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Abstract We prove a continuity result for the fibers of the Berkovich analytification
of a complex algebraic variety with respect to the maximum of the Archimedean
norm and the trivial norm. As a consequence, we obtain generalizations of a result of
Mikhalkin and Rullgård about degenerations of amoebae onto tropical varieties.
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1 Introduction

Let X ⊂ (C∗)n be an algebraic subvariety of the n-dimensional complex algebraic
torus. The amoeba AX ⊂ Rn of X is the image of X under the map

L : (C∗)n → Rn

defined by1 L = (− log |z1|, . . . ,− log |zn|), where (z1, . . . , zn) are coordinates on
(C∗)n . See Fig. 1 for a picture of the amoeba of X = {z1 + z2 + 1 = 0}.

More generally, let (K , | · |) be any complete valued field and let X ⊂ K ∗n be
an algebraic variety. For any valued field extension L/K , let XL ⊂ L∗n be the base
change. Define the tropicalization of X to be the subset X trop ⊂ Rn defined by

1 We use negative signs to match the standard convention for valuations. All logarithms are natural
logarithms.
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Fig. 1 The amoeba and the tropicalization of the curve z1 + z2 + 1 = 0 in C∗2

X trop =
⋃

L

L(XL),

where L ranges over all valued field extensions of K and L : (L∗)n → Rn is defined
using the same formula as above.

For example, suppose K = C. If | · |∞ is the usual Archimedean norm on C, then
(C, | · |∞) does not admit any nontrivial valued field extensions, so X trop = AX in this
case. On the other hand, we can also equip C with the trivial norm | · |0, for which
|a|0 = 1 for all a ∈ C∗. Then the tropicalization of X is equal to the cone over the
logarithmic limit set of X introduced in [7]. The case X = {z1 + z2 + 1 = 0} is
depicted to the right in Fig. 1. We see that the tropicalization looks like the large scale
limit of the amoeba. This is a general fact:

Theorem A The large scale limit of the amoeba AX equals the tropicalization of X:

lim
ρ→0+ ρ · AX = X trop,

where the tropicalization is computed using the trivial norm on C.

Here ρ · AX := {ρ · v | v ∈ AX } for ρ ∈ R∗+ and the limit can be understood, for
example, in the sense of Kuratowski convergence. When X is a hypersurface, Theo-
rem A is a special case of a result by Rullgård and Mikhalkin; see below. The general
case of Theorem A is proved in [7] in a slightly different language and conditional on
a conjecture that was later establied in [11].

As a more global version, consider a (complex) toric variety Y . There is a natural
topological space Y trop canonically associated to Y , see Sect. 4. If Y = C∗n , then
Y trop = Rn ; in general Y trop contains Rn as an open dense subset and comes with a
multiplicative action by R∗+ extending the usual action on Rn .

The two absolute values on C above define two different tropicalization maps of Y
onto Y trop. If X is an algebraic subvariety of Y , let AX and X trop denote the images of
X in Y trop under these two maps. When Y is projective, AX is homeomorphic to the
compactified amoeba defined in [33].
Theorem A′ We have limρ→0+ ρ · AX = X trop.

Note that the notation is somewhat abusive since both AX and X trop depend on the
embedding of X in a toric variety Y . Theorem A is the special case of Theorem A′
when Y is the algebraic torus.
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Fig. 2 These pictures illustrating Theorem B show two scaled amoebae and the tropicalization of the curve
V ( ft ) in the torus Y = C∗2, where ft = (z1 + z2 + 1)(t z1 + t−1z2 + 1). The first two pictures show
the amoeba of the complex curve V ( fa), scaled by a factor (log |a|−1)−1, for a = 0.5 and a = 0.2,
respectively. The last picture shows the tropicalization of the curve V ( ft ) over C((t))

New we consider one-parameter families of subvarieties. Let X ⊂ C∗ × Y be a
closed algebraic subvariety such that the projection of X onto the first factor C∗ is
surjective. Write Xa ⊂ Y for the fiber of X above a ∈ C∗ and AXa ⊂ Y trop for
the amoeba as in Theorem A′. Define X trop as the tropicalization of the base change
X ×Gm SpecC((t)), where Gm = SpecC[t±1] � C∗ and the field C((t)) of formal
Laurent series is equipped with the usual non-Archimedean absolute value for which
|t | = e−1.

Theorem B We have lima→0(log |a|−1)−1 · AXa = X trop.

See Fig. 2 for an illustration of TheoremB in the case Y = C∗2 andX = {z1+z2+t =
0} ⊂ C∗ × Y , and Fig. 3 for the same situation with Y = P2. When X = C∗ × X is a
product, Theorem B reduces to Theorem A′.

Theorem B is due to Rullgård [76, Thm. 9] and Mikhalkin [55, Cor 6.4] in the case
when Y = C∗n and X ⊂ C∗ × C∗n is a hypersurface; see also [81, Thm. 7.1]. The
proofs in loc. cit. use the characterization of X trop as the locuswhere the tropicalization
of the Laurent polynomial defining X fails to be affine. The approach in [55] also
emphasizes the analogy with the patchworking construction of Viro [86]. As these
proofs show, the scaled amoebae in fact converge to the tropicalization in theHausdorff
metric; see also [4].

