canonical identifications

The canonical pairing � · , · �A : A ⊕ A∗ → R induces a nondegenerate pairing
〈〈· , ·〉〉A = pr2 ◦T � · , ·�A on T A ×T M T A∗, where pr2 : TR = R × R → R is the
map which ‘forgets’ the base point of a tangent vector (see [27]):

A ⊕ A∗

�·,·�A

��

T A ×T M T A∗
〈〈·,·〉〉A

�������������

T �·,·�A

��
R TR pr2

�� R

That is, if ξ ∈ T A and χ ∈ T A∗ are such that T qA(ξ) = T qA∗(χ), then ξ =
d
dt |t=0a(t) ∈ T A and χ = d

dt |t=0ϕ(t) ∈ T A∗ for some curves a : (−ε, ε) → A and
ϕ : (−ε, ε) → A∗ such that qA∗ ◦ ϕ = qA ◦ a and 〈〈ξ, χ〉〉A = d

dt

⏐⏐
t=0 � a(t), ϕ(t)�A.

For instance, if X ∈ Γ (A) and α ∈ Γ (A∗), then T X ∈ ΓT M (T A) and T α ∈
ΓT M (T A∗) are such that T qA(T X) = idT M = T qA∗(T α) and we have for all vp =
ċ(0) ∈ Tp M :

〈〈T X (vp), T α(vp)〉〉A = d

dt

⏐⏐⏐⏐
t=0

� X, α �A (c(t)) = pr2(Tp(α(X))(vp)). (2)

If (T qA)∨ : (T A)∨ → T M is the vector bundle that is dual to the vector bundle
T qA : T A → T M , there is an induced isomorphism I

T A∗

T qA∗
��

I �� (T A)∨

(T qA)∨
��

T M �� T M

that is defined by

�ξ, I (χ)�T qA = 〈〈ξ, χ〉〉A
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Glanon groupoids 495

for all χ ∈ T A∗ and ξ ∈ T A such that T qA∗(χ) = T qA(ξ). That is, the following
diagram commutes:

T A ×T M T A∗ T �·,·�A ��

(id,I )
��

〈〈·,·〉〉A

������������������� TR

pr2
��

T A ×T M (T A)∨
�·,·�T qA

�� R

Applying the construction of I above to the caseqA = pT M , we get an isomorphism

T (T ∗M)

T cM

��

I �� (T T M)∨

(T pM )∨
��

T M �� T M

We also have the canonical involution (see for instance [27])

T T M

T pM

��

σ �� T T M

pT M

��
T M �� T M

Recall that for V ∈ X(M) the map T V : T M → T T M is a section of
T pM : T T M → T M and σ(T V ) is a section of pT M : T T M → T M , i.e. a vec-
tor field on T M .

We get an isomorphism ς := σ ∗ ◦ I : T (T ∗M) → T ∗(T M)

T (T ∗M)

T cM

��

ς �� T ∗(T M)

cT M

��
T M �� T M

Proposition 5 The map Σ := (σ, ς) : TPM → PT M

TPM

T prM

��

Σ �� PT M

prT M

��
T M �� T M

,

whereprM : PM → M is the projection, establishes an isomorphism of vector bundles.

123



496 M. J. Lean et al.

2.6 Lie functor from PΓ to PA

Proposition 6 Let Γ ⇒ M be a Lie groupoid with Lie algebroid A. Then the Lie
algebroid of PΓ is canonically isomorphic to PA.

Moreover, the pairing 〈· , ·〉Γ is a groupoid morphism: PΓ ×Γ PΓ → R. Its
corresponding Lie algebroid morphism coincides under the canonical isomorphism
A(PΓ ) ∼= PA with the pairing 〈· , ·〉A : PA ×A PA → R.

This is a standard result, but we recall its proof because it will be useful later on.
For any Lie groupoid Γ ⇒ M with Lie algebroid A → M , the tangent bundle

projection pΓ : T Γ → Γ is a groupoid morphism over pM : T M → M and applying
the Lie functor gives a canonical morphism A(pΓ ) : A(T Γ ) → A. This acquires a
vector bundle structure by applying A(·) to the operations in T Γ → Γ . This yields a
system of vector bundles

A(TΓ ) TM

A M

qA(T Γ )

A(pΓ ) pM

qA

in which A(T Γ ) has two vector bundle structures, the maps defining each being
morphisms with respect to the other. In other words,A(T Γ ) is a double vector bundle.

Associated with the vector bundle qA : A −→ M is the tangent double vector
bundle

T A

pA

��

T qA �� T M

pM

��
A qA

�� M

.

It is shown in [28] that the canonical involution σ : T (T Γ ) → T (T Γ ) restricts to a
canonical map σΓ : A(T Γ ) → T A which is an isomorphism of double vector bundles
preserving the side bundles. The tangent prolongation T A → T M of the Lie algebroid
A and the Lie algebroid A(T Γ ) → T M of T Γ ⇒ T M are isomorphic via σΓ [28].

Similarly, the cotangent groupoid structure T ∗Γ ⇒ A∗ is defined by maps which
are vector bundle morphisms and, reciprocally, the operations in the vector bundle
cΓ : T ∗Γ −→ Γ are groupoid morphisms. Taking the Lie algebroid of T ∗Γ ⇒ A∗
we get a double vector bundle

A(T ∗Γ ) A∗

A M

qA(T ∗Γ )

A(cΓ ) pM

qA
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where the vector bundle operations in A(T ∗Γ ) → A are obtained by applying the Lie
functor to those in T ∗Γ → Γ .

It follows from the definitions of the operations in T ∗Γ ⇒A∗ that the canonical
pairing

� · , · �T Γ : T Γ ×Γ T ∗Γ → R

is a groupoid morphism into the additive group(oid) R. Hence � · , · �T Γ induces a Lie
algebroid morphism

A(� · , · �T Γ ) : A(T Γ ) ×A A(T ∗Γ ) → A(R) = R.

Note that A(� · , · �T Γ ) is the restriction to A(T Γ ) ×A A(T ∗Γ ) of

〈〈· , ·〉〉T Γ : T (T Γ ) ×T Γ T (T ∗Γ ) → R.

As noted in [28], A(� · , · �T Γ ) is nondegenerate, and therefore induces an isomor-
phism IΓ : A(T ∗Γ ) → A(T Γ )∨ of double vector bundles, whereA(T Γ )∨ is the dual
of A(T Γ ) → A. Now dualizing σ−1

Γ : T A → A(T Γ ) over A, we define

ςΓ = (σ−1
Γ )∗ ◦ IΓ : A(T ∗Γ ) → T ∗ A.

This is an isomorphism of double vector bundles preserving the side bundles. The Lie
algebroids T ∗ A → A∗ and A(T ∗Γ ) → A∗ are isomorphic via ςΓ [28].

