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Abstract We derive a local Gaussian upper bound for the f -heat kernel on complete
smooth metric measure space (M, g, e− f dv) with nonnegative Bakry–Émery Ricci
curvature.As applications,weobtain a sharp L1

f -Liouville theorem for f -subharmonic

functions and an L1
f -uniqueness property for nonnegative solutions of the f -heat

equation, assuming f is of at most quadratic growth. In particular, any L1
f -integrable

f -subharmonic function on gradient shrinking and steady Ricci solitons must be con-
stant. We also provide explicit f -heat kernel for Gaussian solitons.

Mathematics Subject Classification Primary 35K08; Secondary 53C21 · 58J35

1 Introduction and main results

In this paperwe studyGaussian upper estimates for the f -heat kernel on smoothmetric
measure spaceswith nonnegativeBakry–ÉmeryRicci curvature and their applications.
Recall that a complete smooth metric measure space is a triple (M, g, e− f dv), where
(M, g) is an n-dimensional complete Riemannian manifold, dv is the volume element
of g, f is a smooth function on M , and e− f dv (for short, dμ) is called the weighted
volume element or the weighted measure. The m-Bakry–Émery Ricci curvature [1]
associated to (M, g, e− f dv) is defined by
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Ricmf = Ric + ∇2 f − 1

m
d f ⊗ d f,

where Ric is the Ricci curvature of the manifold, ∇2 is the Hessian with respect to the
metric g andm is a constant.We refer the readers to [2,20–22] for further details.When
m = ∞, we write Ric f = Ric∞

f . Smooth metric measure spaces are closely related
to gradient Ricci solitons, the Ricci flow, probability theory, and optimal transport. A
smooth metric measure space (M, g, e− f dv) is said to quasi-Einstein if

Ricmf = λg

for some constant λ. When m = ∞, it is exactly a gradient Ricci soliton. A gradient
Ricci soliton is called expanding, steady or shrinking if λ < 0, λ = 0, and λ > 0,
respectively. Ricci solitons are natural extensions of Einstein manifolds and have
drawn more and more attentions. See [5] for a nice survey and references therein.

The associated f -Laplacian � f on a smooth metric measure space is defined as

� f = � − ∇ f · ∇,

which is self-adjointwith respect to theweightedmeasure.Ona smoothmetricmeasure
space, it is natural to consider the f -heat equation

(∂t − � f )u = 0

instead of the heat equation. If u is independent of time t , then u is a f -harmonic
function. Throughout this paper we denote by H(x, y, t) the f -heat kernel, that is,
for each y ∈ M , H(x, y, t) = u(x, t) is the minimal positive solution of the f -heat
equation with limt→0 u(x, t) = δ f,y(x), where δ f,y(x) is defined by

∫
M

φ(x)δ f,y(x)e
− f dv = φ(y)

for φ ∈ C∞
0 (M). Equivalently, H(x, y, t) is the kernel of the semigroup Pt = et� f

associated to the Dirichlet energy
∫
M |∇φ|2e− f dv, where φ ∈ C∞

0 (M). In general
the f -heat kernel always exists on complete smooth metric measure spaces, but it may
not be unique.

When f is constant, then H(x, y, t) is just the heat kernel for the Riemannian
manifold (M, g). Cheng et al. [10] obtained uniform Gaussian estimates for the heat
kernel on Riemannian manifolds with sectional curvature bounded below, which was
later extended by Cheeger et al. [9] to manifolds with bounded geometry. In 1986, Li
and Yau [19] proved sharp Gaussian upper and lower bounds on Riemannian man-
ifolds of nonnegative Ricci curvature, using the gradient estimate and the Harnack
inequality. Grigor’yan and Saloff-Coste [13,27–29] independently proved similar esti-
mates on Riemannian manifolds satisfying the volume doubling property and the
Poincaré inequality, using the Moser iteration technique. Davies [12] further devel-
oped Gaussian upper bounds under a mean value property assumption. Recently, Li
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Heat kernel on smooth metric measure spaces 719

and Xu [16] also obtained some new estimates on complete Riemannian manifolds
with Ricci curvature bounded from below by further improving the Li–Yau gradient
estimate.

Recently, there have been several work on f -heat kernel estimates on smoothmetric
measure spaces and its applications. In [20], Li obtained Gaussian estimates for the f -
heat kernel, and proved an L1

f -Liouville theorem, assuming Ricmf (m < ∞) bounded
below by a negative quadratic function, which generalizes a classical result of Li
[17]. He also mentioned that we may not be able to prove an L1

f -Liouville theorem
only assuming a lower bound on Ric f . The main difficulty is the lack of effective
upper bound for the f -heat kernel. In [8], by analyzing the heat kernel for a family of
warped product manifolds, Charalambous and Lu also gave f -heat kernel estimates
when Ricmf (m < ∞) is bounded below. In [31], the first author proved f -heat kernel
estimates assuming Ric f bounded below by a negative constant and f bounded.

In this paperwe prove a local Gaussian upper bound for the f -heat kernel on smooth
metric measure spaces with Ric f ≥ 0, which generalizes the classical result of Li and
Yau [19].

Theorem 1.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0. Fix a fixed point o ∈ M and R > 0. For any
ε > 0, there exist constants c1(n, ε) and c2(n), such that

H(x, y, t) ≤ c1(n, ε) ec2(n)A(R)

V f (Bx (
√
t))1/2V f (By(

√
t))1/2

× exp

(
−d2(x, y)

(4 + ε)t

)
(1.1)

for all x, y ∈ Bo(
1
2 R) and 0 < t < R2/4, where limε→0 c1(n, ε) = ∞. In particular,

there exist constants c3(n, ε) and c4(n), such that

H(x, y, t) ≤ c3(n, ε) ec4(n)A(R)

V f (Bx (
√
t))

·
(
d(x, y)√

t
+ 1

) n
2 × exp

(
−d2(x, y)

(4 + ε)t

)
(1.2)

for any x, y ∈ Bo(
1
4 R) and 0 < t < R2/4, where limε→0 c3(n, ε) = ∞. Here

A(R) := supx∈Bo(3R) | f (x)|.

As pointed out by Munteanu and Wang [25], only assuming Ric f ≥ 0 may not
be sufficient to derive f -heat kernel estimates by classical Li–Yau gradient estimate
procedure [19]. But we can derive a Gaussian upper bound using the DeGiorgi–Nash–
Moser theory and the weighted version of Davies’s integral estimate [11].

For Gaussian solitons, the f -heat kernel can be solved explicitly in closed forms.

Example 1.2 f -heat kernel for steady Gaussian soliton.
Let (R, g0, e− f dx) be a 1-dimensional steady Gaussian soliton, where g0 is the

Euclidean metric and f (x) = ±x . Then Ric f = 0. The heat kernel of the operator

� f = d2

dx2
∓ d

dx is given by
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720 J.-Y. Wu, P. Wu

H(x, y, t) = e± x+y
2 · e−t/4

(4π t)1/2
× exp

(
−|x − y|2

4t

)
.