The higher codimension case of Theorem B for Y = C∗n is stated without proof
in [41, Thm. 1.4]. I have not been able to locate a proof nor the general version of
Theorem B in the literature. At least in the case Y = C∗n , one may in principle reduce
Theorem B to the hypersurface case, using, on the one hand, Artin’s Approximation
Theorem together with the approach in [81, p. 112] and, on the other hand, the fact

Fig. 3 This picture illustrates Theorem B for the closure in P2 of the curve V ( ft ) in Fig. 2. The triangle
is the moment polytope of Y = P2 with its canonical polarization
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that the tropicalization of a subvariety is the intersection of the tropicalizations of
finitely many hypersurfaces containing the subvariety. However, the latter fact is quite
nontrivial, with incomplete proofs appearing in the literature: a correct argument can
be found by combining [12] and [15], or in [51].

Our proof of Theorem B is quite different and does not rely on reduction to the
hypersurface case. Indeed, the purpose of this paper is to show that these results on
degenerations of amoebae are rather direct consequences of a continuity property of
the fibers of certain Berkovich spaces that were introduced in [10] and contain both
Archimedean and non-Archimedean information. Our results give further evidence to
the suggestion on p. 51 of loc. cit. that such spaces are “worth studying”.

Let us explain all this in the context of TheoremA′, leaving the setting of TheoremB
to Sect. 5. Consider the field C equipped with the norm

‖ · ‖ := max{| · |∞, | · |0}, (�)

Note that ‖ · ‖ is only submultiplicative, but (C, ‖ · ‖) is nevertheless a Banach ring.
Given a complex algebraic variety X , Berkovich introduced in [10] a natural analyti-
fication XAn of X with respect to the norm ‖ · ‖ on C. See Sect. 3 for more details on
this and on what follows. The space XAn is a locally compact Hausdorff space and
comes with a natural continuous and surjective map

λ : XAn → [0, 1].

The fiber λ−1(1) is the usual complex analytic space Xh associated to X .2 For 0 <

ρ ≤ 1, λ−1(ρ) is homeomorphic to Xh . Finally, the fiber λ−1(0) is the Berkovich
analytification of X with respect to | · |0. See Fig. 4 for an illustration of (P1)An.

Theorem C The map λ : XAn → [0, 1] is open.
This result essentially says that the Archimedean fibers λ−1(ρ) converge to the non-
Archimedeanfiber X an = λ−1(0) asρ → 0+. The latter convergence property implies
Theorem A′ since there is a natural continuous, proper and surjective tropicalization
map YAn → Y trop that takes the fiber λ−1(0) to X trop and takes any other fiber λ−1(ρ)

to the scaled amoeba ρ · AX .
We prove Theorem C using the fact that the points of X an of maximal rational rank

are dense. Using resolution of singularities, such points can be realized on a blowup
as monomial valuations with rationally independent weights, and then the proof is
concluded by a direct computation. See Sect. 3.4 for details. A statement related to
Theorem C appears as Corollary 6.8 in [70].

Let us make some bibliographical comments. Amoebae (with the opposite sign
convention of ours) were introduced in [33] and have been intensively studied.

When X = V ( f ) ⊂ C∗n is a hypersurface, the complement of the amoeba AX in
Rn is convex and its connected components correspond to Laurent series expansions
of 1/ f at the origin [30,63,75,76,84]. Hypersurface amoebae can also be effectively

2 The superscript “h” stands for “holomorphic”.
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10 ρ

Fig. 4 The analytification P1,An of the complex projective line with respect to the norm ‖·‖ onC, together
with the canonical map λ : P1,An → [0, 1]. The fiber λ−1(0) is the analytification of P1 with respect to
the trivial norm, and is homeomorphic to a cone over P1(C). All the other fibers are homeomorphic to a
sphere. The points on top form a continuous section of λ. The smaller circle in the fiber λ−1(ρ) is of radius
e−1/ρ ; these circles converge as ρ → 0 to a unique point in the fiber λ−1(0)

studied using Ronkin functions [59,64,66,76]. Their boundaries are studied in [52,
54,55,77]

In dimension n = 2, there is an inequality between the area of the amoeba A f

defined by a polynomial f and the area of the Newton polygon of f [64]: the case
of equality was characterized in [59] as arising from Harnack curves in real algebraic
geometry. Further interesting relations between real algebraic curves and amoebae are
studied in [54]. The degeneration of amoebae in dimension two onto tropical varieties
is used in a striking way in [57] for enumerative problems. Planar amoebae also arise
in certain considerations in statistical thermodynamics [46,65].

In higher codimension, amoebae may or may not have finite volume [53] but
their complements retain certain weaker convexity properties [38,74]. Computational
aspects are studied in [72,82,83,87]. For more information and further references, see
the surveys [39,56].

Tropical varieties have appeared in many different contexts. We have defined them
here as images under the tropicalizationmap, but they can also be characterized in terms
of so-called initial degenerations [19,23,68,79]. They have a polyhedral structure [11,
23] that satisfies a balancing condition [35,78,80]. Tropical geometry, especially for
curves, can also, to some extent, be developed intrinsically, see [5,6,41,58]. It has
seen striking applications to algebraic geometry [17,42,54,57].

