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Abstract In this article we investigate length decreasing maps f : M → N between
Riemannian manifolds M , N of dimensions m ≥ 2 and n, respectively. Assuming that
M is compact and N is complete such that

secM > −σ and RicM ≥ (m − 1)σ ≥ (m − 1) secN ≥ −μ,

where σ , μ are positive constants, we show that the mean curvature flow provides
a smooth homotopy of f into a constant map.

Mathematics Subject Classification 53C44 · 53C42 · 57R52 · 35K55

1 Introduction

Let f : M → N be a smooth map between Riemannian manifolds. To any such
f we assign a geometric quantity called k-dilation, which measures how much the
map stretches k-dimensional volumes. For example the 1-dilation coincides with the
Lipschitz constant of the map. The map f is called a contraction or weakly length
decreasing if its 1-dilation is less or equal to 1. Equivalently, the map f is a contrac-
tion if
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726 A. Savas-Halilaj, K. Smoczyk

f ∗gN ≤ gM ,

where gM , gN stand for the Riemannian metrics of M and N , respectively. In particular,
the map f will be called strictly length decreasing if f ∗gN < gM everywhere and an
isometry if f ∗gN ≡ gM .

If M = S
m and N = S

n are unit spheres and f : S
m → S

n is a strictly length
decreasing map, then the diameter of f (Sm) is strictly less than π which implies that
the map f is not surjective. Hence, f must be null-homotopic. Tsui and Wang [12]
proved that maps f : S

m → S
n between unit spheres with 2-dilation strictly less than

1, or equivalently strictly area decreasing, are also homotopic to a constant map. As
it was shown by Guth [2,3] this result cannot be extended in the case of k-dilation for
k ≥ 3.

Based on ideas developed in [12,13], Lee and Lee [5] proved that any strictly area
decreasing map between compact Riemannian manifolds M and N whose sectional
curvatures are bounded by secM ≥ σ1 and σ2 ≥ secN , where σ1, σ2 are two real
constants such that

σ1 ≥ σ2 > 0 or σ1 > 0 ≥ σ2,

is homotopic by mean curvature flow to a constant map. We would like to point out
here that the curvature assumptions can be relaxed even much further as it was shown
in [7]. The goal of this paper is to show that in the length decreasing case one can drop
the compactness assumption on N . More precisely we prove:

Theorem Let M and N be two Riemannian manifolds with M being compact and N
complete. Assume that m = dim M ≥ 2 and that there exist positive constants σ , μ

such that the sectional curvatures secM of M and secN of N and the Ricci curvature
RicM of M satisfy

secM > −σ and RicM ≥ (m − 1)σ ≥ (m − 1) secN ≥ −μ.

Let f : M → N be a strictly length decreasing map. Then the mean curvature flow
of the graph of f remains the graph of a strictly length decreasing map, exists for all
time and f converges to a constant map.

In the case where N is compact the above result is contained in our previous
paper [7]. The key argument to remove the compactness is an estimate on the mean
curvature vector field of the evolving graphs. In particular, we prove that the norm of
the mean curvature vector field remains uniformly bounded in time. This will imply
that the evolving graphs stay in compact regions of M × N on time intervals [0, T ),
with T < ∞. Using this estimate, the blow-up analysis of Wang [13] and White’s
regularity theorem [14] we are able to prove that the maximal time T of existence of
the flow is ∞. To prove the mean curvature estimate, we introduce a tensor on the
normal bundle of the evolving graphs and compare the maximum of the norm of the
mean curvature with the biggest eigenvalue of this tensor.
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Evolution of contractions by mean curvature flow 727

2 Graphs

2.1 Basic facts

We follow here the notations of our previous two papers [7,8]. The product manifold
M × N will always be regarded as a Riemannian manifold equipped with the metric

gM×N = 〈· , ·〉 := gM × gN .