This f -heat kernel is solved using the separation of variables method, since it seems
not in the literature, for the sake of completeness we include it in the appendix.

Example 1.3 Mehler heat kernel [14] for shrinking Gaussian soliton.
Let (R, g0, e− f dx) be a 1-dimensional shrinking Gaussian soliton, where g0 is

the Euclidean metric and f (x) = x2. Then Ric f = 2. The heat kernel of the operator

� f = d2

dx2
− 2x d

dx is given by

H(x, y, t) = 1

(2π sinh 2t)1/2
× exp

(
2xye−2t − (x2 + y2)e−4t

1 − e−4t + t

)
.

Example 1.4 Mehler heat kernel [14] for expanding Gaussian soliton.
Let (R, g0, e− f dx) be a 1-dimensional expanding Gaussian soliton, where g0 is

the Euclidean metric and f (x) = −x2. Then Ric f = −2. The heat kernel of the

operator � f = d2

dx2
+ 2x d

dx is given by

H(x, y, t) = 1

(2π sinh 2t)1/2
× exp

(
2xye−2t − (x2 + y2)

1 − e−4t − t

)
.

As applications, we prove an L1
f -Liouville theorem on complete smooth metric

measure spaces with Ric f ≥ 0 and f to be of at most quadratic growth. We say
u ∈ L p

f , if
∫
M |u|pe− f dv < ∞.

Theorem 1.5 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0. Assume there exist nonnegative constants a and
b such that

| f |(x) ≤ ar2(x) + b f or all x ∈ M,

where r(x) is the geodesic distance function to a fixed point o ∈ M. Then any nonnega-
tive L1

f -integrable f -subharmonic functionmust be identically constant. In particular,

any L1
f -integrable f -harmonic function must be identically constant.

From [6,15] any complete noncompact shrinking or steady gradient Ricci soliton
satisfies the assumptions in Theorem 1.5. Hence

Corollary 1.6 Let (M, g, e− f dv) be a complete noncompact gradient shrinking or
steady Ricci soliton. Then any nonnegative L1

f -integrable f -subharmonic function
must be identically constant.

Remark 1.7 Pigola et al. (see Corollary 23 in [26]) proved that on a complete gradient
shrinking Ricci soliton, any locally Lipschitz f -subharmonic function u ∈ L p

f , 1 <

p < ∞, is constant. Our result shows that this is true in the case p = 1. Brighton

123



Heat kernel on smooth metric measure spaces 721

[3], Cao and Zhou [6], Munteanu and Sesum [24], Munteanu and Wang [25], Wei and
Wylie [30] have proved several similar results.

The growth condition of f in Theorem 1.5 is sharp as explained by the following
simple example.

Example 1.8 Consider the 1-dimensional smooth metric measure space
(R, g0, e− f dx), where g0 is the Euclidean metric and f (x) = x2+2δ , δ = 1

2m+1
for m ∈ N. By direct computation, Ric f ≥ 0. Let

u(x) :=
∫ |x |

0
et

2+2δ
dt.

Then u is f -harmonic. Moreover we claim u ∈ L1(μ). Indeed, the integration by parts
implies the identity

∫ x

1
et

2+2δ
dt = 1

2 + 2δ

[
ex

2+2δ

x1+2δ − e + (1 + 2δ)
∫ x

1

et
2+2δ

t2+2δ dt

]
.

Then by L’Hospital rule, when x is large enough,

∫ x

1
et

2+2δ
dt = 1

2 + 2δ

ex
2+2δ

x1+2δ (1 + o(1)).

Therefore

∫
R

ue− f dx =
∫ ∞

−∞

(∫ |x |

0
et

2+2δ
dt

)
e−x2+2δ

dx < ∞,

i.e., u ∈ L1
f , but u �∈ L p

f for any p > 1. On the other hand, if δ = 0 then u �∈ L1
f .

By Theorem 1.5, we prove a uniqueness theorem for L1
f -solutions of the f -heat

equation, which generalizes the classical result of Li [17].

Theorem 1.9 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0. Assume there exist nonnegative constants a and
b such that

| f |(x) ≤ ar2(x) + b f or all x ∈ M,

where r(x) is the distance function to a fixed point o ∈ M. If u(x, t) is a nonnegative
function defined on M × [0,+∞) satisfying

(∂t − � f )u(x, t) ≤ 0,
∫
M
u(x, t)e− f dv < +∞
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for all t > 0, and

lim
t→0

∫
M
u(x, t)e− f dv = 0,

then u(x, t) ≡ 0 for all x ∈ M and t ∈ (0,+∞). In particular, any L1
f -solution of

the f -heat equation is uniquely determined by its initial data in L1
f .

The rest of the paper is organized as follows. In Sect. 2, we provide a relative
f -volume comparison theorem for smooth metric measure spaces with nonnegative
Bakry–Émery Ricci curvature. Using the comparison theorem, we derive a local f -
volume doubling property, a local f -Neumann Poincaré inequality, a local Sobolev
inequality, and a f -mean value inequality. In Sect. 3, we prove local Gaussian upper
bounds of the f -heat kernel by applying themean value inequality. In Sects. 4 and 5,we
prove the L1

f -Liouville theorem for f -subharmonic functions and the L1
f -uniqueness

property for nonnegative solutions of the f -heat equation following the argument of Li
in [17]. In appendix, we compute the f -heat kernel of 1-dimensional steady Gaussian
soliton.

2 Poincaré, Sobolev and mean value inequalities

Let � f = � − ∇ f · ∇ be the f -Laplacian on a complete smooth metric measure
space (M, g, e− f dv). Throughout this section, we will assume

Ric f ≥ 0.

For a fixed point o ∈ M and R > 0, we denote

A(R) = sup
x∈Bo(3R)

| f (x)|.

We often write A for short. First we have the relative f -volume comparison theorem
proved by Wei and Wylie [30] and Munteanu and Wang [25].

Lemma 2.1 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space. If Ric f ≥ 0, then for any x ∈ Bo(R),

V f (Bx (R1, R2))

V f (Bx (r1, r2))
≤ e4A

Rn
2 − Rn

1

rn2 − rn1
, (2.1)

for any 0 < r1 < r2, 0 < R1 < R2 < R, r1 ≤ R1, r2 ≤ R2 < R, where
Bx (R1, R2) := Bx (R2)\Bx (R1).

Proof of Lemma 2.1 Wei and Wylie (see (3.19) in [30]) proved the following f -mean
curvature comparison theorem. Recall that the weighted mean curvature m f (r) is
defined as m f (r) = m(r) − ∇ f · ∇r = � f r . For any x ∈ Bo(R) ⊂ M , if Ric f ≥ 0,
then

m f (r) ≤ n − 1

r
+ 2

r2

∫ r

0
f (t)dt − 2

r
f (r),

along any minimal geodesic segment from x .

123



Heat kernel on smooth metric measure spaces 723

In geodesic polar coordinates, the volume element is written as dv = A(r, θ)dr ∧
dθn−1, where dθn−1 is the standard volume element of the unit sphere Sn−1. Let
A f (r, θ) = e− fA(r, θ). By the first variation of the area,

A′

A (r, θ) = (ln(A(r, θ)))′ = m(r, θ).

