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Abstract Given δ > 0 we construct a group G and a group ring element S ∈ Z[G]
such that the spectral measure μ of S fulfils μ((0, ε)) > C

| log(ε)|1+δ for small ε. In
particular the Novikov-Shubin invariant of any such S is 0. The constructed examples
show that the best known upper bounds on μ((0, ε)) are not far from being optimal.

Mathematics Subject Classification 20C07 · 20F65 · 57M10

1 Introduction

The most important technical problem in the general theory of l2-invariants is estab-
lishing bounds on the spectral density of group ring elements. Let us illustrate it with
three examples. For an introduction to l2-invariants see [8], or [21] for a more com-
prehensive treatment. Spectral measures of group ring elements are discussed in the
next section.

(i) The celebrated Lück approximation theorem states that the l2-Betti numbers
of a normal cover of a finite CW-complex are limits of the ordinary Betti numbers
of intermediate finite covers, normalized by the cardinality of the fibers. This is an
easy corollary of the following statement. For every C > 0 there exists a function
f : R+ → R+ such that f (ε) → 0 when ε → 0, and such that for every residually
finite group G, and every self-adjoint T in the integral group ringZ[G]whose l1-norm
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638 Ł. Grabowski

is bounded by C , we have

μT ((0, ε)) < f (ε). (1)

In other words, Lück approximation follows from having any uniform bound at all on
the spectral density around 0. Lück [20] showed that one can take f (ε) := C ′

| log(ε)| ,
where C ′ depends on C .

(ii) Another l2-invariant, the l2-torsion, is not known to be well-defined for
arbitrary normal covers. It is well-defined for all normal covers with a given deck
transformation group G if and only if for every self-adjoint T ∈ Z[G] the integral

∫ 1

0+
log(x) dμT (x)

is convergent. This is clearly a statement about the density of μT around 0. The
convergence of the integral above was established by Clair [5] and Schick [28] for a
large class of groups G, including all residually-finite ones. As a consequence, using
the little-o notation, we have

μT ((0, ε)) = o

(
1

| log(ε)|
)

, (2)

which is the best general upper bound known (see Remark 4(iii) below).
(iii) A major open problem, known as the determinant approximation conjecture,

is the analog of Lück approximation for the l2-torsion. It is currently known only
when G has the infinite cyclic group Z as a subgroup of finite index (see [21, Lemma
13.53]). It is not difficult to show that if, under the assumption stated in the example
(i), for some δ > 0 we had

μT ((0, ε)) <
C ′

| log1+δ(ε)| ,

then the determinant approximation conjecture would be true.
For a long time it has not been known if there actually exist group ring elements

whose spectral density is as large as the best known general bound (2) suggests. This
is reflected in the following conjecture made by Lott and Lück.

Conjecture 1 (Lott–Lück [18]) Let G be a discrete group. For a self-adjoint T ∈
Z[G] there exist C, η > 0 such that for sufficiently small ε we have

μT ((0, ε)) < Cεη.

Note that the bound in Conjecture 1 is very far away from the best known bound
(2): for every η > 0 and sufficiently small ε we have εη < 1

| log(ε)| . However, in this
note we show that (2) is not too far away from an optimal bound.
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Group ring elements with large spectral density 639

Theorem 2 For every δ > 0 there is a group Gδ and a self-adjoint element Sδ ∈ Z[Gδ]
such that for some constant C > 0 we have

μSδ ((0, εi )) >
C

| log(εi )|1+δ
(3)

for some sequence of positive εi converging to 0. In particular, Conjecture 1 is false
for Sδ .

The family Sδ does not invalidate the strategy in the example (iii) above of proving
the determinant approximation conjecture, because the supports of Sδ grow when
δ → 0. However, in view of how we construct Sδ , we state the following conjecture.

We say a function g : R+ → R+ is computable if there is an algorithm which given
ε ∈ Q computes g(ε).

Conjecture 3 For every continuous computable function g : R+ → R+ such that
g(ε) → 0 when ε → 0 there exists a group G and S ∈ Z[G] such that

μS((0, εi )) >
g(εi )

| log(εi )|

for some sequence of positive εi converging to 0.

Informally, Conjecture 3 claims that the best known general bound (2) is opti-
mal. We discuss some arguments in favour at the end of the introduction. Theorem 2
establishes Conjecture 3 for g(ε) = 1

| log(ε)|δ , for all δ > 0.

Remarks 4 (i) The groups Gδ in Theorem 2 are of the form [⊕ZZN
2 � (Aut(ZN

2 ) �
Z)] × (Z2

2 � Aut(Z2
2)), where N depends on δ. The elements Sδ can also be written

down explicitly.
In the statement of Theorem2, the phrase “for some sequence of positive εi converg-

ing to 0” can be replaced by “for all sufficiently small ε”. We discuss it in Remark 8.
(ii) Another way of phrasing Conjecture 1 is that the so-called Novikov-Shubin

invariants are always positive. All group ring elements Sδ in Theorem 2 have the
Novikov-Shubin invariant equal to 0. For more information and context we refer to
[21, Chapter 2]. Let us note in passing that the only groups G such that the conjecture
is known for all T ∈ Q[G], are the virtually abelian (see [22] and references there)
and virtually free groups (see [27]).