The relation between Berkovich spaces (over a valued field) and tropical geometry
appears implicitly already in the work of Bieri and Groves [11] which predates the
general theory developed by Berkovich himself. Since then, it has been systematically
studied by many authors. For finer properties of the tropicalization map, see e.g.
[1,2,6,21,34,36,62,73]. In [31,68] it is shown that the Berkovich analytification of
an algebraic variety over a non-Archimedean field is the limit of its tropicalizations
over all embeddings into toric varieties.

The general idea of using non-Archimedean techniques to study various kinds of
limiting behavior of complex analytic objects is also not new. Morgan and Shalen [60]
used valuations to compactify complex affine varieties. Favre recently used the space
XAn to recast and generalize their construction using Berkovich spaces; a statement
close to Theorem C (and even closer to Theorem C′ in Sect. 5) appears in [24]. Other
examples of how Berkovich spaces, especially analytifications of complex algebraic
varieties with respect to the trivial norm, can be used to study complex analytic phe-
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nomena can be found in [10,13,26–29,47,60]. Also related—at least in spirit—is the
procedure known as Maslov dequantization: see [40,50] and the references therein.

A version of Theorem A for a non-Archimedean absolute value was proved by
Gubler, see [35, §8, Cor. 11.13]. The techniques in this paper could likely be adapted
to give a new proof of this result, at least in residue characteristic zero, but we leave this
for future work. It would also be interesting to study the adelic amoebae associated to
varieties definedover a number field, see [23,67]. The results in this paper have recently
been used to study the topology of the complements of certain tropical varieties [61].

The organization of the paper is as follows. In Sect. 2 we recall the notion of
continuously varying families of spaces in the sense of Kuratowski. In Sect. 3 we
discuss various analytification procedures and prove Theorem thmc. Then, in Sect. 4
we study the tropicalization map from YAn to Y trop for a toric variety Y . In particular,
we prove Theorem A′. Finally, in Sect. 5 we study one-parameter families of varieties
and prove Theorem B, as well as the required fact, Theorem C′, about Berkovich
spaces.

2 Continuous families of subspaces

Consider a surjective continuous map π : X → B between topological spaces. Write
Xb := π−1(b) for b ∈ B. We’d like to study the continuity properties of b �→ Xb. To
this end, suppose that X embeds as a subset of B × Y , for some topological space Y ,
and that π is the restriction of the projection of B × Y onto the first factor. We can
then view Xb as a subset of Y for all b ∈ B.

Definition 2.1 We say that b → Xb is upper semicontinuous (usc) if given b0 ∈ B
and y ∈ Y\Xb0 , there exist neighborhoods U of y in Y and B0 of b0 in B such that
Xb ∩U = ∅ for all b ∈ B0.

Definition 2.2 We say that b → Xb is lower semicontinuous (lsc) if given b0 ∈ B
and y ∈ Xb0 and given any neighborhoods U of y in Y and B0 of b0 in B, we have
Xb ∩U �= ∅ for all b ∈ B0.

Naturally, b → Xb is continuous if it is both usc and lsc. These continuity properties
are in the sense of Kuratowski [49]. The proof of the following result is left to the
reader.

Lemma 2.3 The map b → Xb is usc iff X is closed in B × Y . It is lsc iff π : X → B
is open.

Now suppose Y is a metric space. We can then consider continuity of b → Xb in the
Hausdorff topology, which means the following: for every b0 ∈ B and every ε > 0
there exists a neighborhood B0 of b in B such that, whenever b ∈ B0, any point in
Xb0 (resp. Xb) is at distance at most ε from some point in Xb (resp. Xb0 ).

Suppose that Xb is a closed subset of Y for all b. Then continuity of b → Xb in
the Hausdorff topology implies continuity in the sense of Kuratowski. The converse
is true when Y is compact.
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3 Analytification

We recall a special case of the construction in [10, §2]; see also [8, §1.5] and [69,70].
Consider a Banach ring (k, ‖ · ‖). This means that k is a commutative ring with unit
and that ‖ · ‖ : k → R+ satisfies ‖a‖ = 0 iff a = 0; ‖a − b‖ ≤ ‖a‖ + ‖b‖ and
‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ k; and k is complete in the metric induced by ‖ · ‖. In
fact, we will only consider the case when k is a field.

Let X be a separated scheme of finite type over k. The construction in [10] associates
an analytification XAn of X with respect to the norm ‖·‖ on k. It is defined as follows.3
For any affine open subsetU = Spec A of X , where A is a finitely generated k-algebra,
letUAn be the (nonempty) set of multiplicative seminorms on A whose restrictions to
k are bounded by the norm ‖ · ‖. The topology on UAn is the weakest one for which
UAn � | · | → | f | is continuous for every f ∈ A.

It is customary to denote the points inU an by a letter such as x and the corresponding
seminorm by | · |x . The latter induces a multiplicative norm on A/px , where px is the
kernel of | · |x . Let H(x) be the completion of the fraction field of A/px with respect
to this norm.

By gluing together the spaces UAn we construct a topological space XAn. This
space is Hausdorff, locally compact and countable at infinity. The assignment x �→ px
above globalizes to a continuous map

π : XAn → X,

where X is viewed as a scheme, equipped with the Zariski topology. The assignment
X → XAn is functorial. If X ↪→ Y is an open (resp. closed) embedding, then so is
XAn ↪→ YAn. If X → Y is surjective, then so is XAn → YAn.