Therefore

A′
f

A f
(r, θ) = (ln(A f (r, θ)))′ = m f (r, θ).

For 0 < r1 < r2 < R, integrating this from r1 to r2 we get

A f (r2, θ)

A f (r1, θ)
= exp

(∫ r2

r1
m f (s, θ)ds

)

≤
(
r2
r1

)n−1

exp

[
2

∫ r2

r1

1

r2

(∫ r

0
f (t)dt

)
dr − 2

∫ r2

r1

f (r)

r
dr

]
.

Since

∫ r2

r1

1

r2

(∫ r

0
f (t)dt

)
dr = −1

r

(∫ r

0
f (t)dt

) ∣∣∣∣
r2

r1

+
∫ r2

r1

f (r)

r
dr,

then we have

A f (r2, θ) · exp
(

2
r2

∫ r2
0 f (t)dt

)

A f (r1, θ) · exp
(

2
r1

∫ r1
0 f (t)dt

) ≤
(
r2
r1

)n−1

for 0 < r1 < r2 < R. That is r1−nA f (r, θ) exp( 2r
∫ r
0 f (t)dt) is nonincreasing in r .

Applying Lemma 3.2 in [32], we get

∫ R2
R1

A f (r, θ) · exp
(
2
t

∫ t
0 f (τ )dτ

)
dt

∫ r2
r1

A f (r, θ) · exp
(
2
t

∫ t
0 f (τ )dτ

)
dt

≤
∫ R2
R1

tn−1dt∫ r2
r1

tn−1dt

for 0 < r1 < r2, 0 < R1 < R2, r1 ≤ R1 and r2 ≤ R2 < R. Integrating along the
sphere direction gives

V f (Bx (R1, R2))

V f (Bx (r1, r2))
≤ e4A

Rn
2 − Rn

1

rn2 − rn1
,

for any 0 < r1 < r2, 0 < R1 < R2 < R, r1 ≤ R1, r2 ≤ R2 < R, where
Bx (R1, R2) = Bx (R2)\Bx (R1). ��
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724 J.-Y. Wu, P. Wu

From (2.1), letting r1 = R1 = 0, r2 = r and R2 = 2r , we get

V f (Bx (2r)) ≤ 2ne4A · V f (Bx (r)) (2.2)

for any 0 < r < R/2. This inequality implies that the local f -volume doubling
property holds. This property will play a crucial role in our paper. We say that a
complete smooth metric measure space (M, g, e− f dv) satisfies the local f -volume
doubling property if for any 0 < R < ∞, there exists a constant C(R) such that

V f (Bx (2r)) ≤ C(R) · V f (Bx (r))

for any 0 < r < R and x ∈ M . Note that when the above inequality holds with
R = ∞, then it is called the global f -volume doubling property.

From Lemma 2.1, we have

Lemma 2.2 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space. If Ric f ≥ 0, then

V f (Bx (s))

V f (By(r))
≤ 4ne8A

( s
r

)κ

,

where κ = log2(2
ne4A), for any 0 < r < s < R/4 and all x ∈ Bo(s) and y ∈ Bx (s).

Moreover, we have

V f (Bx (r)) ≤ e4A
(
d(x, y)

r
+ 1

)n

V f (By(r))

for any x, y ∈ Bo(
1
4 R) and 0 < r < R/2.

Proof Choose a real number k such that 2k < s/r ≤ 2k+1. Since y ∈ Bx (s),

Bx (s) ⊂ By(2s) ⊂ By(2
k+2r),

and V f (Bx (s)) ≤ V f (By(2k+2r)). Moreover, the assumption Ric f ≥ 0 implies the
local f -volume doubling property (2.2). So we have

V f (Bx (s)) ≤ (2ne4A)k+2V f (By(r)) ≤ (2ne4A)2(s/r)κV f (By(r)),

where κ = log2(2
ne4A). This proves the first part of the lemma.

For the second part, letting r1 = 0, r2 = r , R1 = d(x, y)− r and R2 = d(x, y)+ r
in Lemma 2.1, we have

V f (Bx (d(x, y) + r)) − V f (Bx (d(x, y) − r))

V f (Bx (r))
≤ e4A

(
d(x, y)

r
+ 1

)n
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Heat kernel on smooth metric measure spaces 725

for any x, y ∈ Bo(
1
4 R) and 0 < r < R/2. Therefore we get

V f (Bx (r)) ≤ V f (By(d(x, y) + r)) − V f (By(d(x, y) − r))

≤ e4A
(
d(x, y)

r
+ 1

)n

V f (By(r))

for any x, y ∈ Bo(
1
4 R) and 0 < r < R/2. ��

By Lemma 2.1, following Buser’s proof [4] or Saloff-Coste’s alternate proof (The-
orem 5.6.5 in [29]), we get a local Neumann Poincaré inequality on smooth metric
measure spaces, see also Munteanu and Wang (see Lemma 3.1 in [25]).

Lemma 2.3 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0. Then for any x ∈ Bo(R),

∫
Bx (r)

|ϕ − ϕBx (r)|2e− f dv ≤ c1e
c2A · r2

∫
Bx (r)

|∇ϕ|2e− f dv (2.3)

for all 0 < r < R and ϕ ∈ C∞(Bx (r)), where ϕBx (r) = V−1
f (Bx (r))

∫
Bx (r)

ϕe− f dv.
The constants c1 and c2 depend only on n.

Remark 2.4 When f is constant, this was classical result of Saloff-Coste (see (6) in
[28] or Theorem 5.6.5 in [29]).

CombiningLemmas 2.1, 2.2, 2.3 and the argument in [27],we obtain a local Sobolev
inequality.

Lemma 2.5 Let (M, g, e− f dv) be an n-dimensional complete noncompact smooth
metric measure space with Ric f ≥ 0. Then there exist constants p > 2, c3 and c4, all
depending only on n such that

(∫
Bo(r)

|ϕ| 2p
p−2 e− f dv

) p−2
p ≤ c3ec4A · r2

V f (Bo(r))
2
p

∫
Bo(r)

(|∇ϕ|2 + r−2|ϕ|2)e− f dv (2.4)

for any x ∈ M such that 0 < r(x) < R and ϕ ∈ C∞(Bo(r)).

Sketch proof of Lemma 2.5 The proof is essentially a weighted version of Theorem
2.1 in [27] (see also Theorem 3.1 in [28]).