The graph of a map f : M → N is defined to be the submanifold

�( f ) := {(x, f (x)) ∈ M × N : x ∈ M}

of the product M × N . The graph �( f ) can be parametrized via the embedding
F : M → M × N , F := IM × f , where IM is the identity map of M .

The Riemannian metric induced by F on M will be denoted by

g := F∗gM×N .

The two natural projections πM : M × N → M and πN : M × N → N are
submersions, that is they are smooth and have maximal rank. The tangent bundle of
the product manifold M × N , splits as a direct sum

T (M × N ) = T M ⊕ T N .

The four metric tensors gM , gN , gM×N and g are related by

gM×N = π∗
M gM + π∗

N gN,

g = F∗gM×N = gM + f ∗gN .

As in [7,8], define the symmetric 2-tensors

sM×N := π∗
M gM − π∗

N gN,

s := F∗sM×N = gM − f ∗gN .

The Levi-Civita connection ∇gM×N associated to gM×N is related to the Levi-Civita
connections ∇gM on (M, gM ) and ∇gN on (N , gN ) by

∇gM×N = π∗
M∇gM ⊕ π∗

N ∇gN .

The corresponding curvature operator RM×N on M × N with respect to the metric
gM×N is related to the curvature operators RM on (M, gM ) and RN on (N , gN ) by
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728 A. Savas-Halilaj, K. Smoczyk

RM×N = π∗
M RM ⊕ π∗

N RN .

The Levi-Civita connection on M with respect to the induced metric g is denoted by
∇, the curvature tensor by R and the Ricci curvature by Ric.

2.2 The second fundamental form

The differential dF of F can be regarded as a section in the induced bundle F∗T
(M × N ) ⊗ T ∗M . In the sequel we will denote all full connections on bundles over
M that are induced by the Levi-Civita connection on M × N via the immersion
F : M → M × N by the same letter ∇. The covariant derivative of dF is called the
second fundamental form of the immersion F and it will be denoted by A. That is

A(v,w) := (∇dF)(v,w),

for any vector fields v,w ∈ TM. If ξ is a normal vector of the graph, then the symmetric
tensor Aξ given by

Aξ (v,w) := 〈A(v,w), ξ 〉

is called the second fundamental form with respect to the direction ξ .
The trace of A with respect to the metric g is called the mean curvature vector field

of �( f ) and it will be denoted by

H := traceg A.

Note that H is a section in the normal bundle NM . The graph �( f ) is called minimal
if H vanishes identically.

Every vector V of F∗T (M × N ) can be decomposed as

V = V � + V ⊥,

where V � is the tangential component and V ⊥ for the normal component of V along F .
Introduce now the natural projection map pr : F∗T (M × N ) → N M , pr(V ) := V ⊥.
We can express this map locally as

pr(V ) = V −
m∑

k,l=1

gkl〈V, dF(∂k)〉 dF(∂l),

where {∂1, . . . , ∂m} is the basis of a local coordinate chart defined on an open neigh-
borhood of the manifold M and gkl are the components of the inverse matrix (gkl)

−1,
where gkl = g(∂k, ∂l), 1 ≤ k, l ≤ m. The connection of the normal bundle will be
denoted by the letter ∇⊥ and is defined by

∇⊥
v ξ := pr

(∇vξ
)
,
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Evolution of contractions by mean curvature flow 729

where here v ∈ TM and ξ ∈ NM . The Laplacian with respect to ∇⊥ will be denoted
by 	⊥.

By Gauß’ equation the tensors R and RM×N are related by the formula

(
R −F∗RM×N

)
(v1, w1, v2, w2)

= 〈
A(v1, v2), A(w1, w2)

〉 − 〈
A(v1, w2), A(w1, v2)

〉
,

and the second fundamental form satisfies the Codazzi equation

(∇u A)(v,w) − (∇v A)(u, w)

= RM×N
(
dF(u), dF(v), dF(w)

) − dF
(
R(u, v, w)

)
,

for any u, v, w, v1, v2, w1, w2 ∈ TM.

