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Abstract In the present article we investigate properties of the category of integral
Grothendieck-Chow motives over a field. We discuss the Krull–Schmidt principle
for integral motives, provide a complete list of generalized Severi-Brauer varieties
with indecomposable integral motive, and exploit a relation between the category of
motives of twisted flag varieties and integral p-adic representations of finite groups.
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1 Introduction

In the present article we investigate properties of the category of the integralGrothen-
dieck-Chow motives over a field.

A short overview of recent results proved using motivic methods is given e.g. in
the introduction of [11].

A wide literature is devoted to the problem of finding of integral motivic decompo-
sitions via lifting decompositions given modulo some integers. For example, Haution
and Vishik study liftings of motivic decompositions of smooth projective quadrics
fromZ/2Z-coefficients toZ-coefficients [14,24]. De Clercq studies liftings of motivic
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62 N. Semenov, M. Zhykhovich

decompositions of twisted flag varieties fromZ/pZ-coefficients to Fpn -coefficients in
[9] (p is a prime number). Vishik and Yagita prove some lifting results in [25, Section
2]. Finally, Petrov, Semenov, and Zainoulline provide a lifting criterion from Z/mZ-
coefficients to Z-coefficients for twisted flag varieties of inner type in [22, Thm. 2.16]
for an integer m.

Another direction of research involves the Krull–Schmidt principle in the category
of Chowmotives. In [7] Chernousov andMerkurjev proved the Krull–Schmidt princi-
ple for the motives of twisted flag varieties satisfying certain conditions. In particular,
they proved that the motive with Z(p)- or Zp-coefficients (p is a prime number) of
any twisted flag variety of a simple group uniquely decomposes into a direct sum of
indecomposable motives (up to isomorphism and permutation of the factors).

Vishik proved in [24] that theKrull–Schmidt principle holds for the integralmotives
of projective quadrics. However, counterexamples [7, Example 9.4] and [5, Corollary
2.7] provide projective homogeneous varieties for which the integral complete motivic
decomposition is not unique.

The following question was raised by experts: to what extent does the Krull–
Schmidt principle fail for the integral motives of twisted flag varieties? For example,
is it true that two complete motivic decompositions of a twisted flag variety become
the same over an algebraic closure of the base field? If this holds, we say that the
motivic decompositions are relatively equivalent (see Definition 5.1 below) and if any
two complete decompositions of our variety are relatively equivalent, we say that the
relative Krull–Schmidt principle holds.

Note that the motivic decompositions in the counterexamples mentioned above
are relatively equivalent and therefore do not provide counterexamples to the relative
Krull–Schmidt principle.

Section 5 of the present article is devoted to this problem, where we provide exam-
ples and counterexamples. Our proofs rely on our Theorem 3.3 proved in Sect. 3,
which can be interpreted as a classification of all integral motivic decompositions
modulo relative equivalence in terms of reductions modulo primes. The class of vari-
eties, which we consider, consists of smooth projective varieties possessing a finite
Galois splitting field and for which the Rost nilpotence principle holds. In particular,
this includes the twisted flag varieties.

We remark that we do not see, how to prove our Theorem 3.3 referring to the
existing literature and combining arguments there. The most close article is [22] and
Theorem 2.16 there, but unfortunately, its proof contains parts (e.g. the proof of the key
Proposition 2.15),which are not plausible to us (including to one of the authors of [22]).
Moreover, [22, Thm. 2.16] contains the condition that themotivic decomposition under
consideration should be Z/mZ-free (in the terminology of [22]), and this condition
is not easy to check in practice (cf. Remark 3.5). In the present article we provide a
self-contained alternative approach.

The last section of the article is devoted to integral motivic decompositions of
generalized Severi-Brauer varieties. This problem has a long history, starting probably
in 1995, when Karpenko proved that the integral motive of the classical Severi-Brauer
variety of a division algebra is indecomposable (see [16]). After thatmanyworks (let us
mention here [5,9,19,27,28]) were dedicated to the study of motivic decompositions
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Integral motives and Krull–Schmidt 63

of generalized Severi-Brauer varieties. In particular, Karpenko proved that the integral
motive of SB2(A) is indecomposable, if A is a division algebra with 2-primary index.

However, till this moment there was no complete answer to the question, when
the integral motive of a generalized Severi-Brauer variety is indecomposable. In the
last section of this article we show that the above examples give the exact list of
Severi-Brauer varieties with this property.

Section 4 is devoted to the motives with coefficients in a discrete valuation ring. We
formulate all results in this section over the localization Z(p) of Z at a prime p or over
the p-adic integers Zp. On the other hand, the most results of this section hold over
any discrete valuation ring (sometimes complete). To avoid too technical exposition
we decided to restrict ourselves to these two rings.