It is interesting to note the contrast between the status of Conjecture 1 and the
status of the question about the rationality of l2-Betti numbers, i.e. the Atiyah con-
jecture. Although recently [1,12,13,16,25] examples of irrational l2-Betti have been
found, it still is very plausible that the Atiyah conjecture holds when the fundamental
group is torsion-free. This is not the case with Conjecture 1. Although the groups Gδ

in Theorem 2 are not torsion-free, in the appendix we describe a previously unpub-
lished observation of the author and B. Virág: counterexamples to Conjecture 1 with
a torsion-free G can be deduced from the mathematical physics literature.
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640 Ł. Grabowski

(iii) In [10] it is shown that the proof of (2) from [28] works for T ∈ Q[G], where
G is an arbitrary sofic group.1 We do not discuss sofic groups here, see e.g. [24].

The bound (2) is the best known general bound in the following sense. If G is a
finitely generated group which is not virtually abelian or virtually free then it is not

known if there exists f such that f (ε) = o
(

1
| log(ε)|

)
and such that for every T ∈ Q[G]

there exists CT > 0 such that μT ((0, ε)) < CT f (ε).
The situation is much worse when G is not assumed to be sofic. Then it is not

known if for every T ∈ Q[G] there exists a computable function fT whose values
converge to 0 when ε → 0 and such that μT ((0, ε)) � fT (ε) for sufficiently small ε.
(in particular it is not known if (2) holds).

(iv) Even less is known when we consider the real group ring instead of the rational
one. If G is not virtually abelian or virtually free, then it is not known if for every
T ∈ R[G] there exists a computable function fT whose values converge to 0 when
ε → 0 and such that μT ((0, ε)) � fT (ε) for sufficiently small ε. The only general
result known to the author is from [29]: the bound μT ((0, ε)) � C√| log ε| holds for
T − α ∈ R[G] where T ∈ Q[G], α ∈ R, and G is a sofic group. Both here and in the
previous remark Q can be replaced everywhere by the field of algebraic numbers.

(v) Conjecture 3 does not contradict the determinant approximation conjecture,
only invalidates the proof strategy mentioned in the example (iii). Furthermore, Li and
Thom [17] establish the determinant approximation in a different setting of compres-
sions along a Følner sequence. They do not use any a priori bounds on the spectral
density. In fact their approximation result works for an arbitrary element of the group
von Neumann algebra, and such elements can have arbitrarily large spectral density
around 0.

Overview of the proof of Theorem 2. In the next section we recall some basics on
spectral measures and explain our computational tool. Variants of it were used in the
context of computing spectral measures e.g. in [1,2,6,15,25]. For proofs we refer to
[13, Section 2], where a very general version is presented. For more details on the
spectral measures and von Neumann algebras see e.g. [21, Chapters 1 and 2], or the
extremely readable textbook [26].

In Sect. 3 we explain how to deduce Theorem 2 from the existence of a measure-
preserving action � � X of a discrete group � on a probability measure space X with
certain properties. The most important property is as follows. There are finitely many
subsets X1, X2, . . . , Xn of X together with elements γ1, . . . γn , such that the following
holds. Let G be the graph whose set of vertices is X and with an edge between x and
y iff for some i we have x ∈ Xi and γi .x = y. Then there is d > 0 and a sequence of
natural numbers l1, l2, . . ., such that the probability that the connected component of
x ∈ X is a line of length at least li is more than C

ld
i
. The closer d is to 0, the closer δ

in Theorem 2 is to 0.
In Sect. 4 we construct the actions � � X with necessary properties. This is done

using the framework of Turing dynamical systems introduced in [13]. The sets Xi are

1 We warn the reader that, because of a typo, the statement of [10, Proposition 6.1(b)] is false. The correct
statement is with lim sup on the left-hand side, and “�” instead of “=”.
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Group ring elements with large spectral density 641

interpreted as states of a Turing machine and γi as instructions corresponding to a
given state. The point is to find a Turing dynamical system whose computations are
long, and such that “different computational paths do not interfere with each other”,
so that the connected components of G above are indeed lines and not trees.

There are no problems in finding Turing dynamical systems with very long com-
putational paths. In fact long enough to prove Conjecture 3, if not for the interference
condition. To make sure that different computational paths do not interfere, we use a
very specific systemwhich imitates the standard “carry” algorithm of adding numbers.
It is very explicit and this allows for checking the interference condition.

However, it seems to the author that the interference condition is more a technical
problem than a fundamental obstacle, and this is the reason whywe pose Conjecture 3.

2 Preliminaries on spectral measures

If D is a countable set then l2(D) is the Hilbert space of all functions f : D → C

such that
∑

d∈D f (d) f (d) < ∞. The indicator function of d ∈ D is denoted by ζd .
If G is a graph whose set of vertices is V then l2(G) := l2(V ).

We need to consider Hilbert spaces which are direct integrals of other Hilbert
spaces—see e.g. [11, Subsection 7.4].

The group ring R[G] of a group G is the set of formal linear combinations
∑

ag · g
where ag ∈ R, g ∈ G, and all but finitely many ag are 0, together with the obvious
addition and multiplication operations. Similarly for Z[G], Q[G] and C[G].

Let (X, μ) be a probability measure space and let � � X be an action of a discrete
group by measure-preserving transformations. The result of the action of γ ∈ � on
x ∈ X is denoted by γ.x . Consider the Hilbert space H defined as the direct integral

∫ ⊕

X
l2(�) dμ(x). (4)

Since we will need to specify different fibers in H, we denote the copy of � corre-
sponding to x ∈ X by �x . From now on we will suppress both X and dμ(x) from all
the integrals in this section. As such we could write H = ∫ ⊕ l2(�x ).