2.3 Singular decomposition

As in [7,8], fix a point x ∈ M and let λ2
1 ≤ · · · ≤ λ2

m be the eigenvalues at x of f ∗gN
with respect to gM . The corresponding values λi ≥ 0, i ∈ {1, . . . , m}, are called
singular values of the differential d f of f at the point x . It turns out that the singular
values depend continuously on x . Set r := rank d f (x). Obviously, r ≤ min{m, n}
and

λ1 = · · · = λm−r = 0.

At the point x consider an orthonormal basis

{α1, . . . , αm−r ;αm−r+1, . . . , αm}
with respect to gM which diagonalizes f ∗gN . Furthermore, at the point f (x) consider
an orthonormal basis

{β1, . . . , βn−r ;βn−r+1, . . . , βn}
with respect to gN such that

d f (αi ) = λiβn−m+i ,

for any i ∈ {m − r + 1, . . . , m}. We may define a special basis for the tangent and the
normal space of �( f ) in terms of the singular values. The vectors

ei :=
⎧
⎨

⎩

αi , 1 ≤ i ≤ m − r,
1√

1+λ2
i

(αi ⊕ λiβn−m+i ), m − r + 1 ≤ i ≤ m,

form an orthonormal basis with respect to the metric gM×N of the tangent space
dF(Tx M) of the graph �( f ) at x . The vectors
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ξi :=
⎧
⎨

⎩

βi , 1 ≤ i ≤ n − r,
1√

1+λ2
i+m−n

(−λi+m−nαi+m−n ⊕ βi ), n − r + 1 ≤ i ≤ n,

give an orthonormal basis with respect to gM×N of the normal space Nx M of the
graph �( f ) at the point F(x). Note that

sM×N (ei , e j ) = 1 − λ2
i

1 + λ2
i

δi j , 1 ≤ i, j ≤ m. (2.1)

Thus, the map f is strictly length decreasing if and only if the symmetric
2-tensor s is positive.

Denote by s⊥ the restriction of sM×N to the normal bundle of the graph. Then, we
can readily check that

s⊥(ξi , ξ j ) =
⎧
⎨

⎩

−δi j , 1 ≤ i ≤ n − r,

− 1−λ2
i+m−n

1+λ2
i+m−n

δi j , n − r + 1 ≤ i ≤ n.
(2.2)

Hence, if there exists a positive constant ε such that s ≥ ε g, then s⊥ ≤ −ε g⊥, where
g⊥ stands for the restriction of gM×N on N M . Furthermore,

sM×N (em−r+i , ξn−r+ j ) = − 2λm−r+i

1 + λ2
m−r+i

δi j , 1 ≤ i, j ≤ r. (2.3)

Moreover, the value of sM×N on any other mixed term is zero.

3 Evolution equations

Let M and N be Riemannian manifolds, f : M → N a smooth map and F : M →
M × N , F := IM × f , the graph �( f ) of f . Deform �( f ) by mean curvature flow in
the product space M×N . That is consider the family of immersions F : M×[0, T ) →
M × N satisfying the equation

{
d F
dt (x, t) = H(x, t)

F(x, 0) = F(x)

where (x, t) ∈ M ×[0, T ), H(x, t) is the mean curvature vector field at x ∈ M of the
immersion Ft : M → M × N given by Ft ( · ) := F( · , t) and T the maximal time
of existence of the solution. From the compactness of M it follows that the evolving
submanifold stays a graph on an interval [0, Tg) with Tg ≤ T , that is there exists a
family of diffeomorphisms φt : M → M and a family of maps ft : M → N such that
Ft ◦ φt = IM × ft , for any t ∈ [0, Tg). In the matter of fact, under the assumptions
of the Theorem, the singular values of f remain uniformly bounded in time and the

123



Evolution of contractions by mean curvature flow 731

solution of the mean curvature flow stays a graph as long as the flow exists. This result
follows from the next lemma, which still holds in the case where N is complete.