The analytification of the zero-dimensional affine space is equal to the Berkovich
spectrum M(k, ‖ · ‖) defined in [8, §1.2]. The canonical map X → A0 = Spec k
induces a surjective, continuous map

λ : XAn → M(k, ‖ · ‖).

We shall study this general analytification functor X �→ XAn for three types of
Banach fields (k, ‖ · ‖).

3.1 Archimedean case

First assume that k = C is the field of complex numbers and that ‖ · ‖ = | · |∞ is the
usual Archimedean norm. Denote by Xh the usual complex analytic variety associated
to X . Recall that the points of Xh can be identified with the closed points of X .

It turns out that Xh can be identified with the analytification XAn above in such a
way that π maps a point of Xh to the corresponding closed point of X . To see this, first

3 While we shall only consider the analytification as a topological space, one can also equip it with a
structure sheaf.
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300 M. Jonsson

note thatM(C, | · |∞) = {| · |∞} is a singleton. Now consider an open affine subsetU .
To each point x ∈ Uh we can associate a seminorm | · |x ∈ UAn by | f |x := | f (x)|∞.
This gives rise to a injective continuous map Uh → UAn which is surjective by the
Gelfand–Mazur Theorem, and easily seen to be a homeomorphism.

3.2 Non-Archimedean case

Next suppose that k is a non-Archimedean field. This means that ‖ · ‖ = | · |, where
| · | is a non-Archimedean, multiplicative norm on k, that is |ab| = |a| · |b| and
|a − b| ≤ max{|a|, |b|} for any a, b ∈ k. The analytifications XAn are then special
cases of theBerkovich spaces studied in [8,9].4 To conformwith the notation in loc. cit.
we write X an instead of XAn.

To any non-Archimedean field (k, | · |) is associated a value group |k∗| := {|a| |
a ∈ k∗} as well as its divisible version

√|k∗| := {r1/n | r ∈ |k∗|, n ≥ 1}. Now
suppose x ∈ X an. We can view

√|k∗| and √|H(x)∗| as Q-vector spaces. Define the
rational rank t (x) of x as the codimension of

√|k∗| in √|H(x)∗|. If X has dimension
n, then t (x) ≤ n for all x ∈ X an, see [9, Lemma 2.5.2]. In fact, t (x) is bounded by the
transcendence degree over k of the residue field of π(x). We say that x has maximal
rational rank if t (x) = n. In this case, π(x) is the generic point of an irreducible
component of dimension n, and x defines a valuation of the residue field at this point.

Our approach to the proof of Theorem C in the introduction is based on

Lemma 3.1 Assume that X has pure dimension n and that the divisible value group√|k∗| has infinite codimension in R∗+ as a Q-vector space. Then the set of points in
X an with maximal rational rank, t (x) = n, is dense in X an.

In fact, a more general statement is true. I am grateful to V. Berkovich for the following
statement and proof. (Closely related results appear as Lemma 10.1.2 of [20] and
Corollary 5.7 of [71].) Here we freely use terminology and results from [8] and [9].

Lemma 3.2 Let k be as in Lemma 3.1. Consider a k-analytic space X of pure dimen-
sion n and let X ′ be the set of points x ∈ X such that t (x) = n. Then X ′ is dense in X.

Proof Wemay assume that X is k-affinoid. Given positive numbers r1, . . . , rm whose
images in R∗+/

√|k∗| are linearly independent, define a valued field extension Kr/k
as in [8, p.22]. We can pick r such that the base change Y = X⊗̂k Kr is strictly Kr -
affinoid and of pure dimension n. The image of the analogous subset Y ′ of Y in X
under the continuous canonical map Y → X lies in X ′. This reduces the situation to
the case when X is strictly k-affinoid and k is nontrivially valued.

The set X0 of points x ∈ X with [H(x) : k] < ∞ is dense in X , and any point of
X0 has a fundamental system of strictly affinoid neighborhood, see Proposition 2.1.15
and its proof in [8]. Hence it suffices to show that every strictly k-affinoid space of pure
dimension n contains a point x with t (x) = n. By Noether normalization, the situation
is reduced to the case when X is a closed polydisc of radii one. By the assumption on
k, we can find numbers 0 < r1, . . . , rn < 1 whose images in R∗+/

√|k∗| are linearly

4 They are good k-analytic spaces without boundary.
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independent. Then the maximal point of the closed polydisc of radii (r1, . . . , rn)
belongs to X ′. ��

Now we specialize to the case when k = C is the field of complex numbers and
| · | = | · |0 is the trivial norm. Berkovich spaces over this non-Archimedean field has
seen a surprising number of applications, see for example [10,13,24,26,28,29,43,85].
Their topological structure is partially described in [13,25,43].

Consider a complex algebraic variety X of pure dimension n. Here is an example of
a point x ∈ X an ofmaximal rational rank, t (x) = n. Suppose ξ ∈ X is a closed point, X
is smooth at ξ and there exist coordinates z1, . . . , zn at ξ and positive numbers αi > 0,
1 ≤ i ≤ n. Then we can define a monomial valuation v on ̂OX,ξ � C[[z1, . . . , zn]] by
setting

v

⎛

⎝
∑

m∈Zn+

amz
m

⎞

⎠ := min{m1α1 + · · · + mnαn | am �= 0}.