The interest on motives with Z(p)- or Zp-coefficients stems in part from the proof
of the Bloch-Kato conjecture by Rost and Voevodsky, where the fact that the ring of
coefficients is flat over Z is essential.

Finally, we exploit a relation between the motives of twisted flag varieties and the
category of representations on lattices over d.v.r. This relation allows us to use results
from the representation theory to prove motivic results, as well as use motivic results
to give geometric proofs for results in the representation theory. We illustrate this
principle in Props. 4.7, and 4.8 (Maranda and Conlon theorems). We remark that the
relation between motives and representations appears already in [7].

2 Category of Chow motives

Let F be a field. In the present article we work in the category of the Grothendieck-
Chow motives over F with coefficients in a commutative unital ring � as defined in
[10].

If � = Z, then we speak about integral motives. For a motive M over F and a field
extension E/F we denote by ME the extension of scalars.

We denote the Tate motive with twist n by �(n). A motive M is called split (resp.
geometrically split), if it is isomorphic to a finite direct sum of Tate motives (resp. if
ME is split over some field extension E/F).

For a smooth projective variety X over F we denote by M(X) the motive of X in
the category of Chow motives. Every motive M is determined by a smooth projective
variety X and a projector π ∈ CH(X × X), where CH stands for the Chow ring of X
modulo rational equivalence. A motivic decomposition of a motive M is a decompo-
sition into a direct sum. A motivic decomposition M = ⊕

Mi is called complete, if
all motives Mi are indecomposable.

Motivic decompositions of a motive M = (X, π) correspond to decompositions of
the projector π into a sum of (pairwise) orthogonal projectors. For a field extension
E/F and a variety Y we call a cycle ρ ∈ CH(YE ) rational, if it is defined over F , i.e.
lies in the image of the restriction homomorphism CH(Y ) → CH(YE ). We say that ρ
is F-rational, if we want to stress F .

We say that the Rost nilpotence principle holds for X , if the kernel of the restriction
homomorphism End(M(X)) → End(M(XE )) consists of nilpotent elements for all
field extensions E/F . At the present moment the Rost nilpotence principle is proven
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for motives of twisted flag varieties [6], for motives of varieties in dimensions less
than 3 ([12,13]), for generically split motives (see [26] and cf. [4]), and for quasi-
homogeneous varieties ([18, Sect. 2]), and it is expected to be valid for all smooth
projective varieties.

Let nowG be a semisimple linear algebraic group over F (see [3,20,23]). A twisted
flag variety of G is the variety of parabolic subgroups of G of some fixed type. If G
is of inner type, we associate with G a set of prime numbers, called torsion primes.
Namely, we define this set as the union of all torsion primes of all simple components
of G, and for a simple G of inner type this set consists of the prime divisors of n + 1,
if G is of type An , equals {2, 3} for types F4, E6, E7, {2, 3, 5} for type E8 and {2} in
all other cases.

For a semisimple algebraic group G we use the notion “split” in a different sense.
Namely, G is split, if it contains a maximal torus which is isomorphic over F to a
product of the multiplicative groups Gm , and we call such a torus split. If G is split,
then the motive of every twisted flag variety under G with coefficients in any ring is a
sum of Tate motives. It is well-known that any torus has a finite Galois splitting field.
In particular, any semisimple group and any twisted flag variety has a finite Galois
splitting field.

Finally, by [1, n] we denote the set of natural numbers i such that 1 ≤ i ≤ n.

3 Integral motives of nilsplit varieties

Let F be a field and M be an integral geometrically split motive over F . Over a
splitting field extension E of F the motive M becomes isomorphic to a finite sum of
Tate motives. Let k be a positive integer and let

ME = M̃1 ⊕ · · · ⊕ M̃k (3.1)

be a motivic decomposition over E (not necessary complete, so each M̃i is isomorphic
to a certain finite sum of Tate motives).

Let now�be a commutative unital ring.We say that the above decomposition ofME

is �-admissible, if there exists a motivic decomposition over F with �-coefficients

M ⊗ � = M1 ⊕ · · · ⊕ Mk

such that (Mi )E � M̃i ⊗ � for all 1 ≤ i ≤ k. We say simply m-admissible, if
� = Z/mZ.

We call a direct summand of ME p-admissible for a prime p, if it is a direct
summand in a p-admissible decomposition of ME .

Example 3.1 Let p be a prime such that M ⊗ Z/pZ is a direct sum of Tate motives
over F . Then every decomposition (3.1) of ME is p-admissible. In particular, this is
the case, if M is a direct summand of the motive of a twisted flag variety of inner type
and p is not a torsion prime.
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Integral motives and Krull–Schmidt 65

Definition 3.2 A smooth projective variety X over a field F is called a nilsplit variety,
if there exists a finite Galois splitting field extension E of X and the Rost nilpotence
principle holds for X . We say that a nilsplit variety is of inner type, if the Galois group
of E/F acts trivially on the Chow group of XE .