Besides,wehave an alternate proof by applying the localNeumannSobolev inequal-
ity of Munteanu and Wang (see Lemma 3.2 in [25])

‖ϕ − ϕBo(r)‖ 2p
p−2

≤ c3ec4A · r
V f (Bo(r))

1
p

‖∇ϕ‖2,

where ‖ f ‖m = (
∫
Bo(r)

| f |mdμ)1/m . Munteanu andWang proved this inequality holds
without theweightedmeasure, and it is still true by checking their proof when integrals
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726 J.-Y. Wu, P. Wu

are with respect to the weighted volume element e− f dv. Combining this with the
Minkowski inequality

‖ϕ‖ 2p
p−2

≤ ‖ϕ − ϕBo(r)‖ 2p
p−2

+ ‖ϕBo(r)‖ 2p
p−2

,

it is sufficient to prove

‖ϕBo(r)‖ 2p
p−2

≤ c3ec4A

V f (Bo(r))
1
p

‖ϕ‖2,

which follows from Cauchy–Schwarz inequality. Hence the lemma follows. ��

Lemma 2.5 is a critical step in proving theHarnack inequality by theMoser iteration
technique [23]. We apply it to prove a local mean value inequality for the f -heat
equation, which is similar to the case when f is constant, obtained by Saloff-Coste
[27] and Grigor’yan [13].

Proposition 2.6 Let (M, g, e− f dv) be an n-dimensional complete noncompact
smooth metric measure space. Fix R > 0. Assume that (2.4) holds up to R. Then there
exist constants c5(n, p) and c6(n, p) such that, for any real s, for any 0 < δ < δ′ ≤ 1,
and for any smooth positive solution u of the f -heat equation in the cylinder
Q = Bo(r) × (s − r2, s), r < R, we have

sup
Qδ

{u} ≤ c5ec6A

(δ′ − δ)2+p r2 V f (Bo(r))
·
∫
Qδ′

u dμ dt, (2.5)

where Qδ = Bo(δr) × (s − δr2, s) and Qδ′ = Bo(δ
′r) × (s − δ′r2, s).

Proof The proof is analogous to Theorem 5.2.9 in [29]. For the readers convenience,
we provide a detailed proof. We need to carefully examine the explicit coefficients of
the mean value inequality in terms of the Sobolev constants in (2.4).

Without loss of generality we assume δ′ = 1. For any nonnegative function φ ∈
C∞
0 (B), B = Bo(r), we have

∫
B
(φut + ∇φ∇u)dμ = 0.

Let φ = ψ2u, ψ ∈ C∞
0 (B), then

∫
B
(ψ2uut + ψ2|∇u|2)dμ ≤ 2

∣∣∣∣
∫
B
uψ∇u∇ψdμ

∣∣∣∣
≤ 3

∫
B

|∇ψ |2u2dμ + 1

3

∫
B

ψ2|∇u|2dμ,
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Heat kernel on smooth metric measure spaces 727

so we get that

∫
B
(2ψ2uut + |∇(ψu)|2)dμ ≤ 10‖∇ψ‖2∞

∫
supp(ψ)

u2dμ.

Multiplying a smooth function λ(t), which will be determined later, from the above
inequality, we get

∂

∂t

(∫
B
(λψu)2dμ

)
+ λ2

∫
B

|∇(ψu)|2dμ

≤ Cλ(λ‖∇ψ‖2∞ + |λ′| supψ2)

∫
supp(ψ)

u2dμ,

where C is a finite constant which will change from line to line in the following
inequalities.

Next we choose ψ and λ such that, for any 0 < σ ′ < σ < 1, κ = σ − σ ′,
(1) 0 ≤ ψ ≤ 1, supp(ψ) ⊂ σ B, ψ = 1 in σ ′B and |∇ψ | ≤ 2(κr)−1;
(2) 0 ≤ λ ≤ 1, λ = 0 in (−∞, s − σr2), λ = 1 in (s − σ ′r2,+∞), and |λ′(t)| ≤

2(κr)−2.

Let Iσ = (s − σr2, s) and I ′
σ = (s − σ ′r2, s). For any t ∈ Iσ ′ , integrating the above

inequality over (s − r2, t),

sup
Iσ ′

{∫
B

ψu2dμ

}
+

∫
B×Iσ ′

|∇(ψu)|2dμdt ≤ C (rκ)−2
∫
Qσ

u2dμdt. (2.6)

On the other hand, by the Hölder inequality and the assumption of proposition, for
some p > 2, we have

∫
B

ϕ
2(1+ 2

p )dμ ≤
(∫

B
|ϕ| 2p

p−2 dμ

) p−2
p ·

(∫
B

ϕ2dμ

) 2
p

≤
(∫

B
ϕ2dμ

) 2
p ·

(
E(B)

∫
B
(|∇ϕ|2 + r−2|ϕ|2)dμ

)
(2.7)

for all ϕ ∈ C∞
0 (B), where E(B) = c3ec4Ar2V f (Bo(r))−2/p. Combining (2.6) and

(2.7), we get
∫
Qσ ′

u2θdμdt ≤ E(B)

[
C(rκ)−2

∫
Qσ

u2dμdt

]θ

with θ = 1 + 2/p. For any m ≥ 1, um is also a smooth positive solution of (∂t −
� f )u(x, t) ≤ 0. Hence the above inequality indeed implies

∫
Qσ ′

u2mθdμdt ≤ E(B)

[
C(rκ)−2

∫
Qσ

u2mdμdt

]θ

(2.8)

for m ≥ 1.
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Let κi = (1− δ)2−i , which satisfies �∞
1 κi = 1− δ. Let σ0 = 1, σi+1 = σi − κi =

1 − �i
1κ j . Applying (2.8) for m = θ i , σ = σi , σ ′ = σi+1, we have

∫
Qσi+1

u2θ
i+1

dμdt ≤ E(B)

[
Ci+1((1 − δ)r)−2

∫
Qσi

u2θ
i
dμdt

]θ

.

Therefore

(∫
Qσi+1

u2θ
i+1

dμdt

)θ−(i+1)

≤ C� jθ1− j · E(B)�θ− j · [(1 − δ)r ]−2�θ1− j
∫
Q
u2dμdt,

where � denotes the summations from 1 to i + 1. Letting i → ∞ we get

sup
Qδ

{u2} ≤ C · E(B)p/2 · [(1 − δ)r ]−2−p||u||22,Q (2.9)

for some p > 2.
Formula (2.9) in fact is a L2

f -mean value inequality. Next, we will apply (2.9) to
prove (2.5) by a different iterative argument. Let σ ∈ (0, 1) and ρ = σ + (1 − σ)/4.
Then (2.9) implies

sup
Qσ

{u} ≤ F(B) · (1 − σ)−1−p/2||u||2,Qρ ,

where F(B) = c3ec4A · r−1 · V f (Bo(r))−1/2. Since

‖u‖2,Q ≤ ‖u‖1/2∞,Q · ‖u‖1/21,Q

for any Q, so we have

‖u‖∞,Qσ ≤ F(B) · ‖u‖1/21,Q · (1 − σ)−1−p/2‖u‖1/2∞,Qρ
. (2.10)

Now fix δ ∈ (0, 1) and let σ0 = δ, σi+1 = σi + (1− σi )/4, which satisfy 1− σi =
(3/4)i (1 − δ). Applying (2.10) to σ = σi and ρ = σi+1, we have

‖u‖∞,Qσi
≤ (4/3)(1+p/2)i F(B) · ‖u‖1/21,Q · (1 − δ)−1−p/2‖u‖1/2∞,Qσi+1

.