We have actions of � and of L∞(X) onH defined as follows. Both � and L∞(X)

act in a fiber-preserving fashion. For γ ∈ � and α ∈ �x we define γ.ζα := ζγα and
for f ∈ L∞(X) we define f.ζα := f (α.x)ζα . The weak completion of the algebra of
bounded operators on H generated by � and L∞(X) is denoted by � � L∞(X) and
is called the group-measure space construction. It is an example of a von Neumann
algebra. It is equipped with a ∗-operation which fulfils

〈T ζ1, ζ2〉 = 〈ζ1, T ∗ζ2〉,

for all ζ1, ζ2 ∈ H and T ∈ � � L∞(X). If T = T ∗ we say T is self-adjoint.
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642 Ł. Grabowski

Every T ∈ � � L∞(X) preserves the fibers of H. In other words there is a family
T (x), x ∈ X , of operators on l2(�x ) such that

T =
∫ ⊕

X
T (x). (5)

The von Neumann trace of T is defined by τ(T ) := ∫ 〈T ζx , ζx 〉. If T is a self-adjoint
operator on an arbitrary Hilbert space, one associates to it a projection-valued spectral
measure, i.e. a function πT from measurable subsets of R to the projections on the
Hilbert space, which has a suitable σ -additivity property. If T ∈ � � L∞(X), the
spectral measure of T is the measure μT on R which is equal to the composition
τ ◦ πT . It makes sense to compose τ with πT because for T ∈ � � L∞(X) and a
measurable D ⊂ R we have πT (D) ∈ � � L∞(X).

A particular case of the group-measure space construction is when X consists of
a single point, and � � X is the only possible action. The resulting group-measure
space construction is the group von Neumann algebra of � which is denoted by L(�).

We now focus on the situation when (X, μ) is a compact abelian groupwith the nor-
malized Haar measure and the action � � X is by continuous group automorphisms.
Let A be the Pontryagin dual of X (see [11] for more information on the Pontryagin
duality). In particular A is a discrete abelian group. We have an embedding

C[A] → L∞(X) (6)

given by the Pontryagin duality. The preimage of f ∈ L∞(X) under this embedding,
if it exists, is denoted by f̂ .

We have the dual action of � on A which is the unique action which makes the
embedding (6) equivariant. As such we obtain an embedding

C[� � A] → � � L∞(X), (7)

We have potentially two ways of computing the spectral measure of T ∈ C[� � A].
Either as an element of the group von Neumann algebra L(� � A) or, via the above
embedding, as an element of the von Neumann algebra � � L∞(X).

Lemma 5 (e.g. Proposition 2.5 in [13]) The spectral measure of T ∈ C[� � A] is the
same in L(� � A) and in � � L∞(X).

We will produce the groups Gδ and elements Sδ ∈ Z[Gδ] in Theorem 2 using
the above lemma. The groups will be constructed as � � A for suitable A and �,
but the computations showing the desired spectral properties will be carried out in
� � L∞(X).

Let us nowexplainwhy the spectral computations in��L∞(X) are sometimes easy
to perform. The point is to understand the decomposition (5). Let T ∈ � � L∞(X)

be given as a finite sum
∑n

i=1 γiχi , where γi ∈ � and χi ∈ L∞(X) are indicator
functions of some subsets Xi ⊂ X .
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Group ring elements with large spectral density 643

Consider the oriented graph G̃ associated to T as follows. The set of vertices is
� × X and there is an edge from (γ1, x1) to (γ2, x2) if for some i = 1, . . . , n we have
γ1.x1 ∈ Xi and γiγ1.x1 = γ2.x2.

Let G̃(x) be the connected component of (e, x) in G̃. Let T̃ (x) : l2(G̃(x)) →
l2(G̃(x)) be the oriented adjacency operator on G̃(x) and for i = 1, . . . , n, define

χ̃i (x) : l2(G̃(x)) → l2(G̃(x))

by χ̃i (x)ζ(γ,y) := ζ(γ,y) if γ.y ∈ Xi and χ̃i (x)ζ(γ,y) := 0 otherwise.
Consider now the oriented graph G� with edge labels from the set {γ1, . . . , γn}

defined as follows. The set of vertices is X , and there is an edge from x1 to x2 with
label γ if for some i = 1, . . . , n we have γ = γi , x1 ∈ Xi and γi .x1 = x2. Note that
there might be multiple edges between any two points of X .

Let G�(x) be the connected component of x in G� . We say G�(x) is simply-
connected if multiplying edge-labels along any closed loop gives the trivial element
of � (if a loop traverses an edge in the direction opposite to the orientation of the
edge, we invert the label). Note that in a simply-connected G�(x) there are no multiple
edges, and self-loops are labelled with the neutral element of �.

Finally, let G(x) be the graph which arises from G�(x) in the following way. If
there is an edge from x1 and x2 with label γ then we replace it by an edge with
label equal to #{i : x1 ∈ Xi and γi = γ } ∈ N. Let T (x) : l2(G(x)) → l2(G(x)) be
the oriented and labelled adjacency operator on G(x), i.e. the unique operator such
that 〈T (x)ζx , ζy〉 is equal to the sum of labels on edges from x to y. Let us define
χi (x) : l2(G(x)) → l2(G(x)) by χi (x)ζy := ζy if y ∈ Xi and χi (x)ζy := 0 otherwise.