Theorem 3.3 Let X be a nilsplit variety of inner type, E/F be a finite Galois splitting
field extension of X and M be a direct summand of the integral motive of X over F.

Then amotivic decomposition of ME isZ-admissible if and only if it is p-admissible
for every prime divisor p of [E : F].
Proof Let pi , 1 ≤ i ≤ l, denote all distinct prime divisors of m := [E : F]. The Z-
admissibility of a decomposition of ME clearly implies its pi -admissibility for every
1 ≤ i ≤ l. So we prove another direction of the statement.

By assumptions, m = ∏l
i=1 p

αi
i for some αi ∈ N.

Let M = (X, π), where π is a projector in End M(X). Let

ME = M̃1 ⊕ · · · ⊕ M̃k (3.2)

be a motivic decomposition which is pi -admissible for every 1 ≤ i ≤ l. By definition,
for every i ∈ [1, l] we have the following decomposition

πi = πi1 + · · · + πik , (3.3)

where πi is the reduction of πE modulo pi and πi j , 1 ≤ j ≤ k, are rational over F
and orthogonal projectors in End(ME ⊗Z/piZ) such that (XE , πi j ) � M̃ j ⊗Z/piZ.

The proof consists of 4 steps. We will construct certain projectors with different
coefficient rings (Z/piZ, Z/pαi

i Z, Z/mZ and finally Z). We need to check that the
constructed projectors are rational, orthogonal and the motivic decomposition (3.2) is
admissible on each step.

Step 1. (From Z/pZ to Z/pα
Z). We need the following lemma. �	

Lemma 3.4 Let f : A � B be an epimorphism of finite rings. Let x ∈ A and y ∈ B
be two projectors such that f (x) = y. Then a decomposition of y into a sum of
orthogonal projectors in B lifts to a decomposition of x into a sum of orthogonal
projectors in A.

Proof By induction argument it is enough to consider the case y = y1 + y2, where
y1 and y2 are orthogonal projectors in B. Consider a surjective homomorphism of
finite rings x Ax � yBy induced by f . Note that y1 ∈ yBy, so we can lift y1 to some
x̃1 ∈ x Ax . By the Fitting Lemma (here we use that x Ax is a finite ring), an appropriate
power of x̃1, whichwe denote by x1, is a projector. Finallywe take x2 = x−x1. Clearly
the projectors x1 and x2 are orthogonal and the sum x = x1 + x2 is a lifting of the
sum y = y1 + y2. �	

For every i ∈ [1, l]we apply the above lemma for A and B being resp. the subrings
of F-rational cycles in End(ME ⊗Z/pαi

i Z) and in End(ME ⊗Z/piZ). It follows that
the decomposition (3.3) lifts to a decomposition

π ′
i = π ′

i1 + · · · + π ′
ik
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in the ring End(ME ⊗ Z/pαi
i Z), where π ′

i j , 1 ≤ j ≤ k, are rational orthogonal

projectors and π ′
i is the reduction of πE modulo pαi

i . Note that, sinceZ/pαi
i Z is a local

ring, the Krull–Schmidt theorem holds and, thus, for all i , j the motive (XE , π ′
i j ) is

a sum of Tate motives. Since (XE , πi j ) is the reduction of (XE , π ′
i j ) modulo p and

(XE , πi j ) � M̃ j ⊗ Z/piZ, we have (XE , π ′
i j ) � M̃ j ⊗ Z/pαi

i Z for all i , j .
Step 2. (From Z/pα

Z to Z/mZ—Chinese Remainder Theorem).
By ρ we denote the reduction of πE modulo m. We will now construct a decom-

position

ρ = ρ1 + · · · + ρk

into a sum of rational orthogonal projectors such that (XE , ρ j ) � M̃ j ⊗ Z/mZ.
Let us fix j ∈ [1, k]. Since for every i ∈ [1, l], the motive (XE , π ′

i j ) is a sum of
Tate motives, we can write for some ri

π ′
i j =

ri∑

u=1

ciu × diu ,

where ciu and diu are homogeneous elements in CH(XE ) ⊗ Z/pαi
i Z with

deg(ciu · diu′) = δuu′

for all u, u′, and δ denotes the Kronecker delta.
Since for every i ∈ [1, l] we have (XE , π ′

i j ) � M̃ j ⊗ Z/pαi
i Z and since our

decomposition is pαi
i -admissible, the rank ri does not depend on i (and we denote this