Therefore, for any i ,

‖u‖∞,Qδ ≤ (4/3)(1+p/2)� j ( 12 ) j × [F(B) · ‖u‖1/21,Q · (1 − δ)−1−p/2]�( 12 ) j ‖u‖( 12 )i

∞,Qσi
,

where � denotes the summations from 0 to i − 1. Letting i → ∞ we get

‖u‖∞,Qδ ≤ (4/3)(2+p)[F(B) · ‖u‖1/21,Q · (1 − δ)−1−p/2]2,
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that is,

‖u‖∞,Qδ ≤ (4/3)(2+p)c5e
c6A(1 − δ)−2−p · r−2 · V f (Bo(r))

−1 · ‖u‖1,Q

and the proposition follows. ��

3 Gaussian upper bounds of the f -heat kernel

In this section, we prove Gaussian upper bounds of the f -heat kernel on smooth
metric measure spaces with nonnegative Bakry–Émery Ricci curvature by applying
Proposition 2.6 and Lemma 2.2. To prove Theorem 1.1, first we need a weighted
version of Davies’ integral estimate [11].

Lemma 3.1 Let (M, g, e− f dv)be ann-dimensional complete smoothmetricmeasure
space. Let λ1(M) ≥ 0 be the bottom of the L2

f -spectrum of the f -Laplacian on M.
Assume that B1 and B2 are bounded subsets of M. Then

∫
B1

∫
B2

H(x, y, t)dμ(x)dμ(y)

≤ V f (B1)
1/2V f (B2)

1/2 exp

(
−λ1(M)t − d2(B1, B2)

4t

)
, (3.1)

where d(B1, B2) denotes the distance between the sets B1 and B2.

Proof of Lemma 3.1 By the approximation argument, it suffices to prove (3.1) for the
f -heat kernel H� of any compact set with boundary � containing B1 and B2. In fact,
let�i be a sequence of compact exhaustion ofM such that�i ⊂ �i+1 and∪i�i = M .
If we prove (3.1) for the f -heat kernel H�i for any i , then the lemma follows by letting
i → ∞ and observing that λ1(�i ) → λ1(M), where λ1(�i ) > 0 is the first Dirichlet
eigenvalue of the f -Laplacian on �i , and λ1(M) = inf�i⊂M λ1(�i ).

We consider the function u(x, t) = et� f |�1B1 with Dirichlet boundary condition:
u(x, t) = 0 on ∂�. Then

∫
B2

∫
B1

H�(x, y, t)dμ(y)dμ(x) =
∫
B2

(∫
�

H�(x, y, t)1B1dμ(y)

)
dμ(x)

=
∫
B2

u(x, t)dμ(x)

≤ V f (B2)
1/2 ·

(∫
B2

u2(x, t)dμ(x)

)1/2

. (3.2)

For some α > 0, we define ξ(x, t) = αd(x, B1) − α2

2 t and consider the function

J (t) :=
∫

�

u2(x, t)eξ(x,t)dμ(x).

123



730 J.-Y. Wu, P. Wu

Claim: Function J (t) satisfies

J (t) ≤ J (t0) · exp(−2λ1(�)(t − t0)) (3.3)

for all 0 < t0 ≤ t .
This claim will be proved later. We now continue to prove Lemma 3.1. If x ∈ B2,

then ξ(x, t) ≥ αd(B2, B1) − α2

2 t . Hence

J (t) ≥
∫
B2

u2(x, t)eξ(x,t)dμ(x)

≥ exp

(
αd(B2, B1) − α2

2
t

)∫
B2

u2(x, t)dμ(x). (3.4)

On the other hand, if x ∈ B1 then ξ(x, 0) = 0. Using (3.3) and the continuity of J (t)
at t = 0+, we have

J (t) ≤ J (0) · exp(−2λ1(�)t)

=
∫

�

eξ(x,0)1B1dμ(x) · exp(−2λ1(�)t)

= V f (B1) · exp(−2λ1(�)t) (3.5)

Combining (3.2), (3.4) and (3.5), and choosing α = d(B1, B2)/t , we get

∫
B1

∫
B2

H�(x, y, t)dμ(x)dμ(y)≤V f (B1)
1/2V f (B2)

1/2 exp

(
−λ1(�)t− d2(B1, B2)

4t

)

for any compact set � ⊂ M . Lemma 3.1 is proved. ��
Proof of the claim. Since ξt ≤ − 1

2 |∇ξ |2 and ut = � f u, we compute directly

J ′(t) ≤ 2
∫

�

u� f ue
ξdμ(x) − 1

2

∫
�

u2eξ |∇ξ |2dμ(x)

= −2
∫

�

|∇u|2eξdμ(x) − 2
∫

�

u〈∇u,∇ξ 〉eξdμ(x) − 1

2

∫
�

u2eξ |∇ξ |2dμ(x)

= −2
∫

�

(u∇ξ + 2∇u)2eξdμ(x)

= −2
∫

�

|∇(ueξ/2)|2dμ(x). (3.6)

Moreover the definition of λ1(�) implies

∫
�

|∇(ueξ/2)|2dμ(x) ≥ λ1(�)

∫
�

|ueξ/2|2dμ(x) = λ1(�)J (t).

Substituting this into (3.6) we get J ′(t) ≤ −2λ1(�)J (t) and the claim is proved. ��
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Now we prove the upper bounds of f -heat kernel by modifying the argument of
[12] (see also [18]).

Proof of Theorem 1.1 We denote u : (y, s) �→ H(x, y, s) be a f -heat kernel. Under
the assumption t ≥ r22 , applying u to Proposition 2.6 with a fixed x ∈ Bo(R/2), we
have

sup
(y,s)∈Qδ

H(x, y, s) ≤ c5ec6A

r22V f (B2)
·
∫ t

t−1/4r22

∫
B2

H(x, ζ, s)dμ(ζ )ds

= c5ec6A

4V f (B2)
·
∫
B2

H(x, ζ, s′)dμ(ζ ) (3.7)

for some s′ ∈ (t − 1/4r22 , t), where Qδ = By(δr2) × (t − δr22 , t) with 0 < δ < 1/4,
and B2 = By(r2) ⊂ Bo(R) for y ∈ Bo(R/2). Applying Proposition 2.6 and the same
argument to the positive solution

v(x, s) =
∫
B2

H(x, ζ, s)dμ(ζ )

of the f -heat equation, for the variable x with t ≥ r21 , we also have

sup
(x,s)∈Qδ

∫
B2

H(x, ζ, s)dμ(ζ ) ≤ c5e
c6A

r21V f (B1)
·
∫ t

t−1/4r21

∫
B1

∫
B2

H(ξ, ζ, s)dμ(ζ )dμ(ξ)ds

= c5e
c6A

4V f (B1)
·
∫
B1

∫
B2

H(ξ, ζ, s′′)dμ(ζ )dμ(ξ) (3.8)

for some s′′ ∈ (t−1/4r21 , t), where Qδ = Bx (δr1)×(t−δr21 , t)with 0 < δ < 1/4, and
B1 = Bx (r1) ⊂ Bo(R) for x ∈ Bo(R/2). Now letting r1 = r2 = √

t and combining
(3.7) with (3.8), the f -heat kernel satisfies

H(x, y, t) ≤ (c5ec6A)2

V f (B1)V f (B2)
·
∫
B1

∫
B2

H(ξ, ζ, s′′)dμ(ζ )dμ(ξ) (3.9)

for all x, y ∈ Bo(R/2) and 0 < t < R2/4. Using Lemma 3.1 and noticing that
s′′ ∈ ( 34 t, t), (3.9) becomes