Lemma 3.1 ([7]) Let M and N be Riemannian manifolds with M being compact and
N complete. Assume that m = dimM ≥ 2 and that there exists a positive constant σ

such that the sectional curvatures secM of M and secN of N and the Ricci curvature
RicM of M satisfy

secM > −σ and RicM ≥ (m − 1)σ ≥ (m − 1) secN .

Let f : M → N be a strictly length decreasing map such that s ≥ ε g, where ε is a
positive constant. Then the inequality s ≥ ε g is preserved under the mean curvature
flow. Furthermore, Tg = T .

Now we claim that the norm of the mean curvature vector remains bounded in
time. Inspired on ideas developed for the Lagrangian mean curvature flow in [11] (see
also [1] for the Lagrangian mean curvature flow of non-compact euclidean domains in
C

m) we will compare the eigenvalues of the symmetric tensor H ⊗ H with the biggest
eigenvalue of − s⊥.

Lemma 3.2 Let ξ be a local vector field along the graph of ft0 which is normal to
�( ft0) at a point x0. The time derivative of pr at ξ ∈ Nx0 M, when it is regarded as a
bundle map pr : F∗T (M × N ) → F∗T (M × N ), is given by

(∇∂t pr)(ξ) = −
m∑

j=1

〈
ξ,∇e j H

〉
e j = −

m∑

j=1

〈
ξ,∇⊥

e j
H

〉
e j ,

where {e1, . . . , em} is a local orthonormal frame in the tangent bundle of the graph.
Moreover, the time derivative of the natural projection at ξ ∈ Nx0 M, when it is
regarded as a map pr : F∗T (M × N ) → N M, is zero. That is, (∇⊥

∂t
pr)(ξ) = 0.

Proof Consider a local coordinate system (x1, . . . , xm) around x0 and suppose that the
vectors {∂1|x0 , . . . , ∂m |x0} are orthonormal. Extend them now via parallel transport to
a frame field {ε1, . . . , εm} which is orthonormal with respect to the Riemannian metric
g(t0). In order to simplify the notation we set ei = dFt0(εi ), 1 ≤ i ≤ m. Extend also
the vector ξ arbitrarily.

Differentiating along the time direction, we get that

(∇∂t pr
)
(ξ) = ∇∂t ξ − pr(∇∂t ξ)

−
m∑

k,l=1

gkl〈∇∂t ξ, dF(∂k)〉 dF(∂l)

−
m∑

k,l=1

∂t
(

gkl )〈ξ, dF(∂k)〉 dF(∂l)
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−
m∑

k,l=1

gkl〈ξ,∇∂t dF(∂k)〉 dF(∂l)

−
m∑

k,l=1

gkl〈ξ, dF(∂k)〉∇∂t dF(∂l).

Because,

∂t
(

gkl ) = 2
m∑

s,z=1

gks gzl AH (∂s, ∂z)

we deduce that

(∇∂t pr
)
(ξ) = −

m∑

k,l=1

gkl〈ξ,∇∂k H〉 dF(∂l)

−
m∑

k,l=1

gkl〈ξ, dF(∂k)〉∇∂l H

−2
m∑

k,s,z,l=1

gks gzl AH (∂s, ∂z)〈ξ, dF(∂k)〉 dF(∂l).

Since, gkl(x0, t0) = δkl , we get that at this point it holds

(∇∂t pr
)
(ξ) = −

m∑

j=1

〈ξ,∇e j H〉e j −
m∑

j=1

〈ξ, e j 〉∇e j H

−2
m∑

i, j=1

AH (ei , e j )〈ξ, ei 〉e j

= −
m∑

j=1

〈ξ,∇e j H〉e j .