number by r ) and for every i we can choose ciu and diu such that their codimensions
in CH(XE ) ⊗ Z/pαi

i Z do not depend on i .
It follows from the Chinese Remainder Theorem that for every u ∈ [1, r ] there exist

homogeneous elements cu, du ∈ CH(XE )⊗Z/mZ such that cu ≡ ciu mod pαi
i and

du ≡ diu mod pαi
i for every i ∈ [1, l]. Clearly

ρ j = c1 × d1 + · · · + cr × dr

is a rational projector in End(ME ⊗Z/mZ) such that (XE , ρ j ) � M̃ j ⊗Z/mZ. In this
way we construct ρ j for every 1 ≤ j ≤ k. Note that these projectors are orthogonal,
because their reductions modulo pαi

i , i ∈ [1, l], are orthogonal.
Step 3. (From Z/mZ to Z). Let us denote the graded rings CH∗(XE ) and

CH∗(XE ) ⊗ Z/mZ resp. by V ∗ and V ∗
m . Let us lift the decomposition

ρ = ρ1 + · · · + ρk

to a decomposition of πE ∈ End M(XE ) into a sum of orthogonal projectors.
Sorting by codimensions, we can clearly reduce this problem to the case when
(XE , πE ) � Z

⊕n(d) for some d, n ∈ Z
≥0.
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Integral motives and Krull–Schmidt 67

We have πE = ∑n
i=1 ei × e∗

i , where ei ∈ V d , e∗
i ∈ V dim X−d , i ∈ [1, n], are

cycles such that deg ei e∗
j = δi j for all 1 ≤ i, j ≤ n. For every j ∈ [1, k], the motive

(XE , ρ j ) is a sum of Tate motives Z/mZ(d), so we can decompose ρ j as a sum of
orthogonal projectors of the form a × b, where a ∈ V d

m , b ∈ V dim X−d
m . Therefore

ρ = ∑n
i=1 ai × bi , where ρ j = ∑

i∈I j ai × bi and I1 	 · · · 	 Ik = [1, n].
Let us construct now two matrices A and B in GLn(Z/mZ). The rows of A (resp.

the columns in B) are the coordinates of ai (resp. of bi ), 1 ≤ i ≤ n, in the basis
(ē1, . . . , ēn) (resp. (ē∗

1, . . . , ē
∗
n)), where by x �→ x̄ we mean the reduction modulo m.

Since deg(aib j ) = δi j for all 1 ≤ i, j ≤ n, we have AB = Idn . Replacing a1 by
(det A) · a1 and b1 by (det A)−1 · b1 we can assume that A and B are in SLn(Z/mZ).

Since Z/mZ is a commutative semilocal ring, the group generated by elementary
matrices En(Z/mZ) coincides with SLn(Z/mZ). Thus, the reduction homomorphism
SLn(Z) → SLn(Z/mZ) is surjective and we can lift our matrices A and B to some
matrices Ã and B̃ in SLn(Z) such that Ã B̃ = Idn .

Let ãi (resp. b̃i ), i ∈ [1, n], be the elements in V such that their coordinates in
the basis (e1, . . . , en) (resp. (e∗

1, . . . , e
∗
n)) are the i-th row of Ã (resp. the i-th column

of B̃). For every j ∈ [1, k] we define ρ̃ j = ∑
i∈I j ãi · b̃i , clearly ρ̃ j are orthogonal

projectors.
By the construction and since B̃t Ãt = Idn , we have

ρ̃1 + · · · + ρ̃k =
n∑

i=1

ei × e∗
i = πE .

Since m is the degree of a Galois splitting field of X and X is of inner type, by
transfer argument for any x ∈ V ⊗ V the cycle m · x is defined over F . Thus, the
projectors ρ̃ j , 1 ≤ j ≤ k, are F-rational.

Step 4. (From E to F). Since X satisfies the Rost Nilpotence principle, applying
[1, Ch. 3, Prop. 2.10] to the restriction homomorphism End(M) → End(ME ), we
can lift orthogonal projectors ρ̃ j to orthogonal projectors π j , 1 ≤ j ≤ k − 1, with
(π j )E = ρ̃ j . Define πk = π − ∑k−1