H(x, y, t) ≤ (c5ec6A)2

V f (Bx (
√
t))1/2V f (By(

√
t))1/2

× exp

(
−3

4
λ1t − d2(B1, B2)

4t

)

(3.10)

for all x, y ∈ Bo(R/2) and 0 < t < R2/4. Notice that if d(x, y) ≤ 2
√
t , then

d(Bx (
√
t), By(

√
t)) = 0 and hence

−d2(Bx (
√
t), By(

√
t))

4t
= 0 ≤ 1 − d2(x, y)

4t
,
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and if d(x, y) > 2
√
t , then d(Bx (

√
t), By(

√
t)) = d(x, y) − 2

√
t , and hence

−d2(Bx (
√
t), By(

√
t))

4t
= − (d(x, y) − 2

√
t)2

4t
≤ − d2(x, y)

4(1 + ε)t
+ C(ε)

for some constant C(ε), where ε > 0, and if ε → 0, then the constant C(ε) → ∞.
Therefore, by (3.10) we have

H(x, y, t) ≤ c7(n, ε)e2c6A

V f (Bx (
√
t)1/2V f (By(

√
t)1/2

× exp

(
−3

4
λ1t − d2(x, y)

4(1 + ε)t

)
(3.11)

for all x, y ∈ Bo(
1
2 R) and 0 < t < R2/4. Recall that by Lemma 2.2

V f (Bx (
√
t)) ≤ e4A

(
d(x, y)√

t
+ 1

)n

V f (By(
√
t))

for all x, y ∈ Bo(
1
2 R) and 0 < t < R2/4. Therefore we get

H(x, y, t) ≤ c7(n, ε)e(2c6+2)A

V f (Bx (
√
t)

·
(
d(x, y)√

t
+ 1

) n
2 × exp

(
−3

4
λ1t − d2(x, y)

(4 + ε)t

)

for all x, y ∈ Bo(
1
4 R) and 0 < t < R2/4. ��

4 L1
f -Liouville theorem

In this section, we will prove L1
f -Liouville theorem on complete noncompact smooth

metric measure spaces by using the f -heat kernel estimates proved in Sect. 3. Our
result extends the classical L1-Liouville theorem obtained by Li [17] and the weighted
versions proved by Li [20] and the first author [31].

We start from a useful lemma.

Lemma 4.1 Under the same assumption as in Theorem 1.5, then the complete smooth
metric measure space (M, g, e− f dv) is stochastically complete, i.e.,

∫
M
H(x, y, t)e− f dv(y) = 1.

Proof In Lemma 2.1, letting r1 = R1 = 0, r2 = 1, R2 = R > 1 and x = o, if
| f |(x) ≤ ar2(x) + b, then

V f (Bo(R)) ≤ C(n, b)Rnec(n,a)R2

for all R > 1. Hence
∫ ∞

1

R

log V f (Bo(R))
dR = ∞. (4.1)
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By Grigor’yan’s Theorem 3.13 in [14], this implies that the smooth metric measure
space (M, g, e− f dv) is stochastically complete. ��

Now we prove Theorem 1.5 following the arguments of Li in [17]. We first prove
the following integration by parts formula.

Theorem 4.2 Under the same assumption as in Theorem 1.5, for any nonnegative
L1

f -integrable f -subharmonic function u, we have

∫
M

� f y H(x, y, t)u(y)dμ(y) =
∫
M
H(x, y, t)� f u(y)dμ(y).

Proof of Theorem 4.2 Applying Green’s theorem to Bo(R), we have

∣∣∣∣
∫
Bo(R)

� f y H(x, y, t)u(y)dμ(y) −
∫
Bo(R)

H(x, y, t)� f u(y)dμ(y)

∣∣∣∣
=

∣∣∣∣
∫

∂Bo(R)

∂

∂r
H(x, y, t)u(y)dμσ,R(y) −

∫
∂Bo(R)

H(x, y, t)
∂

∂r
u(y)dμσ,R(y)

∣∣∣∣
≤

∫
∂Bo(R)

|∇H |(x, y, t)u(y)dμσ,R(y) +
∫

∂Bo(R)

H(x, y, t)|∇u|(y)dμσ,R(y),

where dμσ,R denotes the weighted area measure on ∂Bo(R) induced by dμ. We shall
show that the above two boundary integrals vanish as R → ∞. Without loss of
generality, we assume x ∈ Bo(R/8).

Step 1. Let u(x) be a nonnegative f -subharmonic function. Since Ric f ≥ 0 and
| f | ≤ ar2(x) + b., by Proposition 2.6 we get

sup
Bo(R)

u(x) ≤ CeαR2
V−1
f (2R)

∫
Bo(2R)

u(y)dμ(y), (4.2)

where constants C and α depend on n, a and b. Let φ(y) = φ(r(y)) be a nonnegative
cut-off function satisfying 0 ≤ φ ≤ 1, |∇φ| ≤ √

3 and

φ(r(y)) =
{
1 on Bo(R + 1)\Bo(R),

0 on Bo(R − 1) ∪ (M\Bo(R + 2)).

Since u is f -subharmonic, by the Cauchy–Schwarz inequality we have

0 ≤
∫
M

φ2u� f udμ = −
∫
M

∇(φ2u)∇udμ

= − 2
∫
M

φu〈∇φ∇u〉dμ −
∫
M

φ2|∇u|2dμ

≤ 2
∫
M

|∇φ|2u2dμ − 1

2

∫
M

φ2|∇u|2dμ.
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By (4.2), we have that

∫
Bo(R+1)\Bo(R)

|∇u|2dμ ≤ 4
∫
M

|∇φ|2u2dμ

≤ 12
∫
Bo(R+2)

u2dμ

≤ 12 sup
Bo(R+2)

u · ‖u‖L1(μ)

≤ Ceα(R+2)2

V f (2R + 4)
· ‖u‖2L1(μ)

.

On the other hand, the Cauchy–Schwarz inequality implies that

∫
Bo(R+1)\Bo(R)

|∇u|dμ ≤
(∫

Bo(R+1)\Bo(R)

|∇u|2dμ

)1/2

· [V f (R + 1)\V f (R)]1/2.