Let Xs f be the subset of X consisting of those x for which G�(x) is simply-
connected and finite.

Let K be the Hilbert space

∫ ⊕

X\Xs f
l2(G̃(x)) ⊕

∫ ⊕

Xs f
l2(G(x)).

We have a ∗-embedding of the von Neumann subalgebra L(T ) generated by
T, χ1, . . . , χn ∈ � � L∞(X) into B(K), induced by

T �→
∫ ⊕

X\Xs f
T̃ (x) ⊕

∫ ⊕

Xs f
T (x)

χi �→
∫ ⊕

X\Xs f
χ̃i (x) ⊕

∫ ⊕

Xs f
χi (x)

Under this embedding, U ∈ L(T ) decomposes and we denote the resulting decom-
position by

∫ ⊕

X\Xs f
Ũ (x) ⊕

∫ ⊕

Xs f
U (x).
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644 Ł. Grabowski

A direct computation shows

τ(U ) =
∫

X\Xs f
〈 Ũ (x) ζ(e,x), ζ(e,x)〉 +

∫
Xs f

1

|G(x)| tr(U (x)),

where tr(U (x)) = ∑
v∈G(x)〈U (x)ζv, ζv〉 dμ(x) is the standard trace of a finite-

dimensional endomorphism. Accordingly, for self-adjoint U the spectral measure μU

decomposes as

μU = μ1
U + μ2

U . (8)

The measure μ2
U (D) of a measurable subset D ⊂ R is given by

μ2
U (D) =

∫
Xs f

1

|G(x)|μU (x)(D) dμ(x).

Note that μU (x) is the spectral measure of a finite-dimensional endomorphism U (x),
i.e. it is simply the set of eigenvalues of U (x) with multiplicities. This makes μ2

U
relatively easy to compute. The operators Sδ we will construct to prove Theorem 2
will be such that already μ2

Sδ
fulfils the claimed inequality (3).

3 Turing dynamical systems with long computational chains

It is convenient to construct our group ring elements using Turing dynamical systems
introduced in [13], so we start by adapting some definitions from [13, Section 4]. All
sets and subsets are measurable whenever it makes sense (and the checks that the sets
we define are measurable are straightforward).

Let (X, μ) be a probability measure space and � � X be a measure-preserving
action of a countable discrete group �. The result of the action of γ ∈ � on x ∈ X
is denoted by γ.x . A dynamical hardware is the following data: (X, μ), the action
� � X , and a division X = ⊔n

i=1 Xi of X into disjoint measurable subsets. For
brevity, we denote such a dynamical hardware by (X).

Suppose we are given a dynamical hardware (X) and we choose three additional
distinguished disjoint subsets of X , each of which is a union of certain Xi : the initial
set I , the rejecting set R, and the accepting set A (all or some of themmight be empty).
Furthermore, suppose that for every set Xi , we choose one element γi of the group �

in such a way that

(i) the elements corresponding to the sets Xi which are subsets of R ∪ A are equal
to the neutral element e of �,

(ii) if γi �= e then μ({x ∈ Xi : γi .x = x}) = 0.

Adynamical software for a given dynamical hardware (X) consists of the distinguished
sets I, A and R, and the choice of elements γi , subject to the conditions above. Each
pair (γi , Xi ) is referred to as an instruction. The set γi .Xi is referred to as the resulting
set of the instruction (γi , Xi ).
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Group ring elements with large spectral density 645

Define TX : X → X by putting TX (x) := γi .x for x ∈ Xi . A Turing dynamical
system is a dynamical hardware (X) together with a dynamical software for (X). We
will denote a Turing dynamical system as just defined by (X, TX ).

A computational chain is a sequence x, TX (x), T 2
X (x), . . . , T l−1

X (x) such that x ∈
I , T l−1

X (x) ∈ A ∪ R, and such that l − 1 is the smallest integer for which T l−1
X (x) ∈

A ∪ R. Note that it follows that T l
X (x) = T l−1

X (x). The length of such a chain is l.
Our task is to construct a Turing dynamical system for which there is a subset

Y ⊂ X which is a union of disjoint computational chains, and such that

(A) there exist d > 0, C > 0, and infinitely many natural numbers l such that the
measure of the set of those x ∈ Y which are in computational chains of length at
least l is more than C

ld

(B) TX (X\Y ) ⊂ X\Y .
(C) I ∩ TX (X) = ∅.

We will construct such Turing dynamical systems in Sect. 4 (with arbitrarily small
d). In this sectionwe explain how (X, TX ) gives rise to an operator in the vonNeumann
algebra � � L∞(X) whose spectral measure is large around 0.

Let χi ∈ L∞(X) be the indicator function of Xi and let χI be the indicator function
of I .

Theorem 6 Let (X, TX ) be a Turing dynamical system as above which fulfils (A), (B)
and (C). Consider the operator

T :=
∑

(γi ,Xi )∈P

γiχi ∈ � � L∞(X),

where P is the set of those instructions whose group element is not e. Let

S := 5 + 2(T + T ∗) − 4χI ∈ � � L∞(X).

Then there is a constant C ′ > 0 and a sequence ε j > 0 converging to 0 such that

μS((0, ε j )) � C ′

| log(ε j )|d+1 .

Proof Recall that Y ⊂ X is a union of disjoint computational chains with properties
(A), (B) and (C). The property (B) implies that for y ∈ Y the connected component
G(y) is the directed line:

• → • → . . . → •.