Now, since pr ◦ pr = pr, we have that

(∇⊥
∂t

pr
)
(ξ) = pr

(∇∂t pr(ξ)
) − pr

(∇∂t ξ
) = pr

{(∇∂t pr
)
(ξ)

} = 0.

This completes the proof of the lemma. ��
In the next lemma we compute the evolution equation of s⊥. For that reason, it is

necessary to extend s⊥ on F∗T (M × N ), by defining

s⊥(V, W ) = sM×N
(

pr(V ), pr(W )
)

for any V, W ∈ F∗T (M × N ).
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Evolution of contractions by mean curvature flow 733

Lemma 3.3 Let ξ be a unit vector normal to the evolving submanifold at a fixed point
(x0, t0) in space time. Then

(∇⊥
∂t

s⊥ −	⊥ s⊥ )
(ξ, ξ) = 2

m∑

i, j=1

Aξ (ei , e j ) sM×N
(

A(ei , e j ), ξ
)

−2
m∑

i, j=1

RM×N (ei , e j , ei , ξ) sM×N (e j , ξ)

−2
m∑

i, j,k=1

Aξ (ei , e j )Aξ (ei , ek)sM×N (e j , ek),

for any orthonormal basis {e1, . . . , em} of dFt0(Tx0 M).

Proof Let us compute at first the time derivative of s⊥. Extend ξ locally to a smooth
vector field along the graph. Then, using the fact that sM×N and pr are parallel tensors,
we get that

(∇⊥
∂t

s⊥)(pr(ξ), pr(ξ)) = ∂t
{
sM×N (pr(ξ), pr(ξ))

}

−2sM×N
(∇⊥

∂t
pr(ξ), pr(ξ)

)

= 2sM×N
(∇∂t pr(ξ) − ∇⊥

∂t
pr(ξ), pr(ξ)

)

= 2sM×N
(∇∂t pr(ξ) − pr(∇∂t ξ), pr(ξ)

)

= 2sM×N
(
(∇∂t pr)(pr(ξ)), pr(ξ)

)
.

By virtue of Lemma 3.2, we deduce that at (x0, t0), the time derivative of s⊥ is given
by

(∇⊥
∂t

s⊥)(ξ, ξ) = −2
m∑

j=1

〈∇⊥
e j

H, ξ 〉sM×N (e j , ξ).

In the next step we compute the Laplacian of s⊥. As usual, consider two vectors ξ

and η on NM and extend them locally to smooth normal vector fields. At first let us
compute the covariant derivative of s⊥ with respect to the direction ei . Using the fact
that sM×N is parallel, we have

(∇⊥
ei

s⊥ )
(ξ, η) = ei

{
sM×N (ξ, η)} − sM×N (∇⊥

ei
ξ, η) − sM×N (ξ,∇⊥

ei
η)

= sM×N
(∇ei ξ − ∇⊥

ei
ξ, η

) + sM×N
(
ξ,∇ei η − ∇⊥

ei
η
)
.

Recall from the Weingarten formulas that

∇ei ξ = −
m∑

j=1

Aξ (ei , e j )e j + ∇⊥
ei

ξ.
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Hence,

(∇⊥
ei

s⊥ )
(ξ, η) = −Aξ (ei , e j )sM×N (e j , η) − Aη(ei , e j )sM×N (e j , ξ).

Differentiating once more in the direction of ei , we get

(∇⊥
ei

∇⊥
ei

s⊥ )
(ξ, ξ) = −2

m∑

j=1

〈(∇⊥
ei

A)(e j , ei ), ξ 〉sM×N (e j , ξ)

−2
m∑

j=1

Aξ (ei , e j )sM×N (A(ei , e j ), ξ)

+2
m∑

j,k=1

Aξ (ei , e j )Aξ (ei , ek)sM×N (e j , ek).

From the Codazzi equation we get

(∇⊥
ei

A
)
(e j , ei ) = (∇⊥

e j
A
)
(ei , ei ) + pr

(
RM×N (ei , e j , ei )

)
.