The Lie algebroid of the direct sum PΓ = T Γ ⊕ T ∗Γ is equal to

A(PΓ ) = TTs
U PΓ ,

where we writeU for the unit space ofPΓ ; i.e.U := T M ⊕ A∗. By the considerations
above, we have a Lie algebroid morphism ΣΓ = (σΓ , ςΓ ):

A A

A(PΓ ) PA = TA ⊕ T ∗A

M M

TM ⊕ A∗ TM ⊕ A∗

id

ΣΓ

id

id

preserving the side bundles A and T M ⊕ A∗.
Recall that we also have a map

Σ = (σ, ς) : TPΓ → PT Γ .
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Lemma 2 Let Γ ⇒ M be a Lie groupoid and u an element of A(PΓ ) ⊆ TPΓ project-
ing to am ∈ A and (vm, αm) ∈ Tm M × A∗

m . Then, if ΣΓ (u) = (vam , αam ) ∈ PA(am)

and Σ(u) = (ṽam , α̃am ) ∈ PT Γ (am), we have T ιvam = ṽam and αam = α̃am |Tam A.

See Remark 2 below for an interpretation of this lemma.

Proof The first equality follows immediately from the definition of σΓ .
Choose Tam A � wam = σΓ (y) for some y ∈ A(T Γ ) ⊆ T (T Γ ) and w̃am :=

T ιwam . Write also u = (x, ξ) with x ∈ A(T Γ ) and ξ ∈ A(T ∗Γ ) ⊆ T (T ∗Γ ),
i.e. αam = ςΓ (ξ). Then we have A(pΓ )(y) = A(cΓ )(ξ) = am and we can compute

�wam , αam �T A = �y, IΓ (ξ)�A(T Γ ) = A(� · , · �T Γ )(y, ξ)

= 〈〈y, ξ 〉〉T Γ = �y, I (ξ) �T pΓ

= �σ(y), ς(ξ)�pT Γ
= �w̃am , α̃am �pT Γ

= �wam , ι∗α̃am �pA .

��
The pairing 〈· , ·〉Γ is a groupoid morphism PΓ ×Γ PΓ → R. Hence, we can

consider the Lie algebroid morphism

A(〈· , ·〉Γ ) : A(PΓ ) ×A A(PΓ ) → A(R) = R.

We have

A(〈· , ·〉Γ ) = (
pr2 ◦T 〈· , ·〉Γ

) |A(PΓ )×AA(PΓ ).

We can see from the proof of the last lemma that A(� · , · �T Γ ) coincides with
� · , · �T A under the isomorphism ΣΓ . Hence, A(〈· , ·〉Γ ) coincides with the pairing
〈· , ·〉A : PA ×A PA → R, under the canonical isomorphism A(PΓ ) ∼= PA.

3 Multiplicative generalized complex geometry

3.1 Glanon groupoids

Definition 3 LetΓ ⇒ M be aLie groupoidwith Lie algebroid A → M . A generalized
almost complex structure J on Γ is multiplicative if it is an automorphism of the Lie
groupoid T Γ ⊕T ∗Γ ⇒ T M ⊕ A∗.We call the pair (Γ ⇒ M,J ) a generalized almost
complex groupoid. We use the symbol j to denote the induced automorphism of the
unit space T M ⊕ A∗:

T Γ ⊕ T ∗Γ J ��

Ts
��

Tt
��

T Γ ⊕ T ∗Γ

Ts
��

Tt
��

T M ⊕ A∗
j

�� T M ⊕ A∗

.
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If J is a generalized complex structure, then we call the pair (Γ ⇒M,J ) a Glanon
groupoid.

This is equivalent to DJ and DJ , the eigenspaces of J : (T Γ ⊕ T ∗Γ ) ⊗ C →
(T Γ ⊕ T ∗Γ ) ⊗ C corresponding to the eigenvalues i and −i being multiplicative
Dirac structures on Γ ⇒ M [31].

Note also thatJ is a Lie groupoidmorphism if and only if themaps N : T Γ → T Γ ,
π� : T ∗Γ → T Γ , N∗ : T ∗Γ → T ∗Γ and ω� : T Γ → T ∗Γ such that

J =
(

N π�

ω� −N∗
)

are all Lie groupoid morphisms. In particular, we have the following proposition.

Proposition 7 If Γ is a Glanon groupoid, then Γ is naturally a Poisson groupoid.

Example 1 (Glanon groups) Let G ⇒ {∗} be a Glanon Lie group. Since any multi-
plicative two-form must vanish (see for instance [17]), the underlying generalized
complex structure on G is equivalent to a multiplicative holomorphic Poisson struc-
ture. Therefore, Glanon Lie groups are in bijection with complex Poisson Lie groups.

Example 2 (Symplectic groupoids) Consider a Lie groupoid Γ ⇒ M equipped with
a non-degenerate two-form ω. Then the map

Jω =
(
0 − (

ω�
)−1

ω� 0

)
,

where ω� : T Γ → T ∗Γ is the bundle map X �→ iXω, defines a Glanon groupoid
structure on Γ ⇒ M if and only if (Γ, ω) is a symplectic groupoid.

Example 3 (Holomorphic Lie groupoids) Let Γ be a holomorphic Lie groupoid and
JΓ : T Γ → T Γ its complex structure. Then the map

J =
(

JΓ 0
0 −J ∗

Γ

)
,

defines a Glanon groupoid structure on Γ .

3.2 Glanon Lie algebroids

Let A be a Lie algebroid over M . Recall that PA = T A ⊕ T ∗ A has the structure of a
Lie algebroid over T M ⊕ A∗.

Definition 4 AGlanon Lie algebroid is a Lie algebroid A endowed with a generalized
complex structure JA : PA → PA that is a Lie algebroid morphism.
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The induced Poisson structureπ on A in that case is linear, and themapπ� : T ∗ A →
T A is a Lie algebroid morphism over some map A∗ → T M . The linear Poisson
structure on A is then equivalent to a Lie algebroid structure on A∗, such that (A, A∗)
is a Lie bialgebroid [28].

Proposition 8 If A is a Glanon Lie algebroid, then (A, A∗) is a Lie bialgebroid.

Example 4 (Glanon Lie algebras) Let g be a Lie algebra. Then Pg = g × (g ⊕ g∗) is
a Lie algebroid over g∗. Hence, a map

J : Pg → Pg,

J (x, y, ξ) = (x,Jx,g(y, ξ),Jx,g∗(y, ξ))

can only be a Lie algebroid morphism over j : g∗ → g∗ if Jx,g∗ does not depend on
the g-component. That is, the map Jx : {x} × g× g∗ → {x} × g× g∗ has the matrix

(
nx π

�
x

0 −n∗
x

)
.

It thus follows that it must be equivalent to a complex Lie bialgebra.

Example 5 (Symplectic Lie algebroids) Let (M, π) be a Poisson manifold. Let A be
the cotangent Lie algebroid A = (T ∗M)π . Then the map

⎛
⎝ 0

(
ω

�
A

)−1

ω
�
A 0

⎞
⎠

where ωA is the canonical cotangent symplectic structure on A, defines a Glanon Lie
algebroid structure on A.

Example 6 (Holomorphic Lie algebroids) Let A be a holomorphic Lie algebroid. Let
AR be its underlying real Lie algebroid and j : T AR → T AR the corresponding
complex structure. Then the map

(
j 0
0 − j∗

)

defines a Glanon Lie algebroid structure on AR .