In particular Y ⊂ Xs f .
Furthermore (C) implies that only the first point of the chain is in the initial set I . It

follows that S(y) is the adjacency operator on the graph on Fig. 1, where the number
of nodes is equal to the length of the computational chain of y.
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646 Ł. Grabowski

Let the adjacency operator on the graph on Fig. 1 with m nodes be called Sm . The
next lemma follows from a linear algebra calculation which we postpone to Sect. 5.

Lemma 7 There is 0 < D < 1 such that for all m � 2 the adjacency operator Sm

has a positive eigenvalue smaller than Dm.

The equality (8) together with the assumption (A) imply now, for all l � 2 from
the condition (A),

μ2
S((0, Dl)) � 1

l
· C

ld

Putting ε = Dl we obtain μS((0, ε)) � μ2
S((0, ε)) � C| log(D)|d+1

| log(ε)|d+1 .

Remark 8 The proof shows that the sequence of ε j in the statement of Theorem 6 can
be taken to be ε j := Dl j , where D is a number in (0, 1) and l j are the lengths fulfilling
the assumption (A). In the next section, we show that the sequence l j can be taken
to be l j := L j for a suitable natural number L . It follows that for ε ∈ (ε j+1, ε j ) we
have

μ((0, ε)) � μ((0, ε j+1)) � C ′

| log(ε j+1)|d+1 = C ′

| log(Dl j+1)|d+1
=

= C ′

| log(DL·l j )|d+1
=

C ′
L

| log(ε j )|d+1 �
C ′
L

| log(ε)|d+1 .

This shows that the inequality (3) in Theorem 2 is true, after decreasing the constant,
for all sufficiently small ε.

4 The “carry” algorithm as a Turing dynamical system

Informally speaking, the Turing dynamical systems we construct imitate a Turing
machine which given the input 000 . . . 0 performs the traditional “carry” algorithm
to add 1 to 000 . . . 0 in the (D+ 1)-ary system for some fixed D, and keeps doing it
until it reaches DDD . . . D. The larger D we choose, the closer to 0 the constant d in
property (A) will be.

There are no problems in obtaining the property (A). Small complications to the
idea above arise because of (B) and (C).

Let N be a natural number and let M := ZN
2 , S := Z2

2. They should be thought of
as respectively the alphabet and the set of states of a Turing machine. Let us denote

• • . . . •
2 2 2

2 2 2
5 51

Fig. 1 Example graph G(y)
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Group ring elements with large spectral density 647

the non-zero elements of S by inc- last- digit, carry, and zero- prev- digits. The
element 0 ∈ S will be called void.

The element 0 ∈ Mwill be denoted by • (the “empty” symbol), and other elements
by 0,1,2, . . . ,D (the order does not matter). The symbol D is also used to denote the
natural number 2N − 2.

For all pairs of distinct elements σ, τ ∈ S\{void} we choose an automorphism of
S denoted by (σ→τ) ∈ Aut(S) which sends σ to τ . Similarly for all x, y ∈ M\{•}
we choose (x→y) ∈ Aut(M) which sends x to y.

Let us introduce a notation for subsets of MZ × S by giving examples. The set of
those ((mi )i∈Z, s)) ∈ MZ × S such that m0 = x, m1 = y, s = σ is denoted by

[xy, σ ].

A hatted symbol means that we allow everything but not that symbol, for example

[x ŷ, σ ]

is the subset of MZ × S consisting of those ((mi ), s) such that m0 = x, m1 �= y and
s = σ . Finally ∗ means that we allow any symbol, for example

[∗ x̂, σ ]

is the subset of MZ × S consisting of those ((mi ), s) such that m1 �= x and s = σ .
Concrete elements from the sets as above will be denoted with curly brackets, for

example (x0 x1, σ ) is an element of the set [x0 x1, σ ].
For the rest of this section X is the compact abelian group MZ × S, and � =

(Aut(M) � Z) × Aut(S). The action � � X is as follows. Aut(S) acts on S in the
natural way, Aut(M) acts on the copy of M in the 0-coordinate of MZ in the natural
way, and the generator t ∈ Z acts by shifting, i.e. t.(xy, σ ) = (xy, σ ).

We define a dynamical hardware (X) by choosing the division X = ⊔
Xi to consist

of the cylinder sets

[xyz, σ ], (9)

where x,y,z ∈ M, and σ ∈ S.
The dynamical software is defined by the following instructions. The sets below

are not of the form (9), but they are finite disjoint unions of sets of the form (9), so
they give rise to instructions in a natural way. The left hand side is the element of �

which corresponds to the set on the right hand side.

(0→1) [0 •, inc- last- digit] (S1)

· · ·
(D−1→D) [D−1 •, inc- last- digit] (S2)

(inc- last- digit→carry) [D •, inc- last- digit] (S3)
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t−1 [D, carry] (S4)

t (D−1→D)(carry→zero- prev- digits) [D−1 •̂, carry] (S5)

t (D-2→D-1)(carry→zero- prev- digits) [D−2 •̂, carry] (S6)

. . .

t (0→1)(carry→zero- prev- digits) [0 •̂, carry] (S8)

t (D→0) [D •̂, zero- prev- digits] (S9)

(D→0)(zero- prev- digits→inc- last- digit) [D •, zero- prev- digits]. (S10)

We will refer to the pairs above also as instructions.
If a cylinder set as in (9) is not a subset of one of the sets above, its associated

element of � is defined to be the neutral element. Finally, we define the initial set I to
be [•D, zero- prev- digits], the accepting set A to be [•, carry], and the rejecting
set R to be the empty set.