The valuation v defines a point x = e−v in X an with π(x) = ξ , and we have t (x) = n
iff the numbers αi are linearly independent over Q. We call x a monomial point.

Lemma 3.3 Assume that X has pure dimension n and that x ∈ X an has maximal
rational rank t (x) = n. Then there exists a surjective birationalmorphismϕ : Y → X,
with Y smooth, and a monomial point y ∈ Y an with t (y) = n and ϕan(y) = x.

Proof The point x defines a real rank one valuation on the function field of X and the
condition t (x) = n implies that this valuation is an Abhyankar valuation. The state-
ment to be proved is then an example of local uniformization of Abhyankar valuations,
see [48]. A simple proof using Hironaka’s theorem on resolutions of singularities is
given in [22, Proposition 2.8]; see also [44, Proposition 3.7]. ��

3.3 Hybrid case

Finally we consider the “hybrid” construction of [10, §2] that combines Archimedean
and non-Archimedean information. Equip C with the norm ‖ · ‖ defined in (�), that
is,

‖ · ‖ := max{| · |∞, | · |0}.

The Berkovich spectrumM(C, ‖·‖) is the set of multiplicative seminorms | · | onC
bounded by ‖·‖. Such a seminormhas to be of the form |·|ρ∞ for someρ ∈ [0, 1], where
the case ρ = 0 is interpreted as the trivial norm. Thus we can identify M(C, ‖ · ‖)
with the interval [0, 1], so we get a surjective, continuous map

λ : XAn → [0, 1].

Concretely, this map can be defined by λ(x) = log |e|x .
Thefiberλ−1(ρ) is equal to the analytification of X with respect to themultiplicative

norm | · |ρ∞ on C (where ρ = 0 is interpreted as the trivial norm).
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302 M. Jonsson

In view of Sect. 3.1, the fiber λ−1(1) is therefore homeomorphic to (and will be
identified with) Xh in such a way that π maps a point of Xh to the corresponding
closed point of X .

For 0 < ρ ≤ 1, the fiber λ−1(ρ) is also homeomorphic to Xh : each seminorm | · |
in XAn ∩ λ−1(ρ) is of the form | f | = | f (x)|ρ∞ for some x ∈ Xh . In fact, λ−1(]0, 1])
is homeomorphic to the product ]0, 1] × Xh , see [10, Lemma 2.1].

Finally, the fiber λ−1(0) is the Berkovich analytification of X with respect to the
trivial norm on C, as in Sect. 3.2. Following [10], we denote this space by X an.

Any closed point η ∈ X gives rise to a continuous section sη of λ: if η ∈ U =
Spec A, then sη(ρ) is the multiplicative seminorm on A defined by f �→ | f (η)|ρ∞.

See Fig. 4 for a picture of the space XAn when X = P1.

3.4 Proof of Theorem C

We must prove that λ : XAn → [0, 1] is open. Recall that there exists a homeomor-
phism λ−1(]0, 1]) ∼→ ]0, 1] × Xh that commutes with λ, so the restriction of λ to
XAn\X an is open. Therefore, it suffices to prove that for any x ∈ X an, the pair (X, x)
satisfies:

(�) for any neighborhood U of x in XAn, λ(U ) is a neighborhood of 0 in [0, 1]
In fact, it suffices to prove (�) for x of maximal rational rank, since by Lemma 3.1

such points are dense in X an. Thus assume t (x) = n. By Lemma 3.3 we can find a
surjective birational morphism φ : Y → X and a monomial point y ∈ Y an such that
φAn(y) = x . Since φAn is continuous and surjective, it suffices to prove (�) for the
pair (Y, y).

Thus we may assume that X is smooth and that x is a monomial point. By assump-
tion, there exists a closed point ξ ∈ X such that v = − log |·|x is a monomial valuation
on OX,ξ in some local coordinates z1, . . . , zn at ξ , say with weights αi = v(zi ) > 0,
where α1, . . . , αn are linearly independent overQ. Upon replacing X by an open affine
neighborhood, we assume that X = Spec A is affine and that zi ∈ A for all i .

For 0 < ρ � 1, consider the following polycircle in the coordinates zi

Z ′
ρ =

{
η ∈ Xh | |zi (η)| = e−αi /ρ for 1 ≤ i ≤ n

}
.

Also write Zρ for the image of Z ′
ρ under the isomorphism λ−1(1)

∼→ λ−1(ρ). We
claim that if U is any neighborhood of x in XAn, and 0 < ε � 1, then then Zρ ⊂ U
for 0 < ρ ≤ ε2. This will show that λ(U ) ⊃ [0, ε2] and hence complete the proof.