3.3 Main theorem

Now we are ready to state the main theorem of this paper.

Theorem 1 If Γ is a Glanon groupoid with Lie algebroid A, then A is a Glanon Lie
algebroid.

Conversely, given a Glanon Lie algebroid A, if Γ is a s-connected and s-simply
connected Lie groupoid integrating A, then Γ is a Glanon groupoid.
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Remark 1 Ortiz shows in his thesis [31] that multiplicative Dirac structures on a Lie
groupoid Γ ⇒ M are in one-one correspondence with morphic Dirac structures on
its Lie algebroid, i.e. Dirac structures DA ⊆ PA such that DA is a subalgebroid of
PA → T M ⊕ A∗ over a set U ⊆ T M ⊕ A∗.

By extending this result to complex Dirac structures and using the fact that a multi-
plicative generalized complex structure on Γ ⇒ M is the same as a pair of transversal,
complex conjugate, multiplicative Dirac structures in the complexified PΓ , one finds
an alternative method for proving our main theorem. This alternative proof relies cru-
cially on the integration of VB-algebroids to VB-groupoids described in [5] and hence
is far more technical than our approach.

Applying Theorem 1 to Example 2 and Example 5, we obtain immediately the
following

Theorem 2 Let (P, π) be a Poisson manifold. If Γ is a s-connected and s-simply con-
nected Lie groupoid integrating the Lie algebroid (T ∗ P)π , then Γ admits a symplectic
groupoid structure.

Similarly, applying Theorem 1 to Examples 3 and 6, we obtain immediately the
following theorem.

Theorem 3 If Γ is an s-connected and s-simply connected Lie groupoid integrating
the underlying real Lie algebroid AR of a holomorphic Lie algebroid A, then Γ is a
holomorphic Lie groupoid.

A Glanon groupoid is automatically a Poisson groupoid, while a Glanon Lie alge-
broid must be a Lie bialgebroid. The following result reveals their connection

Theorem 4 Let Γ be a Glanon groupoid with its Glanon Lie algebroid A, (Γ, π)

and (A, A∗) their induced Poisson groupoid and Lie bialgebroid respectively. Then
the corresponding Lie bialgebroid of (Γ, π) is isomorphic to (A, A∗).

3.4 Tangent Courant algebroid

In [3], Boumaiza–Zaalani proved that the tangent bundle of a Courant algebroid is
naturally a Courant algebroid. In this section, we study the Courant algebroid structure
on PT M in terms of the isomorphism Σ : TPM → PT M defined in Proposition 5.

First we need to introduce some notations. For every V ∈ X(M), set TV =
σ(T V ) ∈ X(T M). For every α ∈ Ω1(M), set Tα = ς(T α) ∈ Ω1(T M). For every
f ∈ C∞(M), set T f = pr2 ◦T f ∈ C∞(T M,R).
Note that if vm = ċ(0) ∈ Tm M , then

T f (vm) = T f (ċ(0)) = d

dt
|t=0 ( f ◦ c(t)) , (3)

that is, T f = d f : T M → R.
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Now introduce the map T : Γ (PM ) → Γ (PT M ) given by

T(V, α) = Σ(T V, T α) = (TV,Tα),

for all (V, α) ∈ Γ (PM ).
The main result of this section is the following:

Proposition 9 For any e1, e2 ∈ Γ (PM ), we have

�Te1,Te2� = T �e1, e2� , (4)

〈Te1,Te2〉T M = T (〈e1, e2〉M ) . (5)

The following results show that T f ∈ C∞(T M), TV ∈ X(T M) and Tα ∈
Ω1(T M) are the complete lifts of f ∈ C∞(M), V ∈ X(M) and α ∈ Ω1(M) in
the sense of [39].

Lemma 3 For all f ∈ C∞(M) and V ∈ X(M), we have TV (T f ) = T(V ( f )).

Proof Let φ be the flow of V . For any vm = ċ(0) ∈ Tm M , we have

(TV (T f )) (vm) = (TV )(vm)(T f )

= σ

(
d

dt
|t=0

d

ds
|s=0φs(c(t))

)
T f

=
(

d

ds
|s=0

d

dt
|t=0φs(c(t))

)
(T f )

=
(

d

ds
|s=0T f

(
d

dt
|t=0φs(c(t))

))

(3)= d

ds
|s=0

d

dt
|t=0 ( f ◦ φs) (c(t))

= d

dt
|t=0

d

ds
|s=0 ( f ◦ φs) (c(t))

= d

dt
|t=0V ( f )(c(t))

(3)= T(V ( f ))(vm).

��
The following lemma characterizes the sections Tα of Ω1(T M).

Lemma 4 1. For all α ∈ Ω1(M) and V ∈ X(M), we have

� TV,Tα�T T M = T
(
�V, α�T M

)
. (6)

2. Given ξ ∈ Ω1(T M), we have ξ = 0 if and only if

�TV, ξ�T T M = 0, ∀V ∈ X(M).
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Proof 1. Using σ 2 = idT T M , we get:

�TV,Tα�pT M = �σ(T V ), (σ ∗ ◦ I )(T α) �pT M

= �T V, I (T α) �T pM

= 〈〈T V, T α〉〉T M
(2)= T � V, α �T M .

2. Let ξ ∈ Ω1(T M) be such that ξ(TV ) = 0 for all V ∈ X(M). For any u ∈ T M
with u �= 0 and v ∈ Tu(T M), there exists a vector field V ∈ X(M) such that
TV (u) = v. This yields ξ(v) = 0. Therefore, ξ vanishes at all points of T M
except for the zero section of T M . By continuity, we get ξ = 0. ��
Using this, we can show the following formulas.

Lemma 5 1. For all V, W ∈ X(M), we have

[TV,TW ] = T[V, W ].

2. For any α, β ∈ Ω1(M) and V, W ∈ X(M), we have

£TVTβ − iTW dTα = T (£V β − iW dα) .

Proof 1. This is an easy computation, using the fact that if φ is the flow of the vector
field V , then T φ is the flow of TV (alternatively, see [27]).

2. For any U ∈ X(M), we can compute

�TU, £TVTβ − iTW dTα �pT M

= TV � Tβ,TU �pT M − � Tβ,T[V, U ] �pT M −TW � Tα,TU �pT M

+TU � Tα,TW �pT M + � Tα,T[W, U ] �pT M

= TV
(
T � β, U�pM

) − T � β, [V, U ] �pM −TW
(
T � α, U�pM

)
+TU

(
T � α, W�pM

) + T � α, [W, U ] �pM

= T
(
V � β, U�pM

) − T � β, [V, U ] �pM −T
(
W � α, U�pM

)
+T

(
U � α, W�pM

) + T � α, [W, U ] �pM

= T � U, £V β − iW dα �pM

= �TU,T(£V β − iW dα) �pT M .

We get

�TU,T(£V β − iW dα) − (£TVTβ − iTW dTα)�pT M = 0

for all U ∈ X(M) and we can conclude using Lemma 4. ��
Proof of Proposition 9 Equation (5) follows immediately from (6).