Combining the above two inequalities, we have

∫
Bo(R+1)\Bo(R)

|∇u|dμ ≤ C1e
αR2 · ‖u‖L1(μ), (4.3)

where C1 = C1(n, a, b).
Step 2. By letting ε = 1 in Theorem 1.1, the f -heat kernel H(x, y, t) satisfies

H(x, y, t) ≤ c3
V f (Bx (

√
t)

·
(
d(x, y)√

t
+ 1

) n
2 × exp

(
c4R

2 − d2(x, y)

5t

)
(4.4)

for any x, y ∈ Bo(R) and 0 < t < R2/4, where c3 = c3(n, b) and c4 = c4(n, a).
Together with (4.3) we get

J1 :=
∫
Bo(R+1)\Bo(R)

H(x, y, t)|∇u|(y)dμ(y)

≤ sup
y∈Bo(R+1)\Bo(R)

H(x, y, t) ·
∫
Bo(R+1)\Bo(R)

|∇u|dμ

≤ C2‖u‖L1(μ)

V f (Bx (
√
t))

·
(
R+1+d(o, x)√

t
+1

) n
2 ×exp

(
−(R−d(o, x))2

5t
+c4(R+1)2

)
,

where C2 = C2(n, a, b).
Thus, for T sufficiently small and for all t ∈ (0, T ) there exists a fixed constant

β > 0 such that

J1 ≤ C3‖u‖L1(μ)

V f (Bx (
√
t))

·
(
R + 1 + d(o, x)√

t
+ 1

) n
2 × exp

(
−βR2 + c

d2(o, x)

t

)
,
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where C3 = C3(n, a, b). Hence for all t ∈ (0, T ) and all x ∈ M , J1 tends to zero as
R tends to infinity.

Step 3. Consider the integral with respect to dμ,∫
M

φ2(y)|∇H |2(x, y, t) = −2
∫
M

〈H(x, y, t)∇φ(y), φ(y)∇H(x, y, t)〉

−
∫
M

φ2(y)H(x, y, t)� f H(x, y, t)

≤ 2
∫
M

|∇φ|2(y)H2(x, y, t) + 1

2

∫
M

φ2(y)|∇H |2(x, y, t)

−
∫
M

φ2(y)H(x, y, t)� f H(x, y, t).

This implies∫
Bo(R+1)\Bo(R)

|∇H |2

≤
∫
M

φ2(y)|∇H |2(x, y, t)

≤ 4
∫
M

|∇φ|2H2 − 2
∫
M

φ2H� f H

≤ 12
∫
Bo(R+2)\Bo(R−1)

H2 + 2
∫
Bo(R+2)\Bo(R−1)

H |� f H |

≤12
∫
Bo(R+2)\Bo(R−1)

H2+2

(∫
Bo(R+2)\Bo(R−1)

H2
) 1

2
(∫

M
(� f H)2

) 1
2

. (4.5)

By Lemma 4.1, we have

∫
M
H(x, y, t)dμ(y) = 1

for all x ∈ M and t > 0. By (4.4) we get

∫
Bo(R+2)\Bo(R−1)

H2(x, y, t)dμ ≤ sup
y∈Bo(R+2)\Bo(R−1)

H(x, y, t)

≤ c3
V f (Bx (

√
t)

·
(
R + 2 − d(o, x)√

t
+ 1

) n
2

× exp

[
− (R − 1 − d(o, x))2

5t
+ c4(R + 2)2

]
.

(4.6)

We claim that there exists a constant C4 > 0 such that

∫
M

(� f H)2(x, y, t)dμ ≤ C4

t2
H(x, x, t). (4.7)
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Because f -heat kernel on M can be obtained by taking the limit of f -heat kernels
on a compact exhaustion of M , it suffices to prove the claim for f -heat kernel on any
compact subdomain of M . Let H(x, y, t) is a f -heat kernel on a compact subdomain
� ⊂ M , by the eigenfunction expansion, we have

H(x, y, t) =
∞∑
i

e−λi tψi (x)ψi (y),

where {ψi } are orthonormal basis of the space of L2
f functions with Dirichlet boundary

value satisfying the equation

� f ψi = −λiψi .

Differentiating with respect to the variable y, we have

� f H(x, y, t) = −
∞∑
i

λi e
−λi tψi (x)ψi (y).

Notice that s2e−2s ≤ C5e−s for all 0 ≤ s < ∞, therefore

∫
M

(� f H)2dμ(y) ≤ C5t
−2

∞∑
i

e−λi tψ2
i (x) = C5t

−2H(x, x, t)

and claim (4.7) follows.
Combining (4.5), (4.6) and (4.7), we obtain

∫
Bo(R+1)\Bo(R)

|∇H |2dμ ≤ C6[V−1
f + t−1V

− 1
2

f H
1
2 (x, x, t)]

×
(
R + 2 − d(o, x)√

t
+ 1

) n
2

× exp

[
− (R − 1 − d(o, x))2

10t
+ c4(R + 2)2

]
.

where V f = V f (Bx (
√
t)). By the Cauchy–Schwarz inequality we get,

∫
Bo(R+1)\Bo(R)

|∇H |dμ

≤ [V f (Bo(R + 1))\V f (Bo(R))]1/2 ×
[∫

Bo(R+1)\Bo(R)

|∇H |2dμ

]1/2

≤ C6V
1/2
f (Bo(R + 1))[V−1

f + t−1V
− 1

2
f H

1
2 (x, x, t)]1/2

×
(
R+2−d(o, x)√

t
+1

) n
4 ×exp

[
−(R−1−d(o, x))2

20t
+ c9

2
(R + 2)2

]
. (4.8)
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Therefore, by (4.2) and (4.8), by Cauchy–Schwarz inequality we have

J2 :=
∫
Bo(R+1)\Bo(R)

|∇H(x, y, t)|u(y)dμ(y)

≤ sup
y∈Bo(R+1)\Bo(R)

u(y) ·
∫
Bo(R+1)\Bo(R)

|∇H(x, y, t)|dμ(y)

≤ C7‖u‖L1(μ)

V 1/2
f (Bo(2R + 2))

· [V−1
f + t−1V

− 1
2

f H
1
2 (x, x, t)]1/2

×
(
R + 2 − d(o, x)√

t
+ 1

) n
4 ×exp

[
− (R − 1 − d(o, x))2

20t
+ c10(R + 2)2

]
,

where V f = V f (Bx (
√
t)). Similar to the case of J1, by choosing T sufficiently small,

for all t ∈ (0, T ) and all x ∈ M , J2 also tends to zero when R tends to infinity.
Step 4. By the mean value theorem, for any R > 0 there exists R̄ ∈ (R, R + 1)

such that

J :=
∫

∂Bo(R̄)

[H(x, y, t)|∇u|(y) + |∇H |(x, y, t)u(y)]dμσ,R̄(y)

=
∫
Bo(R+1)\Bp(R)

[H(x, y, t)|∇u|(y) + |∇H |(x, y, t)u(y)]dμ(y)

= J1 + J2.

By step 2 and step 3, we know that by choosing T sufficiently small, for all t ∈ (0, T )

and all x ∈ M , J tends to zero as R̄ (and hence R) tends to infinity. Therefore we
finish the proof of Theorem 4.2 for T sufficiently small.