To prove the claim, we may assume that U is of the form

U+( f, t) :=
{
y ∈ XAn | | f |y < t

}
or U−( f, t) :=

{
y ∈ XAn | | f |y > t

}

where f ∈ A and t > 0. Indeed, finite intersections of such sets form a basis of
neighborhoods of x in XAn. We consider only the case U = U+( f, t), leaving the
case U = U−( f, t) to the reader. Pick a real number s > 0 such that
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| f |x < s < t

Expand f as a power series

f =
∑

m∈Zn+

amz
m

in ̂OX,ξ � C[[z1, . . . , zn]]. This series converges in some neighborhood of ξ in Xh ,
so there exists R ≥ 1 such that

|am |∞ ≤ R|m| (3.1)

for all m, where we write |m| = m1 + · · · + mn .
Since the αi are rationally independent, there exists m̄ ∈ Zn+ such that am̄ �= 0

and 〈m̄, α〉 < 〈m, α〉 := ∑n
i=1 miαi for all m �= m̄ such that am �= 0. Note that

e−〈m̄,α〉 = | f |x < s. We choose ε small enough so that if 0 < ρ ≤ ε2, then

Rρ|m̄| ≤
√
t

s
, (3.2)

Rρ|m|e−〈m,α〉 ≤ Rρ|m̄|e−〈m̄,α〉−ε|m| when am �= 0 and m �= m̄, (3.3)

and ⎛

⎝
∑

m∈Zm+

e−|m|/ε
⎞

⎠
ρ

<

√
t

s
. (3.4)

We claim that Zρ ⊂ U for 0 < ρ ≤ ε2 for such ε. To see this, pick y ∈ Zρ . We
use (3.1)–(3.4) to estimate the terms in the series expansion of f . First,

|am̄z(η)m̄ |∞ = |am̄ |∞ · |zm̄ |1/ρy ≤ R|m̄|e−〈m̄,α〉/ρ.

Second, if m �= m̄ and am �= 0, then

|amz(η)m |∞ = |am |∞ · |zm |1/ρy ≤ R|m|e−〈m,α〉/ρ

≤ R|m̄|e−〈m̄,α〉/ρe−ε|m|/ρ ≤ R|m̄|e−〈m̄,α〉/ρe−|m|/ε.

Since m �= 0 when m �= m̄ and am �= 0, this leads to

| f |y = | f (η)|ρ∞ ≤
(

∑

m

|amz(η)m |∞
)ρ

≤
(
R|m̄|e−〈m̄,α〉/ρ)ρ

⎛

⎝1 +
∑

m �=m̄,am �=0

e−|m|/ε
⎞

⎠
ρ
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≤ R|m̄|ρe−〈m̄,α〉
⎛

⎝
∑

m∈Rn+

e−|m|/ε
⎞

⎠
ρ

<

√
t

s
· s ·

√
t

s
= t,

and hence y ∈ U = U+( f, t), completing the proof.

4 Toric varieties and tropicalization

We recall some basic definitions about toric varieties from [32]. Let N � Zn be a
lattice, M = Hom(N ,Z) the dual lattice, and  a fan in N . To each cone σ ∈ 

is associated a finitely generated monoid Sσ := σ̌ ∩ M , a finitely generated algebra
Z[Sσ ] and an affine varietyUσ = SpecZ[Sσ ]. By suitably gluing together the different
affine varieties Uσ over σ ∈ , we obtain a toric variety Y = Y .

We can also associate a tropical object Y trop = Y trop
 to  following [32, §4.1]

or [3]; see also [45] or [68].5 Namely, consider the additive monoid R := R ∪ {+∞}
equipped with the natural topology. For each cone σ ∈ , let U trop

σ = Hom(Sσ ,R)

be the set of monoid homomorphisms, and equipU trop
σ with the topology of pointwise

convergence. For example,U trop
0 = NR := N⊗ZR � Rn . The space Y trop is obtained

by gluing togetherU trop
σ for σ ∈  and contains NR as an open dense subset. It comes

with the scaling action by R∗+ induced by the same action on R. For a polarized
projective toric variety Y , the moment map gives a homeomorphism of Y trop onto the
moment polytope in MR = M ⊗Z R.

4.1 Tropicalization

As in Sect. 3, let YAn be the analytification of Y ×Z C with respect to the norm ‖ · ‖
on C. We have a continuous map

trop : YAn → Y trop

defined as follows. Let σ be a cone in . A point inUAn
σ is a multiplicative seminorm

| · | onC[Sσ ] whose restriction toC is bounded by ‖ · ‖. In particular, − log | · | defines
a monoid homomorphism from Sσ to R, and hence an element in U trop

σ . It is easy to
verify that the mapsUAn

σ → U trop
σ glue together to a globally defined continuous map

trop : YAn → Y trop.
Let λ : YAn → [0, 1] be the canonical map, and set

Y Trop := [0, 1] × Y trop and Trop := λ × trop .

5 As with the case of the analytification, the tropicalization Y trop will only be considered as a topological
space (together with an action by R∗+) and not equipped with a structure sheaf.
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This leads to a commutative diagram

YAn

λ ����������
Trop �� Y Trop

��
[0, 1]

where the map Y Trop → [0, 1] is the projection onto the first factor.

Proposition 4.1 For any toric variety Y , the map

Trop : YAn → Y Trop

is continuous, proper and surjective; hence it is also closed.

Proof Webasically argue as in Lemma 2.1 and Sect. 3 of [68], but include some details
as our setting is slightly different. The statements to be proved are local on either the
source or target, so it suffices to consider the case when Y = Uσ is affine.

In this case, the continuity of themapC[Sσ ]An → UTrop
σ is clear from the definition.