Formula (4) for the Dorfman bracket on sections of PT M = T (T M) ⊕ T ∗(T M)

follows from Lemma 5. ��
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3.5 Nijenhuis torsion

Now let J : PM → PM be a vector bundle morphism over the identity. Consider the
map T J : TPM → TPM and the map TJ defined by the commutative diagram

TPM
TJ ��

Σ

��

TPM

Σ

��
PT M

TJ
�� PT M

,

i.e. TJ = Σ ◦ T J ◦ Σ−1. Then, by definition, we get, for all e ∈ Γ (PM ),

TJ (Te) = (Σ ◦ T J ) (T e) = Σ(T (J (e))) = T(J (e)). (7)

The following lemma is immediate.

Lemma 6 1. T(idPM ) = idPT M .

2. We have T(J 2) = (T(J ))2 for every base-preserving endomorphism J of the
vector bundle PM .

If J : PM → PM is now a generalized complex structure, the Nijenhuis torsion is
a tensor and hence can be seen as a vector bundle map

NJ : PM ×M PM → PM .

We consider as above

T NJ : TPM ×T M TPM → TPM .

Define TNJ : PT M ×T M PT M → PT M by the following commutative diagram:

TPM ×T M TPM
TNJ ��

Σ×Σ

��

TPM

Σ

��
PT M ×T M PT M

TNJ
�� PT M

.

An easy computation using (7) and (4) yields

TNJ (Te1,Te2) = NTJ (Te1,Te2)

for all e1, e2 ∈ Γ (PM ). As in the proof of Lemma 4, this implies that TNJ and NTJ
coincide at all points of T M outside the zero section of T M . By continuity, we obtain
the following theorem.
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Theorem 5 Let J : PM → PM be a vector bundle morphism. Then TNJ = NTJ .

Let Γ ⇒ M and Γ ′ ⇒ M ′ be Lie groupoids. Recall that a map � : Γ → Γ ′ is a
groupoid morphism if and only if the map � × � × � restricts to a map ΛΓ → ΛΓ ′ ,
where ΛΓ and ΛΓ ′ are the graphs of the multiplications in Γ ⇒M and respectively
Γ ′ ⇒ M ′.

Consider the graphs of the multiplications on T Γ and T ∗Γ :

ΛT Γ = {(vg, vh, vg � vh) | vg, vh ∈ T Γ, T t(vh) = T s(vg)} = T ΛΓ

and

ΛT ∗Γ = {(αg, αh, αg � αh) | αg, αh ∈ T ∗Γ, t̂(αh) = ŝ(αg)}.

Recall that if

(ΛT ∗Γ )op = {(αg, αh,−(αg � αh)) | αg, αh ∈ T ∗Γ, t̂(αh) = ŝ(αg)},

i.e.

ΛT Γ ⊕ΛΓ (ΛT ∗Γ )op = (idPΓ
× idPΓ

×IΓ )
(
ΛT Γ ⊕ΛΓ ΛT ∗Γ

)
,

then

(ΛT ∗Γ )op = (T ΛΓ )◦.

A map J : PΓ → PΓ is a groupoid morphism if and only if ΛT Γ ⊕ΛΓ ΛT ∗Γ is
stable under the map J × J × J . This yields:

Lemma 7 The map J is a groupoid morphism if and only if ΛT Γ ⊕ΛΓ (ΛT ∗Γ )op is
stable under the map J × J × J̄ , where J̄ is defined by (1).

Since ΛT Γ = T ΛΓ and (ΛT ∗Γ )op ∼= (T ΛΓ )◦, we get that J is multiplicative if
and only if T ΛΓ ⊕ (T ΛΓ )◦ is stable under J × J × J̄ .

Further, if J is orthogonal relative to 〈· , ·〉Γ and satisfies J 2 = − idPΓ
(i.e. if J

is a generalized almost complex structure), then we say for short that the Nijenhuis
torsion NJ : PΓ ×Γ PΓ → PΓ is multiplicative if it is a Lie groupoid morphism.
Similarly as above, we find that the Nijenhuis torsion NJ is multiplicative if and only
if NJ × NJ × NJ restricts to a map

(ΛT Γ ⊕ΛΓ ΛT ∗Γ ) ×ΛΓ (ΛT Γ ⊕ΛΓ ΛT ∗Γ ) → ΛT Γ ⊕ΛΓ ΛT ∗Γ .

Lemma 8 The map NJ is multiplicative if and only if NJ × NJ × NJ̄ restricts to
a map

(
T ΛΓ ⊕ΛΓ (T ΛΓ )◦

) ×ΛΓ

(
T ΛΓ ⊕ΛΓ (T ΛΓ )◦

) → T ΛΓ ⊕ΛΓ (T ΛΓ )◦.
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The following lemma is easy to prove.

Lemma 9 If M is a smooth manifold and N a submanifold of M, then the Courant–
Dorfman bracket on PM restricts to sections of T N ⊕ (T N )◦.

Note that T N ⊕ (T N )◦ is a generalized Dirac structure in the sense of [1].
We get the following theorem.

Theorem 6 Let (Γ ⇒ M,J ) be a generalized almost complex groupoid. Then the
Nijenhuis tensor NJ is a Lie groupoid morphism NJ : PΓ ×Γ PΓ → PΓ .

Proof Choose sections ξ1, ξ2, ξ3, η1, η2, η3 ∈ Γ (PΓ ) such that (ξ1, ξ2, ξ3)|ΛΓ and
(η1, η2, η3)|ΛΓ belong to Γ (T ΛΓ ⊕ΛΓ (T ΛΓ )◦). Then (J ξ1,J ξ2, J̄ ξ3)|ΛΓ and
(J η1,J η2, J̄ η3)|ΛΓ belong to Γ (T ΛΓ ⊕ΛΓ (T ΛΓ )◦). From Lemma 9, it follows
that

(NJ × NJ × NJ̄ ) ((ξ1, ξ2, ξ3), (η1, η2, η3))

takes values in

T ΛΓ ⊕ΛΓ (T ΛΓ )◦

on ΛΓ . By Lemma 8, the proof is complete. ��

3.6 Infinitesimal multiplicative Nijenhuis tensor

Definition 5 Let J : PΓ → PΓ be a Lie groupoid morphism. The map

A(J ) : PA → PA

is defined by the commutative diagram

A(PΓ ) PA

A(PΓ ) PA

ΣΓ

A(J ) A (J )

ΣΓ

.

The following lemma can be found in [5].

Lemma 10 Let J : PΓ → PΓ be a multiplicative map. Then A(J ) is an endomor-
phism of the vector bundle PA if and only if J is an endomorphism of the vector
bundle PΓ .

Now assume that J is orthogonal relative to 〈· , ·〉Γ and that J 2 = − idPΓ
. Since

the mapNJ : PΓ ×Γ PΓ → PΓ is then also a Lie groupoid morphism by Theorem 6,
we can also consider

A(NJ ) : PA ×A PA → PA
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defined by

A(PΓ ) ×A A(PΓ ) PA ×A PA

A(PΓ ) PA

A(NJ )

Σ2
Γ

A (NJ )

ΣΓ

.

The main result of this section is the following.

Theorem 7 Suppose that a map J : PΓ → PΓ is simultaneously a vector bundle
morphism and a Lie groupoid morphism.