Step 5. Using the semigroup property of the f -heat equation,

∂

∂(s + t)
(e(s+t)� f u) = ∂

∂t
(es� f et� f u) = es� f

∂

∂t
(et� f u)

= es� f et� f (� f u) = e(s+t)� f (� f u),

we prove Theorem 4.2 for all time t > 0. ��

Next we prove the L1
f Liouville theorem, Theorem 1.5.

Proof of Theorem 1.5 Let u(x) be a nonnegative, L1
f -integrable and f -subharmonic

function defined on M . We define a space-time function

u(x, t) =
∫
M
H(x, y, t)u(y)dμ(y)
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with initial data u(x, 0) = u(x). From Theorem 4.2, we conclude that

∂

∂t
u(x, t) =

∫
M

∂

∂t
H(x, y, t)u(y)dμ(y)

=
∫
M

� f y H(x, y, t)u(y)dμ(y)

=
∫
M
H(x, y, t)� f yu(y)dμ(y) ≥ 0,

(4.9)

that is, u(x, t) is increasing in t . By Lemma 4.1,

∫
M
H(x, y, t)dμ(y) = 1

for all x ∈ M and t > 0. So we have
∫
M
u(x, t)dμ(x) =

∫
M

∫
M
H(x, y, t)u(y)dμ(y)dμ(x) =

∫
M
u(y)dμ(y).

Since u(x, t) is increasing in t , so u(x, t) = u(x) and hence u(x) is a nonnegative
f -harmonic function, i.e. � f u(x) = 0.
On the other hand, for any positive constant a, let us define a new function h(x) =

min{u(x), a}. Then h satisfies

0 ≤ h(x) ≤ u(x), |∇h| ≤ |∇u| and � f h(x) ≤ 0.

In particular, h satisfies estimates (4.2) and (4.3). Similarly we define h(x, t) and

∂

∂t
h(x, t) = ∂

∂t

∫
M
H(x, y, t)h(y)dμ(y)

=
∫
M
H(x, y, t)� f yh(y)dμ(y) ≤ 0.

By the same argument, we have that � f h(x) = 0.
By the regularity theory of f -harmonic functions, this is impossible unless h = u or

h = a. Since a is arbitrary and u is nonnegative, so u must be identically constant. The
theorem then follows from the fact that the absolute value of a f -harmonic function
is a nonnegative f -subharmonic function. ��

5 L1
f -uniqueness property

For the completeness we provide a detailed proof of Theorem 1.9 following the argu-
ments of Li in [17].

Proof of Theorem 1.9 Let u(x, t) ∈ L1
f be a nonnegative function satisfying the

assumption in Theorem 1.9. For ε > 0, let uε(x) = u(x, ε). Define
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et� f uε(x) =
∫
M
H(x, y, t)uε(y)dμ(y) (5.1)

and

Fε(x, t) = min{0, u(x, t + ε) − et� f uε(x)}.

Then Fε(x, t) is nonnegative and satisfies

lim
t→0

Fε(x, t) = 0 and (∂t − � f )Fε(x, t) ≤ 0.

Let T > 0 be fixed. Let h(x) = ∫ T
0 Fε(x, t)dt , which satisfies

� f h(x) =
∫ T

0
� f Fε(x, t)dt

≥
∫ T

0
∂t Fε(x, t)dt = Fε(x, T ) ≥ 0. (5.2)

Moreover,

∫
M
h(x)dμ =

∫ T

0

∫
M
Fε(x, t)dμdt

≤
∫ T

0

∫
M

|u(x, t + ε) − et� f uε(x)|dμdt

≤
∫ T

0

∫
M
u(x, t + ε)dμdt +

∫ T

0

∫
M
et� f uε(x)dμdt < ∞,

where the first term on the right hand side is finite from our assumption, and the
second term is finite because et� f is a contractive semigroup in L1

f . Therefore, h(x)

is a nonnegative L1
f -integrable f -subharmonic function. By Theorem 1.5, h(x) must

be constant. Combining with (5.2) we have Fε(x, t) = 0. Hence Fε(x, T ) ≡ 0 for all
x ∈ M and T > 0, which implies

et� f uε(x) ≥ u(x, t + ε). (5.3)

Next we estimate the function et� f uε(x) in (5.1). Applying the upper bound esti-
mate of the heat kernel H(x, y, t) and letting R = 2d(x, y) + 1, we have

et� f uε(x) ≤ C

V f (Bx (
√
t)

·
(
d(x, y)√

t
+ 1

) n
2

×
∫
M

[
exp

(
C̃d2(x, y) − d2(x, y)

5t

)
u(y, ε)

]
dμ(y).
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Thus there exists a sufficiently small t0 > 0 such that for all 0 < t < t0, we have
limε→0 et� f uε(x) = 0 by the assumption

lim
ε→0

∫
M
u(x, ε)dμ(x) = 0.

Therefore by the semigroup property, we conclude that limε→0 et� f uε(x) = 0
for all x ∈ M and t > 0. Combining with (5.3) we get u(x, t) ≤ 0. Therefore
u(x, t) ≡ 0. ��
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Appendix

In the appendix we solve for the f -heat kernel of 1-dimensional steady Gaussian
soliton (R, g0, e− f dx), where g0 is the Euclidean metric, and f = kx with k = ±1.
The method is standard separation of variables. Suppose the f -heat kernel is of the
form

H(x, y, t) = ϕ(y)φ(x)ψ(t) × exp

(
−|x − y|2

4t

)
.

For a fixed y, we get

Ht = ϕφe− |x−y|2
4t

(
ψt + ψ

|x − y|2
4t2

)
,

Hx = ϕψe− |x−y|2
4t

(
φx − φ

x − y

2t

)
,

Hxx = ϕψe− |x−y|2
4t

(
φxx + φ

|x − y|2
4t2

− φx
x − y

t
− φ

1

2t

)
.

So Ht = Hxx − fx Hx implies

φ

(
ψt + ψ

|x − y|2
4t2

)
= ψ

(
φxx + φ

|x − y|2
4t2

− φx
x − y

t
− φ

2t

)

− kψ

(
φx − φ

x − y

2t

)
.

That is,

ψt

ψ
= φxx − kφx

φ
− x − y

2t
· 2φx − kφ

φ
− 1

2t
.
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Therefore

φxx − kφx

φ
= C1,

(2φx − kφ)(x − y)

φ
= C2,

ψt

ψ
= C1 − 1 + C2

2t
,

From above, their solutions are

φ = C3e
1
2 kx ,

ψ = C4
1√
t
e−4/t ,

where C1, C2, C3, C4 are constants.
By the initial condition limt→0 u(x, t) = δ f,y(x)we get ϕ(y) = e

1
2 ky , andC3C4 =

1
2
√

π
. Therefore the f -heat kernel is

H(x, y, t) = e± x+y
2 · e−t/4

(4π t)1/2
× exp

(
−|x − y|2

4t

)
.

It is easy to check that
∫
R
H(x, y, t)e− f (x)dx = 1, which confirms the stochastic

completeness proved in Lemma 4.1. ��
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