To prove properness, pick generatorsm1, . . . ,mN of themonoid Sσ . It suffices to prove
that if 0 ≤ ρ ≤ ρ′ ≤ 1 and −∞ < si ≤ ti ≤ +∞ for 1 ≤ i ≤ N , then the set

W := Trop−1
(
[ρ, ρ′] × {v ∈ U trop

σ | si ≤ v(mi ) ≤ ti for 1 ≤ i ≤ N }
)

is compact in C[Sσ ]An. Now, the characters zi := χmi , 1 ≤ i ≤ N generate C[Sσ ] as
a C-algebra; we have

C[Sσ ] � C[z1, . . . , zN ]/a

for some (monomial) ideal a ⊂ C[z1, . . . , zN ]. Under this identification, W becomes
the set of multiplicative seminorms | · | on C[z1, . . . , zN ] whose restrictions to C are
bounded by ‖ · ‖, and such that eρ ≤ |e| ≤ eρ′

, e−ti ≤ |zi | ≤ e−si for 1 ≤ i ≤ N ,
and | f | = 0 for all f ∈ a. It is then clear that W is compact, as a consequence of
Tychonoff’s Theorem.

Finally, surjectivity can be established as follows. Pick any (ρ, v) ∈ UTrop
σ and let

mi , 1 ≤ i ≤ N , be generators of Sσ as before. Set ti := v(mi ) ∈ R.
First suppose ρ = 0. Define a multiplicative seminorm | · | on C[z1, . . . , zN ] by

| ∑β aβ zβ | = max{e−〈t,β〉 | aβ �= 0}, where 〈t, β〉 = ∑N
i=1 tiβi . This seminorm

vanishes on the ideal a, and hence induces a multiplicative seminorm | · | on C[Sσ ]
whose restriction to C is the trivial norm. It is then clear that Trop(| · |) = (0, v).

Now suppose 0 < ρ ≤ 1. Let η ∈ SpecC[z1, . . . , zN ] be the closed point with
coordinates zi (η) = e−ti , 1 ≤ i ≤ N , and define a multiplicative seminorm | · | on
C[z1, . . . , zN ] by | f | = | f (η)|ρ∞. As before, this induces a multiplicative seminorm
on C[Uσ ] whose restriction to C is equal to | · |ρ∞, so Trop(| · |) = (ρ, v). ��
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4.2 Proof of Theorem A′

Let X be a complex algebraic subvariety of Y ×Z C. Then XAn is a closed subset of
YAn. Let X trop ⊂ Y trop and XTrop ⊂ Y Trop be the images of XAn under the mappings
trop and Trop, respectively. By Proposition 4.1, XTrop is closed in Y Trop. We have a
commutative diagram

XAn

λ ����������
Trop �� XTrop

π1

��
[0, 1]

The map λ : XAn → [0, 1] is continuous and surjective, and by Theorem C it is also
open. The map Trop : XAn → XTrop is surjective by definition and continuous by
Proposition 4.1. It follows from these two properties that π1 : XTrop → [0, 1] is open
and surjective.

Write π−1
1 (ρ) = {ρ} × X trop

ρ for 0 ≤ ρ ≤ 1, where X trop
ρ ⊂ Y trop. Lemma 2.3

implies that ρ �→ X trop
ρ is continuous. Theorem A′ will thus follow immediately if we

can prove that X trop
0 = X trop and X trop

ρ = ρ · AX for 0 < ρ ≤ 1.
Now, the fiber λ−1(1) of XAn is the analytification of X with respect to the

Archimedean norm | · |∞ on C. Hence the fiber X trop
1 of XTrop is equal to the amoeba

AX . Similarly, for 0 < ρ ≤ 1, λ−1(ρ) is the analytification of X with respect to the
norm | · |ρ∞ on C, and this implies that Xρ is the scaled amoeba ρ · AX for 0 < ρ ≤ 1.
Finally, the fiber X trop

0 is the image of X an ⊂ Y an under the tropicalization map
Y an → Y trop, where the analytifications are defined using the trivial norm on C. This
image is equal to the tropicalization X trop of X as defined in [35]. We should check
that this image also agrees with the definition of X trop in the introduction. On the one
hand, the tropicalization does not change under non-Archimedean field extensions,
see [35, Prop. 3.7]. On the other hand, X an may be viewed as the set of equivalence
classes of L-valued points, over all valued field extensions (L , | · |) of (C, | · |0), see [8,
3.4.2]. This completes the proof.

5 One-parameter families

Consider a complex algebraic variety X that admits a surjective morphism

p : X → Gm

whereGm = SpecC[t±1] � C∗.We can viewX as a one-parameter family of complex
algebraic varieties, and we are interested in the behavior as t → 0.

As in Sect. 3.3, letXAn be theBerkovich analytificationwith respect to the norm ‖·‖
onC, and consider the closed subsetX � ⊂ XAn of seminorms forwhich |t | = e−1. The
morphism p gives rise to a continuous surjective map pAn : XAn → GAn

m that sends
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X � to G�
m , and is equivariant with respect to the continuous maps λ : XAn → [0, 1]

and λ : GAn
m → [0, 1]. Write X �

ρ (resp. G�
m,ρ) for the fiber λ−1(ρ) inside X � (resp.