1. Then the map A(J ) is 〈· , ·〉A-orthogonal if and only if J is 〈· , ·〉Γ -orthogonal.
2. Moreover, if J is orthogonal w.r.t. 〈· , ·〉Γ and J 2 = − idPΓ

, then A(NJ ) =
NA(J ).

For the proof, we need a couple of lemmas.

Definition 6 Let M be a smooth manifold and ι : N ↪→ M a submanifold of M .

1. A section eN =: X N + αN is ι-related to eM = X M + αM if ι∗ X N = X M |N and
αN = ι∗αM . We write then eN ∼ι eM .

2. Two vector bundle morphisms JN : PN → PN and JM : PM → PM are said to
be ι-related if for each section eN of PN , there exists a section eM ∈ PM such that
eN ∼ι eM and JN (eN ) ∼ι JM (eM ).

3. Two vector bundle morphisms NN : PN ×N PN → PN and NM : PM ×M PM →
PM are ι-related if for each pair of sections eN , fN ∈ Γ (PN ), there exist sec-
tions eM , fM ∈ Γ (PM ) such that eN ∼ι eM , fN ∼ι fM and NN (eN , fN ) ∼ι

NM (eM , fM ).

Lemma 11 Let M be a manifold and N ⊆ M a submanifold. If eN , fN ∈ Γ (PN )

are ι-related to eM , fM ∈ Γ (PM ), then �eN , fN � ∼ι �eM , fM�, for the Courant–
Dorfman bracket.

Proof This is an easy computation, see also [33]. ��
Lemma 12 Let M be a manifold, N ⊆ M a submanifold and JN : PN → PN

and JM : PM → PM two ι-related generalized almost complex structures. Then the
generalized Nijenhuis tensors NJN and NJM are ι-related.

Proof This follows immediately from Lemma 11 and the definition. ��
Recall that the Lie algebroid A of a Lie groupoid Γ ⇒M is an embedded subman-

ifold of T Γ , ι : A ↪→ T Γ .

Remark 2 Note that Lemma 2 states that if u ∈ ΓA(A(PΓ )) and ũ ∈ ΓT Γ (TPΓ ) is
an extension of u, then ΣΓ ◦ u ∼ι Σ ◦ ũ.

Lemma 13 Let Γ ⇒ M be a Lie groupoid and J : PΓ → PΓ a vector bundle mor-
phism. If J is multiplicative, then
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1. A(J ) : PA → PA and TJ : PT Γ → PT Γ are ι-related, and
2. if J is a generalized almost complex structure, then A(NJ ) and TNJ are

ι-related.

Proof 1. Choose a section eA of PA. Then we have Σ−1
Γ (eA) =: u ∈ Γ (A(PΓ ))

and since A(PΓ ) ⊆ TPΓ , we find a section ũ of TPΓ such that ũ restricts to
u. Set eT Γ := Σ ◦ ũ. By Lemma 2, we have then eA ∼ι eT Γ . Furthermore, by
construction of A(J ), we know that A(J ) ◦ u = (T J ) ◦ ũ on T M ⊕ A∗ =
T M ⊕ T M◦ ⊆ PΓ . We have then

A(J )(eA) = ΣΓ ◦ A(J ) ◦ u ∼ι Σ ◦ T J ◦ ũ = TJ (eT Γ ).

2. By definition of A(NJ ), this can be shown in the same manner. ��
Proof of Theorem 7 1. The map A(J ) is 〈· , ·〉A-orthogonal if and only if

〈· , ·〉A ◦ (A(J ),A(J )) = 〈· , ·〉A.

We have

〈· , ·〉A = A(〈· , ·〉Γ ) = A(〈· , ·〉Γ ) ◦ (Σ−1
Γ ,Σ−1

Γ )

by definition and so

〈· , ·〉A ◦ (A(J ),A(J ))

= A(〈· , ·〉Γ ) ◦ (Σ−1
Γ ,Σ−1

Γ ) ◦ (ΣΓ ,ΣΓ ) ◦ (A(J ),A(J )) ◦ (Σ−1
Γ ,Σ−1

Γ )

= A
(〈· , ·〉Γ ◦ (J ,J )

) ◦ (Σ−1
Γ ,Σ−1

Γ ).

Since ΣΓ : A(PΓ ) → PA is an isomorphism, we get that A(J ) is 〈· , ·〉A-
orthogonal if and only if

A(〈· , ·〉Γ ) = A
(〈· , ·〉Γ ◦ (J ,J )

)

and we can conclude.
2. Choose sections eA, f A ∈ Γ (PA) and u, v ∈ ΓA(A(PΓ )) such that eA = ΣΓ ◦ u,

f A = ΣΓ ◦ v. Choose as in the proof of Lemma 13 two extensions ũ and ṽ ∈
ΓT Γ (TPΓ ) of u and v and set eT Γ := Σ ◦ ũ and fT Γ := Σ ◦ ṽ ∈ Γ (PT Γ ). Then
we have

eA ∼ι eT Γ , f A ∼ι fT Γ ,

A(J )(eA) ∼ι TJ (eT Γ ), A(J )( f A) ∼ι TJ ( fT Γ ),

and A(NJ )(eA, f A) ∼ι TNJ (eT Γ , fT Γ ). (8)

But by Lemma 12, (8) yields also

NA(J )(eA, f A) ∼ι NTJ (eT Γ , fT Γ ).
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Since NTJ = TNJ by Theorem 5, we get that

A(NJ )(eA, f A) ∼ι NTJ (eT Γ , fT Γ ) and NA(J )(eA, f A) ∼ι NTJ (eT Γ , fT Γ ).

This yields

A(NJ )(eA, f A) = NA(J )(eA, f A)

and the proof is complete. ��
The following corollary is immediate.

Corollary 1 Let J : PΓ → PΓ be a multiplicative generalized almost complex struc-
ture. Then NA(J ) = 0 if and only if NJ = 0.

3.7 Proof of the integration theorem

Proof of Theorem 1 By Lemma 10, the map A(J ) : PA → PA is a vector bundle
morphism. Since J 2 = − idPΓ

, it follows from Lemma 6 that (A(J ))2 = − idPA .
From Corollary 1 and Theorem 7, we infer that NA(J ) = 0 and A(J ) is 〈· , ·〉A-
orthogonal.

Since

A(PΓ )
A(J ) ��

��

A(PΓ )

��
T M ⊕ A∗ �� T M ⊕ A∗

is a Lie algebroid morphism and

A(PΓ )
Σ |A(PΓ ) ��

��

PA

��
T M ⊕ A∗ �� T M ⊕ A∗

is a Lie algebroid isomorphism over the identity, the map

A(J ) = Σ |A(PΓ ) ◦ A(J ) ◦ (
Σ |A(PΓ )

)−1 = Σ |A(PΓ ) ◦ A(J ) ◦ Σ−1|PA ,

is a Lie algebroid morphism

PA
A(J ) ��

��

PA

��
T M ⊕ A∗ �� T M ⊕ A∗

.
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For the second part, consider the map

AJ := Σ−1|PA ◦ JA ◦ Σ |A(PΓ ) : A(PΓ ) → A(PΓ ).