We will now define a set Y for which the properties (A), (B) and (C) hold. For
j = 1, 2, . . . let

Y ( j) := [•DD j−1 •, zero- prev- digits] ∪
∪ TX ([•DD j−1 •, zero- prev- digits]) ∪
∪ T 2

X ([•DD j−1 •, zero- prev- digits]) ∪ . . . ,

and let Y := ⋃
j Y ( j).

Proposition 9 The Turing dynamical system (X, TX ) and the set Y just defined fulfil
the properties (A), (B) and (C). Furthermore, as D grows to infinity, we can take d in
(A) converging to 0.

Proof First we need to check that each Y is indeed a union of disjoint computational
paths. We first explicitly check that the map TX indeed acts as a machine which keeps
adding 1 to its input. We take
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x ∈ [•DD j−1 •, zero- prev- digits],

denote it by

(•DD j−1 •, zero- prev- digits)

and write its trajectory under TX in Fig. 2. Now a direct examination shows that each
trajectory ends in the accepting set [•, carry] (so that each trajectory is a computa-
tional chain) and that the trajectories are indeed pair-wise disjoint.

It is straightforward to show that the condition (A) is fulfilled: since any number
between 00 . . . 0 ( j times) and DD . . . D ( j times) appears on the tape, it follows
that the computational chain as in Fig. 2 has length at least (D + 1) j . For the same
reason, and since the measure on X is the product measure, we have that the measure

of Y ( j) is at least 1
|S|

(
D+1
D+2

) j (
1

D+2

)2
.

It follows that in the condition (A) we can take C := (|S|(D + 2))−2, and any d

such that 1
(D+1)d <

(
D+1
D+2

)
.

Conditions (B) and (C) follow froma careful case-by-case analysis of our dynamical
software. Let us start with (C). We have to check that the resulting set of every instruc-
tion (S1)–(S10) intersects trivially the initial set I = [•D, zero- prev- digits]. Just
by considering the resulting state (i.e. the S-coordinate of the resulting set), we obtain
the trivial intersection of I with the resulting sets of instructions (S1)–(S4) and (S10).

The resulting set of (S5) is

t (D−1→D)(carry→zero- prev- digits).[D−1 •̂, carry],

which is equal to [D •̂, zero- prev- digits], which clearly has trivial intersection with
[•D, zero- prev- digits]. Instructions (S6)–(S8) are checked similarly.

For (S9) the resulting set is

t (D→0).[D •̂, zero- prev- digits],

(•DDj−1 •, zero-prev-digits) (•0j−2 10 •, inc-last-digit)
(•0DDj−2 •, zero-prev-digits) . . .

. . . (•Dj−1 0 •, inc-last-digit)
(•0j−1 D •, zero-prev-digits) (•Dj−1 1 •, inc-last-digit)
(•0j−1 0 •, inc-last-digit) . . .

(•0j−1 1 •, inc-last-digit) (•Dj−1 D •, inc-last-digit)
. . . (•Dj−1 D •, carry)
(•0j−1 D •, inc-last-digit) (•Dj−2 DD•,carry)
(•0j−1 D •,carry) . . .

(•0j−2 0D •, carry) (•DDj−1 •, carry)
(•0j−2 1D •, zero-prev-digits) (•DDj−1 •, carry)

Fig. 2 Trajectory of a point under the map TX
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which is equal to [0 •̂, zero- prev- digits], which also intersects the initial set triv-
ially.

Let us now check the condition (B). We just saw that the first element in Fig. 2
has no preimage under TX . On the other hand it is clear that every other element in
Fig. 2 has exactly one preimage under TX which is also an element of Y (namely the
preceding element in Fig. 2). It follows that to check the condition (B) it is enough
to show that for every pair ((β1, B2), (β2, B2)) of different instructions from among
(S1)–(S10) we have

β1.B1 ∩ β2.B2 = ∅.

We only consider those pairs of instructions where it is not enough to look at the
resulting state to show the trivial intersection. For example we would not consider the
pair (S1) and (S3), because

(0→1).[0 •, inc- last- digit] ⊂ [inc- last- digit]

and

(inc- last- digit→carry).[D •, inc- last- digit] ⊂ [carry],

and so the intersection is trivial.
As such we consider three cases, depending on what is the resulting state.

Case 1. The resulting state is inc- last- digit.
We have to consider the instructions (S1)–(S2) and (S10). If both instructions are

from among (S1)–(S2), it is enough to look at the underlined symbol. Thuswe consider
a pair consisting of (S10) and one of the instruction (S1)–(S2). As for (S10), we have

(D→0)(zero- prev- digits→inc- last- digit). [D •, zero- prev- digits] =
= [0 •, inc- last- digit],

which is disjoint from the resulting sets of the instructions (S1) and (S2), as they are
both contained in [̂0, inc- last- digit].
Case 2. The resulting state is carry.

We have to consider the instructions (S3) and (S4). For (S3) we have

(inc- last- digit→carry).[D •, inc- last- digit] = [D •, carry],

and for (S4) we have

t−1.[D, carry] = [∗D, carry],

and so the intersection is trivial because D �= •.
Case 3. The resulting state is zero- prev- digits.
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• • . . . •
2 2 2

2 2 2
5 51

Fig. 3 The graph whose adjacency matrix is Sm

Wehave to consider the instructions (S5)–(S8) and (S9). If both instructions are from
among (S5)–(S8), considering the symbol immediately to the left of the underlined
symbol establishes the trivial intersection.