Substituting the above relation in the formula of the Hessian of s and then taking a
trace, we see that

(
	⊥ s⊥ )

(ξ, ξ) = −2
m∑

j=1

〈∇⊥
e j

H, ξ 〉sM×N (e j , ξ)

−2
m∑

i, j=1

Aξ (ei , e j )sM×N (A(ei , e j ), ξ)

+2
m∑

i, j,k=1

Aξ (ei , e j )Aξ (ei , ek)sM×N (e j , ek)

+2
m∑

i, j=1

RM×N (ei , e j , ei , ξ)sM×N (e j , ξ).

Combining the above formula for the Laplacian with the formula for the time deriva-
tive, we deduce the evolution equation for s⊥. ��

Consider the symmetric tensor ϑ ∈ Sym
(
F∗T (M ×N )⊗F∗T (M ×N )

)
, given by

ϑ(V, W ) := Hpr(V ) · Hpr(W ),

where Hξ = trace Aξ is the component of the mean curvature vector field in the
direction of the normal vector ξ .

Lemma 3.4 The symmetric 2-tensor ϑ evolves under the mean curvature flow accord-
ing to the formula
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Evolution of contractions by mean curvature flow 735

(∇⊥
∂t

ϑ − 	⊥ϑ
)
(ξ, ξ) = 2

m∑

i, j=1

AH (ei , e j )Aξ (ei , e j )Hξ − 2
m∑

i=1

〈∇⊥
ei

H, ξ 〉2

−2
m∑

i=1

RM×N
(
H, ei , ei , ξ

)
Hξ

for any normal vector ξ in the normal bundle of the submanifold.

Proof At first let us compute the time derivative of ϑ . Fix a point (x0, t0) in space-time
and consider a unit normal vector ξ of �( ft0) at the point x0. Now extend ξ to a local
smooth vector field.

Computing and then estimating at (x0, t0), we get that

(∇⊥
∂t

ϑ
)
(ξ, ξ) = ∂t

{
ϑ(pr(ξ), pr(ξ))

} − 2ϑ
(∇⊥

∂t
pr(ξ), pr(ξ)

)

= 2〈∇⊥
∂t

H, pr(ξ)〉Hpr(ξ) + 2〈H,∇⊥
∂t

pr(ξ)〉Hpr(ξ)

−2〈H,∇⊥
∂t

pr(ξ)〉Hpr(ξ)

= 2
〈∇⊥

∂t
H, ξ

〉
Hξ .

From the evolution equation of the mean curvature vector H (see [10, Corollary 3.8])
we deduce that at the point x0 it holds

∇⊥
∂t

H − 	⊥H =
m∑

i=1

pr
(
RM×N (H, ei , ei )

) +
m∑

i, j=1

AH (ei , e j )A(ei , e j ).

Combining the above two equalities, we obtain

(∇⊥
∂t

ϑ
)
(ξ, ξ) = 2〈	⊥ H, ξ 〉Hξ

−2
m∑

i=1

RM×N
(
H, ei , ei , ξ

)
Hξ

+2
m∑

i, j=1

AH (ei , e j )Aξ (ei , e j )Hξ .

The next step is to compute the Laplacian of the tensor ϑ . At first let us compute the
covariant derivative. Fix a point (x0, t0) in space time and let ξ, η be two normal vector
fields of �( ft0) defined in a neighborhood of x0. Differentiating with respect to the
direction ei , we have

(∇⊥
ei

ϑ
)
(ξ, η) = 〈∇⊥

ei
H, ξ

〉
Hη + 〈∇⊥

ei
H, η

〉
Hξ .