j=1 π j . Then πk is a projector orthogonal to all π j ,
1 ≤ j ≤ k − 1,

π = π1 + · · · + πk,

and for every j ∈ [1, k] we have (XE , (π j )E ) � M̃ j . Thus, the decomposition (3.2)
is Z-admissible. �	
Remark 3.5 Let p and q be two different prime numbers. Given two motivic decom-
position with Z/pZ- and Z/qZ-coefficients resp., we can always lift them to one
decomposition withZ/pqZ-coefficients. On the other hand, not every motivic decom-
positionwithZ/pqZ-coefficients can be lifted to a decomposition withZ-coefficients.
E.g., the projector of the form a × b + α · c × d with deg(ab) = deg(cd) = 1,
deg(ad) = deg(cb) = 0, and α satisfying two equations α = 0 mod p and α = 1
mod q cannot be lifted to Z.
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Corollary 3.6 In the notation of Theorem 3.3 an integral motive M is indecomposable
if and only if there exists no non-trivial decomposition of ME admissible for all prime
divisors of [E : F].
Remark 3.7 As in Remark 3.5 let p and q be two different prime numbers. Then
the Tate motive with Z/pqZ-coefficients is decomposable. Namely, for a, b with
deg(a) = 1 one can write a×b = α ·a×b+ (1−α) ·a×b, where α satisfies α2 = α

mod pq and α �= 0, 1.
The phenomena of this remark and of Remark 3.5 are related to the fact that over

semilocal rings there exist finitely generated projective modules which are not free.

Remark 3.8 Let X be a twisted flag variety of inner type. Then by [6, Section 8] X is
a nilsplit variety of inner type. Moreover, in the statement of Theorem 3.3 it suffices
to consider the torsion primes of X only.

4 Maranda-type theorems

Let p be a prime, Z(p) be the localization of Z at p, and Zp denote the ring of p-adic
integers. We begin with general lemmas.

Lemma 4.1 Let Z be a smooth projective variety over a field F and E be a finite
Galois field extension of F such that Ch(ZE ) := CH(ZE ) ⊗ Zp is a free Zp-module
of finite rank. Then the subgroup of F-rational cycles is closed inCh(ZE )with respect
to the p-adic topology.

Proof Let (xn)n≥1, xn ∈ Ch(ZE ), be a converging sequence of rational cycles with
the limit x ∈ Ch(ZE ). Let us proof that x is rational. Denote by G the Galois group
of E/F .

Since the action ofG on Ch(ZE ) is continuous in the p-adic topology and xn , being
rational, is G-invariant for every n ≥ 1, the cycle x is G-invariant as well.

Let pl be the maximal power of p dividing m := |G|. Since (xn)n≥1 converges to
x , there exists a positive integer r such that

x = pl y + xr

for some y ∈ Ch(ZE ). Since by assumptions Ch(ZE ) is torsion free, y is G-invariant.
By transfer argument, my is rational and, hence, pl y is rational. Therefore x is F-
rational. �	

The following lemma is [14, Prop. 7]. We remark that Haution formulated this
lemma for quadrics, but the same proof without any change works for any smooth
projective variety possessing a finite Galois splitting field.

Lemma 4.2 Let R denote Z(p) or Zp. Let X be a smooth projective variety over a
field F possessing a finite Galois splitting field E/F of degree m, and pl be the largest
power of p dividing m. A cycle α ∈ CH(XE )⊗R is rational if and only if it is invariant
under the Galois group of E/F and its reduction modulo pl is rational.
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Integral motives and Krull–Schmidt 69

Theorem 4.3 Let X be a nilsplit variety over F, p be a prime number, E/F be a finite
Galois splitting field extension of the motive of X with Zp-coefficients and let M be a
direct summand of this motive.

Then a motivic decomposition of ME is Zp-admissible if and only if it is p-
admissible.

Proof Let M = (X, π), where π is a projector in End(M(X) ⊗Zp). For any positive
integer n we denote by πE,n the image of πE in End(M(XE ) ⊗ Z/pnZ). Let

ME = M̃1 ⊕ · · · ⊕ M̃k (4.1)

be a p-admissible motivic decomposition of ME . By definition of the p-admissibility,
we have a decomposition

πE,1 = π11 + · · · + πk1 , (4.2)

where πi1, 1 ≤ i ≤ k, are F-rational orthogonal projectors in End(ME ⊗Z/pZ) such
that (XE , πi1) � M̃i ⊗ Z/pZ.

Now we will construct a sequence of decompositions (Pn)n≥1

(Pn) : πE,n = π1n + · · · + πkn ,

such that the n-th decomposition (Pn) is a decomposition of πE,n into a sum of k
orthogonal F-rational projectors and for any n ≥ 1 the decomposition (Pn+1) is a
lifting of (Pn).

We define (P1) as the decomposition (4.2). Using induction on n, if (Pn) is con-
structed, we apply Lemma 3.4 and proceeding exactly as in Step 1 of the proof of
Theorem 3.3 we construct (Pn+1).