For the case when one of the instruction is (S9), note that the resulting sets of
(S5)–(S8) are all contained in

[̂0 ∗, zero- prev- digits],
and the resulting set of (S9) is contained in [0 ∗, zero- prev- digits].

We have all the ingredients to finish the proof of Theorem 2.

Proof of Theorem 2 For every d > 0, Proposition 9 gives a Turing dynamical system
(X, TX ) which fulfils the properties (A), (B) and (C). Theorem 6 gives us an operator
S ∈ ��L∞(X) such that for some constantC ′ > 0 and a sequence ε j > 0 converging
to 0 we have

μS((0, ε j )) � C ′

| log(ε j )|d+1 .

Furthermore,we constructed our Turing dynamical system in such away that (X, μ)

is a compact abelian group with the normalized Haar measure, the action � � X is by
continuous group automorphisms, and the indicator functions of Xi are in the image of
the Pontryagin duality embedding Q[A] → L∞(X), where A is the Pontryagin dual
of X . As such, Lemma 5 gives us an element Ŝ ∈ Q[� � A] whose spectral measure
is the same as the spectral measure of S. This finishes the proof. ��

5 Proof of Lemma 7

We finish this note by proving Lemma 7. Let us recall the statement for reader’s
convenience.

Lemma 7 There is 0 < D < 1 such that for all m � 2 the adjacency operator Sm

has a positive eigenvalue smaller than Dm.

Proof The matrix of the adjacency operator of the graph on Fig. 3 with m nodes is

Um :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 2
2 5 2

2 5
. . .

5 2
2 5

⎞
⎟⎟⎟⎟⎟⎟⎠
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We check by hand that det(U1) = det(U2) = 1, and we prove inductively that
det(Um) = 1 for all m > 1 by expanding the determinant along the last row.

Note that the matrix

Vm :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2
2 0 2

2 0
. . .

0 2
2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

is equal to 2V ′
m , where V ′

m is the adjacency matrix of a bipartite graph of maxi-
mal degree 2. Recall that the spectrum of a bipartite graph is symmetric ([3, Propo-
sition 8.2]). It follows that the eigenvalues of Vm are contained in [−4, 4] and
there are as many eigenvalues in [−4, 0] as in [0, 4], and so the eigenvalues of
UM + Diag(4, 0, . . . , 0) are contained in [1, 9], and at least half of them are con-
tained in [5, 9] (“at least” because of the eigenvalue “5”).

Let us recall the Weyl’s inequality for rank one perturbations (e.g. [14, Theorem
4.3.4]). Let λ1 � · · · � λm be the eigenvalues of Um and κ1 � . . . , κm be the
eigenvalues of Um + Diag(4, 0, . . . , 0). Then for k = 1, . . . , m − 1 we have

κk � λk+1.

It follows that 1 � λ2, and 5 � λ�m/2�+1. Estimating �m/2� by m
3 from below we

obtain

1 = det(Um) = λ1λ2 . . . λm > λ1 · 5m
3 ,

and therefore we can take D := 5
1
3 . ��

Remark 10 We note in passing that the matrices Um from the proof of Lemma 7 give
a counterexample to the determinant approximation conjecture in the context of graph
sequences convergent in the Benjamini-Schramm sense (see [19, Chapter 19] for the
definition). Such counterexamples have been known among experts for a fairly long
time, although none seem to have been published. This particular counterexample is
due to L. Lovász.

Indeed, on the one hand we have that det(Um) = 1 for all m. On the other hand,
we have established in the proof of Lemma 7 that at least third of the eigenvalues of
det(Um + Diag(4, 0, . . . , 0)) are larger or equal to 5, and all of them are larger or

equal to 1. This shows (det(Um +Diag(4, 0, . . . , 0)))
1
m � 5

1
3 . We conclude that given

a sequence of finite graphs which is convergent in the Benjamini-Schramm sense to
a Cayley graph of Z, it is not true that the normalized determinants of the adjacency
matrices on the finite graphs converge to the Fuglede–Kadison determinant of the
adjacency operator the Cayley graph.

Acknowledgments The authorwould like to thankHolger Kammeyer, Thomas Schick and an anonymous
referee for valuable comments.
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Appendix: A counterexample to Conjecture 1 from mathematical physics

In this appendix we present the following unpublished observation of the author and B.
Virág: a counterexample to Conjecture 1 can be also deduced from the mathematical
physics literature.

Let us specialize to the following situation. Let Z � X be an essentially free action
(i.e. free on a subset of full measure). Let t ∈ Z be a fixed generator, let F : X → R

be a bounded measurable function and let T ∈ � � L∞(X) be

T := t F + Ft−1 = t F + t−1(t.F). (10)

For x ∈ X let T (x) : l2(Z) → l2(Z) be defined on the standard basis vectors as

T (x)ζk := F(tk .x)ζk+1 + F(tk−1.x)ζk−1. (11)

Let us identify l2(Z) with l2(Z) in the natural way. As explained in Sect. 2, T is an
operator on

∫ ⊕
X l2(Z) dμ(x) which preserves the fibers l2(Z). A direct check shows

that T decomposes as

∫ ⊕

X
T (x) dμ(x).