Differentiating once more with respect to the direction ei and summing up we deduce
that
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(
	⊥ϑ

)
(ξ, ξ) = 2

〈
	⊥H, ξ

〉
Hξ + 2

m∑

i=1

〈∇⊥
ei

H, ξ
〉2

. (3.1)

Combining the relations of the time derivative and of the Laplacian we obtain the
desired evolution equation. This completes the proof. ��

4 Proof of the theorem

During this section we will always assume that the Riemannian manifolds (M, gM ),
(N , gN ) and f : M → N satisfy the assumption of the Theorem. The next lemma
will be crucial to deal with the non-compactness of N .

Lemma 4.1 There exists a uniform positive constant C such that

‖H‖2(x, t) ≤ C,

for any (x, t) ∈ M × [0, T ).

Proof Consider the symmetric 2-tensor P , defined on the normal bundles of the evolv-
ing graphs and given by

P := κ ϑ + s⊥,

where κ is a sufficiently small positive constant such that P < 0 at time t = 0.
We claim now that, taking if necessary a smaller choice for κ , the tensor P remains
negative definite in time. Assume in contrary that this is not true. Then, there will be
a first time such that P admits a unit null-eigenvector η at a point (x0, t0). Note that η

is normal at the graph at the point (x0, t0).
According to the second derivative criterion [4], we have

(a) P(ξ, η) = κ ϑ(ξ, η) + s⊥(ξ, η) = 0,

(b) (∇ P)(η, η) = 0,

(c) (∇⊥
∂t

P − 	⊥ P
)
(η, η) ≥ 0,

for any normal vector ξ of the graph at the point (x0, t0).
Estimating at (x0, t0) we get from (c) that

0 ≤ −
m∑

i, j,k=1

Aη(ei , e j )Aη(ei , ek)sM×N (e j , ek) − κ

m∑

i=1

〈∇⊥
ei

H, η〉2

+
m∑

i, j=1

{
Aη(ei , e j ) sM×N

(
A(ei , e j ), η

) + κ AH (ei , e j )Aη(ei , e j )Hη

}

−
m∑

i, j=1

{
RM×N (ei , e j , ei , η) sM×N (e j , η) + κRM×N

(
H, ei , ei , η

)
Hη

}
.
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Let {ξ1, . . . , ξn} be an orthonormal basis of Nx0 M . Then,

0 ≤ −
m∑

i, j=1

Aη(ei , e j )Aη(ei , ek)sM×N (e j , ek)

+
n∑

l=1

m∑

i, j=1

Aη(ei , e j )Aξl (ei , e j )s
⊥(ξl , η)

+
n∑

l=1

m∑

i, j=1

κ Hξl Hη Aξl (ei , e j )Aη(ei , e j )

−
m∑

i, j=1

{
RM×N (ei , e j , ei , η) sM×N (e j , η) + κRM×N

(
H, ei , ei , η

)
Hη

}
.

Since, for any l ∈ {1, . . . , n}, from (a) it holds

κ Hξl Hη = − s⊥(ξl , η),

we finally get that

0 ≤ −
m∑

i, j=1

Aη(ei , e j )Aη(ei , ek)sM×N (e j , ek)

−
m∑

i, j=1

{
RM×N (ei , e j , ei , η) sM×N (e j , η)+κRM×N

(
H, ei , ei , η

)
Hη

}
. (4.1)

Denote by A the first part of (4.1) whose terms are involving the second fundamental
form and by B the remaining curvature terms. The idea is to show that A becomes
sufficiently negative for small choices of κ and dominates B that depends only on the
singular values and the geometry of M and N .

Fact 1 Since s⊥ remains negative in time, from Lemma 3.1 it follows that there exists
a universal positive constant ε such that

ε|ξ |2 ≤ − s⊥(ξ, ξ) ≤ |ξ |2,

for any ξ in NM . Note that at (x0, t0) it holds,

κ H2
η = κ ϑ(η, η) = − s⊥(η, η) ≥ ε. (4.2)

Therefore, as κ becomes smaller H2
η becomes larger.