For every i ∈ [1, k]we define now a sequence (ρin)n≥1 of elements in End(ME ) as
follows. Namely, for ρin we take an arbitrary F-rational p-adic representative of πin

in End(ME ). Since (Pn+1) is a lifting of (Pn), we have ρi,n+1 ≡ ρi,n mod pn for all
positive integers n. Therefore for every i ∈ [1, k] the sequence (ρin)n≥1 converges in
the p-adic topology to some element ρi ∈ End(ME ). By construction ρi , 1 ≤ i ≤ k,
are orthogonal projectors and

πE = ρ1 + · · · + ρk . (4.3)

By Lemma 4.1 the projectors ρi , 1 ≤ i ≤ k, are rational over F .
To finish the proof we lift decomposition (4.3) (proceeding exactly as in Step 4 of

the proof of Theorem 3.3) to a decomposition of π into a sum of orthogonal projectors

π = π1 + · · · + πk .

Finally, for every i ∈ [1, k]we have (XE , (πi )E ) � M̃i . Thus, the decomposition (4.1)
is Zp-admissible. �	
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Let now R be a d.v.r. or R = Z. We write Ch for the Chow group with coefficients
in R. Let X and Y be smooth projective varieties such that the R-motives of X and Y
are split and write V for the R-module Ch(X). Consider the bilinear form

b : V × V → R, b(x, y) = deg(x · y) .

For a correspondence α ∈ Ch(X × Y ) we denote by α∗ : Ch(X) → Ch(Y ) its
realization (see [10, §62]). By definition α∗(x) = (prY )∗(α · (x × 1)), x ∈ Ch(X),
where (prY )∗ is the pushforward of the projection X × Y → Y .

The following statements are well-known.

Proposition 4.4 In the above notation for a correspondence α ∈ Ch(X × X) the
assignment α �→ α∗ defines an isomorphism between R-algebras Ch(X × X) and
EndR(V ).

Let H be a finite group which acts R-linearly on V and preserves the bilinear form
b. One can naturally extend this action to Ch(X × X) = V ⊗V . On the other hand, by
Proposition 4.4 Ch(X × X) � EndR(V ) and this induces an action of H on EndR(V ).
Using the fact that b is H -invariant, one can check that this action coincides with
the natural action of H on EndR(V ) (given by f �→ g f with g f (x) = f (gx)). In
particular, we have the following statements:

Corollary 4.5 An element α ∈ Ch(X × X) is H-invariant if and only if the endomor-
phism α∗ ∈ EndR(V ) is H-invariant. More generally, an element α ∈ Ch(X × Y ) is
H-invariant if and only if the homomorphism α∗ : Ch(X) → Ch(Y ) is H-invariant.

Corollary 4.6 A projector π ∈ End(M(X) ⊗ R) is H-invariant if and only if Im α∗
and Ker α∗ are H-invariant.

In general, one cannot replace Zp by Z(p) in the statement of Theorem 4.3 as an
example of Esther Beneish shows. Namely, by [2] there exists an indecomposable
invertible Z(p)-module which is decomposable after passing to Zp, hence, using [7]
one can construct a twisted flag variety with a p-admissible decomposition which is
not Z(p)-admissible.

Note that the same example of Beneish shows that for motives of twisted flag
varieties the Krull–Schmidt principle does not hold with Z(p)-coefficients (see [7]).
Nevertheless, one can show the following statement.

Proposition 4.7 Let p be a prime number, M1 and M2 be two direct summands of the
motives of two nilsplit varieties over a field F with Z(p)-coefficients having a common
finite Galois splitting field.

If M1 ⊗ Z/pZ � M2 ⊗ Z/pZ, then M1 � M2.

Proof Let E/F be a common finite Galois splitting field with the Galois group H ,
and W1 and W2 be the realizations of the motives (M1)E and (M2)E resp.

First note that if M1 ⊗ Z/pZ � M2 ⊗ Z/pZ, then M1 ⊗ Z/plZ � M2 ⊗ Z/plZ
for all l > 1. Indeed, if α : M1 → M2 and β : M2 → M1 are any liftings of the
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mutually inverse isomorphisms modulo p, then α mod pl and β(αβ)p
l−1−1 mod pl

are mutually inverse isomorphisms modulo pl .
Applying Corollary 4.5 we obtain an isomorphism of (Z/plZ)[H ]-modules

W1 ⊗ Z/plZ and W2 ⊗ Z/plZ. If l is sufficiently large, by the Maranda theorem [8,
Theorem 30.14] we can lift this isomorphism to an isomorphism of Z(p)[H ]-modules
W1 and W2.

Applying now Proposition 4.4 and Corollary 4.5 in the opposite direction we obtain
an isomorphism between (M1)E and (M2)E . By construction and by Lemma 4.2 this
isomorphism is rational. It remains to apply the Rost nilpotence principle. �	

Finally, using our method we can show the following proposition. In classical terms
it follows from the Conlon theorem.