Since τ(T ) = ∫
X 〈T (x)ζ0, ζ0〉, we have the following formula for the spectral

measure of μT of T :

μT (D) =
∫

X
〈P(x, D)ζ0, ζ0〉 dμ(x), (12)

where D ⊂ R is a measurable set and P(x, D) is the spectral projection of T (x)

corresponding to the set D (see e.g. [13, Lemma 1.9]).
The measure D �→ 〈P(x, D)ζ0, ζ0〉 on R is called the rooted spectral measure

of T (x). Equation (12) can be concisely summarized as follows. The family T (x),
x ∈ X , is a random operator, and the spectral measure of T is equal to the expected
rooted spectral measure of T (x).

We specialize further as follows. Let (S, ν) be a compact abelian group with the
normalizedHaarmeasure, let A be its Pontryagin dual, and let X = ∏

Z
S togetherwith

the product measure. Consider the actionZ � X given by shifting the coordinates. Let
f : S → R be a function in the image of the Pontryagin duality map Q[A] → L∞(S),
and let F : X → R be defined as F((xi )) := f (x0).

For x = (xi ) ∈ X the formula (11) becomes

T (x)ζk = f (xk)ζk+1 + f (xk−1)ζk−1. (13)

Such families of operators have been studied in mathematical physics at least since
[7]. We provide a small dictionary. First, usually there would be no reference to a
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concrete measure space X . The Eq. (13) would be written as

Hζk = W (k)ζk+1 + W (k − 1)ζk−1, (14)

together with the assumption that the numbers W (k) are random, independent, and
distributed according to some probability measure ϕ on R. In the case of (13) the
measure ϕ is the push-forward of ν through f , i.e. ϕ(D) := ν( f −1(D)).

The operator H is the Hamiltonian associated to the one-dimensional disordered
chain whose disorder is i.i.d., distributed according to the law ϕ. The spectral measure
of the original T ∈ Z � L∞(X) given by (10) is referred to as the expected spectral
measure, or the expected density of states, in order to differentiate it from the rooted
spectral measures of the operators T (x), x ∈ X .

In his very impressive article, Dyson [7] considered a disorder distributed according
to some specific measure ϕ. He showed that for that specific disorder the expected
spectral measure μH has the property

μH ((0, ε)) ≈ 1

| log(ε)|2 , (15)

where≈means that the ratio of both sides approaches a positive constant when ε → 0.
Since then, such behaviour is referred to as the Dyson’s singularity. It is the most
eminent qualitative difference between the disordered chains and the situation without
a disorder, i.e. when all W (k) are equal to 1.

We cannot use Dyson’s result to give a counterexample to Conjecture 1, because
the measure ϕ he considered is not supported in a bounded interval. Accordingly ϕ is
not a push-forward of ν through F ∈ L∞(X) (since, by definition, such F must be
bounded, and so the push-forward of anymeasure through F is supported in a bounded
interval). In particular, the Hamiltonian considered by Dyson is not an element of the
von Neumann algebra Z � L∞(X).

However, Dyson’s singularity (15) has been conjectured to appear for arbitrarymea-
sures ϕ which have a non-atomic part. So far, the exact form (15) has been confirmed
only via heuristic arguments (e.g. [9]). However, the following has been rigorously
established. Recall that G ∈ L1(R) is the density of a measure ϕ if for every measur-
able D ⊂ R we have ϕ(D) = ∫

D G(x) dx .

Theorem 11 (Campanino and Perez [4]) Let W in (14) be distributed according to a
measure ϕ with a continuous density supported in an interval (a, b), where b > a > 0.
Then the expected spectral measure μH of (14) has the property that

μH ((0, ε)) � C

| log(ε)|3

for some C > 0 and all sufficiently small ε.

As such, to provide a counterexample to Conjecture 1, it is enough to find a compact
abelian group (S, ν) together with its Pontryagin dual A and f̂ ∈ Q[A] such that the
push-forward of ν through f : S → R has a continuous density supported in some
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interval (a, b), where b > a > 0. A simple exercise in the Fourier transform shows
that we can take A = Z3 and f̂ = s1 + s−1

1 + s2 + s−1
2 + s3 + s−1

3 + 7.
Together with Lemma 5 we obtain the following.

Corollary 12 Let T ∈ Q[Z3 � Z] be given as

T := (s1 + s−1
1 + s2 + s−1

2 + s3 + s−1
3 + 7)t

+ t−1(s1 + s−1
1 + s2 + s−1

2 + s3 + s−1
3 + 7).

Then the spectral measure μT of T has the property that

μT ((0, ε)) � C

| log(ε)|3

for some C > 0 and all sufficiently small ε.

Remarks 13 At least one other example of a group ring element with an interesting
spectral measure can be exhibited using mathematical physics literature. Let a be the
non-trivial element of Z2 and let T ∈ R[Z2 � Z] be given as T := t + t−1 + β · a ∈
R[Z2 � Z], where β ∈ R. Then [23] implies, repeating the discussion above, that when
β is large enough, the spectral measure of T has only singularly continuous part, i.e. it
has no atoms and it is not possible to write it as f λ, where f is a measurable function
and λ is the Lebesgue measure.

This is the only example of such behaviour known to the author. It has been con-
jectured that no singularly continuous part appears in the spectral measure of T when
T is an element of the group ring of a torsion-free group ([29]). Unfortunately the
mathematical physics literature does not seem to provide a counterexample to that
conjecture.
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