Fact 2 From the relations (2.1) we deduce that

A ≤ −
m∑

i, j=1

A2
η(ei , e j )sM×N (ei , e j ) ≤ −ε|A2

η| ≤ − ε

m
H2

η ,
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738 A. Savas-Halilaj, K. Smoczyk

where s ≥ ε g was applied in the second inequality. Thus for sufficiently small values
of κ , A becomes sufficiently negative.

Fact 3 Note now that the first term of B depends only on the geometry of (M, gM )

and (N , gN ) as well as on the singular values of ft which we know are bounded. The
second term of B also depends only on these data, since

κ RM×N (H, ei , ei , η)Hη =
n∑

l=1

κ Hξl HηRM×N (ξl , ei , ei , η)

= −
n∑

l=1

s⊥(ξl , η)RM×N (ξl , ei , ei , η),

where {ξ1, . . . , ξn} is a local basis on the normal bundle of the graph. Therefore, there
exists a universal constant c := c(M, N , ε) such that B ≤ c. Therefore, due to relation
(4.2) we get that

B ≤ c

ε
ε ≤ c

ε
κ H2

η .

Thus,

A + B ≤
(c

ε
κ − ε

m

)
H2

η .

Consequently, for κ < ε2/c m, we see that A + B < 0 which contradicts (4.1).
Therefore, the norm of the mean curvature vector field remains bounded in time. This
completes the proof of the lemma. ��
Remark 4.1 As one can see from the proof, we make use only of the facts that M is
compact, N is complete with bounded sectional curvatures and that all the singular
values of ft are bounded from above by a positive universal constant which is less
than 1.

The proof of the Theorem will be concluded by exploiting the blow up argument
of Wang [13] and White’s regularity theorem [14]. Let us recall at first the following
crucial inequality for the time dependent angle-type function

u := 1√
(1 + λ2

1) · · · (1 + λ2
m)

.

Lemma 4.2 ([7]) The following estimate holds,

∇∂t log u ≥ 	 log u − 2c0 log u + δ‖A‖2,

for some positive real numbers c0 and δ.

123



Evolution of contractions by mean curvature flow 739

Once this estimate is available one can use White’s regularity theorem [14] to exclude
finite time singularities as long as on finite time intervals the graphs stay in compact
regions of M × N , which clearly is true, if M × N is compact. In our case N is
complete but we may now exploit the mean curvature estimate of the Theorem to get
the desired C0-estimate for the graphs on finite time intervals. To see this, fix a point
x ∈ M and consider the smooth curve γ : [t0, t1] → M × N , given by

γ (x, t) := F(x, t).

The length L(γ ) of γ can be estimated using the bound of the mean curvature vector
as follows

L(γ ) =
∫ t1

t0

∥∥∥∥
dF

dt
(x, t)

∥∥∥∥ dt

≤
∫ t1

t0
‖H(x, t)‖ dt ≤ C(t1 − t0)

≤ CT,

Therefore,

dist (F(x, t0), F(x, t1)) ≤ L(γ ) ≤ CT .

Suppose the graphs remain in a compact region W of M × N on a finite time interval
[0, T ). By Nash’s embedding theorem [6] one can embed W isometrically in some
euclidean space R

p and make sure that the isometric embedding has bounded geome-
try. The bounded geometry is essential in the application of White’s regularity theorem
[14] for the mean curvature flow with controlled error terms, which by the compact-
ness of W is applied to the mean curvature flow of F(M) ⊂ W ⊂ R

p. Following
the same arguments developed in the papers [13, Section 4] or [5, Section 3], we can
prove the long-time existence and the convergence of the mean curvature flow to a
constant map.

Remark 4.2 We would like to mention that in [9] pointwise curvature estimates are
obtained for area decreasing maps between flat compact Riemann surfaces. In general,
the problem of obtaining pointwise curvature estimates for the area decreasing mean
curvature flow is still open as well as longtime existence of the area decreasing mean
curvature flow in case of complete target manifolds.
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