Proposition 4.8 Let H be a finite group and let N1 and N2 be two invertibleZ(p)[H ]-
modules. If N1 ⊗ Z/pZ � N2 ⊗ Z/pZ, then N1 � N2.

Proof This proposition follows from [8, Prop. 81.17 and Prop. 30.17].
On the other hand, there is the following geometric proof of this statement. Namely,

by [7] the category of invertible modules can be embedded in the category of Chow
motives of twisted flag varieties over some field.

Then the statement follows from Proposition 4.7 (Maranda theorem). �	

5 Relative Krull–Schmidt principle

The following definition was suggested by Charles De Clercq.

Definition 5.1 Let M(X) be the integral motive of a smooth projective variety X over
a field F . We say that two complete decompositions

M(X) � M1 ⊕ · · · ⊕ Mk � N1 ⊕ · · · ⊕ Nl , (5.1)

are relatively equivalent, if k = l and there exists a permutation σ of {1, . . . , k}
such that for any i ∈ {1, . . . , k}, we have (Mi )F̄ � (Nσ(i))F̄ . We say that M(X)

satisfies the relative Krull–Schmidt principle if all complete decompositions of M(X)

are relatively equivalent.

The following proposition shows that the relative Krull–Schmidt principle holds
for a wide class of projective homogeneous varieties.

Proposition 5.2 Let X be a twisted flag variety of inner type admitting a splitting
field of p-primary degree for some prime number p. Then the relative Krull–Schmidt
principle holds for the integral motive of X.

Proof Let M(X) be the integral motive of X . Consider two complete integral motivic
decomposition ofM(X) as in formula (5.1) and the reductions of thesemotivic decom-
positions modulo p.
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By Theorem 3.3, since X has a splitting field of a p-primary degree, any inde-
composable summand of M(X) remains indecomposable modulo p. Therefore after
reduction modulo p any complete decomposition of M(X) remains complete.

By the Krull–Schmidt principle for Z/pZ-coefficients the motive M(X) ⊗ Z/pZ
has a unique complete decomposition (up to isomorphism and permutation of the
factors).

Finally, for any two geometrically split integral motives M and N over F we
obviously have

MF̄ ⊗ Z/pZ � NF̄ ⊗ Z/pZ �⇒ MF̄ � NF̄ .

Therefore it follows that any two complete decompositions of the integral motive of
X are relatively equivalent. �	

Now using Theorem 3.3 we provide an example of a twisted flag variety for which
the relative Krull–Schmidt principle fails.

Let G be a simple algebraic group of type F4 over F and X the projective G-
homogeneous variety of maximal parabolic subgroups ofG of type 1 (the enumeration
of simple roots follows Bourbaki). The torsion primes for G are 2 and 3 and any group
G of type F4 has a splitting field E of degree 6. Assume that our group G does
not have splitting fields of degree 2 and 3. Then the motivic decompositions of X
modulo 2 and modulo 3 are known (see [21] and [22, Section 7]). Namely, we have
over F

M(X) ⊗ Z/3Z =
7⊕

i=0

R3(i) and M(X) ⊗ Z/2Z =

⎛

⎜
⎜
⎝

⊕

i∈{0,1,2,4,5,
7,8,10,11,12}

R2(i)

⎞

⎟
⎟
⎠

⊕
R⊕2
2 (6),

where R2 and R3 are indecomposable motives and (R2)E � Z/2Z ⊕ Z/2Z(3) and
(R3)E � Z/3Z ⊕ Z/3Z(4) ⊕ Z/3Z(8). We remark that the motives R2 and R3 are
the Rost motives corresponding to the cohomological invariants f3 and g3 resp. (see
[20, §40]).

We represent the Tate motives in a motivic decomposition over E graphically as

boxes. We draw them from left to right according to their shifts. For example,
means � ⊕ �(1)⊕2, where � is the coefficient ring.

We put letters in the boxes to collect Tate motives belonging to the same inde-

composable motive over the base field F . For example,
A B

B means that over F the
decomposition is M1 ⊕ M2 with M1 and M2 indecomposable and with (M1)E � �

and (M2)E � �(1)⊕2.
Drawing the decompositions of M(X) with Z/2Z-, Z/3Z-coefficients and (apply-

ing Theorem 3.3) with Z-coefficients we get:
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mod 3 mod 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

mod 2 mod 2

1 2 3 1 2 5 6 8 9 7 8 9 C A B C
4 3 7 4 5 6 A B

1 2 3 1 2 5 6 8 9 7 8 9 C A B C
4 3 7 4 5 6 A B

integral integral

The colored boxes represent the Tate motives we combine together to lift decompo-
sitions modulo torsion primes to integral decompositions. Thus, combining the Tate
motives in two different ways as shown in these pictures, we get two integral decom-
positions of M(X), which are not relatively equivalent.