Since JA : PA → PA is a Lie algebroid morphism, AJ is a Lie algebroid morphism
and there is a unique Lie groupoid morphism J : PΓ → PΓ such that AJ = A(J ).
By Lemma 10, J is a morphism of vector bundles.

We get then immediately JA = A(J ). Since J 2
A = − idA, we get A(J 2) =

− idA = A(− idPΓ
) and we can conclude by Theorem 7. ��

4 Application

4.1 Holomorphic Lie bialgebroids

Given a complex manifold X , let ΘX denote the sheaf of holomorphic vector fields
on X .

Let A → X be a holomorphic vector bundle and let ρ : A → TX be a holomorphic
vector bundlemap,whichwe call anchor.When the sheafA of holomorphic sections of
A → X is a sheaf of complexLie algebras, the anchormapρ induces a homomorphism
of sheaves of complex Lie algebras from A to ΘX , and the Leibniz identity

[V, f W ] = (
ρ(V ) f

) · W + f [V, W ]

holds for all V, W ∈ A(U ), f ∈ OX (U ), and all open subsets U of X , we say that A
is a holomorphic Lie algebroid. Holomorphic Lie algebroids were studied in various
contexts, see for instance [4,12,16,23,36].

Since the sheaf A locally generates the C∞(X)-module of all smooth sections of
A, each holomorphic Lie algebroid structure on a holomorphic vector bundle A → X
determines a unique smooth real Lie algebroid structure on A.

Proposition 10 [23] Let A → X be a holomorphic vector bundle and let ρ : A → TX

be a holomorphic vector bundle map. Given a structure of holomorphic Lie algebroid
on A with anchor ρ, there exists a unique structure of smooth real Lie algebroid on A
with the same anchor ρ such that the inclusion of the sheaf of holomorphic sections
into the sheaf of smooth sections is a morphism of sheaves of Lie algebras over R.

Conversely, given a real Lie algebroid A → X , it is a holomorphic Lie algebroid
if A → X is a holomorphic vector bundle, with the sheaf of holomorphic sections
denoted A, such that the Lie bracket on smooth sections induces a C-linear bracket
on A(U ), for all open subsets U ⊂ X . We write AR to denote the real Lie algebroid
underlying a holomorphic Lie algebroid A.

Assume that (A → X, ρ, [·, ·]) is a holomorphic Lie algebroid. Multiplication by
the scalar

√−1 in each fiber of A determines an automorphism j of the vector bundle
A. It is simple to see that the Nijenhuis torsion of j vanishes [23]. Hence one can
define a new (real) Lie algebroid structure on A (see [21]), with anchor ρ ◦ j and Lie
bracket
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[V, W ] j := [ j V, W ] + [V, jW ] − j[V, W ] = − j[ j V, jW ], ∀V, W ∈ Γ (A),

(9)

which we call underlying imaginary Lie algebroid of A and write AI . It follows
immediately that j : AI → AR is an isomorphism of Lie algebroids [21].

Given a holomorphic vector bundle A → X , we use the symbols A, Ak , and A• to
denote the sheaves of holomorphic sections of the holomorphic vector bundle A → X ,
its k-th exterior power ∧k A → X , and the Whitney sum

⊕
k≥0

( ∧k A) respectively.

Definition 7 If a holomorphic vector bundle A (with sheaf of holomorphic sections
A) and its dual A∗ are both holomorphic Lie algebroids and the Chevalley–Eilenberg
differential d∗ of the Lie algebroid A∗ is a derivation of the (sheaf of) complex Lie
algebras A•, i.e.

d∗[V, W ] = [d∗V, W ] + [V, d∗W ], ∀V, W ∈ A•(U ) (10)

for all open subsets U of the base manifold X , we say that the pair (A, A∗) is a
holomorphic Lie bialgebroid.

As in the smooth case, a holomorphic vector bundle A → X is a holomorphic Lie
algebroid if and only if (A•,∧, [·, ·]) is a sheaf of Gerstenhaber algebras [23].
Proposition 11 Let A → X be a holomorphic vector bundle. The pair (A, A∗) is a
holomorphic Lie bialgebroid if and only if (A•,∧, [·, ·], d∗) is a sheaf of differential
Gerstenhaber algebras over X.

Proof Since the proof is exactly the same as in the smooth case [20,25,38], we only
sketch it briefly. If (A, A∗) is a holomorphic Lie bialgebroid, the holomorphic Lie
algebroid structure on A∗ induces a complex of sheaves d∗ : Ak → Ak+1 over X . Since
d∗ is a derivation with respect to the exterior multiplication, it follows immediately,
as in [20], from the compatibility condition (10) that

d∗[X, f ] = [d∗ X, f ] + [X, d∗ f ], ∀X ∈ A(U ), f ∈ OX (U ). (11)

Therefore, since the exterior algebra A• is generated by its homogeneous elements of
degree 0 and 1, we have

d∗[X, Y ] = [d∗ X, Y ] + [X, d∗Y ], ∀X, Y ∈ A•(U ).

Thus (A•,∧, [·, ·], d∗) is a sheaf of differential Gerstenhaber algebras over X . The
converse is obvious. ��
Proposition 12 Let (A, A∗) be a holomorphic Lie bialgebroid with anchors ρ : A →
TX and ρ∗ : A∗ → TX . Then

1. Ld f V = −[d∗ f, V ] for any f ∈ OX (U ) and V ∈ A(U );
2. [d∗ f, d∗g] = d∗{ f, g}, ∀ f, g ∈ OX (U );
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3. ρ◦(ρ∗)∗ = −ρ∗◦ρ∗. Therefore, the holomorphic bundle map

π#
X = ρ ◦ (ρ∗)∗ : T ∗

X → TX .

is skew-symmetric and defines a holomorphic Poisson bivector on X.

Proof The proof is similar to the proofs of Proposition 3.4, Corollary 3.5 and Propo-
sition 3.6 in [28]. ��

4.2 Associated real Lie bialgebroids

Given a holomorphic Lie algebroid A, we denote its underlying real and imaginary Lie
algebroids by AR and AI and their respective Chevalley–Eilenberg differentials by d R

and d I . When the dual A∗ of A is also a holomorphic Lie algebroid, its underlying real
and imaginary Lie algebroids are written A∗

R and A∗
I and their respective Chevalley–

Eilenberg differentials d R∗ and d I∗ .

Lemma 14 Let A be a holomorphic Lie algebroid over a complex manifold X. Then

1. d I α = −( j∗◦d R◦ j∗)α, for all α ∈ Γ (A∗);
2. d I f = ( j∗◦d R) f, for all f ∈ C∞(M).

Proof For all V, W ∈ Γ (A), we have

(d I f )(V ) = ρI (V )( f ) = ρ( j V )( f ) = (d R f )( j V )

and

(d I ( j∗α))(V, W ) = ρI (V )α( jW ) − ρI (W )α( j V ) − α( j[V, W ] j )

= ρ( j (V ))α( jW ) − ρ( j (W ))α( j V ) − α([ j (V ), j (W )])
= (d Rα)( j (V ), j (W )).