G�
m).
Note that G�

m,ρ consists of all multiplicative seminorms | · | on C[t±1] such that

|t | = e−1 and |a| = |a|ρ∞ for all a ∈ C∗. In particular, G�
m,0 is a singleton, consisting

of the restriction toC[t±1] of the multiplicative non-Archimedean norm onC((t)) such
that |t | = e−1 and |a| = 1 for a ∈ C∗. Now let 0 < ρ ≤ 1. Any seminorm | · | inG�

m,ρ

is then of the form | f | := | f (a)|ρ∞ for some a ∈ C∗, and the condition |t | = e−1

means exactly that |a|∞ = e−1/ρ . Thus G�
m,ρ is in bijection with the circle of radius

e−1/ρ in C, so G�
m can and will be identified with the closed disc �e−1 of radius e−1

in C. Under this identification we have

λ(a) =
(
log |a|−1

)−1
for a ∈ �e−1 .

Write p� : X � → �e−1 for the restriction of pAn to X �, and X �
a for the fiber above

a ∈ �e−1 . The central fiber X �
0 is isomorphic to the analytification of the base change

X ×Gm C((t)), with respect to the non-Archimedean norm on C((t)). Any other fiber
X �
a , 0 < |a| ≤ e−1, is homeomorphic to the fiber above t = a of the complex analytic

space X h .
Theorem C′ For 0 < δ � 1, the map p� : X � → �e−1 is open above �δ .

Remark 5.1 One can check that whenX = Gm × X is a product, Theorem C′ implies
Theorem C in the introduction.

Proof Using Hironaka’s theorem on resolution of singularities, we can find a proper
and surjective birational morphism Y → X , with Y smooth. Then p� : Y� → �e−1

factors through a continuous surjective map Y� → X �. Hence, if Y� → �δ is open
for some δ ∈ (0, 1), then so isX � → �δ . We may therefore assume thatX is smooth.

There exists a finite subset A ⊂ Gm such that p : X → Gm is flat above Gm\A,
see for example [37, Ch. III, Prop. 9.7]. By [18, Corollary, p. 73] this implies that
ph : X h → C∗, the analytification of p with respect to | · |∞, is open above C∗\A.
Pick δ > 0 small enough so that |a| > δ for all a ∈ A. Then p� : X � → �e−1 is open
above �δ\{0}. It remains to see that p� is open also at points on the non-Archimedean
fiber X �

0.
By the Nagata compactification theorem (see [16]) there exists a proper complex

algebraic variety X , and an open immersion X ↪→ X , with dense image, such that
p extends to a proper morphism p : X → P1. Using resolution of singularities, we
may assume that X is smooth. Again by [37, Ch. III, Prop. 9.7], p : X → P1 is
automatically flat above P1\A.

The general properties of the analytification functor imply that XAn is an open

subset of XAn
. We need to show that if x ∈ X �

0 and U is a neighborhood of x in
X �, then p(U ) is a neighborhood of 0 in �e−1 . Since the Q-vector space

√|C((t))∗|
is of dimension one, Lemma 3.2 applies. We may therefore assume that x is a point
of maximal rational rank, t (x) = n, since such points are dense in X�

0. The divisible
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value group
√|H(x)∗| of x is aQ-vector space of dimension n+1; hence x defines an

Abhyankar valuation of the function field of X of rational rank n + 1. That advantage
of havingX proper and smooth is now that this valuation admits a unique center onX ,
as a consequence of the valuative criterion of properness. The center is a point ξ ∈ X 0
such that the valuation is nonnegative on the local ring OX ,ξ

and strictly positive on
the maximal ideal.

Using [44, Proposition 3.7] or [14, Remark 3.8] we may, after a suitable blowup of
X above 0 ∈ P1, assume that there exist local coordinates z1, . . . , zn+1 at ξ , positive
integers b1, . . . , bn+1 and rationally independent positive real numbers α1, . . . , αn+1

such that t = u
∏n+1

i=1 zbii , with u a unit in OX ,ξ
, and the point x defines a monomial

valuation v on OX ,ξ
in these coordinates, with values v(zi ) = αi for 1 ≤ i ≤ n + 1.

In particular,
∑n+1

i=1 biαi = v(t) = 1.
For 0 < |a| � 1, set

Za := X �
a ∩ {|zi | = e−αi for 1 ≤ i ≤ n + 1}.

The same type of estimates as in the proof of Theorem C now show that any open
neighborhoodU of x in X � will contain Za for 0 < |a| � 1. Indeed, we may assume
U = {| f | > t} orU = {| f | < t}, where t > 0 and f ∈ OX ,ξ

. This proves that p�(U )

is an open neighborhood of 0 in �δ , as was to be shown. ��

5.1 Proof of Theorem B

The product Gm × Y is a toric variety, and we have (Gm × Y )trop = R × Y trop. The
image of (Gm × Y )� in (Gm × Y )trop is given by

trop((Gm × Y )�) = {1} × Y trop � Y trop.

Via the identification G�
m � � := �e−1 above, this induces a commutative diagram

(Gm × Y )�

p
��������������

p×trop �� � × Y trop

��
�

Now suppose X is a closed subvariety of (Gm × Y ) ×Z C � C∗ × (Y ×Z C) such
that the projection of X to C∗ is surjective. Let X † ⊂ � × Y trop be the image of X �

under p × trop. Its fiber over a ∈ � is then equal to

X†
a := trop(X �

a),

where, again, X �
a = p−1(a). If a �= 0, then X†

a = λ(a) · AXa . On the other hand, X†
0

is equal to X trop, the image of X �
0 in Y trop. This completes the proof.
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