We can write the above pictures as formulas. Namely, we constructed two integral
indecomposable (by Corollary 3.6) direct summands L1 (on the left pictures) and L2
(on the right pictures) of M(X) such that

(L1)E � ⊕
i∈{0,3,4,7,8,11} Z(i) (L2)E � ⊕11

i=0 Z(i)

L1 ⊗ Z/3Z � R3 ⊕ R3(3) L2 ⊗ Z/3Z � ⊕3
i=0 R3(i)

L1 ⊗ Z/2Z � R2 ⊕ R2(4) ⊕ R2(8) L2 ⊗ Z/2Z � ⊕2
i=0R2(i)

⊕⊕8
i=6R2(i).

6 Motivic decomposability of generalized Severi-Brauer varieties

Let F be a field and let A be a central simple F-algebra of degree n. Wewrite SB(k, A)

for the generalized Severi-Brauer variety of right ideals in A of reduced dimension
k for k = 1, . . . , n. In particular, SB(n, A) = Spec F and SB(1, A) is the classical
Severi-Brauer variety of A. The generalized Severi-Brauer varieties are twisted forms
of Grassmannians (see [20, §I.1.C]).

In this section we study integral motivic decomposability of generalized Severi-
Brauer varieties. Since SB(k, A) � SB(n − k, Aop), the general case can be reduced
to the case 1 ≤ k ≤ (deg A)/2.

Theorem 6.1 Let A be a central simple F-algebra and let k be an integer such that
1 ≤ k ≤ (deg A)/2. The integral motive of the generalized Severi-Brauer variety
SB(k, A) is decomposable except the following two cases:

(1) k = 1 and A is a division algebra (classical Severi-Brauer variety);
(2) k = 2 and A is a division algebra with 2-primary index.

Proof Let n = deg A. By assumption 1 ≤ k ≤ n/2. If A is not a division algebra,
then by [17, Cor. 10.19] the integral motive of SB(k, A) is decomposable for any k.
From now on we assume that A is division.

By [16, Theorem 2.2.1] the integral motive of the Severi-Brauer variety SB(1, A)

is indecomposable and so we assume k > 1.
Let us mention another already studied case: deg A is p-primary for some prime

number p. By Corollary 3.6, the integral motivic decomposability in this case is
equivalent to the motivic decomposability modulo p, which was completely studied
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in [19,28]. Namely, for a p-primary A the motive of SB(k, A) is decomposable if and
only if p = 2 and k = 2.

We can now assume that n = ml, where 2 ≤ l < m are coprime
positive integers. We have A = Am ⊗F Al , where Al and Am are divi-
sion algebras and ind Al = l, ind Am = m. We take the following notation:
X = SB(k, A), Yl = SB(1, Al), Ym = SB(1, Am). We denote by N the integral
motive M(Yl × Ym)(d), where d = n − l − k + 1. Let E be a splitting field extension
of F for the variety X . By Corollary 3.6, in order to prove our theorem, it suffices to
show that for any prime p dividing n the motive NE is p-admissible for M(XE ).

For every prime p dividing n we have

M(X) ⊗ Z/pZ � M(SB(k,Mm(Al))) ⊗ Z/pZ if p| l
M(X) ⊗ Z/pZ � M(SB(k,Ml(Am))) ⊗ Z/pZ if p|m .

By [17, Cor. 10.19] (applied to SB(k,Mm(Al)) and resp. to SB(k,Ml(Am))) we
obtain the following motivic summand of X modulo p:

M(Yl × Zl)(d) if p| l, where Zl = SB(k − 1,Mm−1(Al));
M(Ym × Zm)(d − m + l) if p|m, where Zm = SB(k − 1,Ml−1(Am)).

By [15, Proposition 4.3] this summand in the case p| l (resp. p|m) decomposes into a
sumof consecutive shifts (without blanks) ofM(Yl)⊗Z/pZ (resp. ofM(Ym)⊗Z/pZ).
Therefore in order to prove that for every prime p dividing n the motive NE (recall that
N = M(Yl × Ym)(d)) is p-admissible for M(XE ) it suffices to check the following
elementary inequalities:

dim Zl ≥ dim Ym and dim Zm − m + l ≥ dim Yl .

We use formulas dim Yl = l−1, dim Ym = m−1, dim Zl = (k−1)(l(m−1)−k+1),
dim Zm = (k − 1)(m(l − 1) − k + 1), and assumptions 2 ≤ l < m, 2 ≤ k ≤ n/2. �	
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