��
If the dual A∗ of a holomorphic Lie algebroid A → X is also endowed with a

holomorphic Lie algebroid structure, we can conclude that

d I∗ V = −( j◦d R∗ ◦ j)V, ∀V ∈ Γ (A),

d I∗ f = ( j◦d R∗ ) f, ∀ f ∈ C∞(X),
(12)

since j∗ is the multiplication by the scalar
√−1 in each fiber of A∗.

Proposition 13 Let A be a holomorphic vector bundle over a complex manifold X.
Assume that A and its dual A∗ are both holomorphic Lie algebroids. The following
assertions are equivalent:
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(1) (A, A∗) is a holomorphic Lie bialgebroid;
(2) (AR, A∗

R) is a Lie bialgebroid;
(3) (AR, A∗

I ) is a Lie bialgebroid.

Proof (b)⇒(a) It is clear that if (AR, A∗
R) is a real Lie bialgebroid then the com-

patibility condition for (A, A∗) to be a holomorphic Lie bialgebroid is automatically
satisfied.

(a)⇒(b) Fix an arbitrary open subset U of X and an arbitrary holomorphic section
V ∈ A(U ). Consider the operator C∞(U,C) → Γ (AR |U ⊗ C) defined by

LV f = d R∗ [V, f ] − [d R∗ V, f ] − [V, d R∗ f ] (13)

for all f ∈ C∞(U,C). Here d R∗ : Γ (∧• AR⊗C) → Γ (∧•+1AR⊗C) is theChevalley–
Eilenberg differential with the trivial complex coefficients of the Lie algebroid A∗

R ,
and V is seen as a section of AR |U . It is simple to check that LV is a derivation, i.e.

LV ( f g) = f LV g + gLV f.

Since (A, A∗) is a holomorphic Lie bialgebroid, it follows from (11) that LV f = 0,
for all f ∈ OX (U ). Here we use the fact that d∗ f = d R∗ f for all f ∈ OX (U ). On the
other hand, we also haveLV f = 0 for all f ∈ OX (U ) since each term of (13) vanishes
[23]. Therefore, we haveLV f = 0 for all f ∈ C∞(U,C). Finally, since the restricted
vector bundle A|U is trivial and Γ (A|U ⊗C) is C∞(U,C)-linearly spanned by A(U )

when the subset U is contractible, it follows that d∗[X, Y ] = [d∗ X, Y ]+ [X, d∗Y ] for
any X, Y ∈ Γ (A|U ⊗ C). Hence (AR, A∗

R) is a real Lie bialgebroid.
(a)⇔(c) The equivalence between (a) and (c) can be proved similarly, using the

equality d I∗ f = i · d∗ f for all f ∈ A(U ). ��

It is well known that Lie bialgebroids are symmetric, viz. (AR, A∗
R) is a Lie bial-

gebroid if and only if (A∗
R, AR) is a Lie bialgebroid. This is obviously still true in the

holomorphic setting.

Proposition 14 The pair (A, A∗) is a holomorphic Lie bialgebroid iff the pair (A∗, A)

is a holomorphic Lie bialgebroid.

Proposition 15 Let A be a holomorphic vector bundle over a complex manifold X.
Assume A and its dual A∗ are both holomorphic Lie algebroids.

1. (AR, A∗
R) is a Lie bialgebroid if and only if (AI , A∗

I ) is a Lie bialgebroid,

2. (AR, A∗
I ) is a Lie bialgebroid if and only if (AI , A∗

R) is a Lie bialgebroid.

Proof Recall from (9) that the Lie bracket on AI is given by [V, W ] j = − j[ j V, jW ]
for all V, W ∈ Γ (AI ).
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1. Assume that (AR, A∗
R) is a Lie bialgebroid. Then, for all V, W ∈ Γ (AI ), we have

d I∗ [V, W ] j
(12)= ( j◦d R∗ ◦ j)(− j[ j V, jW ]) = ( j◦d R∗ )([ j V, jW ])
= j

([
d R∗ ( j V ), jW

]
+

[
j V, d R∗ ( jW )

])
(12)= − j

([
j (d I∗ V ), jW

]
+

[
j V, j (d I∗ W )

])

=
[
d I∗ V, W

]
j
+

[
V, d I∗ W

]
j
,

which shows that (AI , A∗
I ) is a Lie bialgebroid. The converse can be shown in the

same manner.
2. Assume that (AI , A∗

R) is a Lie bialgebroid. Then, for all V, W ∈ Γ (AR), we have

d I∗ [V, W ] = −( j◦d R∗ ◦ j)([V, W ]) = −( j◦d R∗ ◦ j)(− j[ j (V ), j (W )] j )

= −( j◦d R∗ )([ j (V ), j (W )] j )

= − j[d R∗ ( j V ), jW ] j − j[ j V, d R∗ ( jW )] j

= − j[ j (d I∗ V ), jW ] j − j[ j V, j (d I∗ W )] j

= [d I∗ V, W ] + [V, d I∗ W ],

which shows that (AR, A∗
I ) is a Lie bialgebroid. The converse can be proved

similarly. ��
Proposition 16 Let A be a holomorphic vector bundle over a complex manifold X.
Assume A and its dual A∗ are both holomorphic Lie algebroids. Then (AR, A∗

I ) is a
Lie bialgebroid if and only if AR is a Glanon Lie algebroid when endowed with the
generalized complex structure JAR : PAR → PAR with block-matrix representation

JAR =
(

JAR π
�

A∗
I

0 −J ∗
AR

)

(where πA∗
I

is the Poisson structure on AR that is induced by the Lie algebroid structure
on A∗

I ).

Proof Assume first that (AR,JAR ) is a Glanon Lie algebroid. Then the map π
�

A∗
I
is

a morphism of Lie algebroids T ∗ A → T A, and it follows that (AR, A∗
I ) is a Lie

bialgebroid [29].
Conversely, if (AR, A∗

I ) is a Lie bialgebroid, the map π
�

A∗
I
is a morphism of Lie

algebroids T ∗ A → T A. According toProposition 3.12 in [24] up to a scalar,πA(·, ·) =
πA∗

I
(·, ·) + iπA∗

I
(J ∗

AR
·, ·) is the holomorphic Lie Poisson structure on A induced by

the holomorphic Lie algebroid A∗. By [23, Theorem 2.7], JAR is hence a generalized
complex structure. Since A is a holomorphic Lie algebroid, the map JAR : T AR →
T AR is a morphism of Lie algebroids according to [24]. ��
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We summarize our results in the following:

Theorem 8 Let A be a holomorphic vector bundle over a complex manifold X. Assume
A and its dual A∗ are both holomorphic Lie algebroids. The following assertions are
equivalent:
1. (A, A∗) is a holomorphic Lie bialgebroid;
2. (AR, A∗

R) is a Lie bialgebroid;
3. (AR, A∗

I ) is a Lie bialgebroid;
4. (AI , A∗

R) is a Lie bialgebroid;
5. (AI , A∗

I ) is a Lie bialgebroid;
6. the Lie algebroid AR endowed with the map JAR : PAR → PAR ,

JAR =
(

JAR π
�
AI

0 −J ∗
AR

)

is a Glanon Lie algebroid.

Example 7 Given a holomorphic Poisson tensor π = πR + iπI ∈ Γ (∧2T 1,0X) on a
complex manifold X , let A denote the canonical holomorphic Lie algebroid structure
on the tangent bundle of X and let A∗ denote the holomorphic Lie algebroid structure
associated to π on the cotangent bundle of X . Then (A, A∗) is a holomorphic Lie
bialgebroid with AR = TX , AI = (TX )J , A∗

R = (TX )∗4πR
and A∗

I = (TX )∗4πI
.

4.3 Holomorphic Poisson groupoids

Definition 8 [28,35,37] A holomorphic Poisson groupoid is a holomorphic Lie
groupoid Γ ⇒M endowed with a holomorphic Poisson tensor πΓ ∈ Γ (∧2T 1,0Γ )

such that the graph Λ of the groupoid multiplication is a coisotropic submanifold of
Γ × Γ × Γ̄ , where Γ̄ stands for Γ endowed with the opposite Poisson structure.

Many properties of (smooth) Poisson groupoids generalize in a straightforward
manner to the holomorphic setting. In particular, if Γ ⇒X is a holomorphic Poisson
groupoid, then X is naturally a holomorphic Poisson manifold. More precisely, there
exists a unique holomorphic Poisson tensor on X with respect to which the source
map s : Γ → X is a holomorphic Poisson map and the target map is an anti-Poisson
map.

Theorem 9 [25,37] Let Γ ⇒ X be a holomorphic Lie groupoid with associated
Lie algebroid A → X and let πΓ be a holomorphic Poisson tensor on Γ . Then
πΓ is multiplicative if and only if π#

Γ : T ∗Γ → T Γ is a morphism of holomorphic
groupoids. In this case, the restriction of the groupoid morphism π#

Γ : T ∗Γ → T Γ

to the unit spaces is a map A∗ → T X.

For any open subset U ⊂ M and X ∈ Ak(U ), it follows as in [37, Theorem3.1]
that

[
Xr , πΓ

]
is a right-invariant holomorphic (k + 1)-vector field on Γ U

U . Hence it
defines an element, denoted d∗ X , in Ak+1(U ), i.e. (d∗ X)r = [

Xr , πΓ

]
. As in [38],
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one proves that (A•,∧, [· , ·], d∗) is a sheaf of differential Gerstenhaber algebras over
M . This proves the following proposition.

Proposition 17 Let Γ ⇒ X be a holomorphic Lie groupoid and let A → X be the
associated holomorphic Lie algebroid. If Γ ⇒ X is a holomorphic Poisson groupoid,

then the pair (A, A∗) is a holomorphic Lie bialgebroid.

The notation A(Γ ⇒ X, πΓ ) = (A, A∗) means that (Γ ⇒ X, πΓ ) is a Poisson
groupoid and (A, A∗) is its associated Lie bialgebroid.

Proposition 18 If πΓ is a multiplicative Poisson tensor on a holomorphic groupoid
Γ ⇒ X, πR and πI are the real and imaginary parts of πΓ ∈ Γ (∧2T 1,0Γ ), and
A(Γ ⇒ X, πΓ ) = (A, A∗), then (Γ ⇒X, πR) and (Γ ⇒X, πI ) are smooth Pois-
son groupoids, A(Γ ⇒X, πR) = (AR, A∗

1
4 ·R), and A(Γ ⇒M, πI ) = (AR, A∗

1
4 ·I ).

Here A∗
1
4 ·R (respectively A∗

1
4 ·I ) stands for the Lie algebroid (A∗

R, 1
4 [· , ·]A∗

R
, 1
4ρA∗

R
)

(respectively (A∗
I ,

1
4 [· , ·]A∗

I
, 1
4ρA∗

I
)).

Proof If πΓ is a multiplicative holomorphic Poisson structure on Γ ⇒M , then its real
and imaginary parts are also multiplicative. It is shown in [23] that both πR and πI

are Poisson bivector fields.
We have Im((T ∗Γ )πΓ ) = (T ∗Γ )4πI andRe((T

∗Γ )πΓ ) = (T ∗Γ )4πR [23]. The Lie
algebroid structure on (T ∗Γ )πΓ restricts to the holomorphic Lie algebroid structure
on A∗ as follows; the map ρ : A∗ → T M is just the restriction of πΓ

� to A∗ = T M◦
seen as a subbundle of T ∗

MΓ , and the bracket on T ∗Γ restricts to a bracket on A∗. In
the same manner, the Lie groupoid (Γ ⇒ M, π

�
R) induces a Lie algebroid structure

on (AR)∗ that is the restriction of the Lie algebroid structure on (T ∗Γ )πR . Hence, we
can conclude easily. ��
Proposition 19 1. Every holomorphic Poisson groupoid (Γ ⇒ X, π) inherits a

canonical Glanon groupoid structure: the automorphism Jπ of PΓ given by the
matrix

(
JΓ π

�
I

0 −J ∗
Γ

)

(where JΓ denotes the complex structure of Γ ) is a multiplicative generalized
complex structure on Γ .

2. The matrix representation of the Lie algebroid morphism A(Jπ ) : PA → PA (see
Definition 5) is

⎛
⎝JAR π

�

A∗
1
4 ·I

0 −J ∗
AR

⎞
⎠ ,

where πA∗
1
4 ·I

is the linear Poisson structure on AR determined by the Lie algebroid

A∗
1
4 ·I .
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Proof 1. By [23, Theorem 2.7], Jπ is a generalized complex structure. Since
(Γ ⇒ X, JΓ ) is a holomorphic Lie groupoid and (Γ ⇒X, πI ) is a Poisson
groupoid, JΓ : T Γ → T Γ , its dual J ∗

Γ : T ∗Γ → T ∗Γ , and π
�
I : T ∗Γ → T Γ

are multiplicative maps.
2. It is shown in [24] that σΓ ◦ A(JΓ ) ◦ σ−1

Γ = JAR , and in [29] that ςΓ ◦ A(π
�
I ) ◦

ς−1
Γ = π

�

A∗
1
4 ·I

, since (AR, A∗
1
4 ·I ) is the Lie bialgebroid of (Γ ⇒M, πI ), where

σΓ : A(T Γ ) → T A and ςΓ : A(T ∗Γ ) → T ∗ A are the morphisms of Lie alge-
broids defined in Sect. 2.6. ��
A holomorphic Lie bialgebroid (A, A∗) is said to be integrable if there exists a

holomorphic Poisson groupoid (Γ ⇒ X, π) such that A(Γ ⇒ X, π) = (A, A∗).
As a consequence of Theorem 1 and Proposition 19, we finally obtain the main

result of this section:

Theorem 10 Given a holomorphic Lie bialgebroid (A, A∗), if the underlying real Lie
algebroid AR integrates to a s-connected and s-simply connected Lie groupoid Γ,

then Γ is a holomorphic Poisson groupoid.

Remark 3 This result was proved in [24] in the special case where (A, A∗) is the
holomorphic Lie bialgebroid ((T ∗ X)π , T X) associated to a holomorphic Poisson
manifold (X, π).
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